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FOREWORD 
 

This technical report presents a detailed description of a new three-

dimensional cloud model we have developed. Since the 1970s, a number of three-

dimensional cloud models were developed. Practically all of them are built on 

the dynamical framework of the momentum equation. Our model uses the vector 

vorticity equation instead, in which the pressure gradient force is eliminated. 

Since the pressure field is passive to the anelastic motion, the relevant dynamical 

processes are more explicitly expressed in this way and, therefore, diagnosis and 

interpretation of the model results can be more straightforward. The use of the 

vorticity equation is also advantageous from the viewpoint of computational 

design because computational requirements on the key dynamical processes can 

be more directly implemented.  
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1. Introduction 

 
In the process of cloud modeling during the last decades, it was clearly 

realized that one- and two-dimensional cloud models are usually not capable of 

realistically simulating the complex behavior of convective systems. A number of 

three-dimensional cloud models were developed to simulate the structure, 

intensity and movement of convective clouds. For example, Steiner (1973) 

demonstrated the need of three-dimensional models to simulate convection by 

comparing the development of a shallow, non-precipitating cumulus cloud in 

two-dimensional and three-dimensional domains. Wihelmson (1974), Miler and 

Pearce (1974), Pastushkov (1975), Moncrieff and Miller (1976), and Schlesinger 

(1978) simulated deep precipitating convection in a three-dimensional domain. 

Wihelmson and Klemp (1978) simulated details of the dynamics of convective 

storms such as their occasional splitting. They found that the splitting is the 

direct result of precipitation and the magnitude of the low-level shear affects the 

storm development. 

Since the 70’s, three-dimensional cloud models have been successfully used in 

simulating observed characteristics of supercells and multicell storms in 

midlatitudes (Wihelmson and Klemp, 1981; Wihelmson and Chen, 1982) and 

convection in the tropics (Turpeinen and Yau, 1981; Simpson et al., 1982). With 

the help of increasingly powerful computers, models have also been used to 

simulate the development of an ensemble of cumulus clouds with random 

heating (Tao and Soong, 1986) or with a surface layer model that incorporates 

observed heat and moisture fluxes (Smolarkiewicz and Clark, 1985). Donner et al. 

(1999) simulated deep convection and its associated mesoscale circulations 

observed during the GARP Atlantic Tropical Experiment (GATE).  

Considerable progress has also been made in microphysical 

parameterizations in three-dimensional cloud models. In the 70s and 80s, three-

dimensional severe storm simulations were carried out usually with simple 

Kessler-type parameterizations. The need of more detailed treatment of 

microphysical processes, however, was recognized. Lin et al. (1983) developed a 

three-class ice scheme that includes many microphysical processes. Lord et al. 
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(1984) modified the ice scheme of Lin et al. by adjusting some of the hydrometeor 

densities and intercept parameters for better simulations of hurricanes. Cotton et 

al. (1986) extended their two-class ice scheme to three classes. To evaluate the 

performance of several ice parameterizations, McCumber et al. (1991) simulated 

tropical squall-type and nonsquall-type convections using a three-dimensional 

cloud model. Johnson et al. (1993) showed that the inclusion of ice alters the 

dynamics, kinematics, thermodynamics, and distributions of water in the 

simulated supercell storm especially at the lower levels.  

Many tests have been carried out to systematically compare two- and three-

dimensional cloud models (e.g. Tao and Soong, 1986; Tao et al., 1987; Grabowski 

et al., 1998; Redelsperger et al. 2000, Khairoutdinov and Randall, 2003). These 

studies reported that downdrafts and momentum transport properties were 

significantly different between the two- and three-dimensional simulations 

although many convective statistics such as precipitation and relative humidity 

could be similar. In particular, Redelsperger et al. (2000) pointed out that the 

evolution of the mean wind profile was in the sense of decreasing the shear in 

the three-dimensional simulations, but the two-dimensional simulations were 

unable to produce this behavior. Mapes and Wu (2001), on the other hand, 

showed that the convective momentum transports from two- and three-

dimensional simulations of GATE convective systems are qualitatively similar in 

pattern. Zhang and Wu (2003) interpreted this result as a consequence of the 

strong nudging of the domain-averaged wind profiles toward observed used in 

the two-dimensional simulation, indicating that the feedback to the mean wind 

by the convective momentum transport amplifies the difference between the 

two- and three-dimensional simulations.  

 The three-dimensional cloud models can be classified into two types: one is 

based on the anelastic system of equations and the other on the fully 

compressible system of equations. In the anelastic models, the pressure 

perturbation is calculated for a given motion field using a diagnostic elliptic 

equation, of which boundary condition produces computational complications 

when it is applied to flow over a complex terrain. Such complications can be 

eliminated in the fully compressible models. However, sound waves are retained 

in the system so that they must be appropriately handled computationally. A 



 4 
 
 

technique called “splitting”, in which the sound wave modes are solved 

separately using a shorter time step than elsewhere in the model, is widely used 

in many compressible models (e.g., Klemp and Wihelmson, 1978).  

 Whether they are anelastic or fully compressible, practically all of the three-

dimensional cloud models developed so far view the dynamics of convection 

mainly in terms of the pressure gradient and buoyancy forces in the context of 

the momentum equation. The presence of vortical motions association with 

convective clouds, however, can lead us to examine the motions using the 

vorticity equation, which eliminates the pressure gradient force and thus more 

directly addresses the motion in terms of the buoyancy source. In two-

dimensional modeling, this advantage of the voricity equation can be easily 

taken. Two-dimensional vorticity equation models have been extensively applied 

to a variety of cloud regimes including stratocumulus, altocumulus, cumulo-

nimbus and cirrus clouds (see, for example, Krueger 2000). In three-dimensional 

cloud modeling, on the contrary, to our knowledge no attempt has been made to 

use the vorticity equation as a dynamical core, although the vertical vorticity 

fields associated with deep convective clouds were diagnostically investigated by 

many authors (Schlesinger, 1980; Cho and Clark, 1981; Rotunno, 1981; Klemp et 

al., 1981).   

 In this report, we present a three-dimensional anelastic cloud model based on 

the vorticity equation. The anelastic equations remain a good approximation for 

the governing dynamics of cumulus convection and, together with the use of the 

vorticity equation, express relevant dynamical processes more explicitly. Thus 

the diagnosis of model results can be more straightforward and consistent with 

the prognosis. In the anelastic vorticity dynamics, for example, the cumulus 

momentum transport problem can be more simply viewed from the point of 

view of vorticity fluxes, while it is quite complicated in the standard momentum 

dynamics due to the existence of the pressure perturbation. Predicting vorticity is 

advantageous especially for the three-dimensional case because the twisting 

effect of vector vorticity, which plays key roles in the dynamics of three-

dimensional convective motions, can be explicitly formulated. Also, when the 

vorticity fields are predicted, the three-dimensional elliptic equation necessary 

for anelastic motions can be solved for vertical velocity rather than for pressure, 
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as we show later in this report. This drastically simplifies the problem of 

boundary condition at the surface of complex terrains. The use of the vorticity 

equation is also advantageous from the viewpoint of computational design 

because computational requirements on the key nonlinear dynamical processes, 

such as those on enstrophy cascade under advection processes, can be more 

directly implemented.  

 Although our initial motivation for developing this model was to study 

cumulus clouds organized on the mesoscale, we plan to include larger scales in 

future by applying the model to a larger domain, even to the global domain 

eventually. In the course of this development, we may attempt to include the 

effect of full compressibility at least approximately, which can be important for 

deep planetary-scale motions, while maintaining the basic structure of the model.  

Here we note that from the point of view of the dispersion properties of inertia-

gravity waves, the use of the vorticity and divergence equation is more 

advantageous than the use of the momentum equation (Randall 1994). 

The main purpose of this report is to demonstrate the computational 

performance of the new model, as well as to gain better understanding of some 

basic convective processes from the viewpoint of vorticity dynamics. For this 

reason, idealized experiments simulating thermals in various conditions are 

carried out as well as those for more complicated cloud systems.  

In sections 2 and 3, the basic governing equations of dynamical framework 

and their spatial discretizations are presented. The physical parameterizations 

used in the model are briefly described in section 4. Additional aspects of the 

discretization of the model are presented in section 5. In sections 6 and 7, we 

present the results of idealized experiments without physics and those of 

ensemble clouds with full physics. Finally, a summary is presented in section 8. 
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2. Dynamical framework 

 

a. Basic governing equations 

 

An anelastic system of the continuity and momentum equations is given by 

Lipps and Hemler (1982). With the Cartesian coordinates, theses equations may 

be written as  

!

!x
("0u) +

!

!y
("0v) +

!

!z
("0w) = 0 ,   (2.1) 

  
du

dt
! fv = !

"

"x
cp#v0 $%( ) !

"

"x
$$u $$u( ) !

"

"y
$$u $$v( ) !

1

&0

"

"z
&0 $$u $$w( ) ,  (2.2) 

  
dv

dt
+ fu = !

"

"y
cp#v0 $%( ) !

"

"x
$$u $$v( ) !

"

"y
$$v $$v( ) !

1

&0

"

"z
&0 $$v $$w( ) ,  (2.3)  

  
dw

dt
= !

"
"z

cp#v0 $%( ) + g
$#

#0
+ 0.61qv ! qc ! qi ! qr ! qs ! qg

&

'(
)

*+
 

!
"

"x
##u ##w( ) !

"

"y
##v ##w( ) !

1

$0

"

"z
$0 ##w ##w( ) , (2.4) 

 
Here u , v , and w  are the x-, y-, and z-components of velocity, respectively, !  

the density, f  the Coriolis parameter, g  the gravitational acceleration, !  the 

potential temperature, !
v
 the virtual potential temperature defined by !

v
" ! 1+(  

0.61qv ) , q  the mixing ratio of water vapor (v), cloud water (c), cloud ice (i), rain 

water (r), snow (s) or graupel (g). In theses equations, variables with a subscript 0 

refer to the hydrostatic reference state, which varies in z only. The Coliolis force 

is simplified by omitting its component that depends on the cosine of latitude. A 

single prime indicates the departure from the reference state and double primes 

indicate turbulence-scale velocity components. The nondimensional pressure !  

is given by ! = p p00( )
R cp , where p  is the pressure, p00  a constant reference 

pressure, R  the gas constant for dry air and cp  the specific heat of dry air. The 

operator d dt  denotes the material time derivative, which can be expressed for a 

quantity A as  
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dA

dt
=
!A

!t
+ u

!A

!x
+ v

!A

!y
+ w

!A

!z
.   (2.5) 

 
In the model, the vorticity equation is used instead of the momentum 

equation. We first define the x-, y-, and z-components of vorticity by 

 

    !0" #
$w

$y
%
$v

$z
, !

0
" #

$u

$z
%
$w

$x
, !0" #

$v

$x
%
$u

$y
,  (2.6) 

 
respectively. (In this definition, the factor !

0
 is used to include the effect of 

expansion on vortices as density changes.) Equations (2.6) identically satisfy the 

nondivergence of the three-dimensional vorticity vector given by 

         

 
!

!x
"0#( ) +

!

!y
"0$( ) +

!

!z
"0%( ) = 0 .   (2.7) 

 
From (2.2), (2.3) and (2.4), the x-, y-, and z-components of the vorticity equation 

can be derived as  

 

!0
"#
"t

= $
"
"y

!0v#( ) +
"
"z

!0w#( )
%

&
'

(

)
* +

"
"y

!0u+( ) +
"
"z

!0u,( ) + f
"u
"z

+
"B
"y

+
"Fw
"y

$
"Fv
"z

, 

            (2.8) 
 

!
0

"#
"t

= $
"
"x

!
0
u#( ) +

"
"z

!
0
w#( )

%

&'
(

)*
+

"
"x

!
0
v+( ) +

"
"z

!
0
v,( ) + f

"v
"z

$
"B
"x

$
"F

w

"x
+
"F

u

"z
, 

  (2.9) 
 

!0
"#
"t

= $
"
"x

!0u#( ) +
"
"y

!0v#( )
%

&
'

(

)
* +

"
"x

!0w+( ) +
"
"y

!0w,( )  

  !f
"u
"x

+
"v
"y

#
$%

&
'(
+
"Fv
"x

!
"Fu
"y

, (2.10) 

 

where B  is the buoyancy given by g !" "0 + 0.61qv # qc # qi # qr # qs # qg( )  and F
u

, 

F
v
 and F

w
 are the turbulent flux convergence terms in the right-hand-side of 

(2.2), (2.3) and (2.4), respectively. Note that the pressure gradient force is 

eliminated in this system.  
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 The thermodynamic equation is given by 

 

cp!0
d"
dt

+ L
dqv

dt
= #

1

$0

%
%x

$0 &&u &&h( ) +
%
%y

$0 &&v &&h( ) +
%
%z

$0 &&w &&h( )
'

(
)

*

+
, +QR +QA

, (2.11) 

 
where h  is the moist static energy defined by h ! cp"0# + Lqv + gz , L  the latent 

heat of condensation, and Q
R

 and Q
A

 indicate the radiation and large-scale 

advection effects, respectively. 

 The conservation equation for each water species is given by 

 

  
dqx

dt
=
1

!0

"
"z

!0Vxqx( )
#
$%

&
'(
)
1

!0

"
"x

!0 **u **q x( ) +
"
"y

!0 **v **qx( ) +
"
"z

!0 **w **q x( )
#

$
%

&

'
(  

             
       +P

x
+ C

x
+Q

A,x
,   (2.12) 

 
where the subscript x  denotes water vapor (v), cloud water (c), cloud ice (i), rain 

water (r), snow (s) or graupel (g), V ! 0( )  the mass-weighted fall speed for 

precipitating particles with V
v
= V

c
= V

i
= 0 , P  the net production rate due to the 

microphysical processes, and C  the source of cloud water and cloud ice due to 

condensation, deposition, evaporation and sublimation with C
r
= C

s
= Cg = 0 . 

 

b. Predicting the vorticity field 

 

 The vorticity equations (2.8)-(2.10) can be rewritten as 

  !0
"#
"t

= $
"
"x

!0u#( ) +
"
"y

!0v#( ) +
"
"z

!0w#( )
%

&
'

(

)
* + !0#

"u
"x

+ !0+
"u
"y

+ !0,
"u
"z

   

      +f
!u

!z
+
!B

!y
+
!Fw

!y
"
!Fv

!z
,   (2.13) 

 

  !0
"#
"t

= $
"
"x

!0u#( ) +
"
"y

!0v#( ) +
"
"z

!0w#( )
%

&
'

(

)
* + !0#

"v
"y

+ !0+
"v
"x

+ !0,
"v
"z

 

    +f
!v

!z
"
!B

!x
"
!F

w

!x
+
!F

u

!z
,   (2.14) 
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  !0
"#
"t

= $
"
"x

!0u#( ) +
"
"y

!0v#( ) +
"
"z

!0w#( )
%

&
'

(

)
* + !0#

"w
"z

+ !0+
"w
"x

+ !0,
"w
"y

 

      !f
"u
"x

+
"v
"y

#
$%

&
'(
+
"Fv
"x

!
"Fu
"y

.   (2.15) 

 

In each of (2.13), (2.14) and (2.15), the first term after the brackets represents the 

stretching effect and the two subsequent terms represent the twisting effect. 

From the diagnostic relation (2.7), !  at an arbitrary height can be obtained 

through 

 

!0"( )z = #
$ !0%( )
$x

+
$ !0&( )
$y

'

(
)

*

+
,dz

zT

z

- + !0"( )zT .  (2.16) 

 

Thus, when (2.13) and (2.14) are applied to everywhere, we need to apply (2.15) 

only at a certain level, z = 
 
z

T
 for example, where the subscript T denotes the 

upper boundary.  

 

c. Updating the vertical component of velocity 

 

After updating the horizontal components of the vorticity using (2.13) and 

(2.14), we update the vertical velocity. Operating ! !x  on !  and ! !y  on !  in 

(2.6), we obtain 

     
!2w

!x2
"

!2u

!x!z
= "

!

!x
#
0
$ ,    (2.17) 

  

     
!2w

!y2
"

!2v

!y!z
=

!

!y
#0$ .    (2.18) 

 

With the anelastic continuity equation (2.1), the sum of (2.17) and (2.18) becomes 

             

    
!2

!x2
+

!2

!y2
"
#$

%
&'
w +

!
!z

1

(0

!
!z

(0w( )
)

*
+

,

-
. = /(0

!0
!x

+ (0
!1
!y

. (2.19) 
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We can determine w  by solving the three-dimensional elliptic equation (2.19) 

with the upper and lower boundary conditions for w . When these boundaries 

are horizontal rigid planes, we have 

    w = 0   at the lower and upper boundaries.  (2.20) 

 

d. Updating the horizontal components of velocity 

 

To obtain the non-uniform part of the horizontal velocity at the upper 

boundary, we divide the velocity into the rotational and divergent parts through  

 
     u = u! + u"  and  v = v! + v" ,   (2.21) 

 
where  
 

     u! = "
#!

#y
, u! =

"!

"x
, v! =

"!

"x
, v! =

"!

"y
.   (2.22)  

 
The streamfunction ! can be updated solving the two-dimensional elliptic 

equation 

      
!2"

!x2
+
!2"

!y2
= #0$     (2.23) 

 
using !  predicted by (2.15) at the upper boundary. The velocity potential for the 

divergent part is obtained from the solution of  

 

      
!2

!x2
+

!2

!y2
"
#$

%
&'
( = )

1

*0

!
!z

*0w( )    (2.24) 

 
using the vertical velocity w determined by (2.19).  

We then predict the horizontally uniform part of the horizontal velocity at the 

upper boundary by 

     

     
!u

xy

!t
= "

1

#0

!

!z
#0 uw

xy

( ) + fv
xy

+ Fu
xy

,   (2.25) 
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!v

xy

!t
= "

1

#0

!

!z
#0 vw

xy

( )" fu
xy

+ Fv
xy

,  (2.26) 

 

where 
 
( )

xy

 represents the horizontal average. 

 To update the horizontal velocity components below the upper boundary, we 

use (2.6) rewritten as 

      
!u

!z
=
!w

!x
+ "

0
# , 

!v

!z
=
!w

!y
" #0$ .   (2.27) 

 
Integrating (2.27) with respect to z  downward, we obtain 
 

 u =
!w
!x

+ "0#
$
%&

'
()
dz

zT

z

* + uT(x,y, t) , v =
!w
!y

" #0$
%
&'

(
)*
dz

zT

z

+ + vT(x,y, t) , (2.28) 

 
where the subscript T denotes the upper boundary and z

T
 is assumed to be 

constant.  
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3. Discretization of equations 

 

a. Arrangement of variables on the model grid 

 The main variables and their locations in the vertical and horizontal grids are 

shown in Figs. 1 and 2, respectively. The model atmosphere is divided into K 

layers identified by integer indices. Interfaces of these layers are identified by 

half-integer indices (Fig. 1). These indices increase upward. All thermodynamic 

variables are located at the ! -point. This vertical grid structure, which is similar 

to the Lorenz grid in quasi-static models, is not the best vertical grid in 

simulating hydrostatic adjustment in nonhydrostatic models in a Eulerian 

vertical grid. But it has been chosen in this model to maintain the continuity from 

its two-dimensional predecessor. A three-dimensional view of the grids is 

presented in Fig.3. 
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b. Stretched vertical grid 
 

 Following Krueger (1988), a stretched vertical grid is generally used in the 

model to increase the vertical resolution near the surface. The transformation 

formula for mapping the physical coordinate, z , onto the map coordinate, !z , is 

as follows:           

      z = c
1
+ c

2
!z( ) !z .    (3.1) 

Here c
1
= 0.172413  and c

2
= 5.517 !10

"5 . The vertical derivative of any variable A 
is transformed according to         

      
!A

!z
= m

!A

! "z
     (3.2) 

 

where m is the map factor given by m = d !z dz = 1 c
1
+ 2c

2
!z( ) . On the map 

coordinate, a constant grid interval, ! "z (=500 m), is currently used. In the 

experiments described in section 6, however, a vertically uniform grid is used 

instead. 

 

c. Advection scheme for scalar variables  

 

The advection scheme for scalar variables used in the model is a 

generalization of a scheme for the one-dimensional advection equation given by 
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!q

!t
= "U

!q

!x
.    (3.3) 

 

Here 
 
q  represents an arbitrary scalar and 

 
U > 0( )  is the velocity of a uniform 

flow in the x-direction. We consider a finite-difference approximation to (3.3) that 

has the form 

 

!qi

!t
= "

U

d
#qi+1 + $qi + %qi"1 + &qi"2( ) .   (3.4) 

 
We can show that the scheme has a third-order accuracy if  
 

 
! =

1

3
, " =

1

2
, # = $1, % =

1

6
   (3.5) 

 
so that (3.4) can be written as 
 

 

!qi

!t
= "

U

6d
2qi+1 + 3qi " 6qi"1 + qi"2( ) .  (3.6) 

 
This scheme can be further rewritten as 
 

 

advective form :
!qi

!t
= "

U

6d
2 qi+1 " qi( ) + 5 qi " qi"1( ) " qi"1 " qi"2( )#$ %& ,

flux form :
!qi

!t
= "

U

6d
2qi+1 + 5qi " qi"1( ) " 2qi + 5qi"1 " qi"2( )#$ %&.

'

(
))

*
)
)

  (3.7) 

 

 A generalization of the flux form (3.7) to include a second-order scheme is 

given by 

 

 

!qi

!t
= "

U

2d
qi+1 + qi( ) "

#

3
qi+1 " 2qi + qi"1( )

$

%
&

'

(
)

*
+
,

" qi + qi"1( ) "
#

3
qi " 2qi"1 + qi"2( )

$

%
&

'

(
)
-
.
/

,

           (3.8) 
  

where !  is a parameter. The scheme (3.8) becomes a third-order scheme when 

 ! = 1  and the centered second-order scheme when ! = 0 .  

Considering a flow in the positive directions of x and y, we further generalize 

(3.8), as Takacs (1985) did, to the case of two-dimensional nondivergent flow as  
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!q
i, j

!t
 

 

= !
1

2d
ui+1 2, j qi+1, j + qi, j( ) !

"

3
ui+1 2, j qi+1, j ! qi, j( ) ! ui+1 2, j ui!1 2, j qi , j ! qi!1, j( )#
$

%
&

'
(
)

*
+
,

 

 

! u
i!1 2, j

q
i , j
+ q

i!1, j( ) !
"

3
u

i!1 2, j
q

i , j
! q

i!1, j( ) ! u
i!1 2, j

u
i!3 2, j

q
i!1, j

! q
i!2, j( )#

$
%
&

'
(
)

*
+
,

 

 

!
1

2d
vi, j+1 2 qi , j+1 + qi, j( ) !

"

3
vi, j+1 2 qi , j+1 ! qi, j( ) ! vi, j+1 2 vi, j!1 2 qi , j ! qi, j!1( )#
$

%
&

'
(
)

*
+
,

  

 

! v
i, j!1 2

q
i , j
+ q

i, j!1( ) !
"

3
v

i, j!1 2
q

i , j
! q

i, j!1( ) ! v
i, j!1 2

v
i, j!3 2

q
i , j!1

! q
i, j!2( )#

$
%
&

'
(
)

*
+
,

. 

 (3.9) 
 
To show that the solutions of this scheme are quadratically bounded, we 

multiply (3.9) by 
 
q

i , j
 to obtain 

 

     
 

1

2

!qi, j
2

!t
= "

1

2d
! ui+1/2, jqi , jqi+1, j " ui"1/2, jqi , jqi"1, j + ui+1/2, j " ui"1/2, j( )qi, j

2{ }  

              
 
!

1

3
" ui+1/2 qi+1 ! qi( )qi ! ui+1/2 ui!1/2 qi ! qi!1( )qi
#
$  

                    
 
!ui!1/2, j qi , j ! qi!1, j( )qi, j + ui!1/2, j ui!3/2, j qi!1, j ! qi!2, j( )qi, j

"
#
! . (3.10) 

 
Here only the advection terms due to the x-component of the flow are written. 

The last term in the braces on the first line is canceled by the corresponding term 

in the y direction due to the nondivergence of the flow. Also, the first and second 

terms in the braces vanish when their sum is taken over all grid points in the x-

direction in a cyclic domain. Then the sum of (3.10) becomes       

 

 

1

2

!

!t
qi, j

2

i

" =
#

6d
$ui+1/2, j qi+1, j $ qi, j( )

2

{ +
i

" ui+1/2, j ui$1/2, j qi , j $ qi$1, j( ) qi+1, j $ qi, j( )}  

 
 
= !

"

12d
ui+1/2, j qi+1, j ! qi, j( ) ! ui!1/2, j qi , j ! qi!1, j( )#

$
%
&

2

i

' . (3.11) 

 

Thus, when the flow is nondivergent, the sum of 
 
q

i , j

2  is bounded and stability is 

guaranteed as long as time is continuous.  
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The scheme is further generalized to an arbitrary three-dimensional advective 

flow as below, 

 

 

!qi, j,k

!t
= "

1

2

1

dx
Fi+1 2, j,k

q " Fi"1 2, j,k

q( ) +
1

dy
Fi, j+1 2,k

q " Fi, j"1 2,k

q( ) +
mk

#0,kd $z
Fi, j,k+1 2

q " Fi, j,k"1 2

q( )
%

&
'
'

(

)
*
*

,

 (3.12)  
where m is the map factor, 
 

 
 
Fi+1 2, j,k

q
!

 
ui+1 2, j,k qi+1, j,k + qi, j,k( ){  

    
 
!
"

3
ui+1 2

+ qi+1, j,k ! qi, j,k( ) ! ui+1 2

+ ui!1 2

+ qi, j,k ! qi!1, j,k( )#
$

 

   
 
!ui+1 2

! q
i+1, j ,k

! q
i , j,k( ) ! ui+1 2

! ui+3 2

! q
i+ 2 , j ,k

! q
i+1, j ,k( )"

#$ } , (3.13) 

 

 
 
Fi , j+1 2,k

q
!

 
vi , j+1 2,k q

i , j+1,k
+ q

i , j,k( ){   

   
 
!
"

3
vj+1 2

+ q
i , j+1,k

! q
i , j,k( ) ! vj+1 2

+ vj!1 2

+ q
i , j,k

! q
i , j!1,k( )#

$
  

   
 
!vj+1 2

! q
i , j+1,k

! q
i , j,k( ) ! vj+1 2

! vj+3 2

! q
i , j+ 2 ,k

! q
i , j+1,k( )"

#$ } , (3.14) 

 

 
 
Fi , j,k+1 2

q
!

 
!0,k+1 2wi, j,k+1 2 q

i , j ,k+1
+ q

i , j,k( ){  

   
 
!
"

3
wk+1 2

+ q
i , j,k+1

! q
i , j,k( ) ! wk+1 2

+ wk!1 2

+ q
i , j,k

! q
i , j,k!1( )#

$
 

  
 
!wk+1 2

! q
i , j,k+1

! q
i , j,k( ) ! wk+1 2

! wk+3 2

! q
i , j,k+ 2

! q
i , j,k+1( )"

#$ } , (3.15) 

 
and    

   

 

ui+1 2

±
=

ui+1 2, j,k ± ui+1 2, j,k

2
,

v j+1 2

±
=

vi, j+1 2,k ± vi, j+1 2,k

2
, and

wk+1 2

±
= !0,k+1 2

wi, j,k+1 2 ± wi, j,k+1 2

2
.

"

#

$
$
$
$

%

$
$
$
$

 (3.16) 

 

 

d. Discretization of the vorticity equation 
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 1) Continuous enstrophy equation 

 

 We first derive the enstrophy equation in its continuous form through 

operating ! " (2.13), !" (2.14), and ! " (2.15) (without the Coriolis force, 

buoyancy and friction terms for simplicity) to yield  

 

   !0
"
"t

#2

2

$
%&

'
()
= *

"
"x

!0u
#2

2

$

%&
'

()
+

"
"y

!0v
#2

2

$

%&
'

()
+

"
"z

!0w
#2

2

$

%&
'

()
+

,
-
-

.

/
0
0

   

       +!0"
2 #u

#x
+ !0"$

#u

#y
+ !0"%

#u

#z
, (3.17) 

 

  !0
"
"t

#2

2

$
%&

'
()
= *

"
"x

!0u
#2

2

$

%&
'

()
+

"
"y

!0v
#2

2

$

%&
'

()
+

"
"z

!0w
#2

2

$

%&
'

()
+

,
-
-

.

/
0
0

 

  +!0"
2 #v

#y
+ !0"$

#v

#x
+ !0"%

#v

#z
, (3.18) 

 

  !0
"
"t

#2

2

$
%&

'
()
= *

"
"x

!0u
#2

2

$

%&
'

()
+

"
"y

!0v
#2

2

$

%&
'

()
+

"
"z

!0w
#2

2

$

%&
'

()
+

,
-
-

.

/
0
0

 

  +!0"
2 #w

#z
+ !0"$

#w

#x
+ !0"%

#w

#y
. (3.19)       

 
Taking the sum of these equations and averaging the results over the entire 

volume, we can obtain the mass weighted mean enstrophy equation as 

  

 
!
!t
"0

#2 + $2 + %2

2

&
'(

)
*+
= "0 #2

!u
!x

+ $2
!v
!y

+ %2
!w
!z

&
'(

)
*+

 

    +!0"#
$v
$x

+
$u
$y

%
&'

(
)*
+ !0+#

$w
$y

+
$v
$z

%
&'

(
)*
+ !0+"

$w
$x

+
$u
$z

%
&'

(
)*

, (3.20) 

 
where an over bar denotes the volume average. Without the stretching and 

deformation effects, the mass-weighted mean enstrophy is conserved. Keeping 

this in mind, we descretize the individual terms in the vorticity equations as 

below. 
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2) Discretization of the flux convergence terms  

 

 As in (3.12), the first term in the right-hand-side of (2.13) can be written as, 

 

  !
"
"x

#0u$( )
%

&
'

(

)
*
i, j+1 2,k+1 2

= !
1

2dx
Fi+1 2, j+1 2,k+1 2

$ ! Fi!1 2, j+1 2,k+1 2
$( ) , (3.21) 

 
where 
 

 
Fi+1 2, j+1 2,k+1 2

! " Ui+1 2, j+1 2,k+1 2 ! i+1, j+1 2,k+1 2 + ! i , j+1 2,k+1 2( ){

 
 
!
"
3

Ui+1 2, j+1 2,k+1 2
+ #i+1, j+1 2,k+1 2 ! #i , j+1 2,k+1 2( )$

%&
 

 
! Ui+1 2, j+1 2,k+1 2

+ Ui!1 2, j+1 2,k+1 2
+ "i , j+1 2,k+1 2 ! "i!1, j+1 2,k+1 2( )  

      
 
!Ui+1 2, j+1 2,k+1 2

! " i+1, j+1 2,k+1 2 ! " i , j+1 2,k+1 2( )  

 
 
! Ui+1 2, j+1 2,k+1 2

! Ui+3 2, j+1 2,k+1 2

! " i+2, j+1 2,k+1 2 ! " i+1, j+1 2,k+1 2( )#$% } , (3.22) 

 

Ui+1 2, j+1 2,k+1 2 !
1

4
"0,k+1 ui+1 2, j,k+1 + ui+1 2, j+1,k+1( ) + "0,k ui+1 2, j,k + ui+1 2, j+1,k( )#
$

%
&{ } , (3.23) 

 

  Ui+1 2, j+1 2,k+1 2

±
=

Ui+1 2, j+1 2,k+1 2 ± Ui+1 2, j+1 2,k+1 2

2

!

"
#
#

$

%
&
&

. (3.24) 

 

Here  U  is a linear combination of u at neighboring grid points following the way 

used in the second-order enstrophy conserving Jacobian J6 defined by Arakawa 

and Lamb (1977). Thus, even when ! = 1 , this scheme is partially third order for 

non-uniform flow. Similar discretizations are used for the second and third terms 

in (2.13) and the first three terms in (2.14) and (2.15).   

 

3) Discretization of the stretching terms  

 

 The stretching terms in (2.13)-(2.15) are discretized as follows: 

 

!0"
#u
#x

$
%&

'
()i, j+1 2,k+1 2

=
1

8dx
!0,k+1 ui+1 2, j+1,k+1 * ui*1 2, j+1,k+1( ) + !0,k ui+1 2, j+1,k * ui*1 2, j+1,k( )$
%

'
({  
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 ! " i, j+1 2,k+1 2 + " i, j+3 2,k+1 2( ) + #0,k+1 ui+1 2, j,k+1 $ ui$1 2, j,k+1( ) + #0,k ui+1 2, j,k $ ui$1 2, j,k( )%
&

'
(  

 ! " i, j#1 2,k+1 2 + " i, j+1 2,k+1 2( )} , (3.25) 

 

!0"
#v
#y

$

%
&

'

(
)
i+1 2, j,k+1 2

=
1

8dy
!0,k+1 vi, j+1 2,k+1 * vi, j*1 2,k+1( ) + !0,k vi, j+1 2,k * vi, j*1 2,k( )$
%

'
({

! "i#1 2, j,k+1 2 + "i+1 2, j,k+1 2( ) + $0,k+1 vi+1, j+1 2,k+1 # vi+1, j#1 2,k+1( ) + $0,k vi+1, j+1 2,k # vi+1, j#1 2,k( )%
&

'
(  

! "i+1 2, j,k+1 2 + "i+3 2, j,k+1 2( )} , (3.26) 

 
and 
 

!0"
#w
#z

$
%&

'
()i+1 2, j+1 2,k

 

=
!0,k
8dz

wi, j,k+1 2 " wi, j,k"1 2( ) + wi, j+1,k+1 2 " wi, j+1,k"1 2( )#
$

%
& 'i"1 2, j+1 2,k + 'i+1 2, j+1 2,k( ){  

+ wi+1, j,k+1 2 ! wi+1, j,k!1 2( ) + wi+1, j+1,k+1 2 ! wi+1, j+1,k!1 2( )"
#

$
% &i+1 2, j+1 2,k + &i+3 2, j+1 2,k( )} .(3.27) 

 

 4) Discretization of the twisting terms  

 

 The twisting terms in (2.13)-(2.15) can be rewritten as 

 

   

 

!
0
"
#u

#y

$

%&
'

()
+ !

0
*
#u

#z

$
%&

'
()
=
!

0

2
"R*

+ *R"( ) , (3.28) 

 

  
 

!
0
"
#v

#x

$
%&

'
()
+ !

0
*
#v

#z

$
%&

'
()
=
!

0

2
"R

*
+ *R

"( ) , (3.29) 

 

  

 

!
0
"
#w

#x

$
%&

'
()
+ !

0
*
#w

#y

$

%&
'

()
=
!

0

2
"R*

+ *R"( ) , (3.30) 

 
where 

  

 

R! "
#w

#y
+
#v

#z

$

%&
'

()
, R* "

#w

#x
+
#u

#z

$
%&

'
()

, R+ "
#v

#x
+
#u

#y

$

%&
'

()
. (3.31) 

 
These quantities are discretized as 
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Ri, j+1 2,k+1 2
!

=
wi, j+1,k+1 2 "wi, j,k+1 2

dy
+
vi, j+1 2,k+1 " vi, j+1 2,k

dz

#

$%
&

'(

Ri+1 2, j,k+1 2
)

=
wi+1, j,k+1 2 "wi, j,k+1 2

dx
+
ui+1 2, j,k+1 " ui+1 2, j,k

dz

#

$%
&

'(

Ri+1 2, j+1 2,k+1

*
=
vi+1, j+1 2,k+1 " vi, j+1 2,k+1

dx
+
ui+1 2, j+1,k+1 " ui+1 2, j,k+1

dy

#
$%

&
'(

+

,

-
-
-
-

.

-
-
-
-

. (3.32) 

 

The variables R
! ,  R

! , and  R
!  are located at the ! -, ! -, and ! -points, 

respectively. Then, the right-hand-side of (3.28) is discretized as 

 
!0
2

"R#
+ #R"( )$

%&
'
()i, j+1 2,k+1 2

=
!0,k+1 2
16

"i+1 2, j+1,k+1 2 + "i+1 2, j,k+1 2( )
!0,k

!0,k+1 2
Ri+1 2, j+1 2,k

#
+

!0,k+1
!0,k+1 2

Ri+1 2, j+1 2,k+1

#
$

%
&

'

(
)

*
+
,

-,
  

  

   + !i"1 2, j+1,k+1 2 + !i"1 2, j,k+1 2( )
#0,k

#0,k+1 2
Ri"1 2, j+1 2,k

$
+

#0,k+1
#0,k+1 2

Ri"1 2, j+1 2,k+1
$

%

&
'

(

)
*
+
,
-

.-
 

  

 +
1

16
!0,k"i+1 2, j+1 2,k + !0,k+1"i+1 2, j+1 2,k+1( ){ Ri+1 2, j+1,k+1 2

#
+ Ri+1 2, j,k+1 2

#( )  

 + !0,k"i#1 2, j+1 2,k + !0,k+1"i#1 2, j+1 2,k+1( ) Ri#1 2, j+1,k+1 2
$

+ Ri#1 2, j,k+1 2
$( )} . (3.33) 

 

Similar discretizations are used for the right-hand-side of (3.29) and (3.30). 

 

e. Solving the 3-D elliptic equation  

 

Consider the 3-D elliptic equation (2.19) with the boundary conditionw = 0at 

the lower and upper-boundaries: 

 

 

!2

!x2
"0w( )+

!2

!y2
"0w( ) + "o

!
!z

1

"0

!
!z

"0w( )
#

$
%

&

'
( = )"0

2 !*
!x

+ "0
2 !+
!y

.  (3.34) 

 
The second-order centered finite difference form of (3.34) may be written as   
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1

!x2
"0w( )

i#1, j,k+1 2
# 2 "0w( )

i , j,k+1 2
+ "0w( )

i+1, j,k+1 2
$
%

&
'  

 
+

1

!y2
"0w( )

i , j#1,k+1 2
# 2 "0w( )

i , j,k+1 2
+ "0w( )

i , j+1,k+1 2
$
%

&
'  

 
+Ak+1 2 !0w( )

i , j,k"1 2
+ Bk+1 2 !0w( )

i , j,k+1 2
+ Ck+1 2 !0w( )

i , j,k+3 2
= Fi, j,k+1 2

, (3.35) 

 
where,  
 

 

F
i , j ,k+1 2

= !"
0 ,k+1 2

"
0
#( )

i , j ,k+1 2
! "

0
#( )

i!1, j ,k+1 2
$
%

&
'

(x
!

"
0
)( )

i , j ,k+1 2
! "

0
)( )

i , j!1,k+1 2
$
%

&
'

(y

*
+
,

-,

.
/
,

0,
, (3.36) 

 
 

 

A
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=
m

k

!
0 ,k

"

#$
%

&'
m

k+1 2
!

0 ,k+1 2

(z'
2

,

B
k+1 2

= )
m

k+1 2
!

0 ,k+1 2

(z'
2

m
k

!
0,k

+
m

k+1

!
0,k+1

"

#
$

%

&
' = ) A

k+1 2
+ C

k+1 2( ) ,

C
k+1 2

=
m

k+1

!
0 ,k+1

"

#$
%

&'
m

k+1 2
!

0 ,k+1 2

(z'
2

,

*

+

,
,
,
,

-

,
,
,
,

 (3.37) 

 
and m is a map factor. 
 

For the level k=1+1/2, next to the lower boundary, (3.35) is replaced by 
 

1

!x2
"0w( )

i#1, j,1+1 2
# 2 "0w( )

i, j,1+1 2
+ "0w( )

i+1, j,1+1 2
$
%

&
'  

+
1

!y2
"0w( )

i, j#1,1+1 2
# 2 "0w( )

i, j,1+1 2
$
% + "0w( )

i, j+1,1+1 2
&
'  

 
+B1+1 2 !0w( )

i, j,1+1 2
+ C1+1 2 !0w( )

i, j,2+1 2
= Fi, j,1+1 2 ,  (3.35a) 

 
where 
 

F
i, j,1+1 2

= !"0,1+1 2
"0#( )

i, j,1+1 2
! "0#( )

i!1, j,1+1 2
$
%

&
'

(x
!

"0)( )
i, j,1+1 2

! "0)( )
i, j!1,1+1 2

$
%

&
'

(y

*

+
,

-,

.

/
,

0,
 

!
m

1

"
0,1

#

$%
&

'(
m

1+1 2
"
0,1+1 2

)z '2
"
0
w( )

i, j,1 2
, (3.36a) 
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B
1+1 2

= !
m

1+1 2
"

0 ,1+1 2

#z'
2

m
1

"
0 ,1

+
m

2

"
0 ,2

$

%
&

'

(
) ,

C
1+1 2

=

m
2

"
0 , 2

$

%&
'

()
m

1+1 2
"

0 ,1+1 2

#z'
2

.

*

+

,
,

-

,
,

 (3.37a) 

 
For the level k=K-1/2, next to the upper boundary, (3.35) is replaced by 
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"0w( )

i#1, j,K#1 2
# 2 "0w( )

i, j,K#1 2
+ "0w( )
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$
%

&
'  

 

+
1
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i, j#1,K#1 2
# 2 "0w( )

i, j,K#1 2
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&
'  

  
+A

K!1 2 "0w( )
i, j,K!3 2

+ B
K!1 2 "0w( )

i, j,K!1 2
= Fi, j,K!1 2 ,  (3.35b) 

 
where 
 

  

F
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"
0
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! "

0
#( )

i!1, j,K!1 2
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"
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%
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!
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"
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0
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, (3.36b) 
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=
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"
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#
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&

'(
m
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"

0 ,K!1 2
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+
m

K

"
0,K

#

$
%
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+

,
,
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,
,

 (3.37b) 

 
This tri-diagonal linear system is solved using the subroutine named POIS3D 

in the subroutine package FISHPAK of UCAR for solving separable elliptic 

partial differential equations. 

 

f. Updating horizontal velocities at the upper boundary 

 

The second-order centered finite difference form of (2.23) is given by 

 



 23 
 
 

am ! i"1 2, j+1 2 + bm ! i+1 2, j+1 2 + cm ! i+3 2, j+1 2 + an! i+1 2, j"1 2 + bn ! i+1 2, j+1 2 + cn ! i+1 2, j+3 2  

   = Fi+1 2, j+1 2 , (3.38) 

 
where 
  

 
Fi+1 2, j+1 2 = !i+1 2, j+1 2,K , (3.39) 

 

 

a
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%

 (3.40) 

 
 Next, the second-order centered finite difference form of (2.25) is   
           

am !i"1, j + bm !i, j + cm !i+1, j + an !i, j"1 + bn !i, j + cn !i, j+1 = Fi, j , (3.41) 

 
where 
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These equation systems are solved with the subroutine named HWSCRT in the 

subroutine package FISHPAK of UCAR for solving separable elliptic partial 

equations. 

 For the model’s top layer (k=K), the streamfunction !  and velocity potential 

!  are defined at ! -point and ! -point (see Figs. 1 and 2), respectively. From the 

updated !  and! , we obtain 
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 The horizontally uniform parts of u  and v  at the upper boundary are 

predicted from 
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where ( )
xy

 represents the horizontal average. The finite-difference form of (3.46) 

is given by 
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where KM is the eddy viscosity coefficient defined in (4.5). A similar finite-

difference form is used for (3.47).  
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4. Physical parameterizations 

 

Except for the turbulence parameterization, we use a physics package of the 

UCLA/CSU/University of Utah two-dimensional cloud model, which has been 

applied to a variety of cloud regimes including stratocumulus, altocumulus, 

cumulo-nimbus and cirrus clouds (see, for example, Krueger 2000). 

 

a. Microphysics parameterization 

 

Microphysical processes are parameterized with a bulk method essentially 

following Lord et al. (1984) and Lin et al. (1983). Major modifications have been 

made by Krueger et al. (1995) on the growth of cloud ice by the Bergeron process, 

the conversion of cloud ice to snow, and the characteristics of graupel. Figure 4 

shows the structure of the microphysical parameterization. 
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b. Radiative transfer parameterization 

 

The radiative transfer scheme used in this model is described in Fu et al. 

(1995), which is based on the delta-four-stream approximation (Liou et al. 1988) 

in both solar and thermal infrared wavelengths.  

 

c. Surface flux parameterization 

 

At the lower boundary, the vertical turbulent fluxes of momentum, potential 

temperature and water vapor are determined by the surface-layer profiles of the 

wind velocity and the surface-layer potential temperature and water vapor 

according to the flux-profile relationships given by Deardorff (1972). 

  

d. Turbulence parameterization 

 

 Turbulence parameterization currently used is a temporary one. Using the 

eddy viscosity coefficient KM , we may write the turbulence terms in (2.8), (2.9) 

and (2.10) as 
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The turbulence terms in (2.11) for the potential temperature can also be written 
as 
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where KH  is the eddy diffusivity. 
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 The dissipation length !  is given by 
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The eddy viscosity and diffusivity coefficients, KM  and KH , are defined at ! -

points (see Figs. 1 and 2). Equation (4.5) is discretized as  
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The eddy vorticity flux convergence defined as in (4.1) is discretized as 
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Similar discretizations are used for the eddy vorticity flux convergence in (4.2) 

and (4.3).   

 Next to the surface ( k = 1+1 2 ), the vertical eddy flux convergences of !  and 

!  are discretized as 
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respectively. 
 
 The eddy potential temperature flux convergence, H , defined as in (4.4), is 

discretized as 
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Next to the surface (k = 1 ), the vertical eddy flux convergence of !  is shown as 
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The eddy flux convergence of water vapor is discretized in a way similar to 

(4.15) and (4.16). 
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5. Additional modeling aspects 

 

a. Boundary conditions 

 

The properties of the underlying surface required by the model are 

temperature, wetness, and roughness length. Currently, all three are prescribed. 

The upper and lower boundaries are rigid horizontal planes. The horizontal 

components of vorticity are fixed to zero at the upper and lower boundaries. The 

diffusive upward fluxes are zero at the upper boundary. The horizontal 

boundary condition is cyclic.     

 

b. Time differencing 

 

In this model, the second-order Adams-Bashforth scheme is used except that 

the first-order backward scheme is used for the buoyancy and turbulence terms 

and the first-order forward scheme is used for the physics terms.  

 

c. Realizability 

 

The variables qc , qi , qr , qs , and qg  are checked for negative values. Based on 

the assumption that negative values of theses quantities are primarily due to 

computational dispersion, we use an algorithm to “fill” the “holes”, which 

conserves the domain integral (Krueger, 1988). The first step is to take from the 

26 adjacent grid points. Each of these points is “taxed” proportional to its value if 

its value is positive. If “taxes” from the surrounding points cannot fill the “hole”, 

the remaining amount needed to fill it is taken from the rest of the points, again 

proportional to each point’s value. If there are many nearby “holes”, a non-

“hole” point may be “overtaxed” and become a ”hole”. This is allowed. This 

procedure is repeated until all the “holes” have been filled.    

 

d. Other components of model physics 
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The model includes a Newtonian-type cooling above the 10-km height and a 

Rayleigh-type friction in the top 5 layers. 
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6. Experiments without physics 

 

We have performed a series of idealized experiments to simulate the time 

evolution of thermals in various environmental conditions. The main purpose of 

these experiments is to demonstrate the computational performance of the 

dynamics core of the model as well as to gain better understanding of basic 

convective processes from the viewpoint of vorticity dynamics.  

All experiments described in this section are performed without model 

physics and Coriolis force. A 250-m grid size and a 32-km! 32-km horizontal 

domain are used. The vertical grid size is 250 m and the vertical domain is 15-km 

deep or 30-km deep depending on the experiments. (The stretched vertical grid 

described in section 3b is not used in these idealized experiments.) The initial 

thermodynamic state is isentropic up to the 15-km height. An isothermal layer is 

included above that height in some of the experiments. The initial motion fields 

are taken from a short-term (5 minutes) pre-simulation of an ellipsoidal buoyant 

thermal. In most of the experiments, a weak linear diffusion is applied to the 

vorticity components and potential temperature. The time step used is 10 

seconds. 

 

 

a. EXP1 and EXP2 

 

These experiments are designed to compare the performance of advection 

schemes used in the model. Two experiments are carried out with different 

values of !  in (3.22) for vorticity advection: EXP1 uses an enstrophy-conserving 

2nd-order scheme with  ! = 0  and EXP2 uses an enstrophy-bounded partially 3rd-

order scheme with  ! = 1 . Except for the advection scheme, simulation conditions 

for EXP1 and EXP2 are identical. The vertical domain is 15-km deep. An 

ellipsoidal form of potential temperature perturbation and associated 

axisymmetric motion fields are initially given to the resting basic state. Since 

there is no shear, the solution should remain approximately axisymmetric in 

time. (Because we use a square grid with cyclic boundary conditions, the 
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axisymmetry cannot be maintained exactly.) The x-z cross sections of those fields 

at the center of the y-domain are shown in Fig. 5.  

In these experiments, neither buoyancy nor diffusion is included. The initial 

vorticity field is, therefore, simply advected by wind, with possible stretching/ 

shrinking effects in the azimuthal direction. 

 

 

 

 

 

Figure 6 shows the potential vorticity fields simulated by EXP1 and EXP2. 

Here, potential vorticity is defined as the azimuthal component of vorticity 

divided by density and the distance from the axis of axisymmetry. This quantity 

is supposed to be conserved with respect to a material element for an 

axisymmetric flow when time is continuous. As the left column of Fig. 6 shows, 

the potential vorticity field becomes increasingly noisy with time in EXP1. Even 

though the 2nd-order scheme conserves enstrophy and, therefore, has a good 

control of nonlinear computational instability (Arakawa and Lamb, 1977), it is 

subject to serious dispersion errors as shown in the figure. As the right column of 

Fig. 6 shows, on the contrary, such dispersion errors are drastically reduced in 

EXP2 with the partially 3rd-order scheme. 
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In Fig. 7, we show the mass-weighted three-dimensional domain-averaged 

kinetic energy, enstrophy, and potential enstrophy as functions of time. With the 

2nd-order scheme, the kinetic energy and potential enstrophy are approximately 

conserved only in the early stage of the experiment, increasing exponentially 

afterwards. With the partially 3rd-order scheme, on the other hand, the kinetic 

energy is practically conserved throughout the experiment while the potential 

enstrophy slowly decreases in time. The relatively rapid decreases near the 

beginning and end of the experiments are due to the existence of small-scale 

components in the initial condition and the generation of those components by 
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the complex interference between the approximately axisymmetric flow and the 

square geometry of the domain, respectively. In contrast to the potential 

enstrophy, the enstrophy increases with time. Since both the kinetic energy and 

potential enstrophy are practically conserved, we believe that this increase of the 

enstrophy is physical. 

Through EXP1 and EXP2, it is demonstrated that the partially 3rd-order 

enstrophy-bounded advection scheme effectively controls computational noise 

by keeping dispersion errors small. Our results are consistent with earlier studies 

with 3rd-order schemes (e.g. Takacs, 1985; Leslie and Dietachmayer, 1997). 

 

b. EXP3 and EXP3S 

 

To test the performance of the model for purely three-dimensional situations 

and understand some of the basic interactions between a thermal and a basic 

flow, two experiments are performed: EXP3 initially with no basic flow and 

EXP3S initially with a horizontally uniform basic flow in the x direction with 

vertical shear. The initial conditions for the thermal are shown in Fig.8. Unlike 

EXP1 and EXP2, both the buoyancy and diffusion terms are included and thus a 

rather weak initial potential temperature perturbation is used. The vertical 

domain is again 15-km deep. For EXP3S, horizontally uniform westerly wind 

( u
0
) that linearly increases from 0 at the surface to 10 m s-1 at 15-km height is 

added to the initial wind field. 
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In these simulations, the initial thermal near the surface rises due to the 

buoyancy in the neutral atmosphere until it reaches the upper boundary. With 

the shear in the basic flow, the thermal is slanted with height and thus its 

axisymmetry is not maintained even approximately. To examine the motion field 

associated with the thermal further, Fig. 9 shows the y-component of vorticity 

(! ) on the x-z cross-section at the center of the y-domain obtained from EXP3 

(upper) and EXP3S (lower). Blue line represents negative value. The updraft and 

downdraft are shaded with yellow and light blue, respectively. In the lower 

panels (EXP3S), the initial vorticity due to the shear of the basic flow, !
o
 

! "
0

#1 $u
0
$z( ) , is subtracted. In the figure, it can be seen that without shear, 

positive (clockwise) and negative (counter-clockwise) vortices symmetrically 

develop around the updraft. With shear, on the contrary, asymmetry appears 

between the positive and negative vortices due to the downward stretching of 

the negative vortex at the upwind side and the upward shrinking of the positive 

vortex at the downwind side. Thus it is clear that the net vertical transport of ! is 

zero in EXP3 and dominantly positive (upward) in EXP3S. As we show 

quantitatively later through (7.1), the upward transport of ! means deceleration 

of the westerly flow.  

The corresponding zonal wind field obtained from EXP3S is shown in Fig. 10. 

Here, the initial basic flow (u
0
) is subtracted. It can be clearly seen that the zonal 

wind is decelerated primarily in the active updraft/downdraft regions.  

Figure 11 shows horizontal cross sections of the vertical component of vorticity 

(", upper) and the zonal wind (u, lower) at 5-, 8- and 13-km heights from EXP3S. 

In the figure, we see that positive vorticity (counter-clockwise in the figure) 

develops on the right side of the updraft relative to the shear vector. On the left 

side of the updraft, on the other hand, negative vorticity (clockwise) develops. 

Similar vorticity couplets associated with cloud clusters in shear flow have been 

observed by many authors (e.g. Schlesinger, 1980; Cho and Clark, 1981; Rotunno, 

1981; Klemp et al., 1981; Tollerud and Esbensen, 1983). The zonal wind field 

shows corresponding local deceleration in the active updraft/downdraft regions 

and compensating acceleration in convectively inactive regions. 
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The deceleration/acceleration patterns shown in the lower panels of Fig. 11 

have pronounced structures in y. To further investigate such y-dependencies in a 

concise way, we show the x-averages of the three components of wind (left) and 

vorticity (right) for t=26 min on a y-z plane in Fig. 12. In the figure, blue line 

represents negative value. The x-component of vorticity ( ! ) in Fig. 12d shows a 

direct circulation generated by the buoyancy associated with the thermal. It is 

consistent with the lower-level convergence and upper-level divergence in the y-

component of wind (Fig. 12b) and the updraft at the center of the y-domain (Fig. 

12c). Unlike the ! -field, the y-component of vorticity (!" !
0
) in Fig. 12e shows a 

vertical arrangement of positive and negative values. This is consistent with the 

asymmetry of the positive and negative vortices shown in the lower-left panel of 
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Fig. 9. Along with the couplet of the z-component of vorticity (! ) shown in 

Fig.12f, the vertical arrangement of ! -field is also consistent with the 

deceleration of zonal wind that has a maximum around the 5 km height.  

 

 

 

As shown in Fig. 12, the motion field associated with the thermal is fully 

three-dimensional and all of the three components of vorticity are involved when 

there is a shear in the basic flow. The time change of vorticity depends on the 

flux convergence (divergence), stretching and twisting, diffusion, and buoyancy 

effects. Among these, dominant individual effects for the generation of the 

vorticity fields shown in Fig. 12 are plotted in Fig. 13a and the net effects in Fig. 

13b. Theses are accumulated effects from t=0 to t=26 minutes. The figure shows 
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that the main source term for the generation of the ! -field is the buoyancy. For 

the ! - and ! -fields, the twisting term is the main source. Circulation carries the 

generated !  and !  from the lower levels to the upper levels and !  inward and 

upward through the flux convergence and divergence, respectively. 

 

 

 

So far, the simulated results from EXP3S are interpreted in view of the three-

dimensional vorticity dynamics, which governs the redistribution and 

reorientation of the three-dimensional vorticity vector and the associated change 

of the velocity fields. Figure 14, on the other hand, shows a diagnosis based on 
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the more standard viewpoint of the momentum dynamics. In this figure, the 

zonal averages of the vertical and zonal winds and the vertical eddy momentum 

flux from EXP3S are presented on z-t cross sections (upper panels) at the center 

of the y-domain. With time, the thermal rises and strong updraft appears at the 

upper levels. It is seen that the mean zonal wind decelerates in the updraft region 

and slightly accelerates near the surface. Thus the momentum is transported 

downward by the thermal as the lower panel shows. The deceleration means that 

the thermal behaves as a barrier to the mean flow.  

 

 

 

 

c. EXP4 and EXP4S 

 

Theses experiments are essentially the same as EXP3 and EXP3S except for the 

inclusion of an extended vertical domain of 30 km deep. The initial conditions 

from the surface to 15-km height are the same as those in EXP3 and EXP3S. 
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Above the 15-km height, the model atmosphere is initially isothermal with no 

shear in the basic flow.  

The differences between EXP4 and EXP3 and those between EXP4S and EXP3S 

are minor in general and thus we show only the y-components of the vorticity on 

the x-z cross-section at the center of the y-domain (Fig. 15). Below the 15-km 

height, the fields look hardly different from those in Fig. 9. Above that height, we 

see propagating gravity waves generated by the rising thermal. With a shear in 

the basic flow (EXP4S), gravity waves in the upper layer are tilted toward the 

upwind side. If theses waves are stationary in the x-direction, the tilt is an 

indication that the momentum is transferred downward. This feature is 

consistent with the result shown in Fig. 14.   
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7. Experiment with physics 

 

In this experiment called EXP5S, we simulate the development of an 

ensemble of clouds using the model with full physics, which includes 

microphysics, radiation, and turbulence. The model is applied to a 512-km! 512-

km horizontal domain with a 2-km horizontal grid size. In the vertical, the model 

has 34 levels based on the stretched vertical grid described in section 3b with a 

top at 18 km. The vertical grid size ranges from about 100 m near the surface to 

about 1000 m near the model top. The upper and lower boundaries are rigid and 

the lateral boundaries are cyclic. The Coriolis parameter for 15° N is used. The 

model also includes a Newtonian-type cooling above the 10-km height to 

maintain realistic climatology of the stratosphere and a Rayleigh-type friction in 

the top 5 layers to absorb upward-propagating gravity waves. 

 An idealized ocean surface condition is used, in which the surface 

temperature is prescribed as 299.8 K. The cosine of the solar zenith angle is fixed 

to 0.5, representing a typical daytime condition in the tropics. The initial thermo-

dynamic state and zonal wind fields are selected idealizing the GATE Phase-III 

conditions. Figure 16 shows the initial profiles of moist static energy and zonal 

wind. The meridional wind is initially set to zero. In order to maintain the mean 

wind shear, the area mean of zonal wind is fixed to its initial value throughout 

the simulation. 
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 Clouds are initiated by small random potential temperature perturbations 

introduced into the lowest model layer over the 15-minute period after the first 5 

minutes of the integration. Large-scale forcing representing climatological 

background is imposed on the model through prescribed cooling and moistening 

rates (Fig. 17). The integration period is 3 days and the time step is 10 seconds.  

  

 

  

 Analysis of EXP5S is in progress. In this technical report, only snapshots 

showing initial development are presented. Development of cloud ensemble for 

the initial 24-hour period can be seen in Fig. 18. The figure shows the isotimic 

surface of cloud water mixing ratio (q=0.1 g kg-1 ) in every 6 hours. Here cloud 

water consists of cloud liquid water and cloud ice. In early stage of this period, 

clouds develop nearly everywhere because the integration starts from a 

horizontally uniform and conditionally unstable condition. As time progresses, 

mesoscale band-like cloud organizations gradually develop, which seem to have 

multiple directions.  

 Figure 19 shows the distribution of the cloud top temperature in the x-y 

domain in every 6 hours. Following Xu and Krueger (1991), the cloud top is 

defined as the layer where the path of liquid water and ice (i.e., qc + qi( )!dz" ) 

first exceeds 0.1 kg m-2 when integrated downward from the model top, where 
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qc  is the mixing ratio of cloud liquid water and   q i  is that of ice. In the figure, 

cirrus anvils associated with cumulonimbi appear white and there are no clouds 

in black areas. As already seen in Fig. 18, several organized systems have 

developed during the last 12 hours of the 1-day simulation, which are consist of 

narrow convective bands mostly aligned in the 45°-angle against the direction of 

shear. Behind the bands, there are broad areas of midlevel stratiform clouds. 
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The domain- and time-averaged profiles of the vertical flux convergence of 

zonal momentum and the fluxes of vorticity components due to cumulus 

convection are shown in Fig. 20. Here, the time average is taken over the last 12 

hours of the 1-day simulation. Figure 20a shows a layer of the westerly 

momentum flux convergence above the level of the mid-tropospheric easterly jet 

core shown in Fig. 16b, and a layer of easterly momentum flux convergence 

below the jet core. Although our experiment is highly idealized, especially 
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because the mean zonal wind and large-scale forcing are fixed in time to 

represent only the mean GATE Phase III condition, the result is consistent with 

those by Sui and Yanai (1986) and Mapes and Wu (2001). 

With the use of the definition of vorticity (2.6), the anelastic continuity 

equation (2.1) and the cyclic continuity, the domain-averaged vertical flux 

convergence of zonal momentum can be expressed as 

!
"

#
0
"z

#
0
$u $w( ) = !#

0
$w $% + #

0
$v $& ,   (7.1) 

where the over bar and prime indicate the domain average and deviation, 

respectively. Figure 20b shows the vorticity fluxes that appear in the right hand 

side of (7.1). When the y-component of vorticity is transported upward 

(downward), there is a deceleration (acceleration) tendency of westerly wind. 

The relation (7.1) gives an alternative way of viewing the cumulus momentum 

flux problem as a problem of vorticity transports by cumulus convection, which 

can be more straightforward since the effect of the perturbation pressure does 

not need to be explicitly formulated. 
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8. Summary 

 

 In this technical report, we present a detailed description of a newly 

developed three-dimensional anelastic cloud model. All of the three-dimensional 

cloud models developed so far view convective motions in terms of the pressure 

gradient and buoyancy forces in the momentum equation. The model described 

here is unique among its own kind because it is built on the dynamical 

framework of the three-dimensional vector vorticity equation instead. 

 The advantage of using the vorticity equation is that, by eliminating the 

passive pressure gradient terms, it leads us to examine convective motions 

directly in terms of the relevant dynamics such as generation, advection, 

stretching and twisting of the vorticity. Therefore, interpretation of the results 

can be more straightforward with the explicit use of the vorticity equation in the 

model. It is especially advantageous from the viewpoint of computational design 

because computational constraints on the key dynamical processes, such as those 

on enstrophy cascade under advection processes, can be more easily 

implemented into the system. In spite of theses advantages, the vorticity-

equation system has so far been adopted as a dynamical core only in two-

dimensional cloud modeling. The extension into three dimensions of such a 

system has not been attempted to our knowledge. In this work, we establish a 

dynamical framework based on the vorticity equation for a three-dimensional 

anelastic cloud model. 

The prognostic variables of the model are the two horizontal components of 

vorticity, potential temperature and mixing ratios of various phases of water at 

all levels, and the vertical component of vorticity at the model top. With the use 

of an expression for the nondivergence of the vector vorticity, the vertical 

component of vorticity at other levels is diagnostically determined. At the upper 

boundary, the uniform part of horizontal wind is predicted by the horizontally 

averaged equation of motion and the non-uniform part is obtained by solving the 

Poisson-type equations for streamfunction and velocity potential. Below the 

upper boundary, the horizontal wind is directly obtained from the predicted 

vorticity fields and the boundary values. For the vertical component of wind, a 

three-dimensional elliptic equation is solved with a prescribed vertical boundary 
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condition. This procedure replaces the elliptic equation for the perturbation 

pressure in the standard anelastic system based on the momentum equation, 

which produces computational complications when it is applied to flow over a 

complex terrain. Such complications are reduced in our system because the 

boundary conditions for the vertical velocity are more straightforward than those 

for perturbation pressure.  

For advection of vorticity and scalar variables, the model has a flexibility to 

choose from a family of schemes by changing a single parameter, including a 

quadratically-conserving 2nd-order scheme, a quadratically-bounded 3rd-order 

scheme, and schemes in-between. The physical parameterizations in the model 

include a three-phase microphysical parameterization (Krueger et al. 1995; Lin et 

al., 1983; Lord et al. 1984), a radiative transfer parameterization (Fu et al. 1995), a 

surface flux parameterization (Deardorff, 1972), and a first-order turbulence 

closure that uses eddy viscosity and diffusivity coefficients depending on 

deformation and stability (Shutts and Gray, 1994). Except for the turbulence 

parameterization, these physical parameterizations are essentially the same as 

those in the two-dimensional cloud model originally developed by Krueger 

(1988), which has been applied to a variety of cloud regimes including 

stratocumulus, altocumulus, cumulo-nimbus and cirrus clouds (see, for example, 

Krueger 2000).  

The three-dimensional cloud model based on the vorticity equation is first 

tested through idealized experiments simulating thermals in various 

environmental conditions. The main purpose of these experiments is to 

demonstrate the computational performance of the model as well as to gain 

understanding of some basic convective processes from the viewpoint of 

vorticity dynamics. To avoid unnecessary complications, these simulations are 

carried out with no physics. In the tests of the advection schemes, it is 

demonstrated that the 3rd-order advection scheme effectively controls 

computational noise by keeping dispersion errors small. With that scheme, 

kinetic energy is practically conserved and potential enstrophy is bounded for 

axisymmetric flow. In the experiments designed to gain an insight into the 

interactions between three-dimensional motions associated with the convection, 

it is shown that the buoyant thermal under basic shear flow induces local wind 
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deceleration through the twisting effects on the vorticity components. This local 

wind deceleration is associated with the generation of a vertical vorticity couplet 

that has been reported in earlier studies. The budget analysis of vorticity also 

shows that advection is as important as the twisting effects in the distribution of 

the vorticity couplet.  

 The model is then tested with a simulation of ensemble clouds using the full 

model physics in a large domain. In this simulation, the initial thermodynamic 

state and horizontal wind fields are selected idealizing the GATE Phase-III 

conditions. Clouds are initiated by small random temperature perturbations. 

Large-scale forcing representing climatological background is imposed on the 

model through prescribed cooling and moistening rates. Preliminary results from 

this simulation are presented, showing development of mesoscale organization 

of clouds and modification of the mean flow by vorticity transports.  

 For future development of the current model, we are planning the following 

two modifications of the dynamical framework. The first modification is relaxing 

the computational constraint due to the anelastic approximation. In the current 

anelastic model, we solve a diagnostic equation for the vertical component of 

wind, which involves global calculations. Even with simple boundary conditions, 

the procedure to solve this equation can be a numerical burden, especially when 

the domain of the model is large. We believe that this problem can be overcome 

by relaxing the anelastic constraint even without introducing sound waves into 

the system. The second modification is to generalize the system of the anelastic 

equations while maintaining the structure of the model based on the three-

dimensional vorticity equation. In its original form, the anelastic approximation 

requires that the reference state be isentropic (Ogura and Phillips, 1962). In 

practice, the reference state is usually taken to be nonisentropic. When the 

nonisentropic reference state is used, the full set of equations does not conserve 

energy in the system. To keep the energy conservation, modified anelastic 

systems have been proposed (Lipps and Hemler, 1982; Durran, 1989; Bannon, 

1996). In our future efforts, we will focus on a generalization of the anelastic 

system without strong constraints by the choice of a reference state by 

generalizing the pseudo-incompressible approximation proposed by Durran 

(1989). We will also attempt to include full compressibility when linearized. 
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