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ABSTRACT

A three-dimensional anelastic model has been developed using the vorticity equation, in which the
pressure gradient force is eliminated. The prognostic variables of the model dynamics are the horizontal
components of vorticity at all heights and the vertical component of vorticity and the horizontally uniform
part of the horizontal velocity at a selected height. To implement the anelastic approximation, vertical
velocity is diagnostically determined from the predicted horizontal components of vorticity by solving an
elliptic equation. This procedure replaces solving the elliptic equation for pressure in anelastic models based
on the momentum equation. Discretization of the advection terms uses an upstream-weighted partially
third-order scheme. When time is continuous, the solution of this scheme is quadratically bounded. As an
application of the model, interactions between convection and its environment with vertical shear are
studied without and with model physics from the viewpoint of vorticity dynamics, that is, the deceleration/
acceleration process of the basic flow in particular. The authors point out that the process is purely
three-dimensional, especially when the convection is relatively localized, involving the twisting terms and
the horizontal as well as vertical transports of vorticity. Finally, it is emphasized that parameterization of
cumulus friction is a resolution-dependent problem of vorticity dynamics associated with cumulus convec-
tion.

1. Introduction

In the process of cloud modeling during the last de-
cades, it was clearly realized that one- and two-
dimensional cloud models are not capable of realisti-
cally simulating the complex behavior of convective
systems. Since the 1970s, a number of three-
dimensional cloud models have been developed to
simulate the structure, intensity, and movement of con-
vective clouds (Steiner 1973; Miller and Pearce 1974;
Cotton and Tripoli 1978; Klemp and Wilhelmson 1978;
Schlesinger 1978; Clark 1979; Takahashi 1981; Lipps
and Hemler 1986; Redelsperger and Sommeria 1986;
Tao and Soong 1986; Kogan 1991; Khairoutdinov and
Randall 2003; and many others).

The three-dimensional cloud models developed so

far can be classified into two families: one based on the
anelastic system of equations and the other on the fully
compressible system of equations. Whether they are
anelastic or fully compressible, most of the three-
dimensional cloud models formulate the dynamics of
convection in the context of the momentum equation.
In the anelastic models with the momentum equation,
the pressure perturbation is calculated for a given mo-
tion field using a diagnostic elliptic equation. Compli-
cations involved in solving the elliptic equation can be
eliminated in the fully compressible models. However,
sound waves are retained in the system so that they
must be appropriately handled computationally. A
technique called “splitting,” in which the sound wave
modes are solved separately using a shorter time step
than elsewhere in the model, is widely used in many
compressible models (e.g., Klemp and Wilhelmson
1978).

The presence of vortical motions associated with con-
vective clouds, however, leads us to examine the mo-
tions using the vorticity equation. The vorticity fields
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associated with deep convective clouds have been diag-
nostically investigated by many authors (Schlesinger
1980; Cho and Clark 1981; Rotunno 1981; Tollerud and
Esbensen 1983; Skamarock et al. 1994; Kirk 2003; Weis-
man and Rotunno 2004; and many others). Only a few
nonhydrostatic three-dimensional models, on the other
hand, use the vorticity equation as the prognostic equa-
tion (Thyer 1966; Sievers and Zdunkowski 1986; Saitoh
et al. 1996; Thunis and Clappier 2000).

The reason that the three-dimensional vorticity equa-
tion has been seldom used in three-dimensional models
is perhaps because its use requires a dynamics core that
has a completely different logical structure from that of
the conventional momentum equation models. For ex-
ample, vorticity is by definition a nondivergent vector.
How to maintain this constraint in a prognostic model is
not obvious. Predicting the three components of vor-
ticity everywhere is at least redundant or can even pro-
duce inconsistency. Also when we wish to use an
anelastic approximation, a proper way to implement it
in the vorticity equation framework needs to be found.
In the momentum equation models, it is done through
solving the elliptic equation for pressure. But, pressure
is eliminated in vorticity equation models. Finally, since
the horizontal components of the vorticity equation
govern only the vertical shear of horizontal velocity, we
need an algorithm to determine the vertically uniform
part of the horizontal velocity.

One of the main purposes of this paper is to show
how the vorticity equation can be used in the dynamics
core of a three-dimensional model for nonhydrostatic
nonacoustic motions. As an application of the model
constructed using such a framework, the paper also pre-
sents a study of interactions between convection and its
environment with vertical shear from the viewpoint of
vorticity dynamics. Section 2 presents the description of
the model emphasizing the logical structure of its dy-
namics core. Sections 3 and 4 discuss the results of ide-
alized experiments without physics and those of the
ensemble cloud simulation with full physics. Finally, the
summary and conclusions are presented in section 5.

2. Model description

a. The dynamical framework

An anelastic system of the continuity and momentum
equations is given in Lipps and Hemler (1982). With
the Cartesian coordinates, these equations may be writ-
ten as
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Here u, �, and w are the x, y, and z components of
velocity, respectively; � is the density; f is the Coriolis
parameter; g is the gravitational acceleration; � is the
potential temperature; �� is the virtual potential tem-
perature defined by �� 	 �(1 � 0.61q�); and q is the
mixing ratio of water vapor (�), cloud water (c), cloud
ice (i), rainwater (r), snow (s), or graupel (gr). In these
equations, variables with a subscript 0 refer to a hydro-
static reference state, which varies in z only. The Co-
riolis force is simplified by omitting its component that
depends on the cosine of latitude. A single prime indi-
cates the departure from the reference state and double
primes indicate turbulence-scale velocity components.
The nondimensional pressure 
 is given by 
 � (p/
p00)R/cp, where p is the pressure, p00 is a constant refer-
ence pressure, R is the gas constant for dry air, and cp

is the specific heat of dry air. The operator d/dt denotes
the material time derivative, which can be expressed for
a variable A as
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The logical structure of the model dynamics is quite
different from most of the existing three-dimensional
models because the vorticity equation is used as the
prognostic equation instead of the momentum equa-
tion. We first define the x, y, and z components of
vorticity by
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respectively. The vorticity components defined by (6)
identically satisfy the nondivergence of the three-
dimensional vorticity given by
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From (2), (3), and (4), the x, y, and z components of the
vorticity equation can be derived as
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where B is the buoyancy given by g(��/�0 � 0.61q� �
qc � qi � qr � qs � qgr); and Fu, F�, and Fw are the
turbulent flux convergence terms in the right-hand
sides of (2), (3), and (4), respectively. In (8), (9), and
(10), the first term after the brackets represents the
stretching effect and the two subsequent terms repre-
sent the twisting effect.

Because the vertical derivative of � is diagnostically
related to the  and � fields through (7), it is not nec-
essary to predict the � field using (10) except at an
arbitrarily selected height, zT. The � field at an arbitrary
height z can then be obtained through


z � ��
zT

z ���

�x
�

�	

�y� dz � 
zT
. �11�

Thus, while (8) and (9) are applied everywhere, we
apply (10) only at the selected height. In the model, the
upper boundary is chosen as the height zT. It can be
shown that the three-dimensional vorticity field pre-
dicted by (8), (9), and (11) is consistent with the pre-
diction using (10).

After predicting the horizontal components of the
vorticity using (8) and (9), we update the vertical ve-

locity. Operating �/�x on � and �/�y on  in (6), we
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With the anelastic continuity Eq. (1), the sum of two
equations in (12) becomes
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For a given vorticity field, we can determine w by solv-
ing the three-dimensional elliptic equation in (13) with
the upper and lower boundary conditions for w.

To update the horizontal velocity at a selected height
z � zT, which is chosen to be the upper boundary in the
model, we divide the velocity into the rotational and
divergent parts through
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The streamfunction � is updated solving the two-
dimensional elliptic equation
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The velocity potential �, on the other hand, is obtained
from the solution of
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using the vertical velocity w updated by (13). We may
predict the horizontally uniform part of the horizontal
velocity by
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where ()
xy

represents the horizontal average. Using
these horizontally uniform and nonuniform parts, the
horizontal velocities at z � zT are given as

uT � uxy � u� � u�, �T � �xy � �� � ��. �20�

To update the horizontal velocity components at an
arbitrary height z, we use (6) rewritten as
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Integrating (21) with respect to z downward, we obtain
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The model described above is quite different from
that used in Thunis and Clappier (2000). In their model,
a pair of two-dimensional elliptic equations for the
streamfunction are iteratively solved. In our model, a
single three-dimensional elliptic equation for the verti-
cal velocity is solved instead. The use of this equation is
one of the unique aspects of the model described in this
paper. Figure 1 presents a flowchart of the logical struc-
ture of the model dynamics. The major points here are
satisfying the nondivergence of the three-dimensional
vorticity given by (7) and the way in which the velocity
field is updated from the predicted vorticity field.

The thermodynamic equation in the model is given
by
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FIG. 1. Flowchart of the model structure for predicting dynamical variables.
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where the tendency terms with the subscripts MP,
RAD, and TUR represent the sources due to micro-
physics, radiation, and turbulent flux convergence, re-
spectively. The tendency term with subscript LS repre-
sents a forcing due to prescribed large-scale advection.
The budget equations for water vapor and nonprecipi-
tating water species (cloud water and cloud ice), and for
precipitating water species (rain, snow and graupel) can
be, respectively, written by
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dt
� ��qnp
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� ��qnp

�t �
TUR

� ��qnp

�t �
LS
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.
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In these equations, the tendency term with the sub-
script MP represents conversions between species due
to microphysics. In (25), PF represents precipitation
fluxes. In the current model, we ignore the turbulent
fluxes of precipitating water.

b. Discretization

The main variables and their locations in the vertical
and horizontal grids are shown in Fig. 2. All thermody-
namic variables are located at the � point. This vertical
grid structure, which is similar to the Lorenz grid in
quasistatic models, is not the best vertical grid in simu-
lating hydrostatic adjustment in nonhydrostatic models
with an Eulerian vertical grid. But it has been chosen in
this model to maintain the continuity from its two-
dimensional predecessor. In the vertical, we usually use
a stretched vertical grid described by Krueger (1988) to
increase the vertical resolution near the surface.

The space-difference scheme for advecting scalar
variables and vorticity components is an Eulerian
scheme, which has the third-order accuracy when the
flow is uniform. When time is continuous, solutions of
this scheme are quadratically bounded. In discretizing
the flux convergence terms in (8) and (9), which are
applied to the entire column, and in (10), which is ap-
plied to a selected height, we take the advantage of
using the vorticity equation by directly implementing
computational constraints on the enstrophy change un-
der advection processes. For more details on the dis-
cretization, see Jung and Arakawa (2005). The three-
dimensional elliptic equation in (13) is solved with the
condition w � 0 at the lower and upper boundaries
using centered finite differences with the stretched ver-
tical coordinate. The resulting tridiagonal linear system

is then solved using the FISHPAK (a package of FOR-
TRAN subprograms for the solution of separable ellip-
tic partial differential equations) of the University Cor-
poration for Atmospheric Research (UCAR) for solv-
ing separable elliptic partial differential equations by
the direct, Fourier series method. The second-order
Adams–Bashforth scheme is used for time differencing
except that the first-order backward scheme is used for
the buoyancy and turbulence terms and the first-order
forward scheme is used for the physics terms. The sec-
ond-order Adams–Bashforth scheme is unstable, but its
growth rate depends on the time step used. Since suf-
ficiently short time steps are used in the experiments
described in sections 3 and 4, the actual growth is neg-
ligible with the amount of dissipation included in the
model. The properties of the underlying surface re-
quired by the model are temperature, wetness, and
roughness length. Currently, all three are prescribed. In
the experiments reported in this paper, the upper and
lower boundaries are rigid horizontal planes and the
horizontal domain is cyclic.

c. Physical parameterizations

The physical parameterizations in the model include
a three-phase microphysical parameterization (Krueger
et al. 1995; Lin et al. 1983; Lord et al. 1984), a radiative
transfer parameterization (Fu et al. 1995), a surface flux
parameterization (Deardorff 1972), and a first-order
turbulence closure that uses eddy viscosity and diffu-
sivity coefficients depending on deformation and sta-
bility (Shutts and Gray 1994). Except for the turbulence
parameterization, these physical parameterizations are
essentially the same as those in the two-dimensional
cloud model originally developed by Krueger (1988),
which has been applied to a variety of cloud regimes
including stratocumulus, altocumulus, cumulonimbus,

FIG. 2. A three-dimensional view of the model grids.
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and cirrus clouds (see, e.g., Krueger 2000). Addition-
ally, the model has a Newtonian-type cooling above the
10-km height and a Rayleigh-type friction in the top
five layers.

3. Idealized experiments without physics

All experiments described in this section are per-
formed without physics and Coriolis force. Instead of
the stretched vertical grid described in section 2, a uni-
form vertical grid is used in these experiments.

a. Cold bubble experiment

The design of the cold bubble experiment follows the
setup of Straka et al. (1993), which was originally used
as a benchmark problem for two-dimensional nonhy-
drostatic models. The same experimental setup is
adopted for the sake of comparison, but the simulation
is carried out using the three-dimensional model we
developed with no variation in the y direction.

In this setup, an initial cold disturbance is introduced
to a neutrally stratified resting atmosphere as

T � � 0 if L � 1,

�15�cos��L� � 1��2 if L � 1,
�26�

where L 	 {[(x � xc)/xr]
2 � [(z � zc)/zr]

2}1/2, xc � 0 km,
xr � 4 km, zc � 3 km, and zr � 2 km. The horizontal
domain extends from �19 to 19 km and its height is 6.4
km. The grid size is 25, 50, 100, 200, or 400 m. The
integration time step is 1 s with the grid size greater
than 50 m and smaller otherwise. As in Straka et al.
(1993), a constant diffusion coefficient, 75 m2 s�1, is
used for both vorticity and scalar prognostic equations.

The model is integrated over a 900-s period. The ��
field from the simulation at t � 900 s is shown in Fig. 3
for different grid sizes. From the results with high reso-
lution, it is seen that three Kelvin–Helmholtz shear in-
stability rotors develop along the top boundary of the
simulated cold air outflow. These results show a good
agreement with the reference solution in Straka et al.
(1993).

b. Warm bubble experiments

To demonstrate the performance of the model as
well as to gain better understanding of the three-
dimensional interactions of convection with the basic
flow from the viewpoint of vorticity dynamics, we have
performed a series of idealized experiments simulating
the time evolution of thermals in various environmental
conditions. In these experiments, a 250-m grid size is
used in every direction. The horizontal domain is
32 km � 32 km and the vertical domain is 15 km deep.

To obtain the initial motion fields that satisfy the dis-
crete anelastic continuity equation of the model, we
perform a short-term (3 min) presimulation. In this
simulation, an ellipsoidal form of potential temperature
perturbation was prescribed as

� � �0 if L � 1,

�max�1 � L���o�z� if L � 1,
�27�

where ��max � 4 K, L 	 {[(x � xc)/xr]
2 � [(y � yc)/yr]

2 �
[(z � zc)/zr]

2}, xc � 15.875 km, xr � 4 km, yc � 15.875
km, yr � 4 km, zc � 2.5 km, and zr � 2 km. We then ran
the model from the resting state while fixing the loca-
tion and buoyancy of the thermal. The prescribed ther-
mal and motion fields developed at t � 3 min are used
for the initial condition for the following experiments.

FIG. 3. The x–z cross sections of �� at t � 900 s obtained from
the simulations “using the setup of Straka et al. (1993)” with grid
sizes of 25, 50, 100, 200, and 400 m. The contour interval is 1°C.
All contours are centered around the zero contours. (Note that
only a portion of the domain is shown.)
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1) EXP1

This experiment is designed to further examine the
performance of the advection scheme. Neither buoy-
ancy nor diffusion is included in this experiment. In this
experiment, the initial vorticity field is simply advected
with possible stretching/shrinking effects in the azi-
muthal direction. Since there is no background shear,
the solution should remain approximately axisymmetric
in time. (Because of the use of a square grid with cyclic
boundary conditions, the axisymmetry is not exactly
maintained.)

Figure 4 shows the simulated potential vorticity
fields. Here “potential vorticity” is defined as the azi-
muthal component of vorticity divided by density and
the distance from the axis of axisymmetry representing
the azimuthal stretching effect on vorticity. Since nei-
ther buoyancy nor diffusion is included, this quantity is
supposed to be conserved with respect to a material
element for an axisymmetric flow when time is continu-
ous. It is seen in Fig. 4 that the potential vorticity of the
thermal seems to be well conserved as it rises. In Fig. 5,
we show the mass-weighted three-dimensional domain-
averaged kinetic energy, enstrophy, and potential en-
strophy as functions of time. We see that the kinetic
energy is practically conserved throughout the experi-
ment while the potential enstrophy slowly decreases in
time. The relatively rapid decreases near the beginning
and end of the experiments are due to the existence of
small-scale components in the initial condition and the
generation of those components by the complex inter-
ference between the approximately axisymmetric flow
and the square geometry of the domain, respectively. In
contrast to the potential enstrophy, the enstrophy in-
creases with time. Figure 5b shows that this increase is
almost entirely due to the physical effects of stretching
and twisting.

2) EXP2 AND EXP2S

To test the performance of the model for purely
three-dimensional situations and to understand some of
the basic interactions between a thermal and basic flow,
two experiments are performed: EXP2 initially with no
basic flow and EXP2S initially with a horizontally uni-
form basic flow with vertical shear. Unlike EXP1, the
buoyancy and the diffusion with a constant coefficient
100 m2 s�1 are included in these experiments. The ini-
tial conditions consist of a neutral environment and a
disturbance prepared in the same way as in EXP1, but
using a rather weak initial potential temperature per-
turbation with ��max � 1 K. For EXP2S, a horizontally
uniform westerly wind (u0) that linearly increases from

FIG. 4. Time evolution of the simulated potential vorticity fields
on the x–z cross section at the center of the y domain obtained
from EXP1. The contour interval is 40 � 10�4 s�1.
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0 at the surface to 10 m s�1 at 15-km height is added to
the initial wind field.

In these simulations, the initial thermal rises due to
the buoyancy in the neutral atmosphere until it reaches
the upper boundary. With the shear in the basic flow,
the thermal is slanted with height and thus its axisym-
metry is not maintained even approximately. To further
examine the motion field associated with the thermal,
Fig. 6 shows �* (	� /�o) on the x–z cross section at the
center of the y domain obtained from EXP2 (left) and
EXP2S (right). Dashed lines represent negative values.
The updraft and downdraft are shaded with light gray

and dark gray, respectively. In the right panels
(EXP2S), the value of �*0 (	��1

0 �u0/�z) due to the shear
of the initial basic flow is subtracted. In the figure, it can
be seen that without shear, positive (clockwise) and
negative (counterclockwise) vortices symmetrically de-
velop around the updraft. With shear, on the contrary,
asymmetry appears between the positive and negative
vortices due to the downward stretching of the negative
vortex at the upwind side and the upward shrinking of
the positive vortex at the downwind side. Thus, it is
clear that the net vertical transport of �* is zero in
EXP2 and dominantly positive (upward) in EXP2S at
this y. As we show quantitatively later in (28), the up-
ward transport of �* means a tendency toward decel-
eration of the westerly flow. The corresponding zonal
wind field obtained from EXP2S is shown in Fig. 7.
Here, the initial basic flow (u0) is subtracted. It can be
clearly seen that the zonal wind is decelerated at this y
representing the active updraft/downdraft region.

Figure 8 shows horizontal cross sections of �* (	� /�o;
left) and the zonal wind (right) at 5-, 8-, and 13-km
heights from EXP2S. In the figure, we see that positive
vorticity (counterclockwise in the figure) develops on
the right side of the updraft relative to the shear vector.
On the left side of the updraft, on the other hand, nega-
tive vorticity (clockwise) develops. Similar vorticity
couplets associated with cloud clusters in shear flow
have been observed by many authors (e.g., Schlesinger
1980; Cho and Clark 1981; Rotunno 1981; Tollerud and
Esbensen 1983). The zonal wind field shows corre-
sponding local deceleration in the active updraft/down-
draft regions and compensating local acceleration in
convectively inactive regions. At least at the middle
levels (z � 5 and 8 km), these local deceleration and
acceleration tend to compensate when the horizontal
average is taken over the entire model domain.

The deceleration/acceleration patterns shown in the
right panels of Fig. 8 have pronounced structures in y.
To further investigate such y dependencies in a concise
way, we show the zonal averages of the three compo-
nents of wind (left) and vorticity divided by density
(right) for t � 26 min on a y–z plane in Fig. 9. In
the figure, dashed lines represent negative values. The
* (	 /�o) field in Fig. 9d shows a direct circulation
generated by the buoyancy associated with the thermal.
It is consistent with the lower-level convergence and
upper-level divergence in the y component of wind
(Fig. 9b) and the updraft at the center of the y domain
(Fig. 9c). Unlike the * field, the (�* � �*o) field in Fig.
9e shows a vertical arrangement of positive and nega-
tive values. This is consistent with the asymmetry of the
positive and negative vortices shown in the lower-right
panel in Fig. 6. Along with the couplet of �* shown in

FIG. 5. The mass-weighted three-dimensional domain-averaged
(a) kinetic energy, (b) enstrophy, and (c) potential enstrophy ob-
tained from EXP1. In (b), the stretching and twisting effects are
individually shown as well as the total effects.
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Fig. 9f, the vertical arrangement of �* is also consistent
with the local deceleration of zonal wind that has a
maximum around the 5-km height.

As shown in Fig. 9, the motion field associated with
the thermal is fully three-dimensional and all of the
three components of vorticity are involved when there

is a shear in the basic flow. The time change of vorticity
depends on the flux convergence (divergence), stretch-
ing and twisting, diffusion, and buoyancy effects.
Among these, dominant individual effects for the gen-
eration of the *, (�* � �*o), and �* fields shown in Fig.
9 are plotted in Fig. 10. These are accumulated effects

FIG. 6. The �* (	� /�o) fields on the x–z cross section at the center of the y domain obtained from (left) EXP2 and (right) EXP2S.
Here �*0 	 ��1

0 �u0 /�z and u0 represent the initial basic flow. Solid and dashed lines represent positive and negative values, respectively.
The contour interval is 60 � 10�4 m3 kg�1 s�1. The updraft and downdraft are shaded light gray and dark gray, respectively.
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from t � 0 to t � 26 min. The figure shows that the main
source term for the generation of the *field (top pan-
els) is the buoyancy. For the �* field (middle panels)
and �* field (bottom panels), the twisting term is the

main source. Circulation carries the generated * and
�* from the lower levels to the upper levels and �*
inward and upward through the flux convergence and
divergence, respectively.

So far, the simulated results from EXP2S are inter-
preted in view of the three-dimensional vorticity dy-
namics, which governs the redistribution and reorien-
tation of the three-dimensional vorticity and the asso-
ciated change of the velocity fields. Figure 11, on the
other hand, shows a diagnosis of the results based on
the more standard viewpoint of the momentum dynam-
ics. In this figure, the zonal averages of the vertical and
zonal winds (top panels) and the vertical eddy momen-
tum flux (bottom panel) from EXP2S are presented on
the z–t cross sections at the center of the y domain.
With time, the thermal rises and strong updraft appears
at the upper levels (Fig. 11a). As the updraft develops,
the momentum is transported downward by the ther-
mal (Fig. 11c), producing a deceleration effect on the
mean flow above and an acceleration effect below. Fig-
ure 11b shows that deceleration does take place at the
upper levels, but only a slight acceleration appears near
the surface. This suggests that the horizontal momen-
tum transport is also important at the lower levels. We
further investigate this situation in the rest of this sub-
section.

With the use of the definition of vorticity given by
(6), the anelastic continuity equation given by (1), and
the cyclic continuity in x, we can derive the following
relation between the zonally averaged flux convergence
of zonal momentum and vorticity transports by the
thermal:

�� �

�0�y
��0u���

x
� �

�

�0�z
��0u�w�

x
��� �w�	�

x
� ��
�

x
.

�28�

The relation (28) is expected to hold approximately
even without a cyclic condition if the averaging is over
a domain bounded by the relatively calm environment.
The relation (28) gives an alternative way of viewing
parameterization of cumulus friction as a problem of
vorticity transports by cumulus convection.

The top panels in Fig. 12 show the zonally and time-
averaged vertical and horizontal momentum fluxes by
the deviation from the zonal mean. Clearly, the vertical
momentum transport is downgradient near the center
of the y domain representing the region of active con-
vection, while weaker upgradient transports appear in
the nearby regions. The middle panels in Fig. 12 show
the corresponding flux convergences of momentum
representing the two terms in the left-hand side of (28).

FIG. 7. The zonal wind on the x–z cross section at the center of
the y domain obtained from EXP2S. The initial basic flow (u0) is
subtracted from the field. Solid and dashed lines represent posi-
tive and negative values, respectively. The contour interval is 1
m s�1. The updraft and downdraft are shaded light gray and dark
gray, respectively.
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FIG. 8. The (left) �* (	� /�o) field and (right) zonal wind on the x–y cross section obtained from EXP2S. The solid
and dashed lines represent positive and negative values, respectively. The contour intervals are (left) 20 � 10�4 m3

kg�1 s�1 and (right) 1 m s�1. The updraft and downdraft are shaded light gray and dark gray, respectively.
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Here we see the tendency toward compensation by the
vertical and horizontal convergences. At the upper lev-
els near the center of the y domain, a significant part of
the deceleration due to the downward momentum
transport is canceled by the acceleration due to the
horizontal momentum transport. At the lower levels
near the center of the y domain, on the other hand, the
acceleration effect due to the downward momentum
transport is almost entirely canceled by the decelera-
tion due to the horizontal momentum transport.

The bottom panels in Fig. 12 show the zonally and

time-averaged vertical flux of � and the zonally and
time-averaged horizontal flux of �. These fluxes repre-
sent the terms in the right-hand side of (28). At the
middle levels, the upward transport of � near the center
of the y domain represents the deceleration in the con-
vectively active region. At the lower levels, the positive
horizontal transport of � off the center of the y domain
represents acceleration in the neighboring convectively
inactive region. In this way, unlike the momentum flux
convergences, the effects of individual vorticity trans-
ports dominate at different places in the vertical cross

FIG. 9. Zonally averaged (a) x, (b) y, and (c) z components of velocity and (d) *, (e) �*, and (f) �* fields on
the y–z cross section obtained from EXP2S at t � 26 min. The solid and dashed lines represent positive and
negative values, respectively. The contour interval in (a)–(c) is 0.4 m s�1 and the contours in (d)–(f) are �2, �4,
�12, �20, . . . (10�4 m3 kg�1 s�1).
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section with no clear tendency for mutual compensa-
tion. This means that an analysis of the vorticity trans-
ports presents a clearer view of the acceleration/
deceleration processes than that of the momentum flux
convergences.

4. Experiments with physics

To simulate the development of an ensemble of
clouds using the model with full physics, which includes
microphysics, radiation, and turbulence, two experi-

FIG. 10. Zonally averaged dominant source (sink) terms for (top) *, (middle) �*, and (bottom) �* in (8), (9), and (10) obtained from
EXP2S. These are accumulated effects from t � 0 to t � 26 min. The solid and dashed lines represent positive and negative values,
respectively. The contours are �2, �4, �12, �20, . . . (10�4 m3 kg�1 s�1).
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ments are performed; EXP3 with no shear and EXP3S
with shear. The model is applied to a 512 km � 512 km
horizontal domain with a 2-km horizontal grid size. In
the vertical, the model has 34 levels based on the
stretched vertical grid with a top at 18 km. The vertical
grid size ranges from about 100 m near the surface to
about 1000 m near the model top. The upper and lower
boundaries are rigid and the lateral boundaries are cy-
clic. The Coriolis parameter at 15°N is used. The model
also includes a Newtonian-type cooling above the 10-
km height to maintain realistic climatology of the
stratosphere and a Rayleigh-type friction in the top five
layers to absorb upward-propagating gravity waves.

An idealized ocean surface condition is used, in
which the surface temperature is prescribed as 299.8 K.
The cosine of the solar zenith angle is fixed to 0.5,
representing a typical daytime condition in the Tropics.
The initial thermodynamic state and zonal wind fields
are selected idealizing the Global Atmospheric Re-
search Program (GARP) Atlantic Tropical Experiment
(GATE) phase III conditions. Figure 13 shows the ini-
tial profiles of moist static energy and zonal wind. The
y component of wind is initially set to zero. To maintain
the mean wind shear, the area mean of horizontal wind

is fixed to its initial value throughout the simulation
periods of EXP3 and EXP3S. Thus, (18) and (19) are
not used. Clouds are initiated by small random poten-
tial temperature perturbations introduced into the low-
est model layer over the 15-min period after the first 5
min of the integration. Large-scale forcing representing
the climatological background is imposed on the model
through prescribed cooling and moistening rates (Fig. 14).
The integration period is 48 h and the time step is 10 s.

Development of the cloud ensemble during the pe-
riod can be seen in Fig. 15 (EXP3) and Fig. 16 (EXP3S).
Theses figures show the distribution of the cloud-top
temperature in the x–y domain with a 16-h interval. The
cloud top is defined as the layer where the path of
liquid water and ice [i.e., �(qc � qi)� dz] first exceeds
0.1 kg m�2 when integrated downward from the model
top, where qc is the mixing ratio of cloud liquid water
and qi is that of ice. In these figures, cirrus anvils asso-
ciated with cumulonimbi appear white and there are no
clouds in black areas. For both experiments, clouds de-
velop nearly everywhere in the early stage of the simu-
lation because the integration starts from a horizontally
uniform and conditionally unstable condition. As time
progresses, clouds develop differently in EXP3 and

FIG. 11. Zonally averaged (a) vertical and (b) zonal velocities and (c) vertical eddy momentum flux on the z–t
cross section at the center of the y domain obtained from EXP2S. The solid and dashed lines represent positive and
negative values, respectively. The contour intervals are (a), (b) 0.4 m s�1 and (c) 0.4 m2 s�2.
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EXP3S. With shear (EXP3S), several organized sys-
tems develop (Fig. 16), which consist of narrow convec-
tive bands aligned mostly parallel to the shear vector.
Behind the bands, there are broad areas of midlevel
stratiform clouds. Without shear (EXP3), on the con-
trary, no mesoscale bandlike cloud organizations de-
velop (Fig. 15).

The domain- and time-averaged profiles of the ver-
tical flux convergence of zonal momentum and the
fluxes of vorticity components due to cumulus convec-
tion obtained from EXP3S are shown in Fig. 17. Here,
the time average is taken over the 2-day simulation
period. Figure 17a shows a layer of the westerly mo-
mentum flux convergence above the level of the

FIG. 12. The zonally and time-averaged (a) vertical and (b) meridional fluxes of zonal momentum, (c) vertical and (d) meridional flux
convergences of zonal momentum, (e) vertical flux of the y component of vorticity, and (f) meridional flux of the z component of
vorticity due to cumulus convection obtained from EXP2S. The time average is taken over the first 26 min. Solid and dashed lines
represent positive and negative values, respectively. The contour intervals are (a), (b) 0.1 kg m�1 s�2 and (c)–(f) 0.2 m s�1 h�1.
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midtropospheric easterly jet core shown in Fig. 13b, and
a layer of easterly momentum flux convergence below
the jet core. Although our experiment is highly ideal-
ized, especially because the mean zonal wind and large-
scale forcing are fixed in time to represent only the
mean GATE phase III condition, the result is consis-
tent with those by Sui and Yanai (1986) and Mapes and
Wu (2001).

Finally, we present the result from EXP3S in view of
the deceleration (acceleration) effect of the vorticity
transport on the domain-averaged zonal wind. Averag-
ing (28) and using the cyclic condition in y, we obtain

�
�

�0�z
��0u�w�� � �w�	� � ��
�, �29�

where, unlike in (28), the overbar and prime indicate
the horizontal average over the entire model domain
and the deviation, respectively. When the y component
of vorticity is transported upward (downward), there is
a deceleration (acceleration) tendency of westerly
wind. On the other hand, when the z component of
vorticity is transported leftward (rightward) as seen
from above, there is an acceleration (deceleration) ten-
dency of the westerly wind. Figure 17b shows that the
latter effect is negligible in this case. Then, as expected
from (29), the vertical momentum flux convergence
and the vertical vorticity transport are approximately
equal. It should be remembered, however, that this
does not hold for more local convection as we pointed
out earlier, for which the effects of horizontal trans-
ports must be considered as in (28).

5. Summary and conclusions

This paper describes a newly developed three-
dimensional anelastic model based on the vorticity

equation, which has a completely different logical struc-
ture for dynamics from the models based on the mo-
mentum equation. In this model, the prognostic vari-
ables of the model are the horizontal components of
vorticity, potential temperature and mixing ratios of
various phases of water at all heights, and the vertical
component of vorticity and the horizontally uniform
part of horizontal velocity at a selected height. With the
use of an expression for the nondivergence of the vor-
ticity vector, the vertical component of vorticity at the
other heights is diagnostically determined. The nonuni-
form part of horizontal velocity at the selected height is
obtained by solving the two-dimensional Poisson-type
equations for streamfunction and velocity potential.
The horizontal velocity at the other heights is then up-
dated from the predicted vorticity fields and the veloc-

FIG. 14. Vertical profiles of the prescribed large-scale advective
cooling and moistening rates used in EXP3 and EXP3S. Here, the
moistening rate is multiplied by L /cp, where L is the latent heat of
condensation.

FIG. 13. Initial profiles of (a) moist static energy (h*; saturation moist static energy) divided by cp and (b) zonal
wind used in EXP3 and EXP3S, where cp is the specific heat of dry air.
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ity obtained at the selected height. For the vertical ve-
locity, a three-dimensional elliptic equation is solved
with prescribed vertical boundary conditions. This pro-
cedure replaces solving the elliptic equation for the per-
turbation pressure in the standard anelastic system
based on the momentum equation. For advection of
vorticity and scalar variables, the model uses a partially
third-order scheme. When time is continuous, this
scheme is quadratically bounded.

As an application of the model, interactions between
convection and its environment with vertical shear are
studied without and with model physics through the
viewpoint of vorticity dynamics, the deceleration/
acceleration process of basic flow in particular. In the

warm bubble experiments, it is shown that the buoyant
thermal under the basic shear flow induces local wind
deceleration through the twisting effects on the vortic-
ity components. This local wind deceleration is associ-
ated with the generation of a couplet of the vertical
component of vorticity in the horizontal plane. The
budget analysis of vorticity also shows that three-
dimensional advection is as important as the twisting
effects in the distribution of the vorticity couplet.

The model is then tested with simulations of en-
semble clouds using the full physics in a large domain
for environments with no shear (EXP3) and with shear
(EXP3S). The simulation with sheared environment
shows the development of mesoscale bandlike organi-

FIG. 16. Same as in Fig. 15, but obtained from EXP3S.

FIG. 15. Time evolution of cloud-top temperature in the x–y domain obtained from EXP3.
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zation of clouds. Although our simulation is highly ide-
alized, especially because the mean zonal wind and
large-scale forcing are fixed in time to represent only
the mean GATE phase III condition, an analysis of the
components responsible for the time change of the do-
main-averaged zonal momentum shows that the results
are consistent with the earlier studies. Comparisons of
(28) with (29) and Fig. 12 with Fig. 17 suggest that the
cumulus friction problem should be treated as a purely
three-dimensional problem when we are concerned
with the effect of relatively local features associated
with cumulus activity. In this case, looking at the prob-
lem from the point of view of vorticity transports gives
a clearer picture than that of the momentum flux con-
vergence. On the other hand, when the cumulus activity
is spread over a large domain and when we are only
concerned with the area average over a large domain,
the two ways of viewing the problem do not make an
essential difference. These results confirm that param-
eterization of the cumulus friction problem for large-
scale models is a resolution-dependent problem.

For future development of the current model, we are
planning to introduce bottom topography, possibly with
the change of the vertical grid from the Lorenz grid to
the Charney–Phillips grid [for comparison of these
grids, see, e.g., Arakawa and Konor (1996)]. We are
also planning to develop a version of the model in
which the computational constraint by the elliptic equa-
tion due to the use of the anelastic approximation is
relaxed to avoid global calculations. Another modifica-

tion we are planning is to generalize the system of the
anelastic equations while maintaining the structure of
the model based on the three-dimensional vorticity
equation. In its original form, the anelastic approxima-
tion requires that the reference state be either isen-
tropic or near isentropic (Ogura and Phillips 1962;
Lipps and Hemler 1982). Durran (1989) and Bannon
(1996) presented revised anelastic systems that are not
subject to such constraints while conserving energy.
Currently we are developing a model that unifies the
standard quasistatic model for large scales, which par-
tially includes compressibility, and a generalization of
the pseudoincompressible approximation proposed by
Durran (1989) for small scales.
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FIG. 17. Domain- and time-averaged profiles of (a) the vertical flux convergence of zonal momentum
and (b) the fluxes of vorticity components due to cumulus convection obtained from EXP3S. The time
average is taken over the 2-day simulation period.
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