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ABSTRACT

This paper documents the development and testing of a new type of atmospheric dynamical core. The model
solves the vorticity and divergence equations in place of the momentum equation. The model is discretized in
the horizontal using a geodesic grid that is nearly uniform over the entire globe. The geodesic grid is formed
by recursively bisecting the triangular faces of a regular icosahedron and projecting those new vertices onto the
surface of the sphere. All of the analytic horizontal operators are reduced to line integrals, which are numerically
evaluated with second-order accuracy. In the vertical direction the model can use a variety of coordinate systems,
including a generalized sigma coordinate that is attached to the top of the boundary layer. Terms related to
gravity wave propagation are isolated and an efficient semi-implicit time-stepping scheme is implemented. Since
this model combines many of the positive attributes of both spectral models and conventional finite-difference
models into a single dynamical core, it represents a distinctively new approach to modeling the atmosphere’s
general circulation.

The model is tested using the idealized forcing proposed by Held and Suarez. Results are presented for
simulations using 2562 polygons (approximately 4.58 3 4.58) and using 10 242 polygons (approximately 2.258
3 2.258). The results are compared to those obtained with spectral model simulations truncated at T30 and T63.
In terms of first and second moments of state variables such as the zonal wind, meridional wind, and temperature,
the geodesic grid model results using 2562 polygons are comparable to those of a spectral model truncated at
slightly less than T30, while a simulation with 10 242 polygons is comparable to a spectral model simulation
truncated at slightly less than T63.

In order to further demonstrate the viability of this modeling approach, preliminary results obtained from a
full-physics general circulation model that uses this dynamical core are presented. The dominant features of the
DJF climate are captured in the full-physics simulation.

In terms of computational efficiency, the geodesic grid model is somewhat slower than the spectral model
used for comparison. Model timings completed on an SGI Origin 2000 indicate that the geodesic grid model
with 10 242 polygons is 20% slower than the spectral model truncated at T63. The geodesic grid model is more
competitive at higher resolution than at lower resolution, so further optimization and future trends toward higher
resolution should benefit the geodesic grid model.

1. Introduction

All atmospheric general circulation models (AGCMs)
numerically solve a set of equations that describe the
evolution of the general circulation and thermal state.
The component of an AGCM that describes the general
circulation is now commonly called the dynamical core.
In the context of climate modeling, the atmospheric dy-
namical core has a strong influence on physical pro-
cesses within the atmosphere, such as cloud processes
and radiation. In addition, the dynamical core strongly
influences other climate subsystems, such as ocean, sea
ice, and land surface. This emphasizes the importance
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of developing a dynamical core that can accurately rep-
resent the dynamical processes of the general circula-
tion.

Several families of dynamical cores have been de-
veloped. Since virtually all dynamical cores use a sim-
ilar set of governing equations, they are generally dis-
tinguished by the numerical methods used to solve the
equations. The two largest families of dynamical cores
are finite-difference methods and spectral methods. The
birth of finite-difference models of the atmosphere’s cir-
culation came with Richardson’s (1922) pioneering at-
tempt to predict the weather. In the following decades,
numerical methods were developed and simple numer-
ical models of the atmosphere were successful in cap-
turing some gross features of the general circulation
(e.g., Charney et al. 1950). A paradigm shift in the
modeling of the atmospheric circulation came with the
discovery of the fast Fourier transform (FFT) by Cooley
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and Tukey (1965) and the transform technique to eval-
uate vector-coupled sums (Orszag 1970; Eliasen et al.
1970). The efficiency of the FFT made spectral methods
an attractive alternative to finite-difference methods.
These two approaches to discretization, finite-difference
methods and spectral methods, have been competing
ever since, with each method having enough positive
attributes to maintain its own viability.

Spectral models often solve the vorticity–divergence
form of the primitive equations, as opposed to solving
for the vector components of the momentum equation
(e.g., Bourke 1974). Unlike components of the mo-
mentum vector, vorticity and divergence are true scalars
whose values are invariant with respect to the choice of
coordinate system. Furthermore, conservation principles
for potential vorticity and potential enstrophy are easily
formulated within the context of the vorticity and di-
vergence equations. Solving the vorticity and diver-
gence equations involves extra computational effort
since at each time step elliptic equations must be in-
verted to determine the vector velocity. This overhead
has generally inhibited finite-difference modelers from
using the vorticity and divergence equations. In contrast
to finite-difference methods, spectral decomposition re-
duces the elliptic operators to separable algebraic equa-
tions that are trivial to solve. By solving for vorticity
and divergence, spectral methods isolate the terms re-
lated to gravity wave propagation and allow efficient
semi-implicit schemes to be implemented. Furthermore,
spectral methods do an exceptional job of modeling lin-
ear dynamics. For example, spectral methods give the
exact phase speeds for the individual spherical harmonic
components of linearly propagating waves. Also, the
linear growth rates of instabilities, such as baroclinic
instability, are very accurately simulated by spectral
models.

When the state variables and boundary conditions that
are expanded in the appropriate spectral space are
smooth (i.e., infinitely differentiable), spectral methods
converge extremely rapidly as the number of retained
modes increases. In fact, for such a case spectral meth-
ods converge exponentially fast, which is faster than
finite-difference methods of any accuracy (Jarrud and
Simmons 1983). On the other hand, if state variables or
boundary conditions are not infinitely differentiable and
are ‘‘lumpy,’’ as is the case with cloud liquid water and
surface topography, the rate of convergence is dramat-
ically reduced (from exponential to algebraic) and spec-
tral ringing develops in regions of rapid change. One
effect of spectral ringing is to generate negative values
of fields that should be positive definite. Generally, an
ad hoc method is required to overcome these deficien-
cies (Royer 1986). When the variable itself is discon-
tinuous or nearly so (e.g., cloud liquid water), the spec-
tral expansion is only first-order accurate (Tennekes and
Lumley 1972), which would be the same accuracy as
finite-difference methods in this case. Furthermore, in
this instance the spectral expansion converges only in

the L2 sense, not in the L` sense. Therefore large local
errors remain, regardless of the number of spectral
modes retained (Greenberg 1978). Increasing computer
power translates into retaining more wavenumbers, but
may not translate into increased fidelity of simulations
based on spectral methods when key variables are nearly
discontinuous in space.

As the vertical coordinate systems of dynamical cores
move away from the conventional s coordinate to a
more physical coordinate, finite-difference methods may
be the only viable approach. An example would be the
use of potential temperature as the vertical coordinate,
in which case coordinate surfaces intersect the surface
boundary and layers become ‘‘massless’’ (e.g., Hsu and
Arakawa 1990). Such a mass distribution can be handled
in a straightforward manner by finite-difference meth-
ods based on flux-corrected transport algorithms (Za-
lesak 1979). As stated above, a spectral expansion will
converge very slowly with large local errors regardless
of the spectral resolution.

Finite-difference methods do, of course, have dis-
advantages. In those instances where the dependent var-
iables are smoothly varying in space, finite-difference
methods will generally be less accurate than spectral
methods. Also, finite-difference methods usually intro-
duce anomalous dispersion in the simulation of advec-
tion and wave propagation (Haltiner and William 1980)
and anomalous diffusion in the solution of the Poisson
equation (Jaluria and Torrance 1986). Conventional fi-
nite-difference models integrate the components of the
momentum equation, as opposed to the vorticity and
divergence equations. Gravity wave propagation, which
is associated with the divergent portion of the vector
wind field, is contained in both components of the mo-
mentum equation. As a result, the implementation of
semi-implicit schemes within finite-difference models is
in general slightly more complicated than in spectral
models.

Some of the commonly cited disadvantages of finite-
difference models are not inherent in the finite-differ-
ence methods, but rather in the manner in which the
methods have been implemented. For instance, the grids
used to discretize the surface of the globe have generally
been regular latitude–longitude grids, which have strong
singularities at the North and South Poles. Spectral
methods do not suffer from this problem. Using lati-
tude–longitude grids results in extremely small grid cells
areas near the poles relative to grid cell areas near the
equator. Substantial computational effort and ad hoc
methods are needed to suppress the numerical problems
arising from having singularities at the grid poles (Wil-
liamson 1976). Given the relative smallness of grid cells
in the polar regions, a disproportionately large amount
of computational work is used to simulate that region.
Furthermore, for those finite-difference models that re-
quired the inversion of elliptic operators, the disparate
spatial scales of regular latitude–longitude grids reduces
the efficiency of iterative elliptic solvers.
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The purpose of this work is to develop a new three-
dimensional dynamical core that combines many of the
advantages of both finite-difference methods and spec-
tral methods, while eliminating key deficiencies of each.
This new dynamical core is radically different from con-
ventional finite-difference models in that it uses a geo-
desic grid. The surface of the globe is discretized using
an assembly of hexagons and 12 pentagons, as opposed
to the quasi-rectangular grid cells of latitude–longitude
grids. The geodesic grid gives nearly uniform grid cell
areas across the entire globe, and does not suffer from
the strong polar singularities present in regular latitude–
longitude grids. Multigrid methods make it practical to
solve the vorticity and divergence equations. Further-
more, this model uses a single unstaggered grid, the Z
grid (Randall 1994), on which all of the prognostic var-
iables are defined. While the geodesic grid allows a more
elegant discretization of the primitive equations, it does
lose some of the simplicity in its numerical implemen-
tation. The development of this geodesic dynamical core
(GDC) grew naturally out of the work by Heikes and
Randall (1995a,b), who solved the shallow water equa-
tions on a geodesic grid.

Section 2 describes the governing equations. Section
3 provides an introduction to geodesic grids and describes
the numerical methods used to discretize the continuous
equations. Results obtained using the idealized forcing
proposed by Held and Suarez (1994) are shown in section
4. In addition, section 4 contains preliminary results from
a full-physics AGCM. Section 4 also includes a com-
parison of computational efficiency between the geodesic
grid model and a spectral model. A discussion with some
conclusions is given in section 5.

2. Governing equations

The continuous governing equations used here are
similar to those used in most present-day AGCMs. A
set of nonlinear partial differential equations is used to
describe the temporal and spatial evolution of mass,
momentum, potential temperature, and an arbitrary
number of passive tracers. While the final form of the
governing equations used in this work does not make
reference to any global horizontal coordinate system,
an explicit vertical coordinate is used. The model has
been tested with a variety of vertical coordinate systems,
including those described by Phillips (1957), Suarez et
al. (1983), and Hsu and Arakawa (1990). In this work
we focus mainly on results obtained using the Phillips
(1957) sigma coordinate. The coordinate is defined by

p 2 pTs 5 , (1)
pS

where p is the pressure, pS is the surface pressure, and
pT is a constant defining the pressure at the top of the
model. Phillips (1957) used pT 5 0.

In the equations written below, we define =p to op-
erate along surfaces of constant pressure, = to operate

along surfaces of constant s, and p [ pS 2 pT. The
prognostic equations describe the evolution of velocity,
mass-weighted potential temperature, mass-weighted
passive tracers, and surface pressure, respectively:

] § 1 f ]
V 1 k 3 pV 1 =K 1 ṡ V 5 2= F 1 G,p1 2]t p ]s

(2)

] ] puQ
(pu) 1 = · (puV) 1 (ṡpu) 5 , (3)

]t ]s c Tp

] ]
(pq) 1 = · (pqV) 1 (ṡpq) 5 S, (4)

]t ]s
s51]pS 5 2= · (pV) ds. (5)E]t

s50

Nonconservative sources on the right-hand sides of (2),
(3), and (4) are denoted by G, Q, and S, respectively.
The symbols § and f denote the relative and planetary
vorticities, while K and F represent the kinetic energy
and geopotential height, respectively. Using the relation
=p 5 = 1 (=ps)(]/]s), the pressure gradient term of
(2) can be rewritten as =pF 5 =F 1 sa=p, where a
is the specific volume.

As is well known, any vector field can be separated
into purely rotational and divergent vector fields by us-
ing Helmhotz’s decomposition (e.g., Panton 1984). The
rotational and divergent components of the velocity
fields can be expressed in terms of scalar potential fields.
This relationship is expressed as

V 5 k 3 =c 1 =x, (6)

where k is the unit vector normal to the coordinate
surface, c is the streamfunction describing the rotational
part of the vector field, and x is the velocity potential
describing the divergent part of the vector field. If we
substitute (6) into (2), and take the curl and divergence
of the result, we obtain the vorticity and divergence
equations, respectively. These equations have the forms

]h ]c ]x
2 J(h, c) 1 F(h, x) 1 F ṡ, 1 J ṡ,1 2 1 2]t ]s ]s

1 J(sa, p) 5 k · = 3 G and (7)

]d ]x ]c
2 J(h, x) 2 F(h, c) 1 F ṡ, 2 J ṡ,1 2 1 2]t ]s ]s

1 L(K 1 F) 1 F(sa, p) 5 = · G, (8)

where J(A, B) 5 k · (=A 3 =B), F(A, B) 5 = · (A=B),
L(A) 5 ¹2A, h is the absolute vorticity, and d is the
divergence. Vorticity and divergence are related to the
streamfunction and velocity potential through the di-
agnostic relations

2h 2 f 5 ¹ c and (9)
2d 5 ¹ x. (10)
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Note that (9) and (10) are used to determine c and x,
respectively. This involves inverting the elliptic operator
¹2.

In order to close the system, we need equations for
the geopotential height, F, and the vertical velocity,

The geopotential height is obtained by integratingṡ.
the hydrostatic equation from the model lower boundary
upward. In differential form, the equation for F is writ-
ten as

]F 5 2a]p 5 2ap]s. (11)

The vertical velocity is obtained from mass continuity as
s5s9]p

(pṡ)| 5 2s9 2 = · (pV) ]s, (12)s5s9 E]t
s50

with the boundary conditions 5 0 and 5 0.ṡ| ṡ|s50 s51

We can eliminate the vector velocity in (12) by substi-
tuting (6) and expanding. This manipulation gives the
vertical velocity in terms of the streamfunction and ve-
locity potential:

]p
(pṡ)| 5 2s9s5s9 ]t

s5s9

1 [J(p, c) 2 = · (p=x)] ]s. (13)E
s50

Similar manipulations can be performed on (3), (4), and
(5) to express those equations in terms of streamfunction
and velocity potential. Equations (3)–(5) and (7)–(12)
constitute the ‘‘dynamical core’’ of the general circu-
lation model. Note that no horizontal coordinate system
is explicitly referenced; the equations are written in in-
variant form.

3. Numerical methods

Given the nonlinear nature of the governing equa-
tions, we must use discrete numerics to obtain anything
more than trivial solutions. Since large-scale atmospher-
ic motion is predominantly two-dimensional, we can
think of the atmosphere as being an assembly of ver-
tically stacked layers. The methods to discretize the
three-dimensional fluid are then, to a large extent, sep-
arable into the horizontal discretization of each layer
and the vertical discretization. Since the problem is
somewhat separable, we can draw on previous work
with the shallow water equations to aid in the horizontal
discretization of this three-dimensional fluid.

a. Horizontal discretization on the geodesic grid

The idea of using a geodesic grid to discretize the
spherical globe was put forth by Williamson (1968) and
Sadourny et al. (1968). Both solve for the velocity com-
ponents and height in the nondivergent shallow water
equations. Masuda and Ohnishi (1986) made progress
using geodesic grids by solving the vorticity-divergence

form of the shallow water equations. They show that
their approach conserves mass, energy, and potential
enstrophy. As shown above, when the vorticity-diver-
gence form of the shallow water equations is used, el-
liptic operators relating the vorticity and divergence to
their respective potential fields must be inverted each
time step. While this is trivial to do within spectral
models, it is a major obstacle to overcome when using
finite-difference methods. Heikes (1993) and Heikes and
Randall (1995a,b) further develop the numerical meth-
ods related to geodesic grids by implementing a mul-
tigrid method to efficiently invert the elliptic operators.
Thuburn (1997) used this multigrid method in the de-
velopment of a potential vorticity-based shallow water
model discretized on a spherical geodesic grid. Thuburn
(1997) also developed a semi-implicit time-stepping
scheme to further increase the computational efficiency
of this modeling framework.

A geodesic grid covers the surface of a sphere with
an assembly of polygons. In general, the generation of
geodesic grids involves the repeated use of a set of
simple rules. As shown in Fig. 1 each face of the initial
icosahedron (Fig. 1a) is bisected to form four faces (Fig.
1b). Each vertex of this new grid is then projected to
the surface of the sphere (Fig. 1c). Applying the rules
of bisection and projection to subsequent grids allows
finer meshes to be generated (as in Figs. 1d–f). The
initial icosahedron has 12 vertices and the first subdi-
vision has 42 vertices. Each vertex is associated with a
grid point. The formula relating the number of grid cells,
Nc, to the level of recursion, R, is Nc 5 5 · 22R13 1 2,
where R 5 21 corresponds to the initial icosahedron.
The dynamical core is often integrated with R 5 3 or
R 5 4, which correspond to 2562 and 10 242 grid cells,
respectively. The average distance between grid cell
centers with R 5 3 and R 5 4 is 481.6 and 240.9 km,
respectively.

In the context of the shallow water equations, two
modeling frameworks have evolved from Fig. 1. One
method, which is extended to three-dimensions in this
paper, defines the vertices of the spherical geodesic grid
to be grid points. As shown in Fig. 2 and discussed
below, this results in set of grid cells that are hexagonal
or pentagonal in shape. This is the approach used by
Masuda and Ohnishi (1986), Heikes and Randall
(1995a,b), and Thuburn (1997). Another approach is to
define the vertices as corners of the triangular elements
shown in Fig. 1. This method is followed by Baum-
gardner and Frederickson (1985), Swarztrauber et al.
(1997), and Stuhne and Peltier (1996, 1999).

In Fig. 2, the area associated with grid point P0 is
that area that lies closer to P0 than to any other grid
point. As discussed by Heikes and Randall (1995a), this
grid has many attractive properties. The areas of the
grid cells are nearly uniform across the entire sphere.
This eliminates the common problems encountered near
the grid poles when using conventional latitude–lon-
gitude grids. The recursive nature of the grid lends itself
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FIG. 1. Generating geodesic grids by recursive bisection and projection. (a) Starting with an icosahedron, (b) each face
is bisected to form four new faces, (c) each new vertex is projected onto the unit sphere. (d), (e), and (f ) The results of
continued bisection, projection, and bisection. Adopted from Heikes and Randall (1995a).

FIG. 2. The area associated with each vertex, such as P0, is the set
of all points closer to P0 than any other vertex. Each vertex is referred
to as a grid point. Both a and b are arbitrary scalar fields evaluated
at each grid point; bi is a sequential listing of grid cell corners.

nicely to the use of multigrid methods that allow the
efficient inversion of elliptic operators. Another impor-
tant property of this grid, which will be explained in
more detail immediately below, is that it allows a simple

second-order accurate discretization of the analytic op-
erators J, F, and L.

The J, F, and L operators must be numerically ap-
proximated at a grid point such as P0 (Fig. 2). If we
assume that the grid cell area is sufficiently small, we
can approximate the values of the operators at P0 as the
respective mean values integrated over the cell’s area.
Using the Jacobian operator as an example, this is ex-
pressed mathematically as

1
J(a, b)| ø J(a, b) dA, (14)P EE0 Ac

Ac

where a and b are arbitrary scalar fields and Ac is the
area of the cell. With this approximation, we can use
Green’s theorem to reduce the area integral to a line
integral as

1 1 ]b
J(a, b)| ø J(a, b) dA 5 a ds, (15)P EE R0 A A ]sc c C

Ac

where C is the contour enclosing Ac and ds is an infin-
itesimal segment along C. Referring to Fig. 2, the con-
tour integration is carried out by summing over the cell
walls associated with P0 as

N1 a 1 a b 2 b0 i i i11J(a, b)| ø l , (16)OP i0 1 21 2A 2 li51c i

where li is the length of the arc of the cell wall and



2476 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

b 1 b 1 b0 i i21b 5 . (17)i 3

So a is approximated at the cell wall as the average of
the two nearest gridpoint values, and b is approximated
at the cell corners as the average of the three closest
gridpoint values. Interpolation to the cell-wall center can
be interpreted as fitting a line through the closest two
grid points, while interpolation to the grid cell corners
can be interpreted as fitting a plane through the closest
three grid points. Formally, both of these approxima-
tions lead to a finite-difference stencil that is second-
order accurate (Heikes and Randall 1995b). Equation
(16) can be simplified to yield

N1
J(a, b)| ø (a 1 a )(b 2 b ). (18)OP 0 i i21 i110 6A i51c

Operators F and L can be reduced to line integrals and
discretized in a similar fashion (see Heikes and Randall
1995a). The analytic operators satisfy

J(a, b) dA 5 0, F(a, b) dA 5 0, andEE EE
A A

L(a) dA 5 0,EE
A

(19)

where the integrations are carried out over the entire
sphere. Using the fact that the discrete versions of these
operators are evaluated by integrating along cell walls
and each cell wall is shared by two grid cells, we can
show that the numerical operators satisfy
N Nc c

A · J(a, b)| 5 0, A · F(a, b)| 5 0, andO Oc c c c
c51 c51

Nc

A · L(a)| 5 0,O c c
c51

(20)

where the summations are over the total number of grid
points, Nc. Furthermore, it can be shown that this dis-
cretization conserves kinetic energy and enstrophy un-
der advection in purely rotational flows.

Along with vorticity and divergence, mass is defined
at the grid cell center P0. This unstaggered grid system
in which vorticity, divergence, and mass are all defined
at the same location is referred to as the Z grid (Randall
1994). Within the context of the shallow water equa-
tions, Randall (1994) showed that the Z grid does a
satisfactory job in simulating geostrophic adjustment
and performs better than the more conventional B and
C grids. Furthermore, the Z grid is the natural choice
for the numerical integration of the vorticity-divergence
equations.

b. Vertical discretization

Within the context of the Phillips sigma coordinate,
most of the numerical issues relating to vertical discret-

ization were worked out by Arakawa and Lamb (1977).
They formulated the numerics of the discrete primitive
equations so as to conserve a host of quantities, including
mass, entropy, and total energy. While the conservation
relations were originally formulated with the momentum
form of the primitive equations, each of these relations
has been implemented in the vorticity-divergence form
of the primitive equations used in this model [see Ringler
et al. (1998) for more details]. A goal that Arakawa and
Lamb (1977) discuss is to conserve kinetic energy under
vertical advection. By beginning with the discrete form
of the vertical advection of momentum that conserves
kinetic energy, the terms in (7) and (8) that are related
to vertical advection can be formulated such that the
discrete form of the vorticity-divergence equations also
possess this conservation property. This derivation is
shown in appendix A.

As in Arakawa and Lamb (1977), the vertical stag-
gering of variables uses the Lorenz vertical grid, which
places u at the layer centers. This is in contrast to the
Charney–Phillips vertical grid on which u is placed at
the layer edges. A disadvantage of the Lorenz grid is
that there is an extra degree of freedom for u in the
vertical direction. This unconstrained degree of freedom
often manifests itself as vertical grid-scale noise in u
and related fields, such as geopotential. Our experience
has been that such vertical grid-scale noise is not strong-
ly excited within our model.

c. Temporal discretization

Truncation errors due to horizontal discretization are
generally much larger than those due to temporal dis-
cretization (Haltiner and Williams 1980). As a result,
increasing the length of the time step generally does not
degrade the simulation, as long as the numerical scheme
is stable. In general, the stability criterion limiting the
maximum allowable time step with an explicit scheme
is the phase speed of the gravity waves. The idea leading
to semi-implicit schemes is to integrate all terms related
to gravity wave propagation in an implicit, or uncon-
ditionally stable, manner, while integrating all other
terms explicitly (Hoskins and Simmons 1975). Since
linear gravity waves are irrotational, no terms in the
vorticity equation are essential for gravity wave prop-
agation and so the vorticity equation can be integrated
explicitly. All terms that are integrated explicitly use
the third-order Adams–Bashforth method (Durran
1991). The details of the semi-implicit scheme are given
in appendix B.

The semi-implicit scheme involves first evaluating all
terms that are integrated explicitly, then making a first
guess at the values of the prognostic variables that in-
clude terms that are integrated implicitly. One iteration
through the semi-implicit scheme involves evaluating
the implicit terms on the right-hand side of the prog-
nostic equations, updating the prognostic variables, and
then updating the diagnostic equations. Following an
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iteration cycle, convergence is assessed by differencing
the values of the prognostic variables at the current it-
eration and their values at the previous iteration. If this
difference is smaller (in an absolute value) than a spec-
ified value for each prognostic variable at every grid
point, then the solution is deemed to have converged
and the integration continues to the next time level. This
approach allows time steps of 30 and 20 min with hor-
izontal resolutions of 2562 and 10 242, respectively.
The lengths of these time steps are similar to those we
have been able to use in a spectral model with com-
parable resolutions.

4. Results

Until recently, the evaluation and intercomparison of
dynamical cores have received little attention. Even
though a wide variety of numerical techniques, such as
semi-Lagrangian methods, spectral methods, finite-el-
ement methods, and finite-difference methods, are being
used in dynamical cores, no systematic intercomparison
has been completed. One reason for this lack of inter-
comparison is related to the lack of exact solutions to
the primitive equations with realistic forcing. Without
the aid of analytic solutions, identifying and quantifying
errors in the numerical models is difficult.

Several benchmark calculations have been proposed
as a means of evaluating primitive equation dynamical
cores. One such benchmark that has met with consid-
erable acceptance is the calculation proposed by Held
and Suarez (1994). In the Held–Suarez Test Case
(HSTC), the thermal structure of the model atmosphere
is relaxed to a prescribed ‘‘radiative–convective equi-
librium’’ on a timescale of approximately 40 days. The
HSTC emphasizes simplicity by specifying the forcing
and boundary conditions to be zonally symmetric and
keeping parameterizations to an absolute minimum. The
simplicity of the formulation makes it readily ‘‘porta-
ble’’ to a wide variety of models and, thereby, facilitates
intercomparisons. A weakness of the HSTC is that the
real climate is composed of much more than the zonally
symmetric statistics. Regardless, the HSTC has proven
to be useful as a first step in evaluating dynamical cores,
and we will use it here.

Several important points should be considered when
analyzing the HSTC simulations. First, since analytical
solutions are not known, separating right from wrong
can be difficult or impossible. Enough simulations have
been completed using the HSTC forcing that a consen-
sus could be formed, but consensus is a poor substitute
for truth. As with almost all numerical modeling, there
is an underlying belief that as the resolution is increased,
the model simulation will converge to the (statistically)
correct solution. Held and Suarez (1994) point out that
even at a spectral truncation of T63 the simulations have
still not converged. As the model resolution increases,
the variance of basic model statistics such as u9u9 , y9y9 ,
and u9y9 increases. As a result, the fidelity of model

simulations is often judged based on the amount of var-
iance produced at a given resolution.

a. Experimental design of the Held–Suarez test case

The initial condition for all the experiments is an
isothermal atmosphere at rest. Random noise is added
to the surface pressure field (60.5 Pa) and to the po-
tential temperature field (60.5 K) in order to break the
symmetry of the initial conditions. The lower-resolution
(2562 and T30) integrations are carried out for 1200
days with averages and statistics computed from the last
1000 days. The higher-resolution integrations (10 242
and T63) are carried out for 600 days with averages and
statistics computed from the last 450 days. Since the
HSTC forcing is zonally symmetric, additional statis-
tical significance can be obtained by analyzing zonal-
mean statistics instead of sections at a given longitude.
If we assume that each hemisphere is a nearly inde-
pendent realization, then the statistical significance of
the results can be evaluated by comparing the results
between hemispheres.

In order to compare the geodesic grid model to an
‘‘independent’’ model, we also present results from a
spectral model that is identical to that used by Held and
Suarez (1994). Simulations from the GDC at resolutions
of 2562 and 10 242 are compared to spectral model
simulations completed at T30 and T63, respectively. All
results shown use the Phillips sigma coordinate (Phillips
1957) with 17 levels spaced evenly in pressure. The
time-stepping scheme is semi-implicit in all cases. In
addition, both models incorporate a ¹4 diffusion on rel-
ative vorticity, divergence, and potential temperature.
While both models have biharmonic diffusion, the dif-
fusion is implemented differently in each model. In the
GDC the coefficient for the biharmonic diffusion is uni-
formly set to 4.0 3 1016 and 7.5 3 1015 m4 s21 at res-
olutions of 2562 and 10 242, respectively. In the spectral
model, the coefficient is a function of wavenumber with
the smallest resolved scale dissipated with an e-folding
period of 0.1 days. At the smallest resolved scales the
GDC diffusion coefficients are approximately equiva-
lent to e-folding periods of 0.15 days and 0.06 days at
resolutions of 2562 and 10 242, respectively.

b. Instantaneous fields in a 10 242 simulation

A qualitative means of evaluating the quality of the
simulation is to look at instantaneous ‘‘snapshots’’ of
the model state. In particular, it is useful to analyze the
structure of mature extratropical baroclinic eddies. Fig-
ure 3a shows the lowest-layer potential temperature and
the surface pressure on day 225 in a simulation using
10 242 grid cells. The figure shows only a part of the
global domain in order to isolate two mature baroclinic
eddies, which appear as two nearly occluded low pres-
sure systems with surface pressure minima of 965 and
960 hPa. Regions of warm advection to the east of the
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FIG. 3. Snapshot of model state at day 225 in a simulation using the geodesic grid model with
10 242 cells. (a) Lowest-layer potential temperature (K) and surface pressure contours with the 980-
hPa contour (dashed) and a contour interval of 5 hPa. (b) Lowest-layer relative vorticity (1 3 105

s21) with lowest-layer surface winds. (c) Lowest-layer divergence (1 3 105 s21) with potential tem-
perature contours.

low pressure centers and cold advection to the west are
evident. The eastern low pressure system has wrapped
warm air almost completely around the low pressure
center. Figure 3b shows the lowest-layer relative vor-

ticity along with the near-surface winds. (Note that the
model does not prognostically solve for the wind vector
field. Wind vectors are computed using bilinear inter-
polation to map the streamfunction and velocity poten-
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FIG. 4. Zonal-mean zonal wind (m s21) for four simulations. (a) The geodesic grid model with 10 242 cells, (b) the spectral
model truncated at T63, (c) the geodesic grid model with 2562 cells, and (d) the spectral model truncated at T30.

tial from the geodesic grid to a regular latitude–longi-
tude grid and then constructing the velocity field on that
grid.) The low pressure centers are correlated with re-
gions of strong cyclonic rotation. The relative vorticity
extends away from the low pressure centers along the
temperature front. Small regions of anticyclonic vortic-
ity are developing immediately east of the low pressure
centers due to low-level cold air advection. These re-
gions are being wrapped in a spiral around the center
of the cyclonic circulation. Figure 3c shows the lowest-
layer surface divergence along with contours of near-
surface potential temperature. The regions of conver-
gence are correlated to regions of large temperature gra-
dient (i.e., temperature fronts). Figures 3b and 3c clearly
show that the system is attempting to further strengthen
the front. This is consistent with analytical theories of
frontogenis (Orlanski 1985).

c. Comparison of geodesic grid model simulations to
spectral model simulations

In this section we compare simulations completed
with 2562 grid cells to simulations completed with
10 242 grid cells. In addition, we compare the GDC
results to results obtained with a spectral model trun-
cated at T30 and T63. Statistics were computed on 39
evenly spaced pressure levels. Pressure surfaces that
exist less than 20% of the time are masked out. Unless
otherwise stated, each figure shown in this section has
four panels where (a), (b), (c), and (d) show results from
the 10 242, T63, 2562, and T30 simulations, respec-
tively.

Figure 4 shows the zonal-mean zonal wind for the
four experiments. The simulations show many common
features. The midlatitude jet is located at approximately
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FIG. 5. Difference in zonal-mean zonal wind: (a) GDC/10 242–spectral/T63 and (b) GDC/2562–spectral/T30. Contour interval is
2 m s21 with the zero contour omitted.

458 latitude and has a strength of about 30 m s21 in all
simulations. In addition, the surface easterlies are sim-
ilar with maximum zonal winds of approximately 8 m
s21, and all the simulations produce tropical strato-
spheric easterlies. Tropical easterlies extend through the
entire depth of the atmosphere in all cases except the
2562 simulation where weak westerlies (less than 1 m
s21) exist in the midtroposphere. The differences in the
zonal-mean winds (10 242–T63 and 2562–T30) are
shown in Fig. 5. At the higher resolution the differences
in the zonal-mean zonal wind are small and are confined
primarily above 200 hPa. At the lower resolution the
difference is mainly in the barotropic component of the
wind, with the 2562 simulation producing a jet that is
equatorward of that obtained in the T30 simulation.

Overall measures of the baroclinic wave activity can
be obtained by computing variances and covariances of
fields such as zonal wind, meridional wind, and tem-
perature. The zonal-mean temperature variance shown
in Fig. 6 indicates that both models at both resolutions
contain, to greater and lesser extents, baroclinic wave
activity. As expected, the maximum in temperature var-
iance occurs in the lower troposphere where the eddies
are transporting heat poleward. Increasing the resolution
from 2562 to 10 242 and from T30 to T63 results in
approximately a 50% increase in variance. The higher-
resolution integrations show a well-defined maximum
at 800 hPa.

While the zonal-mean statistics, such as temperature
variance, provide good measures of the overall ampli-
tude of the variance and the vertical distribution of var-
iance, they do not provide any information on the spatial
scales in which this variance resides. One way of de-
termining the scales that are producing the variance is
to compute the vertically averaged zonal spectra of qua-

dratic quantities such as u9u9 , y9y9 , u9y9 , and y9T9 .
Figure 7 shows the zonal spectrum of the vertically
averaged zonal wind variance plotted against latitude.
The simulations tend to produce three maxima in each
hemisphere with one maximum at low wavenumber near
458 latitude and two maxima near wavenumber 5 strad-
dling 458 latitude. The two maxima straddling 458 lat-
itude are separated by approximately one baroclinic
eddy length scale. Surface low pressure systems that
move along the storm track, which in this case is located
at approximately 458 latitude, will show maxima in zon-
al wind variance along the flanks of the storm track due
to geostrophic balance. Increasing the resolution of the
geodesic grid model results in an overall increase in
variance of more than a factor of 2. Within both models
the most pronounced increase in variance occurs at low
wavenumber near 458 latitude and near the poles.

The vertically averaged divergence variance is plotted
in Fig. 8 and shows a dramatic increase in variance with
increasing resolution. In the lower-resolution simula-
tions, maxima in the divergence variance related to bar-
oclinic eddies are found in each hemisphere near zonal
wavenumber 7, but relatively little variance occurs
along the equator. The higher-resolution simulations
show a marked increase in divergence variance along
the equator with a maximum occurring near wave-
number 1. A Fourier decomposition in time of the di-
vergence variance along the equator for wavenumber 1
(not shown) shows a typical red spectrum. Analyzing
the vertical structure of the equatorial variance shows
that the variance is contained predominately in the high-
er baroclinic modes. While the mechanism responsible
for this dramatic increase in divergence variance along
the equator has not been identified, it is possibly being
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FIG. 6. Zonal-mean temperature variance for four simulations. (a) The geodesic grid at 10 242, (b) the spectral model at T63,
(c) the geodesic grid at 2562, and (d) the spectral model at T30. Contour interval is 5 K2 with the zero contour omitted.

forced by the increased extratropical wave activity. Fig-
ure 7 is consistent with this hypothesis.

d. Full-physics GCM results

The GDC has been merged with a state-of-the-art
physics package to produce a full AGCM (GDC–
AGCM). The physics package is exactly the same as is
used in the latitude–longitude version of the Colorado
State University (CSU) AGCM. The radiation scheme
is based on the work of Harshvardhan et al. (1989) while
the cloud microphysics was formulated by Fowler et al.
(1996). The cumulus mass flux parameterization that
allows for multiple cloud bases was developed by Ding
and Randall (1998). The AGCM also includes version
2 of the Simple Biosphere Model land surface param-
eterization (Sellers et al. 1996). The gravity wave

scheme is that proposed by Palmer et al. (1986). All of
these physical parameterizations are discretized on the
same geodesic grid used in the dynamical core. The
vertical coordinate used in the AGCM simulations is
the generalized sigma coordinate (Suarez et al. 1983),
which includes a prognostic treatment of the PBL depth.
In addition to the biharmonic diffusion on vorticity, di-
vergence, and potential temperature, which was used in
the HSTC, a biharmonic diffusion is applied to water
vapor in this full-physics simulation.

Beginning from a dry isothermal atmosphere at rest,
the AGCM was spun up for two simulated years using
2562 grid cells in the horizontal and 17 layers (2562/
17). At the end of this integration, the atmospheric state
was interpolated to 10 242/17 and the integration carried
forward for another five simulated years. Surface orog-
raphy was averaged from a 18 3 18 dataset to the geo-
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FIG. 7. Zonal spectrum of vertically averaged zonal wind variance for four simulations. (a) The geodesic grid at 10 242, (b)
the spectral model at T63, (c) the geodesic grid at 2562, and (d) the spectral model at T30. Contour interval is 3.0 m 2 s22 with
the zero contour omitted.

desic grids (Jones 1999). Sea surface temperature (SST)
was specified using the Atmospheric Modeling Inter-
comparison Project Phase 2 (AMIP2) monthly varying
climatological SST dataset (Phillips 1996).

Figures 9a and 9b show the zonal-mean zonal wind
for December–January–February (DJF) from the GDC–
AGCM and from the National Centers for Environ-
mental Prediction–National Center for Atmospheric Re-
search (NCEP–NCAR) reanalysis project (Kalnay et al.
1996). The model surface winds are of the correct am-
plitude and structure, with the exception of the Southern
Hemisphere surface westerlies, which are shifted equa-
torward relative to the reanalysis data. The tropical east-
erlies in the model do not extend through the entire
depth of the troposphere as in the observational data.
The model produces stratospheric easterlies across most
of the Southern Hemisphere, which is consistent with
the NCEP–NCAR data. The Northern Hemisphere jet
has the correct position and correct amplitude, expect

within the core region where the jet is approximately
10 m s21 too strong. Similar to the surface winds, the
Southern Hemisphere jet is shifted equatorward relative
to the reanalysis data.

The zonal-mean temperature, which is shown in Figs.
9c and 9d, indicates that the model is developing a
tropopause that is too strong relative to the observed
data. Throughout the rest of the upper troposphere and
stratosphere the model and reanalysis data are in qual-
itative agreement. The largest discrepancy occurs near
the surface in the Southern Hemisphere. The model ex-
hibits a uniform near-surface temperature profile pole-
ward of 608 latitude, whereas the NCEP–NCAR data
show a uniform gradient in near-surface temperature that
extends to the southern pole. This discrepancy is strong-
ly linked to the equatorward shift of the surface west-
erlies relative to the NCEP–NCAR data.

Figure 10 shows DJF sea level pressure and 850-hPa
streamlines from the GDC–AGCM simulation and from
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FIG. 8. Zonal spectrum of vertically averaged divergence variance for four simulations. (a) The geodesic grid at 10 242, (b)
the spectral model at T63, (c) the geodesic grid at 2562, and (d) the spectral model at T30. Contour interval is 0.2 3 10212 s22

with the zero contour omitted.

the NCEP–NCAR reanalysis data. Both the Aleutian and
Icelandic low pressure systems are present in the model
simulation, but are slightly weaker than found in the
NCEP–NCAR data. The continental high pressure sys-
tems over Asia and North America are also present in
the model simulation. In the Pacific basin, the subtrop-
ical anticyclones are weaker in the model data than in
the NCEP–NCAR data. Within the tropical Pacific the
reanalysis data show easterlies extending completely
across the basin, whereas the model shows a region of
convergence near the date line. In the polar regions, the
area-averaged sea level pressure in the model simulation
is approximately 10 hPa too high in the Arctic and 10
hPa too low in the Antarctic.

The model-simulated DJF precipitation is compared
to the Global Precipitation Climatology Centre (GPCC)
dataset (Xie and Arkin 1996) in Fig. 11. Regions of
localized precipitation related to the Northern Hemi-
sphere storm tracks in the North Pacific and North At-

lantic are well simulated in terms of spatial structure
and amplitude. Within the tropical Pacific, the model
simulates a coherent ITCZ across the entire basin. The
western Pacific precipitation is shifted eastward in the
model relative to the GPCC dataset. The model gen-
erates a South Pacific convergence zone and a South
Atlantic convergence zone, which are both in good
agreement with the GPCC dataset. The precipitation
simulated by the model over the Amazon Basin and
across the tropical Atlantic are also consistent with the
GPCC dataset.

e. Computational efficiency

The initial development of this model has concen-
trated on the fidelity of the simulations, as opposed to
the computational efficiency of the numerical algorithm.
Given the satisfactory quality of simulation results pre-
sented above, we are now in a position to optimize the
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FIG. 9. DJF zonally averaged zonal wind (m s21) for the (a) GDC–AGCM and (b) NCEP–NCAR reanalysis datasets. DJF
zonally averaged temperature (K) for the (c) GDC–AGCM and (d) NCEP–NCAR reanalysis datasets.

GDC such that it will be competitive not only in terms
of simulation quality, but also in terms of computational
efficiency. This section provides a baseline comparison
between the GDC and the spectral dynamical core.

Table 1 provides a comparison of the models’ com-
putational speeds in terms of model resolution, rate of
floating point operations (MFlops), and CPU time re-
quired per simulated day (computational efficiency).
This comparison was completed on a SGI Origin 2000
(O2K) using a single processing element. The O2K is
a shared/distributed memory machine with relatively
slow access to main memory. The two resolutions for
each model are the same as shown in the results above:

2562 and 10 242 for the GDC versus T30 and T63 for
the spectral model. As seen in Table 1, the geodesic grid
dynamics with 10 242 grid cells is 20% slower than the
spectral model truncated at T63 (the T63 transform grid
has 18 432 grid points). With 2562 grid cells the geo-
desic model is approximately 2.5 times slower than the
spectral model truncated at T30. In terms of MFlop rate,
the geodesic grid model at 10 242 is approximately 50%
faster than the spectral model truncated at T63. The
geodesic grid model is, nevertheless, slower than the
spectral model because it requires more to complete a
simulated day.

One reason that more floating point operations are



JULY 2000 2485R I N G L E R E T A L .

FIG. 10. Sea level pressure and 850-hPa velocity streamlines for DJF in the (a) GDC–AGCM and (b) NCEP–
NCAR reanalysis datasets.

required is that the line integrals used to evaluate the
Jacobian, flux-divergence, and Laplacian operators [see,
e.g., (7) and (8)] are computed at all cell walls for every
grid cell. Referring to Fig. 2, this means that the line
integral from b2 to b1 is evaluated twice, once for cell
P0 and once for cell P1. The numerical operators were

originally developed for vector architecture and it was
determined that this method was more efficient than
storing and reusing results. We are exploring the alter-
native method of saving the computations at the cell
walls and using them at the adjoining cells instead of
recomputing them. While this alternative will signifi-
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FIG. 11. Total precipitation (mm day21) for DJF in the (a) GDC–AGCM and (b) GPCC precipitation datasets.

cantly reduce the number of floating point operations
per time step, it may also reduce the MFlop rate due to
increased communication.

Several caveats should be kept in mind when eval-
uating these results. First, the GDC is a relatively new
model that, unlike the spectral model, has not had the
benefit of years of optimization. Improvements in the

semi-implicit time-stepping scheme and the reduction
of redundant floating point operations could easily result
in the geodesic grid model being as efficient as the
spectral model, particularly at higher resolution. Second,
these tests were conducted on a single processing ele-
ment. The current trend in computer platforms is toward
massively parallel systems where ‘‘turnaround time’’ is
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TABLE 1. Comparison of computational efficiency between the geo-
desic grid model and a standard spectral model. All timings were
completed on a single processing element on a SGI Origin 2000.

Model Resolution
Time step

(min) Mflop rate

CPU time (s)
per simulated

day

Geodesic
Geodesic
Spectral
Spectral

10 242
2562
T63
T30

20
30
20
30

106.0
91.2
67.9
94.3

490.3
65.7

411.9
25.7

a strong function of how efficiently the problem can be
spread across many processing elements. Models based
on finite-difference schemes, such as the Los Alamos
National Laboratory Parallel Ocean Program, have dem-
onstrated computational efficiency on as many as 512
processing elements. In contrast, spectral models gen-
erally utilize significantly fewer elements. For example
the spectral dynamical core used in NCAR’s Community
Climate Model version 3.2 is currently limited to 64
processing elements. Our intention is to implement a
massively parallel version of the GDC in the future.

5. Conclusions

Overall, the results indicate that the development of
the geodesic dynamical core has been very successful.
The dynamical core incorporates many of the positive
features of spectral models and finite-difference models
into a single framework. As with many spectral models,
this dynamical core solves the vorticity-divergence form
of the primitive equations. This allows a straightforward
implementation of semi-implicit time differencing. Fur-
thermore, by choosing the vorticity-divergence form of
the governing equations instead of the momentum equa-
tions, the model is written in terms of true scalars and
is, therefore, invariant to coordinate system transforma-
tions. All of the scalars are defined on an unstaggered
grid, the Z grid (Randall 1994), which has been shown
to simulate geostrophic adjustment better than the more
conventional B and C grids. The equations are discretized
on a spherical geodesic grid that is nearly uniform over
the entire globe. This grid eliminates the strong singu-
larities that are present at the poles of regular latitude–
longitude grids. Similar to other finite-difference models,
the finite-difference stencils are local, which makes the
model amenable to massively parallel systems.

In the idealized test case of Held and Suarez (1994),
the overall level of meteorological variability simulated
by this model using 2562 grid cells is comparable to that
produced by a spectral dynamical core truncated at slightly
less than T30 (Figs. 6 and 7). With 10 242 grid cells, the
variability of the GDC is comparable to that of a spectral
model truncated at slightly less than T63. Comparing res-
olutions of finite-difference models and spectral models
can be misleading, but the transform grids of T30 and T63
are comparable in resolution to the geodesic model using
2562 and 10 242 grid cells, respectively.

Comparison of the zonal-mean statistics and zonal
spectra of the variance fields indicates that the GDC and
the spectral model are producing very similar general
circulations. Spectral models are at their best within the
framework of the dry primitive equations with no sur-
face topography. In this case the numerical solutions are
relatively smooth and the spectral expansion converges
rapidly with increasing wavenumber. Making a com-
parison between the geodesic grid model and the spec-
tral model within the framework of a full AGCM is
relatively difficult given the strong influence that phys-
ical parameterizations have on the general circulation.
While the Held–Suarez Test Case is a useful first step
in evaluating dynamical cores it lacks orography and
moisture, both of which have a strong impact on the
climate. We are currently developing an intermediate
test case that uses real topography and incorporates
moisture in a simple way. In some sense, this would be
a more useful test case since it includes some aspects
of the asymmetries present in the real atmosphere and
since moisture is an integral part of the general circu-
lation and accurately accounting for its transport and
phase changes is a critical task for dynamical cores.

Results from an AGCM that uses the GDC and the
CSU physics package were presented to demonstrate
the viability of this modeling approach. Both the dy-
namical core and the physical parameterizations were
discretized on the same geodesic grid using 10 242 grids
cells in the horizontal and 17 vertical layers. While fur-
ther development is required, the resulting large-scale
atmospheric structure (Fig. 9), surface winds (Fig. 10),
and precipitation (Fig. 11) compare favorably to the
observational data.

Comparing AGCM results with the GDC to previous
results is a critical test since the results will contain the
feedbacks between the atmospheric dynamics and the
other climate subsystems. Standard AMIP2 simulations
will be conducted as a part of the evaluation process.
Coupled ocean–atmosphere simulations using the GDC
are also planned.

Within the geodesic grid model, further improvement
in the order of accuracy of the finite-difference operators
is possible and we are currently working on this. We
expect a substantial improvement in the simulations,
particularly at lower resolution, when the accuracy of
the finite-difference operators is increased.

Further optimization, in terms of computational ef-
ficiency, is also possible in the GDC (Table 1). While
the model demonstrates a relatively high Mflop rate, the
number of floating point operations required to complete
a simulated day is higher than that required by the spec-
tral model. Our intention is to work on improving the
semi-implicit time-stepping scheme and reducing the
number of redundant floating point operations in order
to improve the overall computational efficiency.

While we are pleased with the results shown in this
paper, we are pursuing the possibility of using vertical
coordinate systems different from the conventional s
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coordinate. One version of the model that is currently
being tested uses potential temperature as the vertical
coordinate, following Hsu and Arakawa (1990). Anoth-
er version incorporates the generalized vertical coor-
dinate of Konor and Arakawa (1997).
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APPENDIX A

Conserving Kinetic Energy under Vertical
Advection

Beginning with Arakawa and Lamb [1977, Eq. (169)],
the material derivative in the momentum equation can
be expressed as

dV ]kp 5 p 1 V · = Vk k k k1 2 1 2dt ]t

1 ˆ1 [(pṡ) (V 2 V )k11/2 k11/2 kDsk

ˆ1 (pṡ) (V 2 V )], (A1)k21/2 k k21/2

where k is the index representing layer center and k 6
½ represents layer edges. The index increases with in-
creasing s. Here, V is defined at layer centers, so V̂
represents an averaging of velocity from layer centers
to layer edges. Arakawa and Lamb (1977) show that the
choice of averaging that conserves kinetic energy under
vertical advection is

1
V̂ 5 (V 1 V ) andk11/2 k k112

1
V̂ 5 (V 1 V ). (A2)k21/2 k k212

We obtain the discrete form of the vertical advection in
the vorticity equation by 1) dividing (A1) by pk, 2)
substituting (6) into (A1), and 3) taking the curl of the
resulting equation. This results in

1 ˆ ˆ= 3 (pṡ) (V 2 V ) 1 (pṡ) (V 2 V )k11/2 k11/2 k k21/2 k k21/25 6[ ]p Dsk k

(pṡ) (pṡ)k11/2 k21/25 F , (ĉ 2 c ) 1 F , (c 2 ĉ )k11/2 k k k21/25 6[ ] [ ]p Ds p Dsk k k k

(pṡ) (pṡ)k11/2 k21/21 J , (x̂ 2 x ) 1 J , (x 2 x̂ ) . (A3)k11/2 k k k21/25 6[ ] [ ]p Ds p Dsk k k k

The continuous counterparts of the discrete form of the vertical advection can be found in (7). The discrete form
of the vertical advection in the divergence equation is found in similar way, except we take the divergence instead
of the curl. This results in

1 ˆ ˆ= · (pṡ) (V 2 V ) 1 (pṡ) (V 2 V )k11/2 k11/2 k k21/2 k k21/25 6[ ]p Dsk k

(pṡ) (pṡ)k11/2 k21/25 F , (x̂ 2 x ) 1 F , (x 2 x̂ )k11/2 k k k21/25 6[ ] [ ]p Ds p Dsk k k k

(pṡ) (pṡ)k11/2 k21/22 J , (ĉ 2 c ) 1 J , (c 2 ĉ ) , (A4)k11/2 k k k21/25 6[ ] [ ]p Ds p Dsk k k k
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which can be compared to (8). The discrete forms shown
on the right-hand sides of (A3) and (A4) conserve ki-
netic energy under vertical advection.

APPENDIX B

Semi-Implicit Time Differencing

Equations (B1)–(B6) are included in the semi-implicit
time-stepping scheme. Those terms that are underlined
are integrated implicitly, while all other terms are in-
tegrated explicitly:

]d ]x ]c
2 J(h, x) 2 = · (h=c) 1 = · ṡ 2 J ṡ,1 2 1 2]t ]s ]s

2 21 ¹ K 1 ¹ F 1 = · (sa=p) 5 = · G, (B1)
s51]pS 5 [J(p, c) 2 = · (p=x)] ds9, (B2)E]t

s50

] ] puQ
(pu) 2 J(pu, c) 1 = · (pu=x) 1 (ṡpu) 5 ,

]t ]s c Tp

(B3)

]F 5 2ap]s, (B4)
s5s9]p

(pṡ)| 5 2s9 1 [J(p, c) 2 = · (p=x)] ]s,s5s9 E]t
s50

(B5)
and

22x 5 ¹ d. (B6)

The semi-implicit scheme is iterative in nature. First
guesses are made for the values of the prognostic var-
iables, and all terms that are evaluated explicitly are
computed and saved. The iteration cycle consists of 1)
evaluating the implicit terms, 2) updating the prognostic
variables, 3) evaluating the diagnostic variables, 4) eval-
uating convergence, and 5) returning to step 1 if con-
vergence is not met. One iteration through the semi-
implicit scheme involves evaluating the implicit terms
on the right-hand side of (B1)–(B3), updating the prog-
nostics in (B1)–(B3), and then updating the diagnostic
equations (B4)–(B6). Multigrid methods are only used
to solve (B6). Following an iteration cycle, convergence
is assessed by differencing the values of the prognostic
variables at the current iteration and their values at the
last iteration. If this difference is smaller than the spec-
ified criteria for each prognostic variable at every grid
point, then the solution is deemed to have converged
and the integration continues to the next time level.

The criteria we use to assess convergence for diver-
gence, temperature, and surface pressure are 1.0 3 1026

s21, 0.25 K, and 15 Pa, respectively. All three of these
conditions must be met before the solution is deemed
convergent. Typically, the scheme requires about four
iterations to converge. In order to ensure stability of the
iteration process, we have also found it advantageous

to underrelax divergence during the iteration process.
The model typically uses an underrelaxation coefficient
of approximately 0.5.
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