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ABSTRACT

The finite-difference scheme for the Laplace and flux-divergence operators described in the companion paper
(Part I) is consistent when applied on a grid consisting of perfect hexagons. The authors describe a necessary
and sufficient condition for this finite-difference scheme to be consistent when applied on a grid consisting of
imperfect hexagons and pentagons, and present an algorithm for generating a spherical geodesic grid on a sphere
that guarantees that this condition is satisfied. Also, the authors qualitatively describe the error associated with
the operators and estimate their order of accuracy when applied on the new grid.

1. Introduction

A companion paper, Heikes and Randall (1995;
hereafter referred to as Part I) discussed the design of
a finite-difference shallow-water model constructed on
a spherical geodesic grid and presented some numerical
results. The present paper describes in detail the grid
used in the model. In particular, we show that the sim-
ple algorithm outlined in section 3 of Part I leads to a
grid for which the spatial differencing operators are
inconsistent, that is, for which the truncation errors as-
sociated with the finite-difference operators do not go
to zero as the cell size decreases to zero. A modified
algorithm presented in this paper allows consistency
and improved numerical accuracy.

2. Some observations about the Laplace operator
and the simple spherical geodesic grid

Following the development in section 4 of Part I, by
Gauss’ theorem we have

Oa
 on dac,
where « is an arbitrary scalar function, A is some ar-
bitrary region in the plane, and C is the boundary of
that region. Suppose we wish to approximate V2 a at
the point p shown in Fig. 1. As a first approximation,
we can perform the line integral on the right-hand side
of (1) along the patha = b —> ¢ > d — ¢ > f. Assume
this is a perfect hexagon for which the length of an

f ViadA = (1)
A
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edge is [{?. The area of this hexagon is given by A?@
=~ 2.59808[! f‘” 12. Now consider the smaller hexagonal
cell defined by the patha' = b’ = ¢’ = d' =2 e’' = f'.
Again, the area of this smaller hexagon is given by
A“*Y =~ 2.59808[1{""" ]2, In general, we can define a
sequence of ever-smaller hexagonal cells associated
with grid point p as g — . These smaller cells are
generated by bisecting the walls of the larger cells.

Define V?a|, = f(x). There exists a point x, within
the hexagon of area A‘?’ such that

j;mf(x)dA =APf(x,). 2)

Formally f(x) can be written as a Taylor series ex-
panded about the point p and evaluated at x, as follows:

f(xe)A("’ =f(p)A(q) + (xe __p)f'(p)A(q)

_ 2
+(_x"__2'L)f"(p)A(q)+ (3)

or with (2)
F(PA® = j;mf(x)dA = (x. = p)f " (P)A®

(

— 2 :
_ﬁ’_i'ﬂf"(p)A(q)_ (4)

In the limit as g — o, x, — p — 0. Assuming that the
derivatives of f are bounded, we can write

lim | V2adA = Va|,limA®@.

g J A9

(5)

g
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FiG. 1. Two resolutions of grid cells associated
with a grid point p.

Taking limits in (1) we obtain

8 Oa
Val,,—hmA(q)z W@ndl (6)

Suppose we know Ja/Jn along the cell walls and
for convenience define ¢ = Ja/On. We wish to ap-
proximate the integrals on the rlght-hand side of (6).
Consider an arbitrary hexagon side [; i on resolution
g . Without loss of generahty, we can parameterize the
path along edge {7 so the origin occurs at the midpoint
m” = 0. We can write g as a Maclaurin series ex-
panded about the m1dp0mt of the side

g(x) = ﬂwﬁ+thH+—ym@]

3

m[m(li)] 4o (7)

+§g

Integrating over the length of the side we have
(q) ] 3

” (q)
3cay &1+

f g(x)dl* l(q)g[m(q)] U SN

(8)

Substituting (8) into (6) we get
6

2 {lz('q) [m(q)]

V|, = hmA(q)

(@) 13
'+[l’2!] [m(")]+~'}~ (9)

Using 4@ ~ 2.59808[/{”’ 1? and assuming that the de-
rivatives of g are bounded, the first terms of the series
will dominate, so we can write

z {l(lI)g[m(q)}}-

V|, = lim

A(q) (10)

This means that the scheme is consistent when da/8n
is evaluated or, in practice, approximated at the centers
of the cells walls [see Haltiner and Williams (1980)].
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FIG. 2. Maximum ratio for the entire grid as a function of grid
resolution using the simple algorithm.

Now wnte g as a Taylor series expanded about a
pomt x, ? along the edge wall and evaluated at
glm ], that is,

glm"] = glx(”1 + & g"[x{"]
(992
[62] g/r (q)]+ (11)
Therefore e(q) - m(q) _ (q) where e(q) — (q)l(q)
and —1 < r( 2 < 1. That 1s the distance between

x/? and m{? is some fraction of the length of the

cell wall. Multiplying both sides of (11) by [{?
gives

lﬁq)g[m(q)] _ l(q)g[ (q)] + lgq)efq)gr[xltq)]

(D¢ (@
+ liq [eiq ]2 [x(q)

(12)

Substltutmg mto (10) and using AP ~ 2.59808
X[l"]zande, rP1? ) we get

107! F'—- T 3 v m
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FiG. 3. Maximum ratio for the entire grid as a function of grid
resolution using the improved algorithm.
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TABLE 1. Properties of the improved grid as a function of recursive subdivisions of the twisted icosahedron polyhedron.
See Eq. (9) and Table 1 of Part L.

Ratio of smallest

Ratio of smallest
distance to

Average distance largest distance

Number of Number of cells Average cell cell to largest between cell between cell
q cells N, along equator area (km?) cell centers (km) centers
0 42 10 1.214 x 107 0.885 3755.5 0.881
1 162 20 3.149 x 10° 0.868 1916.4 0.811
2 642 40 7.946 x 10° 0.880 962.4 0.787
3 2562 80 1.991 X 10° 0.877 481.7 0.778
4 10 242 160 4.980 x 10* 0.870 2409 0.775
5 40 962 320 1.245 x 10* 0.867 120.5 0.776

6 ()

. glxi ]

vial, =i 3 { £ ¢ e
lfq)[r(q)]Z

i ‘ ny (@) .
+——2! g"'[xi"7] + } (13)

Again, the higher-order term will go to zero as g — ,
but we also require r® >0 as g - = for consistency.

In section 4 of Part I, it was shown that the approx-
imation to the normal derivative is applied at the mid-

point of the segment connecting two cell centers. By
the definition of the Voronoi cell, this point is on the
cell wall shared by two grid points, but it is not nec-
essarily the midpoint of the cell wall. Henceforth,

r? will be defined to be the distance between the mid-
pomt of a cell wall and the midpoint of the segment

connecting two grid points d1v1ded by the length of the
cell wall. We can plot max { r{” | Vcells}, that is, the
largest r for all the cell walls of grid resolution (q).
The plot is shown in Fig. 2. The figure shows that using

b)
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Fi1G. 4. Error in the finite-difference Laplace operator: (ay m =1, n=1;(b)m =3, n=1;(c)m=1,n=3;(dym =3, n = 3.
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F1G. 5. Error in the finite-difference flux-divergence operator: (@) m = l,n=1;(b)ym=3,n=1;c)m=1,n=3;(d)m=3,n= 3.

this simple algorithm, ri? does not converge to zero
as g =  for at least one cell wall on the grid, and by
(13) the scheme is inconsistent for that cell. This dis-
cussion was given in the context of the Laplace oper-
ator, but clearly the normal derivative in the flux-di-
vergence would have the same problems.

3. Design of an improved spherical geodesic grid

We have designed a simple algorithm to position the
grid points that is guaranteed to reduce max { ri? |
Vceells} as g = «. For a given distribution of grid
points, we can calculate {r,-") | Veells}, the set of all
ratios for all cell walls. We can apply a norm to this
set that will produce a single number. The choice of
norm is somewhat arbitrary. Through numerical exper-
imentation, we chose

S
R(p)=3 T [r"1%,

cells i=1

(14)

where s = 6 for the hexagons and s = 5 for the pen-
tagons. The function R(q) is a function of resolution,
and more important, it is a function of the distribution

of grid points. For a given resolution g, each grid point
has a longitude and a latitude, so using Eq. (9) from
Part I there are at most 2N, independent variables to
compute (14). This number can be substantially re-
duced by forcing the grid to be symmetric across the
equator and to have a periodicity of 5 in the longitu-
dinal direction.

Our goal is to find the distribution of grid points
that minimizes (14). This can be done using quasi-
Newton methods. Suppose we have a single-valued
function of many variables f(x), where x = (x;, x;,
-+, xy) € RV is a point in N-dimensional space. Our
goal is to find x* that minimizes f(x), that is, f(x*)
= min { f(x)|x € R"}. This is the classical uncon-
strained optimization problem discussed by Fletcher
(1987). There is a very efficient IMSL library call
named UMINF available to perform this optimiza-
tion.

Now we go back to the construction of the improved
grid. The large power on ri in (14) quickly forces
the solution away from gridpoint distributions in which
a few cell walls have a very large ratio. As with the
simpler algorithm, we begin with the coarsest grid and
work toward increasing resolution. Define the coarsest
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FIG. 6. Order of accuracy of the finite-difference Laplace operator: (a) m = 1,n = 1;
bGym=3,n=1LC)m=1,n=3;dm=3,n=3.

grid, the vertices of the original twisted icosahedron,
to be resolution ¢ = 0. This is Fig. 1d of Part 1. Simi-
larly, define the next finer resolution, shown in Fig. 12a
of the first paper, to be resolution ¢ = 1, and so on.
Those grid points that are members of resolution g = 1
but not of g = O are allowed to position themselves to
minimize R(1). Next, those grid points that are mem-
bers of resolution ¢ = 2 but not of g = 1 are allowed
to posmon themselves to minimize R(2). The plot of
max { r{? | Vcells} as a function of g is shown in Fig.
3. Note that max {r” | Vcells} appears to be con-
verging to zero.

The point is that since the construction of the Vo-
ronoi cells does not guarantee that the point at which
the normal derivative is evaluated is the midpoint of
the cell wall, by Eq. (13) we must take care that the
term r;” — 0 as ¢ — ». This improved grid-generating
algorithm has that property.

Table 1 shows some properties of the improved grid.
This table should be compared with Table 1 of Part L.
We see that an improved ratio of smallest cell area to
largest cell area is a side effect of the improved algo-
rithm.

4. Some observations about the errors of the finite-
difference operators

To test the finite-difference operators we use the fol-
lowing test functions:

a(X, 8) = sin(\), (15)

and

Bmn(N\, 8) = a* cos(m\) cos*(n8), (16)
where X\ is longitude and @ is latitude.

The following plots show the one norm, two norm,
and infinity norm of the difference between the numeric
solution x*™* and the true solution x"°. The one-norm
is defined by

“xapprox _ xtrue"l - — Z Ac, ‘xapprox _ xt_me "

€ cells

(17)

where the summation is over all the grid points. Here
A, is the area of cell i, and A, = = A, is the area of
the planet. The two norm is defined by
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FiG. 7. Order of accuracy of the finite-difference flux-divergence operator: (a) m = 1,n = 1;
bOGym=3,n=1ym=1,n=3;dm=3,n=3.

1

”xappmx _ xtrue”2 — [A

2 A (xire

€ cells

12
_ x:rue)Z:I .

(18)
The infinity norm is defined by

approx true”
oo

= max { | x®Pox — xlve IVcells }.

(19)

Figures 4 and 5 show the results of applying the fi-
nite-difference Laplacian to the test function (16). In
the plots, the solid line corresponds to the infinity norm,
the dashed line corresponds to the two norm, and the
dotted line corresponds to the one norm. The lines with
the square symbol are results obtained using the simple
grid and the lines with the round symbol are results
obtained with the improved grid. Figure 4 shows the
results from the Laplace operator when m and n in (16)
are set tom = 1, 3 and n = 1, 3. The infinity-norm
indicates there are certain cells on the simple grid for
which the numerical solution does not converge to
the analytic solution. Figure 5 shows the same thing
but for the flux-divergence operator applied to (15)
and (16).

[lx - x

5. Some observations about order of accuracy of the
finite-difference operators

The irregular nature of the grid makes it difficult to
analytically investigate the order of accuracy of the
three operators. Suppose 67 denotes a finite-difference
form of the continuous Laplace operator. If this oper-
ator is second order, then when applied to an arbitrary
function ¢ we can write

Via — §ia = O(h?). 20)

The finite-difference Laplacian is a function of both «
and the grid spacing k. Suppose two different resolu-
tion grids have spacings #, and &, where h, = 2h,. Then
from (20) we get
IV’a — 670l O(R}) O(4h3)
IV?a — 67,0l  O(h3)  O(R3) -
where || || is some norm. In general, if the finite-dif-

ference form of the operator is kth order, following the
above example we can write

IV — 630~
IV — 6%,a]

4, (21)

2%, (22)
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The results from the Laplace operator withn = 1, m
=1,3andn=3, m=1,3andn =3, m=1,3 are
shown in Fig. 6. The results from the flux-divergence
operator withn =1, m =1,3andn=3,m = 1,3 are
shown in Fig. 7. These plots show the scheme is
roughly second order. The Jacobian operator presented
in Part I is also (approximately) second-order accu-
racy.

6. Conclusions

We have shown the Laplace operator when discre-
tized as in Part I is consistent when the normal deriv-
ative is approximated at the center of the cell wall. Fur-
ther, we have shown that for the finite-difference
scheme to be consistent, it is necessary for rﬁ‘” , as de-
fined in section 2, to converge to zero as ¢ = «. The
simple bisecting algorithm for generating finer grids
from coarser ones does not have this property. We have
developed an improved grid-generation algorithm that
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does not suffer from this problem. When implemented
on these tweaked finite-difference grid, the Laplace,
Jacobian, and flux-divergence operators presented in
Part I have approximately second-order accuracy.
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