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ABSTRACT

Using the shallow water equations, a numerical framework on a spherical geodesic grid that conserves domain-
integrated mass, potential vorticity, potential enstrophy, and total energy is developed. The numerical scheme
is equally applicable to hexagonal grids on a plane and to spherical geodesic grids. This new numerical scheme
is compared to its predecessor and it is shown that the new scheme does considerably better in conserving
potential enstrophy and energy. Furthermore, in a simulation of geostrophic turbulence, the new numerical
scheme produces energy and enstrophy spectra with slopes of approximately K23 and K21, respectively, where
K is the total wavenumber. These slopes are in agreement with theoretical predictions. This work also exhibits
a discrete momentum equation that is compatible with the Z-grid vorticity-divergence equation.

1. Introduction

A spherical geodesic grid is a tessellation of the
sphere that is generated by using the icosahedron as a
starting point (e.g., Heikes and Randall 1995a). The
potential applicability of spherical geodesic grids to the
simulation of the atmospheric general circulation has
been recognized since the 1960s (Sadourny et al. 1968;
Williamson 1968, 1969; Sadourny and Morel 1969).
Recently there has been renewed interest in this idea
(Baumgardner and Frederickson 1985; Masuda and
Ohnishi 1987; Heikes 1993; Heikes and Randall
1995a,b; Stuhne and Peltier 1996, 1999; Thuburn 1997;
Giraldo 2000; Randall et al. 2000; Ringler et al. 2000).

Sadourny and Morel (1969) proposed that an optimal
grid structure on the sphere should be as uniform as
possible while preserving the isotropy of the spherical
geometry. Spherical geodesic grids come close to meet-
ing these ideal specifications. In terms of uniformity, a
spherical geodesic grid can be constructed such that grid
cell areas vary by less than 5% over the entire sphere
(Heikes 1993). In terms of isotropy, relative to any given
grid cell center all cell neighbors are nearly equidistant,
and all the neighbors lie across cell walls (Randall et
al. 2000). While Sadourny and Morel (1969) chose the
spherical geodesic grid because of its uniformity, Wil-
liamson (1969) chose a spherical geodesic grid because
the grid could be gradually distorted in space to produce
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increased resolution in critical regions such as the Gulf
Stream.

In contrast to spherical geodesic grids, conventional
latitude–longitude grids are neither uniform nor isotro-
pic. The grid-pole singularities of latitude–longitude
grids result in grid-cell areas that vary by O(1) over the
globe. Furthermore, since latitude–longitude grids have
cell neighbors that lie across both cell walls and cell
corners, the grids are not isotropic.

While the merits of the spherical geodesic grid may
have been appreciated decades ago, only recently have
these merits been realized in simulations with full at-
mospheric general circulation models (AGCMs). At-
tempts to use spherical geodesic grids to solve the non-
divergent shallow-water equations were successful (Sa-
dourny et al. 1968; Williamson 1968). The difficulties
involved in modeling the divergent shallow-water equa-
tions on the spherical geodesic grid were not overcome,
however, until Masuda and Ohnishi (1987) proposed
using the vorticity-divergence form of the equations.
The vorticity-divergence formulation requires inverting
elliptic equations at every time step to obtain the ve-
locity field. The computational overhead required to do
this with finite-difference models was generally consid-
ered prohibitive. Heikes and Randall (1995a,b, hereafter
HR95) overcame this significant difficulty by imple-
menting a multigrid method to invert the elliptic equa-
tions in a computationally efficient manner. Ringler et
al. (2000) extended this framework from the shallow-
water equations to the full 3D primitive equations and
incorporated the physical parameterizations required for
climate simulations.

Williamson (1969) chose to tile the sphere with tri-
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FIG. 1. Grid points, shown as circles, can be connected to form a
triangular grid shown by the dashed lines. Alternatively, cell walls
can be positioned halfway between grid points to form a hexagonal
grid shown by the solid lines. The hexagonal grid is the dual of the
triangular grid.

angles by connecting the grid points of the spherical
geodesic grid (see Fig. 1). Alternatively, Sadourny and
Morel (1969) used the inverse, or dual, of the triangular
grid, which results in hexagonal grid cells also shown
in Fig. 1. The lineage of work leading to the creation
of a full AGCM based on a spherical geodesic grid in
Ringler et al. (2000) emphasized the use of the hex-
agonal grid cells. An alternative line of research that
emphasized the use of the triangular grid cells originated
with both Williamson (1969) and Baumgardner and
Frederickson (1985). The more recent works by Stuhne
and Peltier (1996, 1999) and Giraldo (2000) use tri-
angular finite elements to construct their numerical
schemes. The present study makes extensive use of both
the hexagonal and triangular grids.

As discussed by Arakawa and Lamb (1977), the prob-
lem of designing a numerical scheme for a general cir-
culation model can be conceptually separated into the
design of the linear properties of the scheme, and the
design of its nonlinear properties. The numerical sim-
ulation of linear wave phenomena in geophysical fluid
dynamics can be analyzed in terms of the geostrophic
adjustment process (Winninghoff 1968; Arakawa and
Lamb 1977; Randall 1994). The atmosphere is contin-
ually adjusting to forcings, such as diabatic heating, by
the radiation of inertia–gravity waves, which leave be-
hind an ‘‘adjusted’’ state that is close to geostrophic
balance. In order to produce realistic results, a numerical
scheme must faithfully reproduce this adjustment pro-
cess. Following the lead of Masuda and Ohnishi (1987),
HR95 used the ‘‘Z grid,’’ on which vorticity, divergence,
and mass are prognosed, in part because, as shown by
Randall (1994), the Z grid simulates geostrophic ad-

justment very well; that is, schemes based on the Z grid
have good linear properties. HR95 used a finite-volume
method which guarantees conservation of mass, includ-
ing tracer mass, as well as potential vorticity. HR95 did
not discuss the conservation of nonlinear functions of
the prognostic fields, such as the kinetic energy, total
energy, and potential enstrophy.

The present study is aimed at modifying the scheme
of HR95 so as to guarantee conservation of kinetic en-
ergy, total energy, and potential enstrophy under fric-
tionless processes. Such conservation properties are par-
ticularly important in long-term simulations such as
those that are needed for the study of climate. On long
timescales, sources and sinks of energy and other quan-
tities are fundamental to the circulation. Small but sys-
tematic spurious sources and sinks of fundamental quan-
tities, such as energy, can lead to unrealistic circulation
regimes.

The continuous two-dimensional nonlinear shallow-
water equations are highly constrained in terms of their
energy and enstrophy cascades. The net effect of ad-
vection is to transfer energy from shorter to longer spa-
tial scales, while transferring enstrophy from longer to
shorter spatial scales. Arakawa and Lamb (1977, 1981)
point out that we have little hope of accurately simu-
lating such energy cascades and the associated energy
spectra if the numerical schemes do not conserve energy
and potential enstrophy. They show that conserving ba-
sic quantities, such as mass, potential vorticity, potential
enstrophy, and energy, can dramatically increase the
overall accuracy of long numerical simulations, even
with no change in the local ‘‘order of accuracy’’ of the
schemes. While schemes of higher-order accuracy are
generally to be preferred, all other things being equal,
a formal increase in order of accuracy should not be
chosen at the expense of the conservation principles.
Arakawa and Lamb (1977) provide an example of a
lower-order conservative numerical scheme that pro-
duces a more realistic simulation than a higher-order
nonconserving scheme.

The scheme presented in this paper is equally appli-
cable to planar hexagonal grids (see Fig. 1) and a spher-
ical geodesic grid. The spherical geodesic grid is quite
similar to the hexagonal grid; all the grid cells are hexa-
gons, with the exception of 12 grid cells that are pen-
tagons (Sadourny and Morel 1969). In section 2 we
construct some of the building blocks of the numerical
scheme, namely the divergence, and curl operators, from
their respective definitions. We then use these basic op-
erators, in section 3, to obtain a discrete form of the
shallow-water equations. In section 4 we show that this
discrete system conserves a number of important quan-
tities: mass, potential vorticity, potential enstropy, and
total energy. In section 5 we demonstrate some prop-
erties of our finite-difference operators. This numerical
scheme has been implemented in a shallow water model
on a doubly periodic plane. Results are shown in section
6, and these results are compared and contrasted to those
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FIG. 2. The grid is composed of hexagons (and possibly pentagons)
with scalars defined at the cell centers and vectors defined at the cell
corners. Each vector is described in the (e1, e2) coordinate system
that is placed at each cell corner. The normal vectors to the cell walls
are and , where the c1 direction is in the counterclockwise

1
n n 2c c

direction from c and c2 is in the clockwise direction. The area as-
sociated with each corner, Ac, is defined by the line segments con-
necting the grid-cell centers. R0c is the portion of Ac owned by cell
0. The area associated with the grid-cell center, Ai, is defined by the
perimeter of the hexagon.

produced with the numerical scheme currently used in
the Colorado State University (CSU) AGCM (Ringler
et al. 2000). Section 7 gives a discussion that places our
numerical scheme into context.

2. The divergence and curl operators

a. The grid and coordinate system

The numerical scheme developed below is defined on
a grid of polygons that are either hexagonal or pentag-
onal in shape. When discretizing the surface of a plane,
all the polygons are hexagons. When discretizing the
sphere, all of the polygons are hexagons with the ex-
ception of 12 polygons that are pentagons.

All scalars, such as the fluid depth, are defined at the
centers of the grid cells and are referenced with the
subscript i, while all vectors, such as the velocity vector,
will be defined at the cell corners and referenced with
the subscript c. When we wish to analyze a specific
corner, we will set c 5 g as shown in Fig. 2 and use
the data from the surrounding numbered cell centers. In
addition to cell centers and cell corners, we will need
to reference segments of the cell walls defined by the
symbol d. We will use the subscripts c1 and c2 to
denote the cell wall segments on d in the counterclock-
wise and clockwise directions from corner c, respec-
tively. The unit vectors and denote the directionsn n1 2c c

perpendicular to and , respectively, and pointd d1 2c c

outward relative to cell center 0.
At each corner we have placed an arbitrary orthogonal

coordinate system defined by the unit vectors (e1, e2).
The area fluxes across the and wall segmentsd d1 2c c

are Vc · , and Vc · , respectively. We use then d n d1 1 2 2c c c c

symbols Ai and Ac to represent the total areas associated
with the grid cell centers and corners, respectively. The
area of the shaded region in Fig. 2, denoted by Ric, is
the portion of Ac that is associated with cell center i.

b. Vector operators

With the coordinate system defined in Fig. 2, we can
derive numerical approximations to the divergence and
curl operators from their respective analytic definitions.1

The analytic form of the divergence operator is

1
div(V) 5 = · V [ lim V · n dl. (1)RAA→0 c

The divergence operator yields a scalar, which will be
defined at cell centers, by summing over the dot product
of vector data defined at cell corners. Referring to Fig.
2, we can approximate the divergence operator at the
cell centers as

= · V ù (= · V)i

nc1
5 (V · n d 1 V · n d ), (2)1 1 2 2O c c c c c cA c51i

where the summation is over all cell corners associated
with grid cell i. The variable nc is equal to 6 for hexa-
gons and 5 for pentagons. If we define

F 5 V · n d and F 5 V · n d , (3)1 1 1 2 2 2c c c c c c c c

then we can rewrite (2) in the more compact form
nc1

= · V ù (= · V) 5 (F 1 F ). (4)1 2Oi c cA c51i

The definition of the curl operator is

k · curl(V) 5 k · = 3 V

1
[ lim n 3 V dl · k, (5)R1 2AA→0 c

where we have explicitly selected the ‘‘vertical’’ com-
ponent of the curl by dotting with k. Since the curl is
a scalar quantity, it will be defined at grid-cell centers.
We can approximate (5) as

nc1
(k · = 3 V) ù (d n 1 d n ) 3 V · k, (6)1 1 2 2Oi c c c c c[ ]A c51i

1 We could also derive an approximation to the gradient operator
from its analytical definition. Instead, we will use the constraint of
conservation of total energy (section 4) to define the form of the
gradient operator.



1400 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

where, as with the divergence operator, the summation
is over all cell corners associated with the cell center i.

3. Governing equations

The shallow-water equations can be written as

]h
5 2= · (hV), (7)

]t

]
V 5 2hk 3 V 2 =[K 1 g(h 1 h )], (8)s]t

]
(th) 5 2= · (thV), (9)

]t

where h is the fluid depth, hs is the height of the surface,
V is the vector velocity, K is the kinetic energy, and h
is the absolute vorticity. Equation (9) describes the evo-
lution of an arbitrary tracer t, where t is a mixing ratio.
Alternatively, we can take the curl and divergence of
(8) to generate equations for the vorticity and diver-
gence:

]h
5 2= · (hV), (10)

]t

]d
25 k · = 3 (hV) 2 ¹ [K 1 g(h 1 h )]. (11)s]t

Here h [ f 1 k · = 3 V is the absolute vorticity and
d [ = ·V is the divergence. In the continuous equations,
the vector momentum formulation and the vorticity-di-
vergence formulation are equivalent. Given h and d we
can determine V in two steps. First, we solve the elliptic
equations

2h 5 ¹ c and (12)
2d 5 ¹ x (13)

for the streamfunction, c, and velocity potential, x. We
then compute the velocity using the relation

V 5 k 3 =c 1 =x. (14)

Given the discrete analogs to the divergence and curl
operators derived in section 2, we can write the discrete
forms of (7), (8), and (9) as

nc]h 1i 5 2 (h F 1 h F ), (15)1 1 2 2O c c c c]t A c51i

]Vc 5 2h k 3 V 2 (=K ) 2 [=g(h 1 h )] , (16)c c c s c]t
nc](th) 1i 5 2 (h t F 1 h t F ), (17)1 1 1 2 2 2O c c c c c c]t A c51i

where (15) and (17) describe the evolution of mass and
mass-weighted tracer within a grid cell. Equation (16) de-
scribes the evolution of the velocity at a cell corner. For
clarity we reiterate our notation: terms with a subscript i
are defined at cell centers, terms with a subscript c are

defined at cell corners, and terms with a subscript c1 or
c2 are defined at the cell walls. The terms , , ,

1 1
h t h 2c c c

and should be interpreted as averages of mass andt 2c

tracer from the cell centers to the cell wall segment c1

and c2. The term c is the average of absolute vorticityh
from the cell centers to the cell corners. All of these
symbols are undefined at this point. The form of the
kinetic energy, Ki, is undefined, as is the discrete form
of the gradient operator.

The discrete forms of the vorticity and divergence
equations can be written down by analogy with the an-
alytic forms shown in (10) and (11):

nc]h 1i 5 2 (h F 1 h F ), (18)1 1 2 2O c c c c]t A c51i

nc]d 1i 5 (h d n 1 h d n ) 3 V · k1 1 1 2 2 2O c c c c c c c[ ]]t A c51i

22 ¹ [K 1 g(h 1 h )]. (19)i i is

Since we have not yet specified the form of the discrete
gradient operator, the discrete Laplacian operator is un-
specified. In section 5 we will show that (18) and (19)
can, alternatively, be derived from the discrete form of
the momentum equation. As a result, the discrete mo-
mentum formulation will be entirely consistent with the
discrete vorticity-divergence formulation.

In the shallow-water equations the potential vorticity,
q, is equal to the absolute vorticity divided by the layer
thickness, h, so we can rewrite (18) as

nc](hq) 1i 5 2 (h q F 1 h q F ), (20)1 1 1 2 2 2O c c c c c c]t A c51i

which is identical in form to the tracer equation.

4. Conservation principles

While the continuous equations allow an infinite num-
ber of quantities to be conserved, this is not possible
within the discrete system. In this section we will show
that with the appropriate choices of , , , ,

1 1
h t h t2 2c c c c

c, Ki, and the gradient operator, the discrete shallow-h
water equations shown above can be implemented such
that the following quantities are conserved in the domain
mean: mass, mass-weighted tracer, and mass-weighted
potential vorticity, mass-weighted tracer variance, mass-
weighted potential enstrophy, and total energy.

a. Conservation of the domain-mean mass and tracer

The domain-integrated mass, mass-weighted tracer,
and mass-weighted potential vorticity are conserved
simply by virtue of their flux forms, written in (15),
(17), and (20), respectively. The only stipulation is that

, , , , , and have the same valuesh t h t q q1 1 2 2 1 2c c c c c c

when referenced by either of the cell centers that share
a given cell wall. This is equivalent to the requirement
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that the flux out of one cell is identical to the flux into
its neighbor. This will become more explicit later when
we more precisely define these quantities.

b. Conservation of the tracer variance

In order to show how the mass-weighted tracer var-
iance can be conserved, we must start with the advective
form of the tracer equation. The advective form is ob-
tained by taking (17) 2 t i 3 (15) to yield

nc] 1
h (t ) 5 2 [h F (t 2 t )1 1 1Oi i c c c i]t A c51i

1 h F (t 2 t )]. (21)2 2 2c c c i

Following Arakawa and Lamb (1977) we introduce a
function G 5 G(t) that depends only on t. We can
construct an equation for G by taking (15) 3 G(t) and
adding it to (21) 3 dG/dt. This results in

nc] 1 dGi(G h ) 5 2 h F G 1 (t 2 t )1 1 1Oi i c c i c i5 [ ]]t A dtc51i

dGi1 h F G 1 (t 2 t ) .2 2 2c c i c i 6[ ]dt

(22)

If we choose c 5 g, as shown in Fig. 2, and recognize
that represents the flux between cell 0 and cell 2,F 1c

while represents the flux between cell 0 and cell 1,F 2c

we can see that G will be conserved if

dG dG0 2G 1 (t 2 t ) 5 G 1 (t 2 t ) (23)1 10 c 0 2 c 2dt dt

and

dG dG0 1G 1 (t 2 t ) 5 G 1 (t 2 t ). (24)2 20 c 0 1 c 1dt dt

Solving (23) for and (24) for , we obtaint t1 2c c

d d
(G 2 G ) 2 t (G ) 1 t (G )2 0 2 2 0 0dt dt

t 5 (25)1c dG dG0 22
dt dt

and

d d
(G 2 G ) 2 t (G ) 1 t (G )1 0 1 1 0 0dt dt

t 5 . (26)2c dG dG0 12
dt dt

As an example, if we choose G(t) 5 t 2 we can solve
(25) and (26) for and to obtaint t1 2c c

1
t 5 (t 1 t ) and (27)1c 2 02

1
t 5 (t 1 t ). (28)2c 1 02

Note that no additional constraints on or areh h1 2c c

required.
Since the potential vorticity equation, (20), is iden-

tical in form to the tracer equation, (17), we can use
the results of (27) and (28) to guarantee the conservation
of potential enstrophy in the discrete system. We can
write the vorticity equation by using the lhs of (18) and
the rhs of (20) to yield

6]h 1i 5 2 (h q F 1 h q F ). (29)1 1 1 2 2 2O c c c c c c]t A c51i

Instead of averaging vorticity to the cell walls, we av-
erage potential vorticity to the cell walls using (27) and
(28) and then multiply by the averaged mass.

c. Conservation of total energy

The total energy in the discrete shallow-water equa-
tions is conserved. We show this in two steps: first, that
kinetic energy is conserved under the process of ad-
vection, and second, that the energy conversion term
neither creates nor destroys total energy.

1) CONSERVATION OF KINETIC ENERGY UNDER

ADVECTION

In this section we will find the form of the gradient
operator that guarantees that the process of advection
neither creates nor destroys kinetic energy. First, we
must form the kinetic energy equation by taking the
scalar product of Vc and the momentum equation given
in (16):

] V · Vc c 5 2[h k 3 V ] · V 2 (=K ) · Vc c c c c1 2]t 2

2 [=g(h 1 h )] · V . (30)s c c

This equation is valid for every cell corner. The first
term on the rhs of (30) is identically zero at every cell
corner because Vc is perpendicular to k 3 Vc, even in
the discrete case. Recall that while the momentum equa-
tion is defined at cell corners, the kinetic energy is a
scalar and will, therefore, be defined at cell centers. To
move (30) from the corners to the centers, we weight
each momentum point by the area, Ric, as defined in
Fig. 2 and sum over all corners associated with grid cell
i to yield

nc ] V · Vc ch ROi ic 1 2]t 2c51

nc

5 2h R {V · (=K ) 1 [=g(h 1 h )] · V },Oi ic c c s c c
c51

(31)

where we have multiplied by the cell mass, hi, after
summing over the corners. Equation (31) holds at every
cell center.
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FIG. 3. The symbol i for 0 # i # 2 represents an averaging ofh
mass to the cell wall shared by grid cell i and i 1 1. The area of the
triangle is divided into three parts, Ric. The unit vectors normal to
each cell-wall segment are given as ni and point from cell center i
to cell center i 1 1.

We now multiply the continuity equation, (15), by Ki

to obtain
nc]hiK A 5 2K [h F 1 h F ], (32)1 1 2 2Oi i i c c c c]t c51

where we have moved the cell area, Ai, to the lhs of
the equation. Equations (31) and (32) are both defined
at cell centers, so we can add them together to yield

nc]h ] V · Vi c cK A 1 h ROi i i ic 1 2]t ]t 2c51

nc

5 2K [(h V · n )d 1 (h V · n )d ]1 1 1 2 2 2Oi c c c c c c c c
c51

nc

2 h R {V · (=K ) 1 [=g(h 1 h )] · V },Oi ic c c s c c
c51

(33)

where we have used (3) to express (33) completely in
terms of the velocity. The last term on the rhs of (33)
is an energy conversion term. At this point we will drop
the last term on the rhs of (33). We return to this term
in the next section.

Summing both sides of (33) over the entire domain
yields

n nc]h ] V · Vi c cK A 1 h RO Oi i i c 1 2[ ]]t ]t 2i50 c51

n nc

5 2K [(h V · n )d 1 (h V · n )d ]1 1 1 2 2 2O Oi c c c c c c c c5i50 c51

nc

2 h R [V · (=K ) ] ,Oi c c c 6c51
(34)

where it is understood that the outside summation is over
all the grid cell centers and the inside summation is over
the corners associated with a given cell center i.

We will now show that the rhs of (34) sums to zero
at the corner labeled c 5 g in Fig. 2. Symmetry then
implies that the sum is zero at every corner. Note that
in Fig. 2 there is no way to tell whether the grid cells
that share the corner c 5 g are hexagons or pentagons.
Both types of polygons are accounted for in this nu-
merical scheme without exception.

At this point it is convenient to adopt a new naming
convention as shown in Fig. 3. Since we are choosing
a specific corner, we will drop the subscript c. The area
of the triangle is partitioned into three subareas, Ri, for
0 # i # 2. The vectors normal to each cell-wall segment,
ni, point away from cell center i toward cell center i 1
1, where i 1 1 is cyclic. The averaging of mass to cell
walls, i, denotes a yet-unspecified averaging from cellh
centers to the cell-wall segment shared by cell center i
and i 1 1.

If we sum (34) over all grid cells but keep only the

terms in the summation that have c 5 g and expand,
we are left with

K [d h (V · n ) 2 d h (V · n )]0 0 0 0 2 2 2

1 K [d h (V · n ) 2 d h (V · n )]1 1 1 1 0 0 0

1 K [d h (V · n ) 2 d h (V · n )]2 2 2 2 1 1 1

1 (h R 1 h R 1 h R )[V · (=K )] 5 0, (35)0 0 1 1 2 2

where we require that the expression will sum to zero.
Now let

h R 1 h R 1 h R0 0 1 1 2 2h 5 (36)i (R 1 R 1 R )0 1 2

for all i between 0 and 2, and let S 5 R0 1 R1 1 R2.
We can then rewrite (35) in the compact form of

K d (V · n ) 2 K d (V · n ) 1 SV · (=K) 5 0i i i i i21 i21

i 5 0, 1, 2, (37)

where there is an implied sum over the index i and i 2
1 is cyclic. We can factor out the velocity and rewrite
(37) as

V · (K d n 2 K d n 1 S=K ) 5 0. (38)i i i i i21 i21

We want (38) to be true for an arbitrary vector velocity
field, so (38) reduces to

K d n 2 K d n 1 S=K 5 0. (39)i i i i i21 i21
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If we take the dot product of (39) with the unit vectors
that define the local coordinate system and solve for the
components of =K, we find

Ki=K · e 5 [d (n · e ) 2 d (n · e )] and (40)1 i21 i21 1 i i 1S

Ki=K · e 5 [d (n · e ) 2 d (n · e )]. (41)2 i21 i21 2 i i 2S

Equations (40) and (41) serve as the definition of the
gradient operator. Note that the form of K is still un-
specified; the rhs of (34) sums to zero for arbitrary scalar
fields. We will return to the gradient operator in the next
section.

We can now write (34) as

n nc]h ] V · Vi c cK A 1 h R 5 0. (42)O Oi i i ic 1 2[ ]]t ]t 2i50 c51

If we interpret (42) as two terms in a chain rule expan-
sion, we have

n n nc]h ] V · Vi c cK A 1 h RO O Oi i i ic 1 2]t ]t 2i50 i50 c51

n ]
5 (K A h ). (43)O i i i]ti50

This will be true if we define the kinetic energy as

nc R V · Vic c cK 5 . (44)Oi 1 2A 2c51 i

Equations (36), (39), and (44) are the constraints that
allow kinetic energy to be conserved under advection.

2) THE ENERGY CONVERSION TERM

In addition to showing that advection does not create
or destroy kinetic energy, we must show that the terms
that represent the conversion of energy between its ki-
netic and potential forms do not create or destroy energy.
In order to do this we must derive the potential energy
equation by multiplying gAi(hs 1 hi) through (15) to
obtain

] 1
gA h h 1 hi i s i1 2[ ]]t 2

nc

5 2g(h 1 h ) (h F 1 h F ). (45)1 1 2 2Os i c c c c
c51

In an approach similar to that used above, we will show
that the rhs of (45) and the last term in (33) cancel at
every cell corner. Combining the rhs of (45) and the
last term on the rhs of (33) and summing over the do-
main, we want to ensure that

n nc

2 g(h 1 h ) [(h V · n )d 1 (h V · n )d ]1 1 1 2 2 2O Os i c c c c c c c c
i50 c51

n nc

2 h R V · [=g(h 1 h )] 5 0.O Oi ic c s c
i50 c51

(46)

If we compare (46) to the rhs of (34), we see that the
two expressions are identical, except that K in (34) is
replaced by g(hs 1 h) in (46). Since we have already
shown that the rhs of (34) sums to zero for an arbitrary
scalar, (46) is satisfied provided that we use an expres-
sion analogous to (39) to compute the gradient of g(hs

1 h).
The form of total energy that is conserved in this

discrete system is

n 1
A h K 1 g h 1 h , (47)O i i i s i5 1 2 6[ ]2i50

which is consistent with the continuous shallow-water
equations.

5. Properties of the finite-difference operators

We have shown that we can conserve total energy by
choosing (39) as the discrete gradient operator. In this
section we will show that (39) has an alternative geo-
metric interpretation as the slope of the plane fit through
the surrounding three data points. For clarity, we will
assume a regular hexagonal grid in this section, but note
that we have verified our findings on both distorted hex-
agonal grids and spherical geodesic grids.

Referring to Fig. 2 and assuming a regular hexagonal
grid, if we take the dot product of (39) with the unit
vector , we find that

1
nc

K 2 K2 0=K · n 5 , (48)1c Dl

where Dl is the distance between grid cells 2 and 0.
Equation (48) can be interpreted as the slope of the plane
fit through (K0, K1, K2) in the direction. Taking the

1
nc

dot product of (39) with yieldsn 2c

K 2 K1 0=K · n 5 . (49)2c Dl

Equations (48) and (49) are sufficient to prove that (39)
is the slope of the plane fit through (K0, K1, K2).

Once we interpret (39) as the slope of the plane fit
through the surrounding data, the vector identity,

= 3 =K 5 0, (50)

follows immediately in the discrete system. The physical
interpretation of the curl operator shown in (5) and (6)
is a line integral of the component of a vector field along
the path of integration. In Fig. 2, if we start at g and
follow =K along the perimeter of grid cell 0, we return
to where we started. Hence, (50) holds in the discrete
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FIG. 4. Log base 10 of (top) the fractional change in total energy
and (bottom) the mass-weighted potential enstrophy for each nu-
merical simulation.

system. While this is a rough argument, we have proven
(50) rigorously.

With the divergence and gradient operators specified,
we can determine the form of the discrete Laplacian
operator as ¹2K 5 = ·=K, where K is a scalar field. If
we define the vector V in (2) as =K and use (39) as the
form of the gradient operator, we find that

6Dt
2(¹ K ) 5 (K 2 K ), (51)O0 i 0A Dl c510

where Dt is the length of the line segment connecting
grid cell corners. Equation (51) can be simplified to

61
2(¹ K ) 5 (K 2 K ), (52)O0 i 0

c51Ï3A0

which is exactly the same form as derived by HR95.
Along with the vector identity shown in (50) and the

definition shown in (52), we require two more equations
to hold in the discrete system:

= 3 (hk 3 V) 5 = · (hV) and (53)

= · (hk 3 V) 5 2= 3 (hV). (54)

We simply note here that (53) and (54) hold in the
discrete case solely because we assume that the vector
V is perpendicular to the vector k.

Equations (50), (52), (53), and (54) suffice to derive
the discrete vorticity and divergence equations [(18) and
(19)] from the discrete momentum equation (16). Thus
we conclude that the discrete momentum formulation is
consistent with the discrete vorticity-divergence for-
mulation.

6. Numerical tests

We will show results from three numerical models.
Two of the models are based on the framework devel-
oped above. The first uses the discrete vorticity-diver-
gence formulation [Eqs. (15), (18), and (19)] and we
will refer to this model as NSpVor-Div. The second uses
the discrete vector momentum formulation [Eqs. (15)
and (16)] and will be referred to as NSpMomentum. The
third model is based on the scheme developed by Ma-
suda and Ohnishi (1987) and HR95. This scheme uses
the vorticity-divergence formulation of the shallow-wa-
ter equations and will be referred to as OSpVor-Div. A
fairly complete comparison of OSpVor-Div and NSpVor-
Div is contained in the appendix.

The models are situated on a doubly periodic f plane
with f 0 5 1.4 3 1024 s21. The plane is discretized using
a regular hexagonal grid of 128 3 128 (see Fig. 7). The
distance between cell centers, Dn, is 100 km. The time-
stepping scheme for all three models is third-order Ad-
ams–Bashforth with a time step of 100 s. All three mod-
els are started from the same initial condition, of the
form

h(t 5 0) 5 400 6 50 m, (55)
25 21h(t 5 0) 5 f 6 5.0 3 10 s , (56)0

25 21d(t 5 0) 5 0 6 5.0 3 10 s . (57)

The first values on the rhs of (55), (56), and (57) are
the respective domain mean values and the second val-
ues are the maximum perturbations from the means. The
perturbations were generated by a random number gen-
erator. The initial conditions are highly unbalanced. Giv-
en the absolute vorticity and divergence fields, the dis-
crete analogs of (12) and (13) are used to solve for the
streamfunction and velocity potential, respectively. For
the NSpMomentum model, we use the discrete gradient
operator to differentiate the streamfunction and velocity
potential to obtain the initial velocity field. The time
rates of change of all prognostic variables are zero at t
5 0. The surface topography is random and has the
form hs 5 0 6 20 m. With gravity set to 9.81 m s22,
we obtain a Rossby radius of deformation of approxi-
mately 700 km. With Dn 5 100 km, we marginally
resolve eddies on this scale. All three models are in-
viscid in the sense that no explicit dissipation is intro-
duced.

Figure 4a measures the error in domain-integrated
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FIG. 5. (top) Energy power spectrum and (bottom) enstrophy power
spectrum at day 40 for each numerical simulation, plotted as functions
of total wavenumber. The open circles show the initial energy and
enstrophy power spectra.

total energy over a 40-day integration. The y axis is log
base 10 of the absolute value of the fractional change
in domain-integrated total energy. All of the simulations
show substantial variability during the first few days of
integration. During this period the state of the system
is rapidly changing while it moves toward geostrophic
balance. The time truncation error is relatively large
during this period and we have verified that it accounts
for the variations of the total energy over the first several
days of integration. After 40 days, the NSpVor-Div and
NSpMomentum simulations have a total energy that is
within 0.5% of the initial value. The total energy in the
OSpVor-Div simulation continues to drift and after 40
days the total energy has doubled.

Figure 4b shows the fractional change in domain-
integrated mass-weighted potential enstrophy. Both the
NSpVor-Div and NSpMomentum simulations conserve
mass-weighted potential enstrophy to within 0.05% after
40 days of integration. The NSpVor-Div simulation dis-
plays a slow modulation of this quantity that is due to
truncation error in the elliptic solver [(12) and (13)]. If
we make the convergence threshold in the elliptic solver
sufficiently stringent, we can eliminate this modulation.
The OSpVor-Div simulation shows a steady drift in po-
tential enstrophy and after 40 days of integration the
potential enstrophy has also doubled.

Figure 5a shows the wavenumber spectrum of total
energy at the end of the 40-day integration for each
simulation. Figure 5a also shows the energy spectrum
at t 5 0, which is the same of all simulations. Consistent
with the white noise initial condition, the initial energy
spectrum is also white. Figure 5b shows the enstrophy
spectrum of each simulation after 40 days and also
shows the initial enstrophy spectrum. The purpose of
Fig. 5 is to show whether there is anomalous buildup
of energy or enstrophy at any given wavenumber. In
terms of energy, both the NSpVor-Div simulation and
NSpMomentum simulation show an appropriate upscale
transport of energy with no apparent buildup of energy
at the grid scale. The OSpVor-Div simulation also shows
the upscale cascade, but the lack of conservation of total
energy is readily apparent. In terms of enstrophy, both
the NSpVor-Div simulation and NSpMomentum simu-
lation show no buildup of enstrophy at the smallest
scales. The OSpVor-Div simulation shows a buildup of
enstrophy at both the smallest and largest scales.

Now we wish to determine whether the new numer-
ical scheme produces the appropriate energy and en-
strophy cascades. In order to test this, we must include
a sink of enstrophy at the smallest resolved scales in
order to generate a downscale cascade of enstrophy.
Using the NSpMomentum model, we do this by includ-
ing a ¹6 diffusion in the momentum equation.2 The
coefficient on the diffusion is 1 3 1024 m6 s21; scale
analysis suggests that this value is sufficient to dissipate

2 If we use the NSpVor-Div model with a ¹6 diffusion operator of
vorticity and divergence, our findings are the same.

a vorticity or divergence perturbation of size 1 3 1024

s21, with a spatial scale of 2Dn, in several hours. The
model is initialized with the same initial condition
shown above, but there is no topography. Figure 6 shows
the energy and enstrophy spectra averaged over days
950–1050. Dimensional analysis suggests that, within
the inertial range, the energy spectrum should decay as
K23, where K is the total wavenumber, and the enstrophy
spectrum should decay as K21 (Pedlosky 1987; Salmon
1998). Figure 6 indicates that the numerical model is
accurately capturing both the upscale cascade of energy
and the downscale cascade of enstrophy. After 1000
days of integration, the total energy has changed by only
0.5% (not shown). So while the ¹6 diffusion operator
continues to destroy enstrophy, it destroys very little
energy. Figure 7 shows the relative vorticity field at four
stages of the integration: t 5 0, t 5 10, t 5 100, and
t 5 1000 days. This figure qualitatively confirms the
spectral analysis shown in Fig. 6. The flow continually
evolves into larger structures. Also consistent with Fig.
6, we do not see any spurious buildup of energy or
enstrophy at the grid scale.
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FIG. 6. (top) Total energy power spectrum and (bottom) enstrophy
power spectrum averaged over days 950–1050. The open circles show
the initial energy and enstrophy power spectra. Also shown in each
panel, by a dashed line, is the theoretical prediction of the slope of
the respective spectrum. The solid line denotes the equivalent wave-
number of the Rossby radius of deformation.

7. Discussion and conclusions

We have constructed a shallow-water model, for use
on a spherical geodesic grid, that conserves mass, po-
tential vorticity, potential enstrophy, and total energy.
We have demonstrated these conservation properties in
a numerical simulation of geostrophic turbulence on an
f plane. In addition to conserving energy and potential
enstrophy to within the time truncation error, our nu-
merical scheme was able to accurately capture the spec-
tral distributions of energy and enstrophy in a simulation
of geostrophic turbulence.

In the introduction we stated that conserving these
basic quantities is only one necessary component of a
robust numerical scheme; faithful simulation of the geo-
strophic adjustment process and numerical convergence
are the other two necessary components. Looking at these
other two necessary components will provide some con-
text for the work we have completed here.

In a study of the geostrophic adjustment process,
Randall (1994) discretizes the vorticity-divergence
form of the shallow-water equations on the Z grid. The

Z grid entails the use of the vorticity-divergence for-
mulation with all scalar quantities defined at the grid-
cell centers. He compares the discrete dispersion re-
lation obtained using the Z grid to the dispersion re-
lations obtained using the A, B, C, D, and E grids
(Arakawa and Lamb 1977). The A–E grids entail the
use of the momentum formulation. Randall (1994)
clearly shows that the Z grid more accurately simulates
the geostrophic adjustment process than any of the A–
E-grid systems. On the Z grid, the discrete equations
involve no spatial averaging and only a discrete La-
placian operator is required [see Randall (1994), Eqs.
(4)–(6)]. As shown in (52), the Laplacian operator de-
rived here is identical to that used by HR95. Further-
more, this Laplacian operator is consistent with the
formulation used in Randall (1994). We conclude that
the framework developed here not only conserves the
quantities listed above, but is also consistent with the
Z-grid discretization and, thus, does a better job of
simulating the geostrophic adjustment process than the
A–E-grid systems. This topic is more fully explored
in Ringler and Randall (2002).

The order of accuracy of this numerical scheme is
determined by three aspects: the accuracy of the inter-
polations [Eqs. (27), (28), and (36)], the accuracy of the
vector operators [Eqs. (2), (6), and (39)], and the prop-
erties of the grid. On a regular hexagonal grid, all of
these approximations are formally second-order accurate.

We interpreted the approximation to the gradient op-
erator in two ways: first, the gradient ensures conser-
vation of kinetic energy under the process of advection,
and second, the gradient operator measures the slope
of the plane fit through the surrounding three data
points.

This work has shed light on the relationship between
the Z grid and its discrete analog in the momentum
equations. We have exhibited a momentum equation that
is compatible with the Z grid. In the continuous system,
we can move between the momentum formulation and
vorticity-divergence formulation in a seamless manner
using basic vector operators. Both forms contain the
same information and yield the same result. In this work
we were able to manipulate the discrete form of the
vector momentum equation using discrete analogs of
the gradient, divergence, and curl operators to derive a
discrete form of vorticity-divergence equations. Since
the derived vorticity-divergence equations are the Z-grid
vorticity-divergence equations, we are guaranteed that
the discrete momentum equation is consistent with the
Z grid. The momentum analog to the Z grid (call it the
ZM grid) solves the full momentum equation at every
grid-cell corner.

On the hexagonal grid there are twice as many grid-
cell corners as there are grid-cell centers. An easy way
to see this is as follows. Each cell center is associated
with an area, Ai, and each cell corner is associated with
an area, Ac. On a regular hexagonal grid Ai 5 2Ac, so
in order to cover the same area there must be twice as
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FIG. 7. The evolution of the relative vorticity field over the first 1000 days of integration. The relative vorticity scales range from
approximately 62.0 3 1025, 61.5 3 1025, 61.0 3 1025, and 63.0 3 1026 s21 at t 5 0, t 5 10, t 5 100, and t 5 1000 days, respectively.

many cell corners as there are cell centers. Since the
ZM grid solves the momentum equation at every cell
corner and the continuity equation at every cell center,
there are twice as many momentum points as there are
mass points. The redundancy of the momentum equation
allows for the existence of computational modes. We
define computational modes as solutions to the discrete
equations that have no analogs in the continuous system.
We are addressing the redundancy of the ZM grid in
separate work by analyzing the linear geostrophic ad-
justment process on a hexagonal grid (Ringler and
Randall 2002).

We have implemented the numerical scheme outlined
in this paper on a spherical geodesic grid and we are
currently conducting the standard suite of shallow-water
test cases as well as several other tests.
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APPENDIX

Comparison of Numerical Schemes

In this appendix we compare the OSpVor-Div scheme
developed by Masuda and Ohnishi (1987) and HR95 to
our new scheme, NSpVor-Div. For this comparison we
will assume a regular hexagonal grid where the distance
between grid-cell centers is Dn and the distance between
grid-cell corners is Dt.

a. Mass equation

Both schemes express the mass equation as fluxes
across the cell walls and we will denote these fluxes as
Fj, where the flux points from cell 0 to cell j. For both
schemes, the mass equation for the fluid thickness at
cell center 0 can be written as

6]h 10 5 2 F Dt. (A1)O j]t A j510

The schemes will differ in the formulation of the flux,
Fj.
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1) OSpVOR-DIV SCHEME

The flux across cell walls can be express as

h 1 h x 2 xj 0 j 0
F 5j 1 21 22 Dn

h 1 h c 2 cj 0 j21 j11
1 . (A2)1 21 22 3Dt

The first term on the rhs of (A2) represents the flux of
mass across the cell wall shared by grid cells 0 and j
due to divergent motion. The second term on the rhs of
(A2) represents the flux across the cell wall due to ro-
tational motion. Substituting (A2) into (A1) yields

6 h 1 h]h 1 Dt j 00 5 2 (x 2 x )O j 01 2]t A Dn 2j510

6 h 1 h1 j 0
2 (c 2 c ). (A3)O j11 j211 2A 6i510

2) NSpVORpDIV SCHEME

The flux across each cell wall, Fj, is broken into two
parts: one part associated with the corner j 2 1, and one
part associated with the corner j. The mass equation can
be written just like (A1), but the fluxes are expressed as

h 1 h 1 h x 2 x1 j21 j 0 j 0
F 5j 1 21 22 3 Dn

h 1 h 1 h x 2 x1 j11 j 0 j 0
1 1 21 22 3 Dn

1 
c 2 (c 1 c )j21 0 jh 1 h 1 h1  2 j21 j 0

1  1 22 3 3 Dt
2 

1 
(c 1 c ) 2 c0 j j11h 1 h 1 h1 2 j11 j 0

1 . (A4) 1 22 3 3 Dt
2 

Substituting (A4) into (A1) and doing some algebra
yields

6 h 1 2h 1 2h 1 h]h 1 Dt j21 j 0 j110 5 2 (x 2 x )O i 01 2]t A Dn 6j510

6 h 1 h1 j 0
2 (c 2 c ).O j11 j211 2A 6i510

(A5)

Comparison with (A3) shows that the rotational motion
is modeled exactly as before, but that a slight modifi-
cation to the flux due to divergent motion is introduced.

b. Vorticity equation

Similar to the mass equation, the vorticity equation
for both schemes can be written as

6]h 10 5 2 H Dt, (A6)O j]t A j510

where, similar to Fj in the mass equation [(A1)], Hj is
the flux of absolute vorticity across the cell walls. In
fact, the vorticity equation is identical to the mass equa-
tion, expect h is replaced by h. Furthermore, in both
schemes the averaging of absolute vorticity is done in
exactly the same manner as the averaging of mass. In-
stead of duplicating the same manipulations we just
completed, we can simply state that the OSpVor-Div
scheme integrates the vorticity equation as shown in
(A3) and the NSpVor-Div scheme integrates the vorticity
equation as shown in (A5).

c. Divergence equation

For clarity, we reiterate the continuous form of the
divergence equations:

]d
25 k · = 3 (hV) 2 ¹ [K 1 g(h 1 h )], (A7)s]t

which we can write symbolically as

]d
5 term 1 1 term 2. (A8)

]t

In section 5 we show that both the OSpVor-Div and NS-
Vor-Div schemes use the same discrete Laplacian op-
erator; therefore, regarding term 2, the only differences
between the two schemes could be the form of kinetic
energy, K. In comparing the two schemes we need to
identify any differences in the treatment of term 1 or
the formulation of K.

1) OSpVOR-DIV SCHEME

This scheme approximates term 1 as
6 h 1 h1 Dt j 0

term 1 5 2 (c 2 c )O j 01 2A Dn 2i510

6 h 1 h1 j 0
2 (x 2 x ). (A9)O j11 j211 2A 6i510

Masuda and Ohnishi (1987) express the kinetic en-
ergy in continuous form as

1
2K 5 [= · (c=c) 2 c¹ c 1 = · (x=x)

2
22 x¹ x 1 k · (=c 3 =x)]. (A10)

Equation (A10) is derived in Heikes (1993). If we use
the formulation developed by Masuda and Ohnishi
(1987) we can write the discrete form of (A10) at cell
center 0 as



MAY 2002 1409R I N G L E R A N D R A N D A L L

2 26 c 2 c x 2 x1 j 0 j 0
K 5 1O0 1 2 1 2[6 Dn Dnj51

c 2 c x 2 xj 0 j11 j21
1 1 21 2Dn 3Dt

x 2 x c 2 cj 0 j11 j21
2 . (A11)1 21 2]Dn 3Dt

In the process of manipulating the discrete analog of
(A10) into (A11), we combined the first two terms on
the rhs of (A10) into the first term on the rhs of (A11).
The third and fourth terms on the rhs of (A10) were
combined into the second term on the rhs of (A11).
And finally, the last term on the rhs of (A10) was
expanded to form the last two terms on the rhs of
(A11). We can now write (A11) in terms of the velocity
components as

61
2 2K 5 (R 1 D 1 R D 1 R D ), (A12)O0 T N T T N N6 j51

where R and D are the rotational and divergent veloc-
ities, respectively. The subscripts N and T are the normal
and tangent directions relative to each cell wall, re-
spectively. For example, RT is the rotational part of the
velocity vector in the tangent direction. There are sev-
eral points to note. First, (A12) is not positive definite;
the last two terms can be negative. Second, (A12) is
biased in the sense that certain components of the ve-
locity vector, such as RT and DN, more strongly control
the value of K0 than other components of the velocity,
such as RN and DT.

2) NSpVORpDIV SCHEME

This scheme approximates term 1 as

term 1
6 h 1 2h 1 2h 1 h1 Dt j21 j 0 j11

5 2 (c 2 c )O i 01 2A Dn 6j510

6 h 1 h1 j 0
2 (x 2 x ).O j11 j211 2A 6i510

(A13)

In comparing this to OSpVor-Div we see that the part
of term 1 due to divergent motion is modeled exactly
the same in the two schemes, but the part due to rota-
tional motion is different.

The form of kinetic energy used in NSpVor-Div is
shown in (44). When we use the vorticity-divergence
formulation, we can rewrite (44) using (14) as

6 V · V1 j j
K 5 Oi 6 2j51

6 [(k 3 =c) 1 (=x) ] · [(k 3 =c) 1 (=x) ]1 j j j j
5 .O

6 2j51

(A14)

In practice, we use the gradient operator to compute
(=c)j and (=x)j at each corner, then we construct the
velocity vector as each corner. We compute the kinetic
energy as the sum of (1/2)(V j · Vj) over the cell corners.
The important point to note is that our formulation uses
the full, unbiased, velocity vector to compute the kinetic
energy.
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