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ABSTRACT

Shallow-water equations discretized on a perfect hexagonal grid are analyzed using both a momentum for-
mulation and a vorticity-divergence formulation. The vorticity-divergence formulation uses the unstaggered Z
grid that places mass, vorticity, and divergence at the centers of the hexagons. The momentum formulation uses
the staggered ZM grid that places mass at the centers of the hexagons and velocity at the corners of the hexagons.
It is found that the Z grid and the ZM grid are identical in their simulation of the physical modes relevant to
geostrophic adjustment. Consistent with the continuous system, the simulated inertia–gravity wave phase speeds
increase monotonically with increasing total wavenumber and, thus, all waves have nonzero group velocities.

Since a grid of hexagons has twice as many corners as it has centers, the ZM grid has twice as many velocity
points as it has mass points. As a result, the ZM-grid velocity field is discretized at a higher resolution than the
mass field and, therefore, resolves a larger region of wavenumber space than the mass field. We solve the ¹2f
5 l f eigenvalue problem with periodic boundary conditions on both the Z grid and ZM grid to determine the
modes that can exist on each grid. The mismatch between mass and momentum leads to computational modes
in the velocity field. Two techniques that can be used to control these computational modes are discussed. One
technique is to use a dissipation operator that captures or ‘‘sees’’ the smallest-scale variations in the velocity
field. The other technique is to invert elliptic equations in order to filter the high wavenumber part of the
momentum field.

Results presented here lead to the conclusion that the ZM grid is an attractive alternative to the Z grid, and
might be particularly useful for ocean modeling.

1. Introduction

The Z grid was introduced by Randall (1994) as an
attractive alternative to the conventional A–E-grid stag-
gering systems (Arakawa and Lamb 1977) commonly
used in finite-difference models with quadrilateral grid
cells. The Z grid uses the vorticity-divergence form of
the shallow-water equations without staggering (Fig.
1a). Randall (1994) found that the Z grid simulates the
geostrophic adjustment process better than any of the
A–E-grid staggering systems.

When using the vorticity-divergence form of the non-
linear shallow-water equations, it is necessary to invert
elliptic equations after every time step in order to obtain
the velocity field. Heikes and Randall (1995a,b) imple-
mented multigrid techniques to invert these equations
efficiently when the domains extend over the entire
sphere. These domains, which are singly connected and
periodic, are particularly accommodating to the use of
multigrid methods. In contrast, the domains of ocean
models are generally neither singly connected nor pe-
riodic. The existence of islands and the lateral boundary
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conditions pose significant obstacles to inverting the
elliptic equations in a computationally efficient manner.
This suggests that the Z grid may be impractical for use
in ocean models.

In recent work that focuses on the nonlinear aspects
of the shallow-water equations on a spherical geodesic
grid, Ringler and Randall (2002, hereafter RR) identify
a discrete momentum equation consistent with the Z-
grid vorticity-divergence equations. This discrete mo-
mentum formulation, termed the ZM grid, places scalar
quantities, such as mass, at grid cell centers, and vectors,
such as velocity, at all grid cell corners (See Fig. 1b).

The Z and ZM grids are not the only staggerings
possible on the hexagonal grid. Mesinger (2000) dis-
cusses the hexagonal grid analogs to the A, B, C, and
D grids that are referred to as the HA, HB, HC, and
HD grids, respectively. The well-known deficiencies of
the A and D grids are also present on the HA and HD
grids [see Randall (1994) for discussion of the A and
D grids]. The HB grid uses a full velocity vector at
every other corner in order to obtain a one-to-one cor-
respondence between the mass points and the velocity
points. The HC grid predicts only the normal component
of the velocity field at the midpoint of each cell wall.
Nickovic and Mesinger (as discussed in Purser 1998)
show that both the HB and HC grid generate nonsta-
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FIG. 1. The Z grid places mass, vorticity, and divergence at the center of each hexagon. The ZM grid places all
scalars, such as mass, at the center of each hexagon and places all vectors, such as velocity, at every corner. Other
possible grid staggerings, the HA, HB, HC, and HD grids, are discussed in the introduction and in Messinger (2000).

tionary geostrophic modes and asymmetric gravity wave
propagation. While the severity of these problems is not
yet fully known, it appears that the HB and HC grids
are not optimal grid staggerings for the hexagonal grid
system (Purser 1998). In this paper we will focus on
the Z- and ZM-grid staggerings.

In RR, the ZM grid and Z grid were found to be

consistent in the sense that when the discrete divergence
and curl operators are applied to the discrete momentum
equation, the Z-grid vorticity-divergence equations re-
sult. As discussed by RR, on a grid of hexagons the
ZM grid has twice as many momentum points as mass
points. This immediately implies that the velocity field
is resolved on a finer mesh than the mass field. The
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ramifications of resolving the prognostic variables at
different resolutions are unclear. Ringler and Randall
(2002) showed that the Z grid and ZM grid are equiv-
alent in terms of their ability to conserve fundamental
quantities such as mass, potential enstrophy, and total
energy. The purpose of this paper is to explore more
fully the relationship between the ZM grid and the Z
grid, to determine if the ZM grid is, in fact, an attractive
alternative to the Z grid.

This work is largely an extension of RR and for brev-
ity we refer to that work frequently. In section 2 we
provide a brief summary of the governing equations and
highlight the consistency between the Z grid and the
ZM grid. In section 3 we analyze the physical modes
of the Z grid and ZM grid, and in section 4 we analyze
the effect of resolving the velocity field at a higher level
than the mass field in the ZM-grid system. The two grid-
staggering systems are compared and contrasted in sec-
tion 5. Also in section 5, we compare the ZM grid to
another grid-staggering system proposed by Adcroft et
al. (1999) that makes use of extra momentum points.

2. The equations, variables, and grids

a. The continuous equations

The nonlinear shallow-water equations have the form

]
V 5 2( f 1 z)k 3 V 2 =[K 1 g(h 1 h )], (1)s]t

]h
5 2= · (hV). (2)

]t

Here V is the horizontal velocity vector, z is the relative
vorticity, f is the Coriolis parameter, g is the gravita-
tional constant, K is the kinetic energy, h is the fluid
depth, and hs is the surface topography. Alternatively,
we can take the curl and divergence of (1) to generate
equations for the vorticity and divergence:

]h
5 2= · (hV), (3)

]t

]d
25 k · = 3 (hV) 2 ¹ [K 1 g(h 1 h )]. (4)s]t

Here h [ f 1 z and d [ = ·V is the divergence. The
vector momentum formulation and the vorticity-diver-
gence formulation are equivalent given the appropriate
boundary conditions.

b. The grid and discrete equations

We will discretize the shallow-water equations on a
grid composed of perfect hexagons. The distance be-
tween grid-cell centers is d and the area of each cell is
Ai.

By analogy to the continuous momentum formulation
shown in (1) and (2), we express the discrete form of
the shallow-water equations as follows:

]Vc 5 2h k 3 V 2 (=K )c c c]t

2 [=g(h 1 h )] , (5)s c

]hi 1 (= · hV) 5 0. (6)i]t

The momentum equation is defined at every grid-cell
corner, while the mass equation is defined at every grid-
cell center; this is the ZM grid introduced by RR. The
subscript c denotes quantities defined at the cell corners,
while the subscript i denotes quantities defined at the
grid-cell centers. An overbar denotes quantities that are
averaged from cell centers to the cell corners. The dis-
crete gradient and divergence operators are both defined
in RR.

If we apply the discrete divergence operator [RR, Eq.
(2)] and curl operator [RR, Eq. (6)] to (5), we can con-
vert the vector momentum formation to the scalar vor-
ticity-divergence formulation:
]hi 5 2[= · (h V )] , (7)c i]t

]di 25 [k · = 3 (h V )] 2 {¹ [K 1 g(h 1 h )]} . (8)c i s i]t

The discrete form of the scalar formulation bears a strik-
ing resemblance to the continuous form [Eqs. (3) and
(4)]. This is true because the actions of the discrete
gradient, divergence, and curl operators are faithful to
their respective continuous analogs. In particular, the
vector identity = 3 =K 5 0 holds in the discrete case.
The prognostic variables vorticity, divergence, and mass
are all defined at the grid-cell centers; this is the Z grid
introduced by Randall (1994).

When moving from the vector formulation to the sca-
lar formulation, the Laplacian operator appears. The La-
placian operating on a scalar field is defined as

L(K) 5 = ·=K (9)

in both the continuous system and the discrete system.
We are not free to choose the discrete form of the La-
placian operator because it is defined by the gradient
and divergence operators. With the gradient and diver-
gence operators defined in RR, the Laplacian operator
has the form

1
[L(K )] 5 (K 1 K 1 K 1 K 1 K0 1 2 3 4 5Ï3A0

1 K 2 6K ), (10)6 0

where K1 through K6 are the immediate neighbors of
K0. The corresponding stencil is shown in Fig. 2.

3. Physical modes of the linearized shallow-water
equations

a. The linearized equations

If we linearize (1) and (2) about a state of rest, we
obtain
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FIG. 2. Stencil for the second-order-accurate Laplacian operator on
the hexagonal grid.

FIG. 3. A Cartesian coordinate system is centered on grid cell 0.
The variable d is the distance between grid-cell centers.

]
V 1 f k 3 V 1 g=h 5 0, (11)

]t

]h
1 H= · V 5 0, (12)

]t

where H is the mean fluid depth. The corresponding
linearized vorticity-divergence system of equations has
the form

]d
22 fz 1 g¹ h 5 0, (13)

]t

]z
1 fd 5 0, (14)

]t

]h
1 Hd 5 0. (15)

]t

b. The continuous case

If we assume wave solutions to the continuous system
described by (13), (14), and (15), we obtain the familiar
result

2
v

2 2 25 1 1 l (k 1 l ), (16)1 2f

where l 5 ( )/ f . Equation (16) accounts for theÏgH
two inertia–gravity modes; the geostrophic solution, v
5 0, is the third mode.

c. The discrete case

The linearized discrete vorticity-divergence system of
equations is identical in form to (13), (14), and (15),

except we use (10) as the discrete approximation of the
Laplacian. We look for wave solutions of the form

ivt i(kx 1ly )p qh 5 ĥe e , (17)
ivt i(kx 1ly )p qd 5 d̂e e , (18)
ivt i(kx 1ly )p qz 5 ẑe e , (19)

to the discrete analogs of (13), (14), and (15); this is
the Z-grid system. In the discrete system, xp and yq can
take only certain values. Referring to Fig. 3, we can
write

x 5 pd, (20)p

qd
y 5 . (21)q Ï3

Integer and half-integer values of p and q are sufficient
to specify the locations of all cell centers and all cell
corners.

If we substitute (17), (18), and (19) into the discrete
analogs of (13), (14), and (15), we find that

2 2 Ï3ldv 8 l kd kd
2 25 1 1 sin 1 sin 11 2 1 2 1 2 1 2[f 3 d 2 4 4

Ï3ldkd
21 sin 2 1 . (22)1 2]4 4

See appendix A for the details. Equation (22) accounts
for the two inertia–gravity modes. The geostrophic
mode, v 5 0, is also a solution of the discrete system,
and has already been factored out above. The Z grid
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FIG. 4. The dispersion relation for values of (top) l/d 5 2.0 and (bottom) l/d 5 0.1. Both (left) the continuous solution and (right) the
Z-grid solution are shown.

permits only the three physical modes; no computational
modes exist. A plot of v/ f is shown in Fig. 4 for two
values of l/d: l/d 5 2.0 and l/d 5 0.1.

The nondimensional wavenumbers kd and ld can take
on only certain discrete values. The collection of waves
that exist on the hexagonal grid form a basis that can

be used to completely describe the discrete grid data.
The discrete modes that can exist on the square quad-
rilateral grid can be identified by solving the eigenvalue
problem ¹2f 5 l f with the appropriate boundary con-
ditions. We solve this same eigenvalue problem, but on
a hexagonal grid, in appendix B. The admissible values
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FIG. 5. The circles depict the wavenumbers that can exist on the
Z grid. The diamonds depict the wavenumbers that can exist on the
ZM grid. The inner hexagon that defines the region of the (kd, ld)
plane spanned by the Z-grid modes will be called the Z space. Sim-
ilarly, the outer hexagon will be called the ZM space. The region
between these two spaces will be called the supplemental ZM space.
See appendix B for details on how these modes were obtained.

of kd and ld for the Z grid are shown in Fig. 5 as circles.
As is always the case, modes that are farther away from
the origin are more thinly spaced than modes that are
closer to the origin. The portion of the (kd, ld) plane
spanned by the Z grid modes takes the shape of a hexa-
gon. We refer to the inner hexagon shown in Fig. 5 as
the Z space. In Fig. 4 we have plotted the discrete dis-
persion as a continuous function within the Z space.
Furthermore, we have truncated the continuous solution
to this same region to facilitate the comparison.

Recall that the group velocity is equal to the gradient
of the frequency with respect to the wave vector. The
energy associated with a wave packet is carried through
the system at the group velocity. The continuous system
has the property that energy projected onto any gravity
wave mode will be carried away from the initial dis-
turbance; that is, the group velocity is nonzero for all
wavenumbers. We can infer the group velocity from Fig.
4. The slope of the dispersion relation plotted in Fig. 4
is proportional to the group velocity. Consistent with
the results of Randall (1994), the dispersion relation on
the Z grid is monotonically increasing with wavenumber
and, therefore, the group velocity is positive definite for
all wavenumbers.

The three physical modes of the Z-grid system are
also solutions to the ZM-grid system. From a mathe-
matical perspective, Eqs. (7) and (8) are simply linear
combinations of (5), albeit very special linear combi-
nations. Basic linear algebra allows us to conclude that
the three solutions of the Z-grid system are also solu-
tions of the ZM-grid system.

4. Ramifications of overresolving the velocity in
the ZM-grid system

a. Determining the ZM-grid wavenumber space

Since the Z system has an unstaggered grid for mass,
vorticity, and divergence, the resolved wavenumber
space is identical for all three prognostic variables. This
wavenumber space is the Z space and is shown by the
inner hexagon in Fig. 5.

The ZM system’s velocity equation populates a larger
wavenumber space. This region is depicted by the outer
hexagon in Fig. 5 and is referred to as the ZM space
(See appendix B for details). The region of wavenumber
space between the Z space and the ZM space will be
referred to as the supplemental ZM space.

For clarity, it is useful to write down the ZM-grid
equations for each of these wavenumber spaces. In the
Z space, the full nonlinear equations are exactly what
we would expect:

]Vc 5 2h k 3 V 2 (=K )c c c]t

2 [=g(h 1 h )] , (23)s c

]hi 1 (= · hV) 5 0. (24)i]t

This is simply (5) and (6) repeated here for clarity.
Within the supplemental ZM space, the equation set is
dramatically different:

]Vc 5 2h k 3 V . (25)c c]t

This can be understood as follows: First, within the
supplemental ZM space there is no mass equation. Sec-
ond, the gradient terms that normally occur on the rhs
of the momentum equation are identically zero in this
part of the wavenumber space. The reason for this is as
follows: The gradient operator is a linear operator. If
we set g 5 L( f ) where L is a linear operator, then we
are guaranteed that the wavenumbers that exist in g are
a subset of those that exist in f ; that is, linear operators
do not create new wavenumbers. Since the spectra of
h, hs, and K are zero in the supplemental ZM space, the
gradient operator will be zero within the supplemental
ZM space. So within the supplemental ZM space we
are left with a ‘‘momentum equation’’ that includes only
inertial oscillations.

Conceptually, we can think of the ZM system as being
composed of two wavenumber spaces: the Z space plus
the supplemental ZM space. Within the Z space, the
dynamics of the ZM-grid system are identical to those
of the Z-grid system. Within the supplemental ZM
space, we are left with a highly simplified system that
is not very similar of the continuous system.

It is important to note that only way energy can enter
the supplemental ZM space is through the nonlinear
terms on the rhs of (23). This implies that within the
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FIG. 6. The fractional amount of kinetic energy contained in the
supplemental ZM space as a function of time for a simulation of 2D
turbulence. Three simulations are shown: control (open circles), el-
liptic filtering once per day (squares), and viscous dissipation (closed
circles).

context of the linearized shallow-water equations, the
ZM system and Z system are identical. We have con-
firmed this finding by integrating the linearized shallow-
water equations using the ZM system. If we use the
same initial conditions, the ZM-grid solution tracks the
Z-grid solution to within roundoff error.

Once energy is projected into the modes that reside
in the supplemental ZM space, two things can happen.
First, for those modes that have nonzero relative vor-
ticity, some of the energy is projected back onto other
modes via the inertial term on the rhs of (25). Second,
for those modes that have zero relative vorticity, the
energy simply accumulates. In the model, the relative
vorticity of a velocity mode depends on the definition
of the curl operator. For the curl operator defined in RR
[their Eq. (6)], all of the velocity modes shown in Fig.
5 have nonzero relative vorticity, with the exception of
the six modes that form the corners of the outer hexagon
in Fig. 5. The easiest way to understand why these six
modes have zero relative vorticity is as follows: The
curl operator, like the gradient operator, is nonzero only
in the Z space. During the application of the curl op-
erator, all modes that reside in the supplemental ZM
space will be aliased (or folded) back into the Z space.
The six velocity modes that form the corners of the outer
hexagon are aliased to the origin (k 5 0 and l 5 0).
These modes disappear after the application of the curl
operator. Since energy can accumulate only in these six
modes, we interpret them as computational modes and
we want to find a technique to limit the amount of energy
that resides in these modes.

b. Controlling the computational modes in the
velocity field

The first technique we use to limit the amount of
energy in the supplemental ZM space can be called a
filtering method. Given a velocity field containing en-
ergy in the supplemental ZM space, we first diagnose
the vorticity and divergence fields. We then invert the
elliptic equations to determine the streamfunction and
velocity potential. [See RR Eqs. (10)–(14) for more de-
tails.] By differentiating these, we obtain a new velocity
field that is the same as the original velocity field minus
the energy contained in the supplemental ZM space.
Recall that the scalar fields and gradient operator have
zero amplitude in the supplemental ZM space. This fil-
tering technique is equivalent to prognosing vorticity
and divergence as opposed to the velocity; the filter is
the Z-grid discretization.

The second technique is a dissipation method based
on the discretization of the Laplacian of the velocity vec-
tor. Some form of viscous dissipation is required to con-
trol the downscale cascade of enstrophy and/or energy.
In the two-dimensional shallow-water equations, dissi-
pation of small-scale enstrophy is required to allow the
upscale cascade of energy. Once formulated, the Lapla-
cian operator is equally applicable to three-dimensional

and two-dimensional simulations. The form of the dis-
sipation operator used in RR is outlined in appendix C.
This operator produces nonzero results only in the Z-
space region shown in Fig. 5. It is therefore unable to
dissipate the computational modes in the ZM space. An
alternative formulation that is nonzero in both the Z space
and ZM space is also outlined in appendix C.

In order to test these two techniques, we reran the
2D turbulence simulation described in RR. This simu-
lation uses a doubly periodic f plane and ‘‘white-noise’’
initial conditions on vorticity, divergence, and fluid
depth. These simulations require some type of small-
scale dissipation in order to allow the upscale cascade
of energy. The control simulation uses the same ¹6 op-
erator as used in RR (as outlined in appendix C). The
elliptic filtering experiment uses this ¹6 operator and,
in addition, truncates the smallest velocity scales by the
‘‘filtering’’ method outlined above. The dissipation ex-
periment uses an alternative formulation of the ¹6 op-
erator (as outlined in appendix C). We integrated each
simulation for 10 simulated days. After each time step
we determined the amount of kinetic energy contained
in the supplemental ZM space. Figure 6 shows results
from three simulations. The top curve is the amount of
energy contained in the supplemental ZM space from
the control simulation. After 10 days, 2% of the total
kinetic energy in contained in this part of the wave-
number space. As is apparent from the figure, this curve
is leveling off and asymptotes to a value of about 2.7%
after about 100 days. The second curve shows what
happens when we replace the velocity field with the
filtered velocity field once per day. We find that after
10 simulated days less than 0.05% of the total kinetic
energy is contained in the supplemental ZM space. The
third curve shows what happens if we use an alternative
formulation of the dissipation operator. After 10 days
we find that less than 0.10% of the kinetic energy resides
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in the supplemental ZM space. Both the filtering tech-
nique and the dissipation technique are able to limit the
amount of energy that accumulates in the supplemental
ZM space. Furthermore, both of these methods still yield
appropriate energy and enstrophy spectras discussed in
RR (not shown).

We have also performed several ‘‘dirac-delta forcing
experiments’’ in another attempt to force these com-
putational modes. In these experiments the fluid is in
geostrophic balance at t # 0 and the system is inviscid
in the sense that we do not impose any explicit dissi-
pation. At t 5 0 we impose a single-point momentum
forcing of magnitude 1.0 m s21 day21 in the x direction.
This forcing is held constant during the integration. This
is equivalent to imposing a dirac-delta forcing to the
momentum equation. Since the transform of the dirac-
delta forcing is white, the forcing will project onto all
the velocity modes shown in Fig. 5. Similar to the 2D
turbulence experiments above, we diagnostically deter-
mine the amount of energy contained in the supple-
mental ZM space. For either the basic-state fluid at rest
or flow in the x direction, we find that ;0.5% of the
kinetic energy is contained in the supplemental ZM
space after 25 days of integration. We also performed
these same experiments using the Z-grid formulation
and find that the ZM solution and the Z solution are
compatible.

5. Discussion and conclusions

We have analyzed the shallow-water equations on a
hexagonal grid using both the vorticity-divergence for-
mulation and the momentum formulation. When using
the discrete vorticity-divergence form of the equations,
we use the unstaggered Z grid (Randall 1994). When
using the discrete momentum form of the equations, we
use the ZM grid in which scalars are defined at grid-
cell centers and vectors are defined at all grid-cell cor-
ners. As opposed to other staggering systems on the
hexagonal grid (e.g., Mesinger 2000), we find that the
Z and ZM grids both exhibit a monotonic increase in
wave phase speed with increasing total wavenumber
(Fig. 4), so that all waves have nonzero group velocities.
Furthermore, the problems identified by Nickovic and
Mesinger (discussed in Purser 1998) regarding nonsta-
tionary geostrophic modes and asymmetric gravity wave
propagation on the HB and HC grids are not present on
the Z grid or the ZM grid. The Z grid and ZM grid do
not show these problems for two reasons. First, the Z
and ZM grids each fully exploit the isotropy of the
hexagonal grid. Second, the Z and ZM grids require no
spatial averaging of variables during the course of in-
tegrating the linearized shallow-water equations.

The ZM grid has twice as many velocity points as
mass points. As a result, the velocity field resolves a
larger wavenumber space than the mass field (Fig. 5).
The portion of the wavenumber space resolved by the
Z grid was referred to as the Z space. The portion of

the wavenumber space resolved by the ZM grid but not
resolved by the Z grid is referred to as the supplemental
ZM space in Fig. 5. The discrete dynamics in the ZM
space are severely truncated and are not particularly
representative of the continuous shallow-water equa-
tions.

In a simulation of 2D turbulence on an f plane, we
showed that the amount of kinetic energy that accu-
mulates in the supplemental ZM space remains small.
After 10 days, only 2.0% of the fluid’s kinetic energy
was contained in the supplemental ZM space (Fig. 6).
After 100 days, this value asymptotes to 2.7%. Fur-
thermore, we demonstrated that there are at least two
viable techniques to limit even this small amount of
energy from existing in the supplemental ZM space.
First, we showed that by inverting the divergence and
vorticity to obtain the velocity potential and stream-
function, respectively, we could obtain a new velocity
field that contained no energy in the supplemental ZM
space. Second, we demonstrated that an alternative for-
mulation of the dissipation operator was also able to
limit the amount of energy in the supplemental ZM
space.

The use of extra momentum points in order to im-
prove the simulation of the physical modes of geo-
strophic adjustment is not unprecedented. Adcroft et al.
(1999) combine the C-grid and D-grid staggerings on a
quadrilateral grid to produce a simulation of the geo-
strophic adjustment process similar to the Z grid. The
redundant momentum points result in computational
modes. Adcroft et al. (1999) find that the computational
modes take the form of inertial oscillations, and propose
a time differencing scheme to damp these modes.

There are important differences, however, between
the method outlined in Adcroft et al. (1999) and the ZM
grid. First, while we have generalized the ZM-grid stag-
gering to other geometries (to be discussed elsewhere),
we have focused here on the hexagonal grid. Adcroft
et al. (1999) focus on the quadrilateral grid. In addition
to using different grid geometries, the two methods
place the wind vectors at different locations. Adcroft et
al. (1999) places wind vectors at the midpoints of grid-
cell walls, whereas the ZM grid places wind vectors at
the grid-cell corners. And finally, the scheme outlined
by Adcroft et al. (1999) absolutely requires some meth-
odology to limit the growth of the computational modes.
While the ZM grid certainly requires continued vigorous
testing, to date we have found no influence due to ov-
erresolving the velocity field on the stability of the sim-
ulation.

Overall, our findings lead us to conclude that both
the Z- and ZM-grid staggerings on the hexagonal grid
are excellent choices for finite-difference models. The
Z-grid discretization does an exceptional job of mod-
eling the physical modes. The ZM grid does an equally
good job of simulating the physical modes. The ZM-
grid system includes a supplemental wavenumber space
due to its use of twice as many velocity points as mass
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points. The obvious advantage of the ZM grid over the
Z grid is computational efficiency. Since the ZM-grid
system prognoses velocity instead of vorticity and di-
vergence, the elliptic equations required with the Z-grid
system are not required. In atmospheric modeling, for
which the horizontal domain is both singly connected
and periodic, Heikes and Randall (1995a,b) have im-
plemented multigrid techniques that largely mitigate the
computational burden imposed by these elliptic equa-
tions. We would still expect some computational ad-
vantage of the ZM grid over the Z grid in atmospheric
modeling, particularly in models implemented on mas-
sively parallel machines (order 500 nodes or more)
where multigrid techniques tend to scale poorly.

In the context of ocean modeling, the arguments for
the ZM grid over the Z grid are more compelling. The
implementation of the Z-grid elliptic equations in mul-
tiply connected ocean basins is complicated and, likely,
computationally expensive. It would seem that the ZM
grid is particularly well suited for ocean general cir-
culation modeling.
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APPENDIX A

Linear Modes of the Z-Grid Model

The discrete transformed equations have the form

ˆvd̂ 1 i f ẑ 1 igLĥ 5 0, (A1)

2i f d̂ 1 vẑ 1 0 5 0, (A2)

2iHd̂ 1 0 1 vĥ 5 0. (A3)

Here the  symbol represents the transformed variable
and L̂ is the transform of the discrete Laplacian shown
in (10). If we set the determinant of this system to zero,
we obtain the formal dispersion relation of

2
v ˆ5 1 2 gHL. (A4)1 2f

As described in Randall (1994), on the Z grid the dis-
crete dispersion relation is completely determined by
the discrete Laplacian. Referring to Fig. 3, we can re-
write (10) as

1
L(h) 5 [(h 2 h ) 2 (h 2 h ) 1 (h 2 h )1 0 0 4 2 0Ï3A0

2 (h 2 h ) 1 (h 2 h ) 2 (h 2 h )].0 5 3 0 0 6

(A5)

We find L̂ by substituting (17) into the rhs of (A5).
Focusing on the first term on the rhs of (A5) we find

kd
ikd 0 ikd /2(h 2 h ) 5 ĥ(e 2 e ) 5 2iĥe sin . (A6)1 0 1 22

Similarly, the transform of second term of the rhs of
(A5) is

0 2ikd2(h 2 h ) 5 2ĥ(e 2 e )0 4

kd
2ikd /25 22iĥe sin . (A7)1 22

Equations (A6) and (A7) can be combined as

kd kd
ikd /2 2ikd /22iĥe sin 2 2iĥe sin1 2 1 22 2

kd
25 24ĥ sin . (A8)1 22

The transform of the third and fourth terms on the rhs
of (A5) reduces to

(h 2 h ) 2 (h 2 h )2 0 0 5

Ï3ldkd
25 24ĥ sin 1 , (A9)1 24 4

and, similarly, the last two terms on the rhs of (A5)
reduce to

(h 2 h ) 2 (h 2 h )3 0 0 6

Ï3ld2kd
25 24ĥ sin 1 . (A10)1 24 4

We can then write L̂ as

Ï3ld28 kd kd
2 2L̂ 5 sin 1 sin 1

2 1 2 1 2[3d 2 4 4

Ï3ldkd
21 sin 2 1 , (A11)1 2]4 4

where we have used the relation of A0 5 d/2. Sub-Ï3
stituting (A11) into (A4) yields (22).

APPENDIX B

Modes of the Hexagonal Grid

We solve the eigenvalue problem
2¹ f 5 l f , (B1)

where f is a scalar function, to determine the set of
modes that can exist on the hexagonal grid. We chose
this eigenvalue problem for several reasons. First, since
the Laplacian operator is self-adjoint, we are guaranteed
that the eigenvalues will be real and that the eigenvec-
tors will be orthogonal and will form a complete basis
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FIG. B1. The grid points for the Z grid and the ZM grid. The Z grid is symmetric with respect to
rotations of 608. The ZM grid is symmetric with respect to rotations of 1208. The grid points along
directions of symmetry are shown.

(Greenberg 1978). This means that if we describe f in
terms of these eigenvectors, we will have a complete
description of f . Second, (B1) is ubiquitous in the mod-
eling of vibrational and wave phenomena. By assuming
wavelike solutions to (B1), we find that the eigenvectors
have the structures of waves. On the plane, (B1) can be
used as a means of determining discrete Fourier modes.
On the sphere, the counterpart of (B1) is used to find
the spherical harmonics.

The discrete analog to (B1) is
2¹ f 5 l f ,(p,q) (p,q) (B2)

where (p, q) describes the location of a grid point as
described in (20) and (21). If we assume wavelike so-
lutions for f (p,q) of the form

i(kx ly )1p qf 5 f̂e (B3)

in a fashion similar to (17), we find that (B2) reduces to

Ï3ld28 kd kd
2 2sin 1 sin 1

2 1 2 1 2[3d 2 4 4

Ï3ldkd
21 sin 2 1 5 l. (B4)1 2]4 4

See appendix A for the details of how (B4) is derived.
Note that the three waves in (B4) can be interpreted as
wave vectors ((kd/2)e1, (kd/4)e1 1 ( ld/4)e2, (kd/4)e1Ï3
1 ( ld/4)e2). These waves point across cell walls;Ï3
that is, the waves point along the directions of symmetry
of the hexagonal grid. We call these three directions (a,
b, g), respectively.

Only discrete values of kd and ld are permitted on
the hexagonal grid; our primary purpose within this ap-
pendix is to determine these values. These values are,
of course, strongly influenced by the boundary condi-

tions. Since our immediate application is the atmo-
sphere, periodic boundary conditions in all directions
are most appropriate. We therefore require solutions of
(B4) to be periodic in the a, b, and g directions.

Focusing on the first term on the lhs of (B4), we note
that

kd 1
2sin 5 [1 2 cos(kd)]. (B5)1 22 2

The angular distance traveled by the wave between ad-
jacent grid points is kd. In order for this wave to be
periodic, we require

kd[(i 1 i ) 2 i] 5 62p (i $ 2). (B6)a a

Stated in words, we require the angular distance traveled
between grid point i and i 1 ia to be 62p. The variable
ia is an arbitrary integer. We require ia to be greater
than or equal to 2 since at least three independent grid
points are required to resolve a wave. Simplifying (B6)
and writing corresponding conditions on the other two
terms in (B4), we obtain the following system of equa-
tions:

62p
kd 5 (i $ 2), (B7)aia

Ï3ldkd 62p
1 5 (i $ 2), (B8)b2 2 ib

Ï3ldkd 62p
2 1 5 (i $ 2). (B9)g2 2 ig

For a given kd and ld to be a possible solution of (B4),
we require (B7), (B8), and (B9) to be satisfied. Equa-
tions (B7), (B8), and (B9) describe lines in the (kd, ld)
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FIG. C1. This figure outlines two discretizations of the Laplacian
of a vector. The vector velocity field is defined at the circles, while
the divergence, d, and vorticity, z, are defined at the squares. (a)
Divergence and vorticity are computed by taking the line integral of
V around each hexagon. (b) Divergence and vorticity are computed
by integrating around each triangle. The Laplacian of V can then be
approximated at the center velocity point by fitting a plane through
the three divergence and vorticity data points.

plane. The values of kd and ld that simultaneously sat-
isfied by these three equations are shown as circles in
Fig. 5.

In addition to finding the set of modes that can exist
on the set of points defined by the centers of the hexa-
gons (the Z grid), we also want to determine the set of
modes that can exist on the set of points defined by the
corners of the hexagons (the ZM grid). The grid points
along the directions of symmetry that define the Z grid
and ZM grid are shown in Fig. B1. We see that there
are three differences between the two grid structures.
First, the ZM grid is rotated 308 relative to the Z grid.
Second, the ZM grid points are 1/ closer than the ZÏ3
grid points. And finally, every third grid point on the
ZM grid is omitted. The distances between adjacent ZM
grid points follow the sequence {. . . . . . , d/ , 2d/Ï3

, d/ , 2d/ , . . . . . .}; this corresponds to a uni-Ï3 Ï3 Ï3
form grid with every third grid point missing. Given
these relationships between the Z grid and the ZM grid,
we can infer the ZM-grid modes: these modes are ro-
tated 308 relative to the Z grid and ‘‘stretched’’ by a
factor of . These modes are shown as diamonds inÏ3
Fig. 5.

Figure 5 also provides a nice interpretation of the
ZM-grid computational modes. Recall that scalar data,
such as relative vorticity, is defined on the Z grid, while
velocity is defined on the ZM grid. So the circles in Fig.
5 define the vorticity modes (called the Z space), while
the diamonds define the velocity modes (called the ZM
space). Upon application of the curl (or divergence)
operator, all of the velocity modes that lie outside the
region defined by Z space will be aliased (or folded)
back into the Z-space region. The six velocity modes
that lie farthest away from the origin (these modes define
the corners of the outer hexagon in Fig. 5) are folded
back to the origin. These modes are aliased to the wave-
number k 5 0 and l 5 0 and are, thus, ‘‘invisible’’ to
the vorticity field.

APPENDIX C

Formulations of the Dissipation Operators

This appendix discusses two discretizations of the
Laplacian of a vector. First, we outline the method used
in RR. Second, we discuss an alternative formulation
of the dissipation operator that acts to dissipate the
smallest scales of motion present in the discrete velocity
field. Both formulations use the vector identity

2¹ V 5 =d 1 = 3 z (C1)

as the definition of the Laplacian of a vector. In RR, we
chose the stencil shown in Fig. C1a to discretize (C1).
The merit of this formulation is that it uses the same
discrete operators that are used in the rest of the shallow-
water model. The divergence, d, and relative vorticity,
z, are computed at the cell centers by applying the dis-
crete divergence and curl operators shown in RR’s Eqs.

(2) and (6). The gradient of d and z is the slope of the
plane fit through the three data points. The one problem
with this formulation is that it only resolves scales that
exist inside the Z space shown in Fig. 5; the operator
is identically zero in the supplemental ZM space. We
construct higher-order operators, such as ¹6, by recur-
sive application of the ¹2 operator. We use a coefficient
of 1.0 3 1024 m6 s21 with this ¹6 operator, which is
used in the control simulation.

Alternatively, we can discretize (C1) on the smallest
stencil possible in order to capture the smallest varia-
tions present on the grid. The stencil is shown in Fig.
C1b. Given V at the cell corners, we compute d and z
for each triangle by computing the area-normalized line
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integral of V · r and V · t around the perimeter of each
triangle. This results in an approximation of d and z at
the squares shown in Fig. C1b. We then approximate
the gradients of d and z as the slopes of the planes fit
through these three points. This dissipation operator has
several merits worth noting. First, it uses the minimum
number of points possible in order to approximate the
Laplacian in two-space. As a result of using the mini-
mum number of points, the discrete operators captures
or ‘‘sees’’ the smallest scales resolved by the grid. We
use a coefficient of 1.0 3 1020 m6 s21 for this formu-
lation of the ¹6 operator.
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