
absoft
development tools and languages

2781 Bond Street
Rochester Hills, MI 48309
U.S.A.
Tel: (248) 853-0095
Fax: (248) 853-0108
support@absoft.com

Fortran 77
Reference Manual

All rights reserved. No part of this publication may be reproduced or used in any form by any means, without the prior
written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF WARRANTIES
WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND SPECIFICALLY DIS-
CLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO REVISE THE PROGRAM MATERIAL AND
MAKE CHANGES THEREIN FROM TIME TO TIME WITHOUT OBLIGATION TO NOTIFY THE PUR-
CHASER OF THE REVISION OR CHANGES. IN NO EVENT SHALL ABSOFT BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
PURCHASER'S USE OF THE PROGRAM MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with RE-
STRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. The
contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. ABSOFT AND ITS
LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS
AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE
LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF ABSOFT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSE-
QUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Absoft and
its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of the form of the action
(whether in contract, tort, (including negligence), product liability or otherwise), will be limited to $50.

Absoft, the Absoft logo, Fx, and MacFortran are trademarks of Absoft Corporation
Apple, the Apple logo, and HyperCard are registered trademarks of Apple Computer, Inc.
CF90 is a trademark of Cray Research, Inc.
IBM, MVS, and RS/6000 are trademarks of IBM Corp.
Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MetroWerks and CodeWarrior are trademarks of MetroWerks, Inc.
MS-DOS is a trademark of Microsoft Corp.
Pentium is a trademark of Intel Corp.
PowerPC is a trademark of IBM Corp., used under license.
Sun and SPARC are trademarks of Sun Microsystems Computer Corp.
UNIX is a trademark of the Santa Cruz Operation, Inc.
VAX and VMS are trademarks of Digital Equipment Corp.
Windows NT, Windows 95, Windows 3.1, and Win32s are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 1991- 2000 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America.

i

FORTRAN 77 Language Reference

Contents

CHAPTER 1 INTRODUCTION... 1

Introduction to This Manual ... 1

Introduction to Absoft Fortran 77 .. 1

Compatibility .. 1

Conventions Used in this Manual ... 2

CHAPTER 2 THE FORTRAN 77 PROGRAM ... 3

Character Set .. 3

Symbolic Names.. 4

Keywords... 4

Labels... 5

Statements ... 5
Executable Statements ... 6
Nonexecutable Statements... 6
Statement Format... 6

FORTRAN 77 ANSI Standard ... 7
Fortran 90 Free Source Form.. 9
VAX FORTRAN Tab-Format .. 10
IBM VS FORTRAN Free-Form ... 11

Multiple Statement Lines... 11
Statement Order ... 12
INCLUDE Statement... 12
Conditional Compilation Statements ... 13

Data Items ... 14
Constants ... 15

Character Constant.. 15
Logical Constant ... 16
Integer Constant.. 16

Alternate Integer Bases .. 17
Real Constant.. 17
Double Precision Constant.. 18
Complex Constant... 18
Complex*16 Constant... 18
Hollerith Constant... 19

Variables.. 19
Arrays .. 19

Array Declarator ... 19
Array Subscript ... 21
Array Name... 22

Substrings .. 22

ii

Storage ... 23
Numeric Storage Unit .. 23
Character Storage Unit... 24
Storage Sequence... 24
Storage Association ... 24
Storage Definition.. 25

CHAPTER 3 EXPRESSIONS AND ASSIGNMENT STATEMENTS...................27

Arithmetic Expressions .. 27
Data Type of Arithmetic Expressions.. 28
Arithmetic Constant Expression .. 29

Character Expressions ... 29

Relational Expressions ... 30

Logical Expressions .. 31

Operator Precedence .. 32

Arithmetic Assignment Statement .. 33

Logical Assignment Statement .. 33

Character Assignment Statement ... 33

ASSIGN Statement ... 34

Memory Assignment Statement .. 34

CHAPTER 4 SPECIFICATION AND DATA STATEMENTS37

Type Statements.. 37
Arithmetic and Logical Type Statements... 37
Character Type Statement.. 39

DIMENSION Statement .. 40

COMMON Statement .. 40

EQUIVALENCE Statement .. 41
Equivalence of Arrays ... 42
Equivalence of Substrings ... 42
COMMON and EQUIVALENCE Restrictions ... 42

EXTERNAL Statement.. 42

IMPLICIT Statement... 43

INLINE Statement.. 44

INTRINSIC Statement... 44

iii

NAMELIST Statement .. 45

PARAMETER Statement.. 46
Special use of the PARAMETER statement.. 46

POINTER Statement ... 47

RECORD Statement .. 47

SAVE Statement ... 48

Automatic Statement.. 48

STRUCTURE Declaration .. 49

UNION Declaration.. 50

VALUE Statement.. 51

VOLATILE Statement... 52

DATA Statement .. 52
Implied DO List In A DATA Statement.. 54

CHAPTER 5 CONTROL STATEMENTS .. 55

GOTO Statements .. 55
Unconditional GOTO .. 55
Computed GOTO .. 55
Assigned GOTO .. 55

IF Statements .. 56
Arithmetic IF ... 56
Logical IF .. 56
Block IF ... 56

Loop Statements ... 57
Basic DO loop ... 57

DO Loop Execution .. 58
Transfer into Range of DO Loop.. 58

DO WHILE ... 59
Block DO... 59
END DO and REPEAT ... 60
EXIT and LEAVE statements ... 60
CYCLE statement.. 61

CONTINUE Statement .. 61

BLOCK CASE.. 61
Execution of a block CASE statement... 62
Block CASE Example ... 63

STOP Statement ... 63

PAUSE Statement .. 63

iv

END Statement ... 64

CHAPTER 6 INPUT/OUTPUT AND FORMAT SPECIFICATION.....................65

Records .. 65
Formatted Record... 65
Unformatted Record... 66
Endfile Record ... 66

Files .. 66
File Name... 66
File Position ... 66
File Access... 66
Internal Files .. 68
File Buffering... 68

I/O Specifiers... 68
Unit Specifier ... 68
Format Specifier... 69
Namelist Specifier.. 70
Record Specifier .. 70
Error Specifier.. 70
End of File Specifier .. 70
I/O Status Specifier .. 71

I/O List... 71
Implied DO List In An I/O List ... 71

DATA TRANSFER STATEMENTS .. 72
READ, WRITE AND PRINT.. 72
ACCEPT AND TYPE ... 73
Unformatted Data Transfer .. 73
Formatted Data Transfer .. 73
Printing .. 73

OPEN Statement... 74

CLOSE Statement .. 77

BACKSPACE Statement ... 77

REWIND Statement ... 78

ENDFILE Statement .. 78

INQUIRE Statement .. 78

ENCODE and DECODE Statements.. 81

Giving a FORMAT Specification .. 82

FORMAT and I/O List Interaction... 83

Input Validation.. 84

v

Integer Editing.. 84
I Editing ... 84
B, O, and Z Editing.. 85

Floating Point Editing .. 85
F Editing .. 86
E and D Editing ... 86
G Editing ... 87
P Editing .. 87

Character and Logical Editing.. 88
A Editing ... 88
L Editing.. 88

Sign Control Editing .. 89

Blank Control Editing.. 89

Positional Editing ... 89
X Editing ... 89
T, TL, and TR Editing ... 89
Slash Editing.. 90
Dollar Sign and Backslash Editing .. 90

Colon Editing .. 90

Apostrophe and Hollerith Editing .. 90
Apostrophe Editing.. 91
H Editing ... 91

Q Editing ... 91

List Directed Editing .. 91
List Directed Input... 92
List Directed Output .. 93

Namelist Directed Editing.. 93
Namelist Directed Input... 93
Namelist Directed Output .. 95

CHAPTER 7 PROGRAMS, SUBROUTINES, AND FUNCTIONS...................... 97

Programs ... 97

Subroutines ... 97
Subroutine Arguments... 98

Functions ... 98
External Functions... 99
Statement Functions .. 99
Intrinsic Functions ... 100

ENTRY Statement.. 100

RETURN Statement... 100

vi

Passing Procedures in Dummy Arguments .. 101

Passing Return Addresses in Dummy Arguments... 101

Common Blocks .. 101

Intrinsic Functions Notes ... 112
Argument Ranges and Results Restrictions ... 115

BLOCK DATA ... 116

GLOBAL DEFINE ... 116

INLINE Statement.. 117

APPENDIX A USING STRUCTURES AND POINTERS119

Common Use of Structures .. 119

Common Use of Pointers.. 120
Pointers and Optimization.. 121
Pointers as Arguments ... 122

Mixing Pointers and Structures .. 122

Functions Which Return Pointers... 123
Pointers to C strings ... 123

Pointer-based Functions... 124

APPENDIX B ERROR MESSAGES ...125

Runtime I/O Error Messages... 125

Compiler Error Messages — Sorted Alphabetically ... 128

Compiler Error Messages — Sorted Numerically... 149

APPENDIX C ASCII TABLE ...153

APPENDIX D BIBLIOGRAPHY ..157

APPENDIX E TECHNICAL SUPPORT ...160

APPENDIX F VAX EXTENSIONS ...163

VAX FORTRAN Statement Extensions ... 163

VAX FORTRAN Data Type Extensions... 164

VAX FORTRAN Intrinsic Function Extensions.. 164

vii

Other VAX FORTRAN Extensions.. 164

APPENDIX G LANGUAGE SYSTEMS FORTRAN EXTENSIONS 167

STRING... 167

POINTER.. 167

LEAVE .. 167

GLOBAL... 167

CGLOBAL.. 168

PGLOBAL .. 168

CEXTERNAL... 168

PEXTERNAL ... 168

INT1, INT2, and INT4 ... 168

JSIZEOF ... 168

%VAL, %REF, and %DESCR... 168

Language Systems Include Files.. 169

1

FORTRAN 77 Language Reference Manual

CHAPTER 1

Introduction

INTRODUCTION TO THIS MANUAL

This is the common reference manual for the Absoft Fortran 77 implementations on both
Intel and PowerPC CPUs. Operating systems supported on the platforms include:
Windows (95, 98, 2000, and NT), Linux/UNIX, and MacOS. Absoft Fortran 77
compilers in these environments are 100% source compatible and most control options
are identical. Options relevant only to a specific environment are noted as such.

INTRODUCTION TO ABSOFT FORTRAN 77

Absoft Fortran 77 is a complete implementation of the 1978 ANSI version of the
FORTRAN programming language: FORTRAN 77. The microprocessor-based
computers of today are vastly more powerful and sophisticated than their predecessors.
They offer more RAM, faster clock speeds, advanced scheduling and excellent
networking capabilities at very low prices. As a result, they are quickly replacing
mainframes and workstations since they provide better performance at much lower
prices. This trend is expected to continue indefinitely.

 Absoft Fortran 77 is based on a completely new compiler, designed especially for these
modern CPUs. It is not an evolutionary descendent of older compiler technology. It is a
workstation class compiler offering superior execution speed and complete integration
into modern graphical interface-intensive environments. Absoft Fortran 77 brings a
complete software development tool set with exceptional flexibility and improved ease-
of-use to modern personal computers.

COMPATIBILITY

Absoft Fortran 77 provides excellent compatibility with code developed on mainframes
and workstations. Most popular VAX/VMS statement extensions are accepted, as well as
several from IBM/VS, Cray, Sun, and the new Fortran 90 standard. See the chapter
Porting Code in the ProFortran User Guide for additional compatibility information.

NOTE on Fortran 90: While Fortran 90 is the newest standard, most code in use today is
actually FORTRAN 77. Since 1978, various compiler vendors have endowed FORTRAN
77 with many extensions to the original standard. Code containing such extensions will
not recompile without modification under ANSI F90, because these extensions are not
included in the ANSI Fortran 90 standard. For many users, FORTRAN 77 is still the best
choice for porting, maintaining, and enhancing legacy FORTRAN code. Absoft F90 is
available for users wishing to move to that dialect. Absoft Fortran 77 and Fortran 90 are

2 Introduction

FORTRAN 77 Language Reference Manual

fully link compatible, allowing proven legacy FORTRAN 77 routines to be easily
combined with new Fortran 90 routines into a single application.

CONVENTIONS USED IN THIS MANUAL

There are a few typographic and syntactic conventions used throughout this manual for
clarity.

• [] square brackets indicate that a syntactic item is optional.

• … indicates a repetition of a syntactic element.

• Term definitions are underlined.

• -option font indicates a compiler option.

• Italics is used for emphasis and book titles.

• On-screen text such as menu titles and button names look the same as
in pictures and on the screen (e.g. the File menu).

• The modifier keys on PC keyboards are Shift, Alt, and Control. They
are always used with other keys and are referenced as in the following:

Shift-G press the Shift and ‘G’ keys together
Alt-F4 press the Alt and F4 function keys together
Control-C press the Control and ‘C' keys together

• Unless otherwise indicated, all numbers are in decimal form.

• FORTRAN examples appear in the following form:

PROGRAM SAMPLE
WRITE(9,*) "Hello World!"
END

• Absoft extensions to FORTRAN 77 are highlighted in gray in this
manual.

3

FORTRAN 77 Language Reference Manual

FORTRAN 77 source programs consist of one program unit called the main program and
any number of program units called subprograms. A program or program unit is
constructed as an ordered set of statements that describes procedures for execution and
information to be used by the FORTRAN 77 compiler during the compilation of a source
program. Every program unit is written using the FORTRAN 77 character set and
follows a prescribed statement line format. A program unit may be one of the following:

• Main program

• Subroutine subprogram

• Function subprogram

• Block Data subprogram

This chapter describes the format of FORTRAN programs, and the data objects that may
be manipulated by them.

CHARACTER SET

The compiler's character set consists of the following 82 characters:

• All uppercase letters (A - Z)

• All lowercase letters (a - z)

• Decimal digits 0 - 9

• The special characters below:

CHAPTER 2

The FORTRAN 77 Program

Character Description
" quotation mark
_ underscore
! exclamation point
\ backslash
< less than
> greater than
% percent

Character Description
+ plus
- minus
* asterisk
/ slash
= equals
. decimal point
, comma

blank
(opening parenthesis
) closing parenthesis
$ dollar sign
' apostrophe

4 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

Any of these characters, as well as the remaining printable ASCII characters, may appear
in character and Hollerith constants (see below).

SYMBOLIC NAMES

A symbolic name is used to identify a FORTRAN 77 entity, such as a variable, array,
program unit, or labeled common block. The first character of a symbolic name must be a
letter. The blank character is not significant in a symbolic name but may be used as a
separator.

The compiler accepts symbolic names of up to thirty-one upper and lower case letters,
digits, underscores and dollar signs. Upper and lower case letters are distinct unless one
of the compiler case fold options (see the chapter Using the Compilers in the
ProFortran User Guide). Symbolic names of greater than 31 characters are acceptable,
but only the first 31 characters are significant to the compiler.

Global symbolic names are known to every program unit within an executable program
and therefore must be unique. The names of main programs; subroutine, function, block
data subprograms; and common blocks are global symbolic names.

Local symbolic names are known only within the program unit in which they occur. The
names of variables, arrays, symbolic constants, statement functions, and dummy
procedures are local symbolic names.

KEYWORDS

A keyword is a sequence of characters that has a predefined meaning to the compiler. A
keyword is used to identify a statement or serve as a separator in a statement. Some
typical statement identifiers are READ, FORMAT, and REAL. Two separators are TO and
THEN.

There are no reserved words in FORTRAN 77, therefore a symbolic name may assume
the exact sequence of characters as a keyword. The compiler determines the meaning of a
sequence of characters through the context in which the characters are used. A surprising
example of a keyword/symbolic name exchange is:

Statement Meaning

DO10I=1,7 Control statement
DO 10 I = 1. 7 Assignment statement

Note that the embedded blanks are not significant nor are they required as separators for
the compiler to determine that the first statement is the initial statement of a DO loop. The

The FORTRAN 77 Program 5

FORTRAN 77 Language Reference Manual

absence of a comma in the second statement informs the compiler that an assignment is
to be made to the variable whose symbolic name is DO10I.

In some instances it may be impossible for the compiler to determine from the context the
meaning the programmer intended. For example:

CHARACTER*5 CHAR
CHAR(2:3) = CHAR(64)//CHAR(2:3)

Such ambiguous contexts should obviously be avoided.

LABELS

A statement label may appear on a FORTRAN 77 statement initial line. Actual placement
of a label on the initial line is governed by rules described later in this chapter in the
section Statement Format. A statement label is used for reference in other statements.
The following considerations govern the use of the statement label:

• The label is an unsigned integer in the range of 1 to 99999.

• Leading zeros and blanks are not significant to the compiler.

• A label must be unique within a program unit.

• A label is not allowed on a continuation line.

• Labels may appear in any numeric order.

The following examples all yield the same label:

1101
1 101
11 01
110 1

The use of labels has no effect on either the ultimate size of the compiled program and/or
its execution speed. However, their inclusion in the source program does increase the
memory required for compilation. Labels are used in FORTRAN 77 as their name
implies: to label statement lines for reference purposes. Excessive unnecessary labels
slow compilation and may even prevent compilation and should therefore be avoided.
Labels that are not referenced in your program have no effect on code generation.

STATEMENTS

Individual statements deal with specific aspects of a procedure described in a program
unit and are classified as either executable or nonexecutable. The proper usage and
construction of the various types of statements is described in the following chapters.

6 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

Executable Statements

Executable statements specify actions and cause the FORTRAN 77 compiler to generate
executable program instructions. There are 3 types of executable statements:

• Assignment statements

• Control statements

• Input/Output statements

Nonexecutable Statements

Nonexecutable statements are used as directives to the compiler: start a new program
unit, allocate variable storage, initialize data, set the options, etc. There are 7 types of
nonexecutable statements:

• Specification statements

• Data initialization statements

• FORMAT statements

• Function defining statements

• Subprogram statements

• Main program statements

• Compiler directives

Statement Format

The FORTRAN 77 Program 7

FORTRAN 77 Language Reference Manual

A FORTRAN statement consists of one or more source records referred to as a statement
line. Historically, a record is equivalent to a card. In current source file formats, a record
is one line of text terminated by an end of record character (generally a carriage return,
line feed, or carriage return-line feed pair). Numerous FORTRAN statement formats are
accepted by using the various compiler options shown in the table below. The “fixed”
source formats are actually modern names for the FORTRAN 77 ANSI Standard source
format.

Format Name Compiler Options
FORTRAN 77 (ANSI Standard) no additional
Fortran 90 Fixed Source Form no additional
Fortran 90 Free Source Form -8
VAX FORTRAN Fixed-Format no additional
VAX FORTRAN Fixed-Format (wide) -W
VAX FORTRAN Tab-Format -V
VAX FORTRAN Tab-Format (wide) -V -W
IBM VS FORTRAN Fixed-Form no additional
IBM VS FORTRAN Free-Form -N112

FORTRAN Source Formats

[Note: The FORTRAN language as described in this manual is the same
regardless of the source format chosen.]

FORTRAN 77 ANSI Standard

A FORTRAN 77 statement line consists of 80 character positions or columns, numbered
1 through 80 which are divided into 4 fields.

The -W compiler option may be used to expand the statement field to column 132.

Field Columns

Statement label 1-5
Continuation 6
Statement 7-72

7-132 (using -W compiler option)
Identification 73-80

132+ (using -W compiler option)

The Identification field is available for any purpose the programmer may desire and is
ignored by the FORTRAN 77 compiler. Historically this field has been used for sequence
numbers and commentary. The statement line itself may exceed the column of the last
field; the compiler ignores all characters beyond the last field.

8 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

There are four types of source lines in FORTRAN 77:

Comment Line – used for source program annotation and formatting. A
comment line may be placed anywhere in the source program and
assumes one of the forms:

• Column 1 contains the character C or an asterisk. The remainder of
the line is ignored by the compiler.

• Column 1 contains an exclamation point. The remainder of the line
is ignored by the compiler.

• The line is completely blank.

• An exclamation point not contained within a character constant
designates all characters including the exclamation point through
the end of the line to be commentary.

• Column 1 contains the character D, d, X, or x and the conditional
compilation -x compiler option is not on.

Comment lines have no effect on the object program and are ignored
by the FORTRAN 77 compiler.

End Line – the last line of a program unit.

• The word END must appear within the statement field.

• Each FORTRAN 77 program unit must have an END line as its last
line to inform the compiler that it is at the physical end of the
program unit.

• An END line may follow any other type of line.

Initial Line – the first and possibly only line of each statement.

• Columns 1 through 5 may contain a statement label to identify the
statement.

• Column 6 must contain a zero or a blank.

• Statement field contains all or part of the statement.

The FORTRAN 77 Program 9

FORTRAN 77 Language Reference Manual

Continuation Line – used when additional characters are required to
complete a statement originating on an initial line.

• Columns 1 through 5 must be blank.

• Column 6 must contain a character other than zero or blank.

• Statement field contains the continuation of the statement.

• There may be only 19 continuation lines per statement, for a total
of 20 lines per statement. Absoft FORTRAN 77 actually accepts
an unlimited number of continuation lines.

Fortran 90 Free Source Form

A Fortran 90 free source form statement line consists of 132 character positions. In this
source format, there are no “fields” in which labels, statements, or comments must
appear.

A statement label must appear before the statement on a line; it may be in any columns:

100 I=123
J=456
200I=123
 3 0 0 I=123
400
 I=123

Comments in Fortran 90 format begin with an exclamation point character “!” in any col-
umn not in character context. The letter C in column 1 does not indicate a comment.

! This entire line is a comment
A=1 !A trailing comment
 ! Blank line
C="ab!cd"!The exclamation point in quotes does not begin a comment

To continue a statement across multiple lines, the ampersand character (&) is used
according to the following rules:

• The “&” as the last non-blank character on a line signifies the line is
continued on the next line. Comment lines may not be continued. A comment,
beginning with “!”, may appear after the “&” when not in character context.

• The “&” as the first non-blank character on the next line will cause
continuation to begin after the “&”. Otherwise, continuation begins with the
first character. When continuing character context, the next line must begin
with a "&" as the first non-blank character.

• The maximum size of a statement is 2640 characters.

10 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

The following valid program demonstrates Fortran 90 continuation:

! Fortran 90 example
character s,&
 t,&
 &u
s="This string &
 &contains NO &
 &ersand symbols" !Comment
t="One ampersand:&&
 &"
 1 &
 0 0 I=1 !This line has label 100

VAX FORTRAN Tab-Format

A VAX FORTRAN tab-format statement line consists of 80 character positions or
columns with fields similar to those in the FORTRAN 77 format. The TAB character is
used to begin the continuation and statement fields rather than having them tied to a
specific column. The tab-format is primarily useful for entering FORTRAN source with
many editors since it is generally easier to hit the TAB key once as opposed to hitting the
space bar multiple times before a statement. A TAB character elsewhere in a FORTRAN
statement is treated as spaces. Tab-format may be freely mixed with fixed format source.

A statement label must appear anywhere on a line before the first TAB character:

1 (TAB) WRITE(*,*) "This line has label 1"
(TAB) WRITE(*,*) "No label on this line"

1 2 3 (TAB) WRITE(*,*) "This line has label 123"

Comments in VAX FORTRAN tab-format begin with a C or asterisk in column 1 or an
exclamation point character “!” in any column not in character context. Having a D or X
in column 1 will also comment an entire line unless the -x compiler option is on for
conditional compilation:

! Full-line comment
(TAB) I=123 ! Statement begins after TAB

D J=456 ! Compiled only with x option

To continue a statement across multiple lines, the continuation line must have a non-zero
digit after the first tab. Note that the initial line can not start with a digit – no FORTRAN
statement begins with a digit:

(TAB) WRITE(*,*) "This line spans
(TAB) 1multiple lines because
(TAB) 2 of the non-zero continuation digit after first
(TAB) 3 tab character on each line"

The -W compiler option will expand the statement field to column 132.

The FORTRAN 77 Program 11

FORTRAN 77 Language Reference Manual

IBM VS FORTRAN Free-Form

An IBM VS FORTRAN free-form statement line consists of 80 character positions or
columns. Although labels and statements may appear in any columns, comments must
begin in column 1. All characters not in character context are folded to lower case as if
the -f compiler option is on.

A statement label must appear before the statement on a line; it may be in any columns:

100 I=123
J=456
200I=123
 3 0 0 I=123
400
 I=123

Comments in IBM VS FORTRAN free-form begin with a quotation mark (") in column
1. The letter C in column 1 does not indicate a comment and blank lines are not permitted
in this source format. The following example has one comment line:

"This line is a comment
A=1
C="abcdef"

To continue a statement across multiple lines, the minus sign character (-) must appear as
the last character of a continued line. If the last two characters of a line are minus signs,
the last one is treated as a continuation character while the other is treated as a minus
sign. A comment may not be continued. There is a limit of 19 continued lines (20 lines
total), however, the total number of characters permitted for a single statement is only
1320. Absoft FORTRAN 77 actually accepts an unlimited number of continuation lines.
The following is an example of IBM VS FORTRAN free-form continuation:

"This comment cannot be continued
WRITE(*,*)"-
This string contains -
no minus signs"
WRITE(*,*) "This string contains --
one minus sign"

Multiple Statement Lines

Multiple statements may be placed on the same line by separating them with a semicolon
(;).

I=10; J=10; N(I,J)=0

12 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

Statement Order

INCLUDE

Statements

and

Comment

Lines

PROGRAM, FUNCTION, SUBROUTINE,

and BLOCK DATA Statements

IMPLICIT NONE Statement

IMPLICIT Statement

NAMELIST,

ENTRY,

and

 FORMAT

Statements

END Statement

DATA

Statements

PARAMETER

Statements
Other

Specification

Statements

Statement Function

Statements

Executable

Statements

Required Statement Order

INCLUDE Statement

This statement is a compiler directive and is provided as a convenience for copying stan-
dard declaration statements, subroutine libraries, and documentation sections directly into
a source file at compile time. The syntax of this statement is:

INCLUDE filespec

where: filespec is a standard file specification presented as a character constant
(i.e. enclosed in quotation marks or apostrophes).

INCLUDE statements may be nested up to 10 files deep.

The FORTRAN 77 Program 13

FORTRAN 77 Language Reference Manual

The -I compiler option, described in the chapter Using the Compilers in the ProFortran
User Guide, is useful for specifying directories and search paths for include files which
may reside in directories other than the current one.

Conditional Compilation Statements

In addition to the previously described limited capability for conditional compilation
available by placing a D or an X in column one, a complete set of compiler directives is
also provided which gives dynamic control over the compilation process. These compiler
directives are specified with a dollar sign ($) in column 1 and take the following forms:

$DEFINE name [=value]
$UNDEFINE name

$PACKON
$PACKOFF

$IF expr
$ELSE
$ELSEIF expr
$ENDIF

$PACKON is used to turn storage compression on for STRUCTURE and UNION definitions.
$PACKOFF is used to turn off storage compression. The default for Absoft Fortran 77
depends on the host machine architecture and operating system and is described in the
Fortran User Guide.

name is the symbolic name of a variable that is used only in conditional compilation
directives. It can have the same name as any variable used in standard FORTRAN
statements without conflict. Conditional compilation variables exist from the point they
are defined until the end of the file unless they are undefined with the $UNDEFINE
directive. value is an integer constant expression that is used to give the variable a value.
If value is not present, the variable is given the value of 1.

expr is any expression using constants and conditional compilation variables which
results in a logical value. These compiler directives operate in a similar manner to the
block IF constructs of FORTRAN 77 (described in the Control Statements chapter).
Also provided is the logical function DEFINED which is used to determine if a variable
has actually been defined. Consider the following:

$IF DEFINED(debug)
WRITE (*,*) “iter=“,iter

$ENDIF

In this case, you are interested in displaying the value of the variable iter only during
the debugging stages of program development. To turn this feature on, all that is required
is to define debug before the conditional compilation clause in the source file:

14 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

$DEFINE debug

A more complicated example:

$DEFINE precision=8

$IF precision .eq. 4
REAL a,b,c,d(100),pi
pi = atan(1.0)*4.0

$ELSEIF precision .eq. 8
DOUBLE PRECISION a,b,c,d(100),pi
pi = datan(1d0)*4d0

$ENDIF
$ENDIF

Note the first $ENDIF which is required to terminate the $ELSEIF clause.

Conditional compilation variables that are not defined can only be referenced as
arguments to the DEFINED function. Any other use will result in a compile error.

Conditional compilation statements are particularly useful for managing large groups of
include files with nested dependencies. Suppose you are using an include file named
"graphics.inc" that declares certain structures which are dependent on another include file
named "types.inc". If you add the statement $DEFINE TYPES at the end of the "types.inc"
include file and add the following three statements to the beginning of the "graphics.inc"
include file:

$IF .not. DEFINED(TYPES)
INCLUDE "types.inc"

$ENDIF

your source program file only needs to include "graphics.inc" to compile successfully.
This strategy works best when used in a GLOBAL DEFINE subprogram (described in the
Programs, Subroutines, and Functions chapter), because although the conditional
compilation variables will have a scope of the entire file, the declarations made in the
include file will have a scope of only the current program unit.

DATA ITEMS

The symbolic name used to represent a constant, variable, array, substring, statement
function, or external function identifies its data type, and once established, it does not
change within a particular program unit. The data type of an array element name is
always the same as the type associated with the array.

Special FORTRAN statements, called type statements, may be used to specify a data type
as character, logical, integer, real, double precision, or complex. When a type statement
is not used to explicitly establish a type, the first letter of the name is used to determine
the type. If the first letter is I, J, K, L, M, N, i, j, k, l, m, or n, the type is integer; any other
letter yields an implied type of real. The IMPLICIT statement, described later, may be
used to change the default implied types.

The FORTRAN 77 Program 15

FORTRAN 77 Language Reference Manual

The IMPLICIT NONE statement, also described later, causes the compiler to require the
declaration of all variables.

An intrinsic function, LOG, EXP, SQRT, INT, etc., may be used with either a specific name
or generic name. The data types of the specific intrinsic function names are given in the
the Programs, Subroutines, and Functions chapter. A generic function assumes the
data type of its arguments as discussed in that chapter.

A main program, subroutine, common block, and block data subprogram are all identified
with symbolic names, but have no data type.

Constants

FORTRAN 77 constants are identified explicitly by stating their actual value; they do not
change in value during program execution. The plus (+) character is not required for
positive constants. The value of zero is neither positive nor negative; a zero with a sign is
just zero.

The data type of a constant is determined by the specific sequence of characters used to
form the constant. A constant may be given a symbolic name with the PARAMETER
statement.

Except within character and Hollerith constants, blanks are not significant and may be
used to increase legibility. For example, the following forms are equivalent:

3.14159265358979 3.1415 92653 58979
2.71828182845904 2.7182 81828 45904

Character Constant

A character constant is a string of ASCII characters delimited by either apostrophes (’)
or quotation marks ("). The character used to delimit the string may be part of the string
itself by representing it with two successive delimiting characters. The number of charac-
ters in the string determines the length of the character constant. A character constant
requires a character storage unit (one byte) for each character in the string.

"TEST" ’TEST’
"EVERY GOOD BOY" ’EVERY GOOD BOY’
"Luck is everything" ’Luck is everything’
"didn’t" ’didn’’t’

FORTRAN 77 has no facility for specifying or representing a character constant
consisting of the null string. However, to facilitate linking with the C language, the
compiler will interpret the character constant ’’ or "" as a single zero byte. A null
terminated C style string can then be created by concatenating the character constant ’’
or "" on to the end of a FORTRAN string.

16 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

As an extension to FORTRAN 77, special escape sequences may be embedded in a
character constant by using the backslash (\) followed immediately by one of the letters
in the following list. The actual character value generated in place of the escape sequence
is system dependent. For compatibility with FORTRAN programs which do not expect
the backslash as an escape sequence, these escape sequences are not recognized by the
compiler unless the -K option is used.

Escape Sequence Meaning

\n Newline
\t Tab
\r Carriage return
\f Form feed
\b Backspace
\\ Backslash
\nnn Sets character position with value nnn, where nnn are octal digits.

For example,

WRITE(*,*) "First line\nSecond line"

When compiled without the -K option, it displays,

First line\nSecond line

When compiled with the -K option, it displays,

First line
Second line

Logical Constant

Logical constants are formed with the strings of characters, .TRUE. and .FALSE., repre-
senting the Boolean values true and false respectively. A false value is represented with
the value zero, and a true value is represented with the value one. A default logical
constant requires one numeric storage unit (four bytes).

Integer Constant

An integer constant is an exact binary representation of an integer value in the range of
-2147483648 to +2147483647 with negative integers maintained in two’s complement
form. An integer constant is a string of decimal digits that may contain a leading sign. An
integer constant requires one numeric storage unit (four bytes).

15
101
-72
1126
123 456 789

The FORTRAN 77 Program 17

FORTRAN 77 Language Reference Manual

Alternate Integer Bases

The compiler normally expects all numeric constants to be in base ten, however, three
alternate unsigned integer bases are available when explicitly specified. These optional
bases are binary, octal, and hexadecimal and are designated by preceding the constant
with the characters B, O, and Z respectively and delimiting the constant itself with
apostrophes. The following examples all result in the assignment of the decimal value
3994575:

I = B’1111001111001111001111’
J = O’17171717’
K = Z’3CF3CF’

As with all numeric constants, spaces may be used freely to enhance legibility. The
following examples produce identical assignment statements:

I = B’0011 1100 1111 0011 1100 1111’
J = O’017 171 717’
K = Z’3C F3 CF’

The VAX FORTRAN form of hexadecimal and octal constants may also be used:

J = ’017171717’O
K = ’3CF3CF’X

Real Constant

A real constant consists of an optional sign and a string of digits which contains a
decimal point. The decimal point separates the integer part of the constant from the
fractional part and may be placed before or after the string indicating that either the
integer or fractional part is zero. A real constant may have an exponent that specifies a
power of ten applied to the constant. An exponent is appended to a real constant with the
letter E and an integer constant in the range of a -37 to +39. If an exponent is given and
the fractional part is zero, the decimal point may be omitted. A real constant requires one
numeric storage unit (four bytes).

Constant Value

1E2 = 100.0
-12.76 = -12.76
1.07E-1 = .107
0.4237E3 = 423.7

Real values are maintained in IEEE single precision floating point representation. The
most significant bit is interpreted as the sign, the next eight bits provide a binary
exponent biased by 127, and the remaining twenty-three bits form the binary mantissa
with a twenty-fourth bit implied. This representation supplies seven digits of precision
and a range of ±0.3402823E+39 to ±0.1175494E-37.

18 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

Double Precision Constant

A double precision constant is formed in the same manner as a real constant except that
the exponent is designated with the letter D and must always be given, even if its value is
zero. The exponent range of a double precision constant is -307 to +309. A double
precision constant requires two numeric storage units (eight bytes).

Constant Value

1D2 = 100.0
-12.76D0 = -12.76
1.07D-1 = .107
0.4237D3 = 423.7

Double precision values are maintained in IEEE double precision floating point
representation. The most significant bit is interpreted as the sign, the next eleven bits
provide a binary exponent biased by 1023, and the remaining fifty-two bits form the
binary mantissa with a fifty-third bit implied. This representation yields sixteen digits of
precision and a range of ±0.1797693134862320D+309 to ±0.2225073858507202D-307.

Complex Constant

A complex constant is stated using a left parenthesis, a pair of real or integer constants
separated by a comma, and a right parenthesis. The first constant is the real portion (in
the mathematical sense) and the second is the imaginary portion. A complex constant
requires two numeric storage units (eight bytes).

Constant Value

(2.76,-3.81) = 2.76 -3.81i
(-12,15) = -12.0 +15.0i
(0.62E2,-0.22E-1) = 62.0 -.022i

Complex*16 Constant

A double complex constant is stated in the same format as a single precision complex
constant, except that double precision constants must be used for the real and imaginary
portions. A double complex constant requires four numeric storage units (sixteen bytes).

Constant Value

(0.62D2,-0.22D-1) = 62.0 -.022i

The FORTRAN 77 Program 19

FORTRAN 77 Language Reference Manual

Hollerith Constant

The Hollerith data type is an older method of representing characters in FORTRAN.
While it is not included in the current standard, this implementation of FORTRAN
includes the Hollerith data type to provide compatibility for older programs. Like
character constants, a Hollerith constant is formed with a string of any of the characters
from the ASCII character set. Logical, integer, real, double precision, and complex
variables can be defined with a Hollerith value through DATA statements and READ
statements.

A Hollerith constant is stated with a nonzero, unsigned integer constant, the letter H, and
a string of characters whose length must be the same as the integer constant.

4HTEST
14HEVERY GOOD BOY

When a Hollerith constant is assigned to a variable it is left justified and space padded if
the length of the constant is less than the length of the variable.

If a Hollerith constant appears anywhere in the source code except within a DATA state-
ment, a FORMAT statement, or a CALL statement, an error will result. Embedded escape
sequences (i.e. \n) are not permitted in a Hollerith constant.

Variables

A variable is used to maintain a FORTRAN 77 quantity and is associated with a single
storage location through a symbolic name. Simple variables are often called scalar
variables to distinguish them from arrays and array elements (see below). Unlike a
constant, the value of a variable can be changed during the execution of a program with
assignment statements and input and output statements.

Arrays

An array is a sequence of data elements all of the same type and referenced by one
symbolic name. When an array name is used alone it refers to the entire sequence starting
with the first element. When an array name is qualified by a subscript it refers to an
individual element of the sequence.

Array Declarator

An array declarator is used to assign a symbolic name to an array, define its data type
(either implicitly or explicitly), and declare its dimension information:

a(d [,d]...)

where a is the symbolic name that will be used to reference the array and the elements of
the array, and d is called a dimension declarator. An array declarator must contain at

20 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

least one and no more than seven dimension declarators. A dimension declarator is given
with either one or two arguments:

[d1:] d2

where d1 and d2 are called the lower and upper dimension bounds respectively. The
lower and upper dimension bounds must be expressions containing only constants or
integer variables. Integer variables are used only to define adjustable arrays (described
below) in subroutine and function subprograms. If the lower dimension bound is not
specified, it has a default value of one.

An array declarator specifies the size and shape of an array which consists of the number
of dimensions, the upper and lower bounds of each dimension, and the number of array
elements. The number of dimensions is determined by the number of dimension
declarators. Dimension bounds specify the size or extent of an individual dimension.
While the value of a dimension bound may be positive, negative, or even zero, the value
of the lower dimension bound must always be less than than or equal to the value of the
upper dimension bound. The extent of each dimension is defined as d2-d1+1. The
number of elements in an array is equal to the product of all of its dimension extents.

Array declarators are called constant, adjustable, or assumed size depending on the form
of the dimension bounds. A constant array declarator must have integer constant
expressions for all dimension bounds. An adjustable array declarator contains one or
more integer variables in the expressions used for its bounds. An array declarator in
which the upper bound of the last dimension is an asterisk (*) is an assumed size array
declarator. Adjustable and assumed size array declarators may appear only in subroutine
and function subprograms.

All array declarators are permitted in DIMENSION and type statements, however only con-
stant array declarators are allowed in COMMON or SAVE statements. Adjustable and
assumed size array declarators do not supply sufficient information to map the static
memory at compile time.

An array can be either an actual array or a dummy array. An actual array uses constant
array declarators and has storage established for it in the program unit in which it is
declared. A dummy array may use constant, adjustable, or assumed size array declarators
and declares an array that is associated through a subroutine or function subprogram
dummy argument list with an actual array.

The number of dimensions and the dimension extents of arrays associated with one
another either through common blocks, equivalences, or dummy argument lists need not
match.

The FORTRAN 77 Program 21

FORTRAN 77 Language Reference Manual

Array Subscript

The individual elements of an array are referenced by qualifying the array name with a
subscript:

a(s [,s]...)

where each s in the subscript is called a subscript expression and a is the symbolic name
of the array.

The subscript expressions are numeric expressions whose values fall between the lower
and upper bounds of the corresponding dimension. If the value of the expression is not an
integer, the compiler supplies the appropriate conversion. There must be a subscript
expression for each declared dimension.

Some FORTRAN constructs accept array names unqualified by a subscript. This means
that every element in the array is selected. The elements are processed in column major
order. The first element is specified with subscript expressions all equal to their lower
dimension bounds. The next element will have the leftmost subscript expression
increased by one. After an array subscript expression has been increased through its
entire extent it is returned to the lower bound and the next subscript expression to the
right is increased by one.

Subscript expressions may contain array element and function references. The evaluation
of a subscript expression must not affect the value of any other expression in the
subscript. This means that functions should not have side effects altering the values of the
other subscript expressions.

Note the following example where A is a two dimensional array and F is an external
function.

Y = A(X,F(X))

The function F(X) will be evaluated before the value of X is fetched from memory.
Therefore, if F(X) alters the value of X, the altered value will be used as the first subscript
expression.

The order of an array element within the column major storage sequence of the array in
memory is called the subscript value. This is calculated according to the following table:

22 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

Number
of Dimension Subscript

Dimensions Declarator Subscript Value
1 (j1:k1) (s1) 1+(s1-j1)
2 (j1:k1,j2:k2) (s1,s2) 1+(s1-j1)+(s2-j2)*d1
3 (j1:k1,j2:k2,j3:k3) (s1,s2,s3) 1+(s1-j1)+(s2-j2)*d1
. . . .
. . . .
. . . .
n (j1:k1,…,jn:kn) (s1,...,sn) 1+(s1-j1)+(s2-j2)*d1

+(s3-j3)*d2*d1+…
+(sn-jn)*dn-1*dn-2
*…*d1

where: di = ki-ji+1

Subscript Value

Note that subscript values always range from 1 to the size of the array:

DIMENSION X(-4:4),Y(5,5)

X(3) = Y(2,4)

For the array element name X(3) , the subscript is (3), the subscript expression is 3 with a
value of three, and the subscript value is eight. For the array element name Y(2,4) , the
subscript is (2,4) , the subscript expressions are 2 and 4 with values two and four,
respectively, and the subscript value is seventeen. The effect of the assignment statement
is to replace the eighth element of X with the seventeenth element of Y.

Array Name

When an array name is used unqualified by a subscript, it implies that every element in
the array is to be selected as described above. Array names may be used in this manner in
COMMON statements for data alignment and sharing purposes, in actual and dummy
argument lists to pass entire arrays to other procedures, in EQUIVALENCE statements
where it implies the first element of the array, and in DATA statements for giving every
element an initial value. Array names may also be used in the input and output statements
to specify internal files, format specifications and elements of input and output lists.

Substrings

The FORTRAN 77 Program 23

FORTRAN 77 Language Reference Manual

A substring is a contiguous segment of a character entity and is itself a character data
type. It can be used as the destination of an assignment statement or as an operand in an
expression. Either a character variable or character array element can be qualified with a
substring name:

v([e1] : [e2])

a(s [,s]...)([e1] : [e2])

where: e1 and e2 are called substring expressions and must have integer
values.

v is the symbolic name of a character variable, and a(s
[,s]…) is the name of a character array element.

The values e1 and e2 specify the leftmost and rightmost positions of the substring. The
substring consists of all of the characters between these two positions, inclusive. For
example, if A is a character variable with a value of ’ABCDEF’, then A(3:5) would have a
value of ’CDE’.

The value of the substring expression e1 must be greater than or equal to one, and if
omitted implies a value of one. The value of the substring expression e2 must be greater
than or equal to e1 and less than or equal to the length of the character entity, and if
omitted implies the length of the character entity.

As with arrays, substring expressions may contain array or function references. The
evaluation of a function within a substring expression must not alter the value of other
entities also occurring within the substring expression. If a substring expression is not
integer, automatic conversion to integer is supplied by the compiler.

STORAGE

Storage refers to the physical computer memory where variables and arrays are stored.
Variables and arrays can be made to share the same storage locations through
equivalences, common block declarations, and subprogram argument lists. Data items
which share storage in this manner are said to be associated.

The contents of variables and arrays are either defined or undefined. All variables and
arrays not initially defined through DATA statements are undefined.

A storage unit refers to the amount of storage needed to record a particular class of data.
A storage unit can be a numeric storage unit or a character storage unit.

Numeric Storage Unit

24 The FORTRAN 77 Program

FORTRAN 77 Language Reference Manual

A numeric storage unit can be used to hold or store an integer, real, or logical datum. One
numeric storage unit consists of four bytes. The amount of storage for numeric data is as
follows:

Data Type Storage

Integer 1 storage unit
Real 1 storage unit
Double precision 2 storage units
Complex 2 storage units
Complex*16 4 storage units
Logical 1 storage unit

Character Storage Unit

A character datum is a string of characters. The string may consist of any sequence of
ASCII characters. The length of a character datum is the number of characters in the
string. A character storage unit differs from numeric storage units in that one character
storage unit is equal to one byte and holds or stores one character.

Storage Sequence

The storage sequence refers to the sequence of storage units, whether they are held in
memory or stored on external media such as a disk or a tape.

Storage Association

The storage locations of variables and arrays become associated in the following ways:

• The EQUIVALENCE statement (described in the Specification and
DATA Statements chapter) causes the storage units of the variables
and array elements listed within the enclosing parentheses to be
shared. Note that the data types of the associated entities need not be
the same.

• The variable and array names appearing in the COMMON statements
(described in the Specification and DATA Statements chapter) of
two different program units are associated.

• The dummy arguments of subroutine and function subprograms are
associated with the actual arguments in the referencing program unit.

• An ENTRY statement (described in the Programs, Subroutines, and
Functions chapter) in a function subprogram causes its corresponding
name to be associated with the name appearing in the FUNCTION

statement.

The FORTRAN 77 Program 25

FORTRAN 77 Language Reference Manual

Storage Definition

Storage becomes defined through DATA statements, assignment statements, and I/O state-
ments. READ statements cause the items in their associated I/O lists to become defined.
Any I/O statement can cause items in its parameter list to become defined (the IOSTAT
variable for instance). A DO variable becomes defined as part of the loop initialization
process.

The fact that storage can become undefined at all should be carefully noted. Some events
that cause storage to become undefined are obvious: starting execution of a program that
does not initially define all of its variables (through DATA statements), attempting to read
past the end of a file, and executing an INQUIRE statement on a file that does not exist.
When two variables of different types are either partially or totally associated, defining
one causes the other to become undefined.

Because FORTRAN 77 provides for both dynamic as well as static storage allocation,
certain events can cause dynamically allocated storage to become undefined. In
particular, returning from subroutine and function subprograms causes all of their
variables to become undefined except for those:

• in blank COMMON.

• specified in SAVE statements.

• in named COMMON blocks.

The -s compiler option has the effect of an implicit SAVE for every program unit encoun-
tered during the current compilation (see the chapter Using the Compilers in the
ProFortran User Guide).

27

FORTRAN 77 Language Reference Manual

CHAPTER 3

Expressions and Assignment Statements

Being primarily a computational language, a large number of FORTRAN statements
employ expressions. The evaluation of an expression results in a single value which may
be used to define a variable, take part in a logical decision, be written to a file, etc. The
simplest form of an expression is a scalar value: a constant or single variable. More
complicated expressions can be formed by specifying operations to be performed on one
or more operands.

There are four types of expressions available in FORTRAN 77: arithmetic, character,
relational, and logical. This chapter describes the rules for the formation and evaluation
of these expressions.

Assignment statements, together with expressions, are the fundamental working tools of
FORTRAN. Assignment statements are used to establish a value for variables and array
elements. Assignment statements assign a value to a storage location.

ARITHMETIC EXPRESSIONS

An arithmetic expression produces a numeric result and is formed with integer, real,
double precision, and complex operands and arithmetic operators. An arithmetic operand
may be one of the following:

• an arithmetic scalar value

• an arithmetic array element

• an arithmetic expression enclosed in parentheses

• the result of an arithmetic function

The arithmetic operators are:

Operator Purpose

** exponentiation
* multiplication
/ division
+ addition or identity
- subtraction or negation

The operators **, *, and / operate only on pairs of operands, while + and - may operate
on either pairs of operands or on single operands. Pairs of operators in succession are not

28 Expressions and Assignment Statements

FORTRAN 77 Language Reference Manual

allowed: A+-B must be stated as A+(-B). In addition, there is precedence among the
arithmetic operators which establishes the order of evaluation:

Operator Precedence

** highest
* and / intermediate
+ and - lowest

Except for the exponentiation operator, when two or more operators of equal precedence
occur consecutively within an arithmetic expression they may be evaluated in any order
if the result of the expression is mathematically equivalent to the stated form. However,
exponentiation is always evaluated from right to left:

Expression Evaluation

A+B-C (A+B)-C or A+(B-C)
A**B**C A**(B**C)
A+B/C A+(B/C)

However, the result of an arithmetic expression involving integer operands and the
division operator is the quotient; the remainder is discarded: 10/3 produces an integer
result of 3. Consequently, expressions such as I*J/K may have different values depending
on the order of evaluation:

(4*5)/2 = 10, but 4*(5/2) = 8

Data Type of Arithmetic Expressions

When all of the operands of an arithmetic expression are of the same data type, the data
type of the result is the same as that of the operands. When expressions involving
operands of different types are evaluated, automatic conversions between types occur.
These conversions are always performed in the direction of the highest ordered data type
presented and the data type of the result is that of the highest ordered operand
encountered. INTEGER is the lowest ordered data type and COMPLEX is the highest.

An exception to this order occurs for operations between COMPLEX values and DOUBLE
PRECISION. In this instance, results are returned as COMPLEX*16.

Data Type Conversion Order

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
COMPLEX*16

Consider the expression I/R*D+C, where I is INTEGER, R is REAL, D is DOUBLE
PRECISION, and C is COMPLEX. The evaluation proceeds as follows:

Expressions and Assignment Statements 29

FORTRAN 77 Language Reference Manual

• the value of I is converted to REAL and then divided by the value of R

• the result of the division is implicitly converted to DOUBLE PRECISION

and multiplied by the value of D

• the result of the multiplication is then added to the real portion of the
of the value C giving DOUBLE PRECISION

• the imaginary portion of the value C is implicitly converted to DOUBLE
PRECISION in the final result

• the data type of the result of the expression is COMPLEX*16

Parentheses are used to force a specific order of evaluation that the compiler may not
override.

When exponentiation of REAL, DOUBLE PRECISION, and COMPLEX operands involves
integer powers, the integer power is not converted to the data type of the other operand.
Exponentiation by an integer power is a special operation which allows expressions such
as -2.1**3 to be evaluated correctly.

Conversion from a lower to a higher precision does not increase the accuracy of the
converted value. For example, converting the result of the real expression 1.0/3.0 to
DOUBLE PRECISION yields:

0.333333343267441D+00

not:
0.333333300000000D+00 or 0.333333333333333D+00

Arithmetic Constant Expression

Arithmetic expressions in which all of the operands are constants or the symbolic names
of constants are called arithmetic constant expressions. INTEGER, REAL, DOUBLE

PRECISION, and COMPLEX constant expressions may be used in PARAMETER statements.
Integer constant expressions may also be used in specification and declaration statements
(see the Specifications and DATA Statements chapter).

CHARACTER EXPRESSIONS

30 Expressions and Assignment Statements

FORTRAN 77 Language Reference Manual

A CHARACTER expression produces a character result and is formed using character
operands and character operators. A CHARACTER operand may be one of the following:

• a CHARACTER scalar value

• a CHARACTER array element

• a CHARACTER substring

• a CHARACTER expression enclosed in parentheses

• the result of a CHARACTER function

The only CHARACTER operator is //, meaning concatenation. Although parentheses are
allowed in character expressions, they do not alter the value of the result. The following
character expressions all produce the value ’CHARACTER’:

’CHA’//’RAC’//’TER’
(’CHA’//’RAC’)//’TER’
’CHA’//(’RAC’//’TER’)

RELATIONAL EXPRESSIONS

A relational expression produces a logical result (.TRUE. or .FALSE.) and is formed
using arithmetic expressions or CHARACTER expressions and relational operators. The
relational operators perform comparisons; they are:

Operator Comparison
< or .LT. less than
<= or .LE. less than or equal to
== or .EQ. equal to
<> or .NE. not equal to
> or .GT. greater than
>= or .GE. greater than or equal to

Only the .EQ. and .NE. relational operators can be applied to complex operands.

All of the relational operators have the same precedence which is lower than the
arithmetic operators and the character operator.

If the data types of two arithmetic operands are different, the operand with the lowest
order is converted to the type of the other operand before the relational comparison is
performed. The same type coersion rules apply to relational operators as arithmetic
operators when comparisons are made, but results are always returned as LOGICAL.

Character comparison proceeds on a character by character basis using the ASCII
collating sequence to establish comparison relationships. Since the letter 'A' precedes the

Expressions and Assignment Statements 31

FORTRAN 77 Language Reference Manual

letter ’B’ in the ASCII code, ’A’ is less than ’B’. Also, all of the upper case characters have
lower "values" than the lower case characters. A complete chart of the ASCII character
set is provided in the appendices.

When the length of one of the CHARACTER operands used in a relational expression is
shorter than the other operand, the comparison proceeds as though the shorter operand
were extended with blank characters to the length of the longer operand.

When an integer value is compared with a CHARACTER constant, one to four bytes of the
character string are extracted as an integer and a comparison is made between the two
integer values. This is useful if the integer has been defined with a Hollerith data type.
This type of comparison is only defined for character constants with a length less than or
equal to four.

LOGICAL EXPRESSIONS

A LOGICAL expression is formed with LOGICAL or INTEGER operands and logical
operators. A LOGICAL operand may be one of the following:

• a LOGICAL or INTEGER scalar value

• a LOGICAL or INTEGER array element

• a LOGICAL or INTEGER expression enclosed in parentheses

• a relational expression

• the result of a LOGICAL or INTEGER function

A LOGICAL expression involving LOGICAL operands and relational expressions produces a
LOGICAL result (.TRUE. or .FALSE.). When applied to LOGICAL operands the logical
operators, their meanings, and order of precedence are:

Operator Purpose Precedence

.NOT. negation highest

.AND. conjunction

.OR. inclusive disjunction

.EQV. equivalence lowest

.NEQV. nonequivalence same as .EQV.

.XOR. nonequivalence same as .EQV.

32 Expressions and Assignment Statements

FORTRAN 77 Language Reference Manual

A LOGICAL expression involving INTEGER operands produces an INTEGER result. The
operation is performed on a bit-wise basis. When applied to integer operands the logical
operators have the following meanings:

Operator Purpose

.NOT. one’s complement

.AND. Boolean and

.OR. Boolean or

.EQV. integer compare

.NEQV. Boolean exclusive or

.XOR. Boolean exclusive or

The integer intrinsic function SHIFT is available to perform left and right logical shifts
(see the chapter Programs, Subroutines, and Functions).

Note that expressions involving INTEGER and LOGICAL operands are ambiguous.

Consider the following example:

LOGICAL l,m
INTEGER i

i = 2
l = .TRUE.
IF (l .AND. i) WRITE(*,*) "first if clause executed"
m = i
IF (l .AND. m) WRITE(*,*) "second if clause executed"
END

Since the LOGICAL constant .TRUE. has a value of one when converted to INTEGER, the
first IF clause would not normally be executed since a Boolean .AND. between the values
one and two produces a zero which is logically false. For this reason, integers are
converted to LOGICAL when the .AND. operator is used with a LOGICAL. The second IF
clause will execute since the conversion of a non-zero INTEGER to LOGICAL (in the
assignment statement m = i) gives the value .TRUE. (stored as the value one). Note that
the above code is not guaranteed to be portable to other FORTRAN environments.

OPERATOR PRECEDENCE

As described above, a precedence exists among the operators used with the various types
of expressions. Because more than one type of operator may be used in an expression, a
precedence also exists among the operators taken as a whole: arithmetic is the highest,
followed by character, then relational, and finally logical which is the lowest.

A+B .GT. C .AND. D-E .LE. F

is evaluated as:

((A+B) .GT. C) .AND. ((D-E) .LE. F)

Expressions and Assignment Statements 33

FORTRAN 77 Language Reference Manual

ARITHMETIC ASSIGNMENT STATEMENT

Arithmetic assignment statements are used to store a value in arithmetic variables.
Arithmetic assignment statements take the following form:

v = e

where: v is the symbolic name of an integer, real, double precision, or
complex variable or array element whose contents are to be
replaced by e.

e is a character constant or arithmetic expression.

If the data type of e is arithmetic and different than the type of v , then the value of e is
converted to the type of v before storage occurs. This may cause truncation.

If e is a CHARACTER constant, bytes of data will be moved directly to the storage location
with no type conversion. If e is a CHARACTER expression, a type mismatch error will
occur.

LOGICAL ASSIGNMENT STATEMENT

LOGICAL assignment statements are used to store a value in LOGICAL variables. LOGICAL
assignment statements are formed exactly like arithmetic assignment statements:

v = e

where: v is the symbolic name of a logical variable or logical array
element.

e is an arithmetic or logical expression.

If the data type of e is not LOGICAL, the value assigned to v is the LOGICAL value
.FALSE. if the value of the expression e is zero. For non-zero values of e, the value
assigned to v is the LOGICAL value .TRUE.. This rule for the conversion of an arithmetic
expression to a LOGICAL value applies wherever a LOGICAL expression is expected (i.e. an
IF statement).

CHARACTER ASSIGNMENT STATEMENT

34 Expressions and Assignment Statements

FORTRAN 77 Language Reference Manual

CHARACTER assignment statements are used to store a value in CHARACTER variables:

v = e

where: v is the symbolic name of a character variable, character array
element, or character substring. e is an expression whose type is
character.

If the length of e is greater than the length of v , the leftmost characters of e are used.

If the length of e is less than the length of v , blank characters are added to the right of e
until it is the same length as v .

ASSIGN STATEMENT

The ASSIGN statement is used to store the address of a labeled statement in an integer
variable. Once defined with a statement label, the integer variable may be used as the
destination of an assigned GOTO statement (Control Statements chapter) or as a format
descriptor in an I/O statement (Input/Output and Format Specification chapter). The
ASSIGN statement is given in the following manner.

ASSIGN s TO i

where: s is the label of a statement appearing in the same program unit
that the ASSIGN statement does.

i is an INTEGER variable name.

Caution: No protection is provided against attempting to use a variable
that does not contain a valid address as established with the
ASSIGN statement.

MEMORY ASSIGNMENT STATEMENT

Memory assignment statements are used to store values in absolute memory addresses:

ma = e

where: ma is an absolute memory address

e is an any arithmetic, logical, or character expression.

A memory address is formed as follows:

BYTE (e) byte (8 bit) reference
WORD (e) word (16 bit) reference
LONG (e) long (32 bit) reference

Expressions and Assignment Statements 35

FORTRAN 77 Language Reference Manual

where: e is an absolute memory address.

For example:

BYTE (Z’FFFFE0’) = 10

stores the decimal value 10 at the hexadecimal memory byte address FFFE0.

The BYTE, WORD, and LONG keywords also represent intrinsic functions allowing indirect
addressing:

WORD (WORD(O’4000’)) = Z’FFFF’

stores the sixteen bit hexadecimal value FFFF at the absolute memory location whose
address is the address contained at the octal address 4000.

37

FORTRAN 77 Language Reference Manual

CHAPTER 4

Specification and DATA Statements

Specification statements are used to define the properties of the symbolic entities, vari-
ables, arrays, symbolic constants, etc. that are used within a program unit. For this
reason, specification statements are also called declaration statements and are grouped
together in the declaration section of a program unit: before any statement function
statements, DATA statements, and executable statements. Specification statements
themselves are classified as nonexecutable.

DATA statements are used to establish initial values for the variables and arrays used
within a FORTRAN 77 program. Variables not appearing in DATA statements may
contain random values when a program starts executing. The use of undefined variables
can cause problems that are difficult to detect when transporting a program from one
environment to another, because the previous environment may have set all storage to
zeros while the new environment performs no such housekeeping.

TYPE STATEMENTS

The most common of the specification statements are the type statements. They are used
to give data types to symbol names and declare array names. Once a data type has been
associated with a symbol name it remains the same for all occurrences of that name
throughout a program unit.

Arithmetic and Logical Type Statements

The forms of the type statement for the arithmetic and logical data types are:

type v [,v]...
type [*len] v[/value/] [,v[/value/]]...

where: type can be any of the following specifiers: LOGICAL, INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX.

v is the symbolic name of a variable, an array, a constant, a func-
tion, a dummy procedure, or an array declaration.

len is an unsigned integer constant that specifies the length, in
bytes, of a variable, an array element, a symbolic constant, or a
function.

38 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

value is an optional initial value for the preceding variable or
array. When initializing an array, value must contain constants
separated by commas for each element of the array.

The following len specifiers are available:

• LOGICAL*4 is the default for LOGICAL and occupies one numeric storage
unit. The default may be changed to LOGICAL*2 with the -in compiler
option (see the chapter Using the Compilers in the ProFortran User
Guide).

• LOGICAL*2 data is a representation of the logical values of true and
false. This type of logical data occupies one half of one numeric storage
unit. A false value is represented by the number zero and a true value is
represented by the number one.

• LOGICAL*1 data is a representation of the logical values of true and
false. This type of logical data occupies one byte. A false value is repre-
sented by the number zero and a true value is represented by the number
one.

• INTEGER*8 data is an exact binary representation of an integer in the
range of -9223372036854775808 to +9223372036854775807 with
negative integers carried in two's complement form. This type of integer
is maintained in two numeric storage units.

• INTEGER*4 is the default for INTEGER and occupies one numeric storage
unit. The default may be changed to INTEGER*2 or INTEGER*8 with the
-in compiler option (see the chapter Using the Compilers in the
ProFortran User Guide).

• INTEGER*2 data is an exact binary representation of an integer in the
range of -32768 to +32767 with negative integers carried in two's com-
plement form. This type of integer is maintained in one half of one
numeric storage unit.

• INTEGER*1 data is an exact binary representation of an integer in the
range of -128 to +127 with negative integers carried in two's comple-
ment form. This type of integer is maintained in one byte of storage.

• REAL*4 is the default for REAL and occupies one numeric storage unit.
The default may be changed to REAL*8 with the -N113 compiler option
(see the chapter Using the Compilers in the ProFortran User Guide).

• REAL*8 data is identical to DOUBLE PRECISION and occupies two
numeric storage units.

Specification and DATA Statements 39

FORTRAN 77 Language Reference Manual

• COMPLEX*8 data is identical to COMPLEX and occupies two numeric
storage units. The default may be changed to COMPLEX*16 with the -N113
compiler option (see the chapter Using the Compilers in the
ProFortran User Guide).

• COMPLEX*16 data is similar to COMPLEX except that both halves of the
complex value are represented as DOUBLE PRECISION and it occupies
four numeric storage units.

Character Type Statement

The form of the type statement for the character data type is:

CHARACTER [*len [,]] v[*len] [,v[*len]]...
CHARACTER [*len [,]] v[*len][/value/] [,v[*len][/value/]]...

where: v is a variable name, an array name, an array declaration, the sym-
bolic name of a constant, a function name, or a dummy procedure
name

len is either an unsigned INTEGER constant, an INTEGER constant
expression within parentheses, or an asterisk within parentheses
and specifies the length, in bytes, of a variable, an array element,
a symbolic constant, or a function.

value is an optional initial value for the preceding variable or
array. When initializing an array, value must contain constants
separated by commas for each element of the array.

If len directly follows the word CHARACTER, the length specification applies to all
symbols not qualified by their own length specifications. When len is not specified
directly after the keyword CHARACTER, all symbols not qualified by their own length
specifications default to one byte.

The length of symbolic CHARACTER constants, dummy arguments of SUBROUTINE and
FUNCTION subprograms, and CHARACTER functions may be given as an asterisk enclosed
in parentheses: (*). The length of a symbolic constant declared in this manner is the
number of characters appearing in the associated PARAMETER statement. Dummy
arguments and functions assume the length of the actual argument declared by the
referencing program unit.

CHARACTER TITLE*(*)
PARAMETER (TITLE = ’FORTRAN 77’)

produces a ten byte symbolic CHARACTER constant.

40 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

DIMENSION STATEMENT

The DIMENSION statement declares the names and supplies the dimension information for
arrays to be used within a program unit.

DIMENSION a(d) [,a(d)]...

where a(d) is an array declarator as described in the chapter The FORTRAN 77
Program.

Arrays may be declared with either DIMENSION statements, COMMON statements, or type
statements, but multiple declarations are not allowed. That is, once a symbolic name has
been declared to be an array it may not appear in any other declaration statement with an
array declarator in the same program unit. The following three statements declare the
same array:

DIMENSION A(5,5,5)
REAL A(5,5,5)
COMMON A(5,5,5)

The VIRTUAL statement has the same effect as the DIMENSION statement in order to be
compatible with other implementations of FORTRAN. Absoft Fortran 77, however, has
no means of declaring virtual storage.

COMMON STATEMENT

The COMMON statement is used to declare the storage order of variables and arrays in a
consistent and predictable manner. This is done through a FORTRAN data structure
called a common block, which is a contiguous block of storage. A common block may be
identified by a symbolic name but does not have a data type. Once the order of storage in
a common block has been established, any program unit that declares the same common
block can reference the data stored there without having to pass symbol names through
argument lists.

The GLOBAL statement may be used to make the common block accessible to other tasks
on systems which support shared data.

Common blocks are specified in the following manner:

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist]...
GLOBAL [/[cb]/] nlist [[,]/[cb]/ nlist]...

where: cb is the symbolic name of the common block. If cb is omitted,
the first pair of slashes may also be omitted.

nlist contains the symbolic names of variables, arrays, and array
declarators.

Specification and DATA Statements 41

FORTRAN 77 Language Reference Manual

When the COMMON block name is omitted, the COMMON block is called blank COMMON. The
symbolic name "BLANK" is reserved by the compiler for blank COMMON and if used
explicitly as a COMMON block name will result in all entities in the nlist being placed in
blank COMMON.

Any COMMON block name or an omitted name (blank COMMON) can occur more than once in
the COMMON statements in a program unit. The list of variables and arrays following each
successive appearance of the same common block name is treated as a continuation of the
list for that common block name.

A COMMON block name can be the same as that of a variable, array, or program unit.

EQUIVALENCE STATEMENT

The EQUIVALENCE statement provides a means for one or more variables to share the
same storage location. Variables that share storage in this manner are said to be associ-
ated. The association may be total if both variables are the same size or partial if they are
of different sizes. The EQUIVALENCE statement is used in the following manner:

EQUIVALENCE (nlist) [,(nlist)]...

The symbolic names of at least two variables, arrays, array elements, or character sub-
strings must be specified in each nlist. Only integer constant expressions may be used
in subscript and substring expressions. An array name unqualified by a subscript implies
the first element of the array.

An EQUIVALENCE statement causes storage for all items in an individual nlist to be
allocated at the same starting location:

REAL A,B
INTEGER I,J
EQUIVALENCE (A,B), (I,J)

The variables A and B share the same storage location and are totally associated. The vari-
ables I and J share the same storage location and are totally associated.

Items that are equivalenced can be of different data types and have different lengths.
When a storage association is established in this manner several elements of one data
type may occupy the same storage as one element of a different data type:

DOUBLE PRECISION D
INTEGER I(2)
EQUIVALENCE (D,I)

The array element I(1) shares the same storage location as the upper (most significant)
thirty-two bits of D, and the array element I(2) shares the same storage location as the
lower (least significant) thirty-two bits of D. Because only a portion of D is stored in the
same location as I(1), these entities are only partially associated.

42 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

The EQUIVALENCE may not specify that an item occupy more than one storage location or
that a gap occur between consecutive array elements.

Equivalence of Arrays

The EQUIVALENCE statement can be used to cause the storage locations of arrays to
become either partially or totally associated.

REAL A(8),B(8)
INTEGER I(5),J(7)
EQUIVALENCE (A(3),B(1)), (A(1),I(1)), (I(4),J(1))

Storage would be allocated as follows:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10|
|---------------A---------------|
 |---------------B---------------|
|---------I---------|
 |-------------J-------------|

Equivalence of Substrings

The EQUIVALENCE statement can be used to cause the storage locations of substrings to
become either partially or totally associated.

CHARACTER A(2)*5
CHARACTER B*8
EQUIVALENCE (A(2)(2:4),B(4:7))

Byte storage would be allocated as follows:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11|
|-------------------A-------------------|
 |---------------B---------------|

Notice that the lengths of the equivalenced substrings need not be the same, as in the
above example.

COMMON and EQUIVALENCE Restrictions

The EQUIVALENCE statement can be used to increase the size of a common block by
adding storage to the end, but it cannot increase the size by adding storage units prior to
the first item in a COMMON block.

The EQUIVALENCE statement must not cause two different COMMON blocks to have their
storage associated.

EXTERNAL STATEMENT

Specification and DATA Statements 43

FORTRAN 77 Language Reference Manual

The EXTERNAL statement allows symbolic names to be used as arguments in CALL
statements and function references without the compiler automatically creating a variable
at the point of reference. Symbolic names so declared may or may not have an associated
data type. The EXTERNAL statement is given with a list of external or dummy procedure
names or intrinsic function names:

EXTERNAL proc [,proc]...

where: proc is a symbolic name of a procedure or intrinsic function.

An intrinsic function name appearing in an EXTERNAL statement specifies that the
particular intrinsic function has been replaced by a user supplied routine.

IMPLICIT STATEMENT

The IMPLICIT statement is used to establish implicit data typing that differs from the
default INTEGER and REAL typing described in chapter The FORTRAN 77 Program.
The IMPLICIT statement can also be used to remove implied typing altogether. The
IMPLICIT statement takes the following form:

IMPLICIT type [*len] (a [,a]...) [,type [*len] (a [,a]...)]...

where: type is a type chosen from the set CHARACTER, LOGICAL,
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, DOUBLE

COMPLEX, or NONE.

len is an unsigned integer constant specifying the length, in bytes,
of LOGICAL, INTEGER, REAL, COMPLEX or CHARACTER variables.

a is an alphabetic specifier which is either a single letter or a range
of letters. A range of letters is specified with a character
representing the lower bound of the range, a minus, and a character
representing the upper bound of the range. The range A-z specifies
all the letters of the alphabet.

If len is not specified, the defaults are:

CHARACTER 1 byte
LOGICAL 4 bytes
INTEGER 4 bytes
REAL 4 bytes
COMPLEX 8 bytes

The IMPLICIT statement must appear before all other declaration statements except
PARAMETER statements and specifies the data type of all symbolic names that can take a
data type that are not given one explicitly with a type statement. The data type will be the
data type that corresponds to the first character of their names.

44 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

When NONE appears in place of a type specifier, all variables used within the program unit
must appear in an explicit type statement.

INLINE STATEMENT

As an extension to standard FORTRAN, Absoft Fortran 77 supports the INLINE
statement to allow programmers to insert object code directly into a FORTRAN program.
This is useful for customizing the language to the host system. The syntax of the INLINE
statement is as follows:

INLINE ([identifier1=con1[,identifier2=/con1[,con2.../]]])
…
CALL identifier1[(arg1[, arg2...])]
variable = identifier2[(arg1[, arg2...])]

An INLINE declaration can have the same format as a PARAMETER statement or it can
substitute a list of constants for an identifier instead of a single constant. All constants
must be of type INTEGER. The identifier can then be referenced as if it were a subroutine
or function. Instead of generating a call to an external function, the compiler will insert
the constant or constant list directly into the object code. Each constant is output as a 32-
bit opcode. If an argument list is given, the actual arguments will be passed in the same
fashion as they are passed to an external routine. If the identifier is referenced as a
function, the result must be returned using the standard call-return methods.

INTRINSIC STATEMENT

The INTRINSIC statement designates symbolic names as intrinsic functions (see the
chapter Programs, Subroutines, and Functions). Similar to the EXTERNAL statement,
this allows intrinsic functions to be used as arguments in CALL statements and function
references without the compiler automatically creating a variable at the point of
reference. The intrinsic function name specified in an INTRINSIC statement retains its
associated data type. The INTRINSIC statement is given in the following manner:

INTRINSIC func [, func]...

where: func is the name of an intrinsic function.

Specification and DATA Statements 45

FORTRAN 77 Language Reference Manual

The following intrinsic functions do not follow conventional FORTRAN calling
conventions and may not appear in an INTRINSIC statement:

AMAX0 LEN
AMAX1 LGE
AMIN0 LGT
AMIN1 LLE
CHAR LLT
CMPLX MAX
DBLE MAX0
DCMPLX MAX1
DMAX1 MIN
FLOAT MIN0
ICHAR MIN1
IDINT REAL
IFIX SNGL
INT

DFLOATI IIFIX
DFLOATJ IINT
FLOATI JIDINT
FLOATJ JIFIX
HFIX JINT
IIDINT

This restriction also applies to the Absoft Fortran 77 intrinsic functions below:

ADJUSTL VAL2
ADJUSTR VAL4
TRIM [%]LOC
REPEAT [%]VAL

The INTRINSIC statement is used to pass intrinsic functions to external procedures:

INTRINSIC SIN,COS
DIMENSION A(100),B(100)
CALL TRIG(SIN,A)
CALL TRIG(COS,B)
END

SUBROUTINE TRIG(FUNC,ARRAY)
DIMENSION ARRAY(100)
DO 10 I=1,100

10 ARRAY(I) = FUNC(FLOAT(I))
END

NAMELIST STATEMENT

The NAMELIST statement associates a unique group name with a list of variable or array
names. The group-name is used in namelist directed input and output operations.
Namelists are specified in the following manner:

NAMELIST /group_name/nlist[[,]/group_name/nlist]...

where: group_name is a symbolic name.

46 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

nlist is a list of variables or array names that is to be associated
with group_name

The group_name must be a unique identifier and cannot be used for any purpose other
than namelist directed I/O in the program unit in which it appears.

Variables in a namelist can be of any data type and can be explicitly or implicitly typed.
Subscripted array names and CHARACTER substrings cannot appear in the NAMELIST,
however NAMELIST directed I/O can be used to assign values to array elements and
CHARACTER substrings.

The order of appearance of variables in a NAMELIST controls the order in which the
values are written during NAMELIST directed output. The order of appearance has no
affect on NAMELIST directed input.

Adjustable arrays are not permitted in NAMELIST statements.

PARAMETER STATEMENT

The PARAMETER statement allows a constant to be given a symbolic name in the following
manner:

PARAMETER (p=c [,p=c]...)

where p is the symbolic name that is used to reference the constant and c is a constant
expression.

If the data type and length attributes of the symbolic name are to be other than the
implied default for that name, then the type (and size) must be previously defined in an
explicit type statement or through the typing supplied by an IMPLICIT statement. A
character parameter may have its length declared as an asterisk in parentheses, in which
case the actual size will be the number of characters in the expression.

The type of the constant expression must match the type of the symbolic name.

INTEGER EOF
CHARACTER TITLE*(*)
PARAMETER (PI=3.1415926, THIRD=1.0/3.0)
PARAMETER (EOF=-1)
PARAMETER (TITLE=’FORTRAN 77’)

Special use of the PARAMETER statement

Specification and DATA Statements 47

FORTRAN 77 Language Reference Manual

As a means of defining CHARACTER symbolic names with non-printing ASCII characters,
a character symbolic name may be defined with an INTEGER constant in the range of 1-
255:

CHARACTER EOL,EOF
PARAMETER (EOL=10,EOF=O’377’)

POINTER STATEMENT

The POINTER statement is used to extablish a means for directly manipulating the address
of a variable. Normally, when a FORTRAN variable is created, either explicitly with a
declaration statement of implicitly by reference in the program, its location or address in
memory is fixed by the compiler or the linker. However, there are situations where it is
useful for the location of a variable to be dynamic. The POINTER statement provides this
mechanism by associating a pointer to a variable as follows:

POINTER (ptr,pbv) [, (ptr, pbv),...]

where: ptr is the symbolic name that is used to manipulate the address of the
associated variable and pbv is the pointer-based variable.

Before the pointer-based variable can be used, the pointer must be defined with the initial
address of the variable. The LOC function is useful for this purpose:

INTEGER m(100), a
POINTER (pa, a)

pa = LOC(m)
DO i=1, 100

a = i
pa = pa + 4

END DO

The array will contain the integers from 1 to 100 after the execution of the DO loop.

When a pointer-based variable is referenced, its address is extablished from the current
value of the associated pointer variable. Pointers can be used just as if they were INTEGER
variables except that they cannot appear as dummy arguments. Pointer-based variables
can be of any FORTRAN data type. Pointer-based variables cannot be dummy arguments
or appear in COMMON, GLOBAL, EQUIVALENCE, NAMELIST, SAVE, VALUE or PARAMETER
statements. Further information and examples are presented in the appendices.

RECORD STATEMENT

48 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

RECORD statements are used to define variables that are instances of structures defined in
STRUCTURE declarations. Variables declared in RECORD statements are composite or
aggregate data items. RECORD statements are defined as follows:

RECORD /structure-name/rlist[,/structure-name/rlist...]

where: structure-name is a name given in a STRUCTURE definition.

rlist is one or more variable names, array names or array
declarators separated by commas.

Record names cannot appear in NAMELIST statements and can only be read from and
written to UNFORMATTED files. For more information on the use of records, see the
appendices.

SAVE STATEMENT

FORTRAN 77 permits dynamic as well as static storage allocation. Variables, arrays, and
COMMON blocks declared in a main program are allocated statically and always retain their
definition status. Variables and arrays that are declared locally in subprograms are allo-
cated dynamically when the subprogram is invoked. When the subprogram executes a
RETURN or END statement, these items are deallocated and lose their definition status. The
SAVE statement is used to retain the definition status of these items by specifying them in
the following manner:

SAVE [a [,a]...]

where: a is either a common block name delimited with slashes, a
variable name, or an array name.

If a is not specified, the effect is as though all items in the program unit were presented in
the list.

In order to maintain portability in FORTRAN programs, it is recommended that the SAVE
statement be used on COMMON blocks declared only in subprograms. Although it has no
effect in this implementation, other FORTRAN compilers may cause deallocation of
common blocks upon returning from a subprogram if they are not SAVEd.

AUTOMATIC STATEMENT

FORTRAN 77 permits dynamic as well as static storage allocation. Variables and arrays
which are declared locally in subprograms and not associated in a COMMON block are
allocated dynamically when the subprogram is invoked. When the subprogram executes a
RETURN or END statement, these items are deallocated and lose their definition status. A
compile time option (see the chapter Using the Compilers in the ProFortran User
Guide) is provided to change this behavior and force the memory for all variables to be

Specification and DATA Statements 49

FORTRAN 77 Language Reference Manual

allocated statically. When this option is specified, the AUTOMATIC statement may be
used to override static allocation:

AUTOMATIC [a [,a]...]

where: a is either a variable name or an array name.

If a is not specified, the effect is as though all items in the program unit were presented in
the list.

Note that local variables (variables not associated in a COMMON block) are allocated
dynamically by default in Absoft Fortran 77. This statement is provided for compatibility
with other compilers and to override the static memory allocation compiler option.

STRUCTURE DECLARATION

The STRUCTURE declaration provides a mechanism for organizing various data items into
meaningful groups forming an aggregate data type called a structure. The STRUCTURE
declaration establishes the data types, ordering, and alignment of a structure, but may not
actually define storage for a structure. Storage for the actual structure may be defined in
the STRUCTURE declaration or with a RECORD statement (see above section RECORD
Statement). A STRUCTURE declaration takes the following form:

STRUCTURE [/structure-name/][rlist [,rlist...]]
field-declaration
[field-declaration]
.
.
.
[field-declaration]

END STRUCTURE

where:structure-name is the name used to identify the structure
declaration.

rlist is a list of symbolic names or array declarators allocating
records having the form defined in the STRUCTURE declaration.

field-declaration defines a data item in the structure.

The structure-name must be unique among STRUCTURE declarations, but can be used
for variable and global names.

A field-declaration can be any FORTRAN type statement, a POINTER declaration, a
UNION declaration, a RECORD statement, or another STRUCTURE declaration. Arithmetic
and logical type statements may take an optional /value/ specifier to provide
initialization for the data item in each instance of the structure as described earlier in this
chapter.

50 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

The name %FILL can be used in place of the symbol name in a field-declaration. (e.g
INTEGER*2 %FILL). In this case, no field name is defined, but empty space is added to
the structure for the purpose of alignment. This extension is provided for compatability
with other FORTRAN environments.

If the field-declaration is another STRUCTURE declaration, the structure-name may
be omitted, but the rlist must be given. In this case the symbolic names in rlist
become fields of the structure which contains it. If the structure-name is given, it can
be used in RECORD statements to define instances of the substructure.

The structure fields extablished with field-declarations are accessed by appending a
period and the field name to the record name:

STRUCTURE /date/ day
INTEGER mm
INTEGER dd
INTEGER yy

END STRUCUTRE

day.mm = 9
day.dd = 12
day.yy = 90

See the appendix Using Structures and Pointers for examples using STRUCTURE
declarations.

UNION DECLARATION

A UNION declaration defines a data area which is shared by one or more fields or groups
of fields. It begins with a UNION statement and ends with an ENDUNION statement. In
between are MAP and ENDMAP statements which define the field or groups of fields which
will share the storage area. A UNION declaration is as follows:

UNION
map-declaration
map-declaration
[map-declaration]
.
.
.
[map-declaration]

END UNION

Specification and DATA Statements 51

FORTRAN 77 Language Reference Manual

where: map-declaration takes the following form:

MAP
field-declaration
[field-declaration]
.
.
.
[field-declaration]

END MAP

A field-declaration contains one or more of the following, a STRUCTURE declaration,
a POINTER declaration, another UNION declaration, a RECORD statement or a standard
FORTRAN type declaration. Field-declarations cannot have been previously declared or
be dummy arguments.

The size of the shared data area for the union is the size of the largest map area contained
within the union. The fields of only one of the map areas are defined at any given time
during program execution.

Example:

UNION
MAP

INTEGER*4 long
END MAP
MAP

INTEGER*2 short1, short2
END MAP

END UNION

In the above example, the storage for the first half of the field long is shared by the field
short1, and the storage for the second half of the field long is shared by the field
short2.

VALUE STATEMENT

52 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

The VALUE statement informs the compiler that certain dummy arguments are going to be
passed by value to a subroutine or function. When a value parameter is passed, the
contents of a variable rather than its address is passed. The result is that the actual
argument cannot be changed by the program unit. Pass by value is the default method for
C and Pascal programs and is used when the VAL intrinsic function is used in Absoft
Fortran 77.

VALUE a [[,a]...]

where: a is the name of a dummy argument.

Value arguments can be of any data type except CHARACTER. Value arguments cannot be
arrays, but they can be of type RECORD. VALUE statements cannot appear in program units
which contain ENTRY statements.

VOLATILE STATEMENT

The VOLATILE statement disables optimization for any symbol, array, or COMMON block. It
is useful when a variable is actually an absolute address, when two dummy arguments
can represent the same location, or when a POINTER variable points to defined storage.

VOLATILE a [[,a]...]

where: a is either a common block name delimited with slashes, a variable
 name, or an array name.

DATA STATEMENT

Variables, substrings, arrays, and array elements are given initial values with DATA state-
ments. DATA statements may appear only after the declaration statements in the program
unit in which they appear. DATA statements take the following form:

DATA vlist/clist/ [[,] vlist/clist/]...

where: vlist contains the symbolic names of variables, arrays, array
elements, substrings, and implied DO lists

clist contains the constants which will be used to provide the
initial values for the items in vlist

Specification and DATA Statements 53

FORTRAN 77 Language Reference Manual

A constant may be specified in clist with an optional repeat specifier: a positive integer
constant (or symbolic name of a constant) followed by an asterisk. The repeat specifier is
used to indicate one or more occurrences of the same constant:

DATA A,B,C,D,E/1.0,1.0,1.0,1.0,1.0/

can be written as:

DATA A,B,C,D,E/5*1.0/

An array name unqualified by a subscript implies every element in the array:

INTEGER M(5)
DATA M/5*0/

means:

INTEGER M(5)
DATA M(1),M(2),M(3),M(4),M(5)/0,0,0,0,0/

Type conversion is automatically performed for arithmetic constants (INTEGER, REAL,
DOUBLE PRECISION, and COMPLEX) when the data type of the corresponding item in
vlist is different. CHARACTER constants are either truncated or padded with spaces when
the length of the corresponding character item in vlist is either shorter or longer than
the constant respectively.

The items specified in vlist may not be dummy arguments, functions, or items in blank
COMMON. Items in a named common block can be initialized only within a BLOCK DATA
subprogram (see the chapter Programs, Subroutines, and Functions).

54 Specification and DATA Statements

FORTRAN 77 Language Reference Manual

Implied DO List In A DATA Statement

An implied DO list is used to initialize array elements as though the assignments were
within a DO loop. The implied DO list is of the form:

(dlist, i = m1, m2 [,m3])

where: dlist contains array elements and implied DO lists

i is the DO variable and must be an integer

m1, m2, and m3 are integer constant expressions which establish
the initial value, limit value, and increment value respectively (see
the Control Statements chapter)

INTEGER M(10,10),N(10),L(4)
CHARACTER*3 S(5)

DATA (N(I),I=1,10),((M(I,J),J=3,8),I=3,8)/5*1,5*2,36*99/
DATA (L(I),I=1,4)/’ABCD’,’EFGH’,’IJKL’,’MNOP’/
DATA (S(I),I=1,5)/’ABC’,’DEF’,’GHI’,’JKL’,’MNO’/

55

FORTRAN 77 Language Reference Manual

CHAPTER 5

Control Statements

Control statements direct the flow of execution in a FORTRAN 77 program. Included in
the control statements are constructs for looping, conditional and unconditional
branching, making multiple choice decisions, and halting program execution.

GOTO STATEMENTS

Unconditional GOTO

The unconditional GOTO statement causes immediate transfer of control to a labeled state-
ment:

GOTO s

The statement label s must be in the same program unit as the GOTO statement.

Computed GOTO

The computed GOTO statement provides a means for transferring control to one of several
different destinations depending on a specific condition:

GOTO (s [,s]...) [,] e

e is an expression which is converted as necessary to integer and is used to select a desti-
nation from one of the statements in the list of labels (s [,s]...). The selection is made such
that if the value of e is one, the first label is used, if the value of e is two, the second
label is used, and so on. The same label may appear more than once in the label list. If the
value of e is less than 1 or greater than the number of labels in the list no transfer is
made. All of the statement labels in the list must be in the same program unit as the
computed GOTO statement.

Assigned GOTO

The assigned GOTO statement is used with an integer variable that contains the address of
a labeled statement as established with an ASSIGN statement:

GOTO i [[,] (s [,s]...)]

The address of the labeled statement contained in the integer variable i is used as the
destination. If the optional list of statement labels, (s [,s]...), appears then i must be
defined with the address of one of them or no transfer is made.

56 Control Statements

FORTRAN 77 Language Reference Manual

IF STATEMENTS

Arithmetic IF

The arithmetic IF statement is used to transfer control based on the sign of the value of
an expression:

IF (e) s1 , s2 , s3

e can be an INTEGER, REAL, or DOUBLE PRECISION expression which if negative,
transfers control to the statement labeled s1; if zero, transfers control to the statement
labeled s2; and if positive, transfers control to the statement labeled s3. The statements
labeled s1, s2, and s3 must be in the same program unit as the arithmetic IF
statement.

Logical IF

The logical IF statement is used to execute another statement based on the value of a
logical expression:

IF (e) st

The statement st is executed only if the value of the logical expression e is .TRUE. The
statement st cannot be any of the following: DO, IF, ELSE IF, ELSE, END IF, END, END
DO, REPEAT, SELECT CASE, CASE, or END SELECT.

Block IF

A block IF consists of IF (e) THEN, ELSE, and END IF statements. Each IF (e) THEN
statement must be balanced by an END IF statement. A block IF provides for the
selective execution of a particular block of statements depending on the result of the
LOGICAL expression e.

IF (e) THEN
block of statements

ELSE
block of statements

END IF

The ELSE statement and the second block of statements are optional. If the value of the
LOGICAL expression e is .TRUE., the first block of statements is executed and then
control of execution is transferred to the statement immediately following the END IF
statement. If e has a .FALSE. value, then, if a second block of statements exists
(constructed by ELSE or ELSE IF statements) it is executed, and control of execution is
transferred to the statement immediately following the END IF statement.

Each block of statements may contain more block IF constructs. Since each block IF
must be terminated by an END IF statement there is no ambiguity in the execution path.

Control Statements 57

FORTRAN 77 Language Reference Manual

A more complicated block IF can be constructed using the alternate form of the ELSE
statement: the ELSE IF (e) THEN statement. Multiple ELSE IF (e) THEN statements can
appear within a block IF, each one being evaluated if the previous logical expression e
has a .FALSE. value:

IF (I.GT.0 .AND. I.LE.10) THEN
block of statements

ELSE IF (I.GT.10 .AND. I.LE.100) THEN
block of statements

ELSE IF (I.GT.100 .AND. I.LE.1000) THEN
block of statements

ELSE
block of statements

END IF

LOOP STATEMENTS

The DO statements provide the fundamental structure for constructing loops in
FORTRAN 77. The standard DO loop and Absoft Fortran 77 extensions to the DO loop are
discussed in this section.

Basic DO loop

The basic DO statement takes the following form:

DO s [,] i = e1, e2 [,e3]

where: s is the label of the statement that defines the range of the DO loop
and must follow the DO statement in the same program unit

i is called the DO variable and must be either an INTEGER, REAL,
or DOUBLE PRECISION scalar variable

e1, e2, and e3 may be integer, real, or double precision expres-
sions whose values are called the initial value, the limit value, and
the increment value, respectively

The loop termination statement, labeled s, must not be a DO, arithmetic IF, block IF,
ELSE, END IF, unconditional GOTO, assigned GOTO, RETURN, STOP, END, SELECT CASE,
CASE, or END SELECT statement.

DO loops may be nested to any level, but each nested loop must be entirely contained
within the range of the outer loop. The termination statements of nested DO loops may be
the same.

DO loops may appear within IF blocks and IF blocks may appear within DO loops, but
each structure must be entirely contained within the enclosing structure.

58 Control Statements

FORTRAN 77 Language Reference Manual

DO Loop Execution

The following steps govern the execution of a DO loop:

1. The expression e1, the initial value, is evaluated and assigned to the DO
variable i, with appropriate type conversion as necessary.

2. The expressions e2 and e3, the limit value and increment value respec-
tively, are evaluated. If e3 is omitted, it is given the default value of
one.

3. The iteration count is calculated from the following expression:

MAX(INT((e2 - e1 + e3)/e3), 0)

and determines how many times the statements within the loop will be
executed.

4. The iteration count is tested, and if it is zero, control of execution is
transferred to the statement immediately following the loop
termination statement.

5. The statements within the range of the loop are executed.

6. The DO variable is increased by the increment value, the iteration count
is decreased by one, and control branches to step four.

Variables that appear in the expressions e1, e2, and e3 may be modified within the loop,
without affecting the number of times the loop is iterated.

K = 0
L = 10
DO 10 I=1, L
DO 10 J=1, I
L = J

10 K = K+1

When the execution of both the inner and outer loops is finished, the values of both I and
J are 11, the value of K is 55, and the value of L is 10.

Transfer into Range of DO Loop

Under certain conditions, FORTRAN 66 permitted transfer of control into the range of a
DO loop from outside the range. This was known as the “extended range of a DO”. Such a
transfer is considered highly unstructured and is prohibited in ANSI FORTRAN 77.
However, in Absoft Fortran 77, all DO loops may be considered extended range, although
it is not good programming practice.

Control Statements 59

FORTRAN 77 Language Reference Manual

DO WHILE

The DO WHILE statement is an extension to standard FORTRAN 77 and provides a
method of looping not necessarily governed by an iteration count. The form of the DO
WHILE statement is:

[DO [s[,]]] WHILE (e)

where: s is the statement label of an executable statement that defines the range
of the loop. The statement identified by s must follow the DO statement
in the sequence of statements within the same program unit as the DO
statement. If the label s is omitted, the loop must be terminated with a
REPEAT or END DO statement.

e is a LOGICAL expression.

The DO WHILE statement tests the LOGICAL expression at the top of the loop. If the
expression evaluates to a .TRUE. value, the statements within the body of the loop are
executed. If the expression evaluates to a .FALSE. value, execution proceeds with the
statement following the loop:

INTEGER status,eof; PARAMETER (eof=-1)

DATA a,b,c /3*0.0/

status = 0
WHILE (status<>eof)

c = c + a*b
READ (*,*,IOSTAT=status) a,b

END DO

Block DO

The block DO extension to standard FORTRAN 77 provides four additional methods for
constructing a loop. They are as follows:

1. DO
block

END DO

2. DO (i=e1, e2 [,e3]) DO i=e1, e2 [,e3]
block or block

END DO END DO

3. DO (e4 TIMES)
block

END DO

4. DO (e4) TIMES
block

END DO

60 Control Statements

FORTRAN 77 Language Reference Manual

All four forms of block DO require a REPEAT or END DO statement to terminate the loop.
An EXIT or LEAVE statement (described below) may be used to abnormally exit the loop
and a CYCLE statement (also described below) may be used to force iteration of the loop.

The first case is essentially a DO forever construct for use in situations where the number
of loop iterations is unknown and must be determined from some external condition (i.e.
processing text files).

The second case is identical to the standard DO loop without a terminating statement
label. The value i is the DO variable, e1 is its initial value, e2 is its terminating value and
e3, if present, is the increment value.

The value e4, in the third case, is the iteration count and may be an integer, real, or
double precision expression. Where the value e4 is not an integer, it is first converted to
an integer and the truncated value becomes the iteration count. At least one blank
character must be present between the iteration count expression and the keyword TIMES.

END DO and REPEAT

The END DO and REPEAT statements are extensions to standard FORTRAN 77 and are
used to terminate DO WHILE loops and block DO structures. Each block DO must have a
matching END DO or REPEAT statement. After execution of an END DO or REPEAT
statement, the next statement executed depends on the result of the DO loop
incrementation processing. The form of the END DO and REPEAT statements is:

END DO (or REPEAT)

EXIT and LEAVE statements

The EXIT and LEAVE statements are also extensions to standard FORTRAN 77 and
provides a convenient means for abnormal termination of a DO loop. These statements
cause control of execution to be transferred to the statement following the terminal
statement of a DO loop or block DO.

DO
READ (*,*,IOSTAT=ios) v1,v2; IF (ios==-1) EXIT
CALL process(v1,v2)

END DO

Control Statements 61

FORTRAN 77 Language Reference Manual

CYCLE statement

The CYCLE statement is an extension to FORTRAN 77 and causes immediate loop index
and iteration count processing to be performed for the DO loop or block DO structure to
which the CYCLE statement belongs.

READ (*,*) n
z = 0.0
DO (n TIMES)

READ (*,*) x,y; IF (y==0.0) CYCLE
z = z + x/y

END DO

CONTINUE STATEMENT

The CONTINUE statement is used to provide a reference point. It is usually used as the
terminating statement of a basic DO loop, but it can appear anywhere in the executable
section of a program unit. Executing the CONTINUE statement itself has no effect. The
form of the CONTINUE statement is:

CONTINUE

BLOCK CASE

The block CASE structure is an extension to the FORTRAN standard for constructing
blocks which are executed based on comparison and range selection. The SELECT CASE
statement is used with an END SELECT statement, at least one CASE statement and,
optionally, a CASE DEFAULT statement to control the execution sequence. The SELECT
CASE statement is used to form a block CASE.

The form of a block CASE is:

SELECT CASE (e)
CASE (case_selector)

[block]
[CASE (case_selector)

[block]
...]
[CASE DEFAULT]

[block]
END SELECT

where: e is an expression formed from one of the enumerative data types:
CHARACTER, INTEGER, REAL, or DOUBLE PRECISION. For the purposes of
the block CASE construct, the value of CHARACTER expression is its posi-
tion in the ASCII collating sequence.

A CASE block must contain at least one CASE statement and must be terminated by an END
SELECT statement. Control of execution must not be transferred into a block CASE.

62 Control Statements

FORTRAN 77 Language Reference Manual

CASE blocks are delimited by a CASE statement and the next CASE, CASE DEFAULT, or END
SELECT statement. A CASE block may be empty. After execution of a CASE block, control
of execution is transferred to the statement following the END SELECT statement with the
same CASE level. Block CASE structures may be nested. Since each block CASE must be
terminated by an END SELECT statement there is no ambiguity in the execution sequence.

A case_selector takes the form of either of the following:

CASE (con[,con,...,con])

CASE DEFAULT

con may be either a value selector or a range selector. A value selector is a constant. A
range selector takes one of the following three forms:

con1:con2 where (con1 .LE. e) .AND. (e .LE. con2)

con: where con .LE. e

:con where e .LE. con

All constants must be of the same type as the expression e in the SELECT CASE state-
ment. A block CASE may have only one CASE DEFAULT statement where control of
execution is transferred if no match is found in any other CASE statement. If a CASE
DEFAULT statement is not present and no match is found, a run-time error is reported.

Execution of a block CASE statement

Execution of block CASE statement causes evaluation of the expression e in the SELECT
CASE statement. The value of the expression is then compared sequentially with the
parameters of the case selectors. If a match is made, transfer of control is passed to that
case block. If the comparison fails, the next case selector is checked.

Control Statements 63

FORTRAN 77 Language Reference Manual

Block CASE Example

*
* routine to count the number and types of characters
* in a text file
*

IMPLICIT INTEGER(a-z)
CHARACTER line*80
PARAMETER (eof=-1)

lines=0; alf=0; num=0; blk=0; trm=0; spl=0

 DO
 READ (*,’(a)’,IOSTAT=ios) line
 IF (ios==eof) EXIT
 chars = LEN(TRIM(line))
 lines = lines+1
 DO (i=1, chars)
 SELECT CASE (line(i:i))
 CASE ("A":"Z","a":"z")
 alf = alf+1
 CASE ("0":"9")
 num = num+1
 CASE (" ")
 blk = blk+1
 CASE (".","!","?")
 trm = trm+1
 CASE DEFAULT
 spl = spl+1
 END SELECT
 END DO
 END DO

END

STOP STATEMENT

The STOP statement terminates execution of a program:

STOP [s]

The optional string s may be a CHARACTER constant or string of five or fewer digits and is
output to standard out with end of record characters.

PAUSE STATEMENT

The PAUSE statement suspends execution until a carriage return character is read from
standard input (usually from the keyboard).

PAUSE [s]

64 Control Statements

FORTRAN 77 Language Reference Manual

The optional string s may be a CHARACTER constant or string of five or fewer digits and is
output to unit * without end of record characters.

END STATEMENT

Every program unit must have an END statement which terminates the range of individual
program units within a source file. A source file itself may contain more than one
program unit; the entry points of the individual program units in the compiled object file
are available to the linker.

An END statement is executable and if encountered in a main program has the effect of a
STOP statement and if encountered in a subroutine or function subprogram has the effect
of a RETURN statement. An END statement is given on a statement line by itself with no
other characters:

END

65

FORTRAN 77 Language Reference Manual

CHAPTER 6

Input/Output and FORMAT Specification

Input and output statements provide a channel through which FORTRAN 77 programs
can communicate with the outside world. Facilities are available for accessing disk and
tape files, communicating with terminals and printers, and controlling external devices.
FORTRAN 77 input and output statements are designed to allow access to the wide
variety of features implemented on various computer systems in the most portable
manner possible.

A format specification is used with formatted input and output statements to control the
appearance of data on output and provide information regarding the type and size of data
on input. Converting the internal binary representation of a floating point number into a
string of digits requires a format specification and is called editing. A format
specification divides a record into fields, each field representing a value. An explicitly
stated format specification designates the exact size and appearance of values within
fields.

When an asterisk (*) is used as a format specification it means “list directed” editing.
Instead of performing editing based on explicitly stated formatting information, data will
be transferred in a manner which is “reasonable” for its type and size.

Throughout the remainder of this chapter, input and output will be referred to in the
conventional abbreviated form: I/O.

RECORDS

All FORTRAN I/O takes place through a data structure called a record. A record can be a
single character or sequence of characters or values. A record might be a line of text, the
data received from a bar code reader, the coordinates to move a plotter pen, or a punched
card. FORTRAN uses three types of records:

• Formatted

• Unformatted

• Endfile

Formatted Record

A formatted record is a sequence of ASCII characters. It may or may not be terminated
depending on the operating system. If it is terminated, the usual terminating characters
are a carriage return, a line feed, or both. A single line of text on this page is a formatted

66 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

record. The minimum length of a formatted record is zero. The maximum record length
is limited only by available memory.

Unformatted Record

An unformatted record is a sequence of values. Its interpretation is dependent on the data
type of the value. For example, the binary pattern 01010111 can be interpreted as the
integer value 87 or the character value “W” depending on its data type. The minimum
length of an unformatted record is zero. Records in unformatted sequential access files
which contain no record length information (see below) have unlimited length. Records
in unformatted sequential access files that contain imbedded record length information
have a maximum size of 2,147,483,647 bytes. The maximum length of direct access
unformatted records is limited only by available memory.

Endfile Record

The endfile record is the last record of a file and has no length. An endfile record may or
may not be an actual record depending on the file system of a particular operating
system.

FILES

A file is composed of zero or more records and can be created and accessed by means
other than FORTRAN 77 programs. For example, a text processor might be used to
create and edit a document file and a FORTRAN 77 program used to manipulate the
information in the file.

Files that are usually stored on disks or tapes are called external files. Files can also be
maintained in main memory. These are called internal files.

File Name

Most external files are accessed explicitly by their names. While the file naming
conventions of operating systems vary greatly, FORTRAN 77 can accommodate most of
the differences. The circumstances where a name is not required to access a file are
discussed later in this chapter.

File Position

The position within a file refers to the next record that will be read or written. When a
file is opened it is usually positioned to just before the first record. The end of the file is
just after the last record. Some of the I/O statements allow the current position within a
file to be changed.

File Access

Input/Output and FORMAT Specifications 67

FORTRAN 77 Language Reference Manual

The method used to transfer records to and from files is called the access mode. External
files may contain either formatted or unformatted records. When the records in a file can
be read or written in an arbitrary manner, randomly, the access mode is direct. Individual
records are accessed through a record number, a positive integer. All of the records in a
direct access file have the same length and contain only the data actually written to them;
there are no record termination characters. Records may be rewritten, but not deleted.
Generally, only disk files can use the direct access mode of record transfer.

When the records are transferred in order, one after another, the access mode is
sequential. The records in a sequential access file may be of different lengths. Some files,
like terminals, printers, and tape drives, can only use the sequential access mode.

Formatted sequential access files usually contain textual information and each record has
a terminating character(s) as described above.

Unformatted sequential access is generally used for two conflicting, but equally common
purposes:

• For controlling external devices such as plotters, graphics terminals,
and machinery as well as processing unencoded binary information
such as object files. In this case it is important that the data transferred
to and from the external media be a true byte stream containing no
record length information.

• For its data compression and speed of access characteristics. In this
case it must be possible to determine the length of a record for partial
record reads and backspacing purposes.

This implementation of FORTRAN 77 contains provisions for both of these
requirements. The default manner of unformatted processing of a sequential access
device is to treat it as a pure byte stream. Partial record reads and backspacing are not
possible. The data transmitted is exactly what your WRITE statement specifies or what the
external media contains. There is no limit on the length of a record.

When partial record reads and backspacing of unformatted sequential files are required,
two methods may be employed:

1. On a file-by-file basis, the runtime system can be informed by adding the “BLOCK=-1”
specifier to the OPEN statement. The BLOCK specifier is an extension normally used to
specify the blocking factor applied to magnetic tape. When a file is opened for
unformatted sequential access and this specifier is negatively valued, each record
written will be preceded and followed by four bytes containing the length of the
record.

2. Compile your program with the -N3 compiler option. This causes all OPEN statements
for sequential unformatted files to have embedded record information (i.e. as though
“BLOCK=-1” had been specified for each OPEN).

68 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

Internal Files

Internal files are comprised of CHARACTER variables, CHARACTER array elements,
CHARACTER substrings, or CHARACTER arrays. An internal file which is a CHARACTER
variable, CHARACTER array element, or character substring has one record whose length is
the length of the character entity. An internal file that is a CHARACTER array has as
many records as there are array elements. The length of an individual record is the length
of a CHARACTER array element. Data may only be transferred through the formatted
sequential access mode. Internal files are usually used to convert variables between
numeric and CHARACTER data types.

File Buffering

The I/O library uses double buffering for all external files. One buffer, referred to below
as the transfer buffer, is used to hold the data transferred during the input or output of a
single logical record. Since the data held in the transfer buffer is only used during the
input or output of a single record, the same buffer is used for all connected files. In
addition to the transfer buffer, a second buffer is associated with each connected file.
This buffer, referred to below as the physical buffer, is used to hold multiple logical
records before writing them to disk. By default, the physical buffer is 1024 bytes for
sequential access files. For direct access files, the default physical buffer is either 1024
bytes or the logical record size, whichever is larger.

The physical buffer size can be adjusted by using the BUFFER= specifier in the OPEN
statement (see below).

I/O SPECIFIERS

FORTRAN 77 I/O statements are formed with lists of specifiers that are used to identify
the parameters of the operation and direct the control of execution when exceptions
occur.

Unit Specifier

The mechanism through which a channel of communication with a file is established and
maintained is called a unit. A unit may be either explicitly or implicitly identified, and
may refer to an external or internal file. When the channel is established, the unit is said
to be connected to the file. The relationship is symmetric; that is, you can also say that
the file is connected to the unit.

A connection to an external file is established and maintained with an external unit
identifier that is an integer expression whose value is an arbitrary positive integer. An
external unit identifier is global to the program; a file opened in one program unit may be
referenced with the same unit number in other program units. There is no relationship
between a FORTRAN unit specifier and the numbers used by various operating systems
to identify files.

Input/Output and FORMAT Specifications 69

FORTRAN 77 Language Reference Manual

A connection to an internal file is made with an internal file identifier which is the name
of the CHARACTER variable, CHARACTER array element, CHARACTER substring, or
CHARACTER array that comprises the file.

Unit numbers that are “preconnected” to system devices and default files are:

1. Unit 0 is preconnected to “standard error”, usually the screen.

2. Units 5, 6, and 9 are preconnected to “standard input”, usually the
keyboard, for input operations and “standard output”, usually the
screen, for output operations.

3. An asterisk as a unit identifier refers to “standard input” for input
operations and “standard output” for output operations.

4. All other unit numbers are preconnected to default files for sequential
input and output operations. If a sequential input or output operation
references a unit which has not been connected with a FORTRAN
OPEN statement, the effect is as if an OPEN statement with only the
UNIT= specifier present had been executed to connect the unit.
Execution of direct access input and output operations is not permitted
on preconnected units.

With the exception of the asterisk, the preconnection of a unit number may be defeated
by explicitly connecting the unit number to a file with the FORTRAN OPEN statement.

A unit specifier is given as:

[UNIT=] u

where: u is either a positive INTEGER expression representing an external
unit identifier, or a CHARACTER entity representing an internal file
identifier.

The characters UNIT= may be omitted if the unit identifier occurs first in the list of
identifiers.

Format Specifier

The format specifier establishes the method of converting between internal and external
representations. It can be given in one of two ways:

[FMT=] f

or
[FMT=] *

70 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

where: f is the statement label of a FORMAT statement, an integer variable
that has been assigned a FORMAT statement label with an ASSIGN
statement, a CHARACTER array name, or any CHARACTER expression

* indicates “list directed” editing

The characters FMT= may be omitted if the format specifier occurs second in the list of
identifiers and the first item is the unit specifier with the characters UNIT= also omitted.
The following are equivalent:

WRITE (UNIT=9, FMT=1000)
WRITE (9,1000)

Namelist Specifier

The namelist specifier establishes that conversion from internal and external
representations is to be accomplished through namelist directed I/O and is given as:

[NML=] n

where n is the name of a previously defined namelist identifier.

The characters NML= may be omitted if the namelist specifier occurs second in the list of
identifiers and the first item is the unit specifier with the characters UNIT= also omitted.

Record Specifier

The record specifier establishes which direct access record is to be accessed and is given
as:

REC = rn

where rn is a positive integer expression.

Error Specifier

The error specifier provides a method to transfer control of execution to a different
section of the program unit if an error condition occurs during an I/O statement. It takes
as an argument the label of the statement where control is to be transferred:

ERR = s

where: s is the statement label.

End of File Specifier

Input/Output and FORMAT Specifications 71

FORTRAN 77 Language Reference Manual

The end of file specifier provides a method to transfer control of execution to a different
section of the program unit if an end of file condition occurs during an I/O statement. It
also takes as an argument the label of the statement where control is to be transferred:

END = s

where: s is the statement label.

To generate an end of file from the keyboard, type either Command-Return or Command-
Enter.

I/O Status Specifier

The I/O status specifier is used to monitor error and end of file conditions after the
completion of an I/O statement. Its associated integer variable becomes defined with a -1
if end of file has occurred, a positive integer if an error occurred, and zero if there is
neither an error nor end of file condition:

IOSTAT = ios

where: ios is the symbolic name of an INTEGER variable or array
element.

I/O LIST

The I/O list, iolist, contains the names of variables, arrays, array elements, and
expressions (only in output statements) whose values are to be transferred with an I/O
statement. The following items may appear in an iolist:

• A variable name

• An array element name

• A CHARACTER substring name

• An array name which is interpreted as every element in the array

• Any expression (only in an output statement)

Implied DO List In An I/O List

72 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

The elements of an iolist in an implied DO list are transferred as though the I/O statement
was within a DO loop. An implied DO list is stated in the following manner:

(dlist, i = e1, e2 [,e3])

where: i is the DO variable

e1, e2, and e3 establish the initial value, the limit value, and
increment value respectively (see the Control Statements
chapter).

dlist is an iolist and may consist of other implied DO lists

In a READ statement (see below), the DO variable, i, must not occur within dlist except
as an element of subscript, but may occur in the iolist prior to the implied DO list.

DATA TRANSFER STATEMENTS

Data transfer statements transfer one or more records of data.

READ, WRITE AND PRINT

The READ statements transfer input data from files into storage and the WRITE and PRINT
statements transfer output data from storage to files.

READ (cilist) [iolist]

READ f [,iolist]

WRITE (cilist) [iolist]

PRINT f [,iolist]

PRINT n

where: f is a format identifier

iolist is an I/O list

n is a list name previously defined in a NAMELIST statement

cilist is a parameter control list that may contain:

1. A unit specifier identifying the file connection.

2. An optional format specifier for formatted data transfers or an optional
namelist specifier for namelist directed data transfers, but not both.

3. An optional record specifier for direct access connections.

Input/Output and FORMAT Specifications 73

FORTRAN 77 Language Reference Manual

4. An optional error specifier directing the execution path in the event of
error occurring during the data transfer operation.

5. An optional end of file specifier directing the execution path in the
event of end of file occurring during the data transfer operation.

6. An optional I/O status specifier to monitor the error or end of file
status.

The PRINT statements, as well as the READ statements which do not contain a cilist,
implicitly use the asterisk as a unit identifier.

ACCEPT AND TYPE

The ACCEPT statements transfer input data from records accessed in sequential mode and
the TYPE statements transfer output data to records accessed in sequential mode.

ACCEPT f [,iolist]

ACCEPT n

TYPE f [,iolist]

TYPE n

where: f is a format identifier

iolist is an I/O list

n is a list name previously defined in a NAMELIST statement

The ACCEPT and TYPE statements implicitly use the asterisk as a unit identifier.

Unformatted Data Transfer

Unformatted data transfer is permitted only to external files. One unedited record is
transferred per data transfer statement.

Formatted Data Transfer

Formatted data transfer requires a format specifier which directs the interpretation
applied to items in the iolist. Formatted data transfer causes one or more records to be
transferred.

Printing

74 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

WRITE statements which specify a unit connected with ACTION=’PRINT’ in the OPEN
statement (see below) use the first character of each record to control vertical spacing.

This character, called the carriage control character, is not printed and causes the
following vertical spacing to be performed before the record is output:

Character Vertical Spacing

blank one line
0 two lines
1 top of page
+ no advance (over print)

Any other character appearing in the first position of record or a record containing no
characters causes vertical spacing of one line.

OPEN STATEMENT

The OPEN statement connects a unit to an existing file, creates a file and connects a unit to
it or modifies an existing connection. The OPEN statement has the following form:

OPEN ([UNIT=] u [,olist])

where: u is the external unit specifier

olist is optional and consists of zero or more of the following
specifiers, each of which must have a variable or constant
following the equal sign:

IOSTAT = an I/O status specifier as described above.

ERR = an error specifier as described above.

FILE = a CHARACTER expression which represents the name of the file to
be connected to the unit. If this specifier is omitted and the
specified unit is not currently connected, a file name will be
created.

NAME = NAME= is a synonym for FILE= in the OPEN statement.

Input/Output and FORMAT Specifications 75

FORTRAN 77 Language Reference Manual

STATUS = a CHARACTER expression which must be OLD, NEW, SCRATCH, or
UNKNOWN. The file must already exist when OLD is specified. The
file must not exist when NEW is specified. If SCRATCH is specified
a file will be created which will exist only during the execution
of the program and FILE= must not specified. If UNKNOWN is
specified, a file will be created if one does not already exist. The
default value is UNKNOWN.

ACCESS = a CHARACTER expression which must be SEQUENTIAL, DIRECT, or
APPEND and specifies the access mode or position. The default
value is SEQUENTIAL.

ORGANIZATION = ORGANIZATION= is a synonym for ACCESS=.

FORM = a CHARACTER expression which must be FORMATTED or
UNFORMATTED specifying the type of records in the file. The
default value is UNFORMATTED for direct access files and
FORMATTED for sequential access files.

RECL = a positive INTEGER expression which must be given for direct
access file connections and specifies, in bytes, the length of each
direct access record. The -N51 option may be used for the length
to be specified in 4-byte units.

RECORDSIZE = RECORDSIZE= is a synonym for RECL=.

BLANK = a CHARACTER expression which must be NULL or ZERO specifying
how blank characters in formatted numeric input fields are to be
handled. A value of ZERO causes blanks in the input field
(leading, embedded, and trailing) to be replaced with zeros. The
default value is NULL and causes blanks to be ignored.

MAXREC = an INTEGER expression specifying the maximum number of
records permitted with direct access files.

POSITION = a CHARACTER expression which must be REWIND, APPEND, or
ASIS. If REWIND is specified the file is opened at its beginning
position for input or output. If APPEND is specified, the file is
opened at its end position for output. The default is ASIS and has
the same effect as REWIND.

ACTION = a CHARACTER expression which must be READ, WRITE, BOTH, or
PRINT. If READ is specified, only READ statements and file
positioning statements are allowed to refer to the connection. If
WRITE is specified, only WRITE, PRINT, and file positioning
statements are allowed to refer to the connection. If BOTH is
specified, any input/output statement may be used to refer to the

76 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

connection. If PRINT is specified, the first character in each
record is interpreted for carriage control (see the previous section
on printing) and only WRITE and PRINT statements are allowed to
refer to the connection. The default for ACTION is BOTH.

READONLY a specifier without an equal sign equivalent to ACTION=READ.

BUFFER = an integer expression which specifies the physical size (in bytes)
of the I/O buffer. A value of zero is useful in that no buffering is
used.

DISPOSE = a CHARACTER expression which must be KEEP, SAVE, DELETE,
PRINT, PRINT/DELETE, SUBMIT or SUBMIT/DELETE. When set to
KEEP or SAVE, the file is retained after closing. When set to
DELETE or SUBMIT/DELETE, the file is not retained after closing.
When set to PRINT/DELETE, the first character in each record is
interpreted as carriage control and the file is not retained after
closing. SUBMIT has no effect and is provided for compatibility
only.

DISP = DISP= is a synonym for DISPOSE=.

BLOCK = an INTEGER expression. When the expression is negative (i.e -1),
each record written will be preceded and followed by four bytes
containing the length of the record. This specifier is to be used
only with files opened for unformatted sequential access. See the
File Access section near the beginning of this chapter for more
information about BLOCK.

CARRIAGECONTROL= a CHARACTER expression which must be FORTRAN, LIST or NONE.
Setting the value to FORTRAN is equivalent to ACTION=’PRINT’.
Setting the value to LIST or NONE has no effect and is only
supported for compatibility.

SHARED a specifier without an equal sign which has no effect, and is
supplied for compatibility only.

NOSPANBLOCKS a specifier without an equal sign which has no effect, and is
supplied for compatibility only.

CONVERT = a CHARACTER expression which must evaluate to BIG_ENDIAN or
LITTLE_ENDIAN. This specifier controls the byte ordering of
binary data in unformatted files. The default is the ordering
appropriate for the type of processor the compiler is installed on.

If a unit is already connected to a file, execution of an OPEN statement for that unit is
allowed. If the file to be connected is not the same as the file which is connected, the

Input/Output and FORMAT Specifications 77

FORTRAN 77 Language Reference Manual

current connection is terminated before the new connection is established. If the file to be
connected is the same as the file which is connected, only the BLANK= and ACTION=
specifiers may have a different value from the ones currently in effect. Execution of the
OPEN statement causes the new values of BLANK= and ACTION= to be in effect.

CLOSE STATEMENT

The CLOSE statement flushes a file’s buffers and disconnects a file from a unit. The CLOSE
statement has the following form:

CLOSE ([UNIT=] u [,clist])

where: u is the external unit specifier.

clist is optional and consists of zero or more of the following
specifiers, each of which must have a variable or constant
following the equals sign:

IOSTAT = an I/O status specifier as described above.

ERR = an error specifier as described above.

STATUS = a character expression which must be KEEP or DELETE which
determines whether a file will continue to exist after it has been
closed. STATUS has no effect if the value of the STATUS specifier
in the OPEN statement was SCRATCH. The default value is KEEP.

Normal termination of execution of a FORTRAN 77 program causes all units that are
connected to be closed.

BACKSPACE STATEMENT

The BACKSPACE statement causes the file pointer to be positioned to a point just before
the previous record. The forms of the BACKSPACE statement are:

BACKSPACE u
BACKSPACE ([UNIT=] u [,alist])

where: u is the external unit specifier.

alist is optional and consists of zero or more of the following
specifiers:

IOSTAT = an I/O status specifier as described above.

ERR = an error specifier as described above.

78 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

REWIND STATEMENT

The REWIND statement causes the file pointer to be positioned to a point just before the
first record. The forms of the REWIND statement are:

REWIND u
REWIND ([UNIT=] u [,alist])

where: u is the external unit specifier.

alist is optional and consists of zero or more of the following
specifiers:

IOSTAT = an I/O status specifier as described above.

ERR = an error specifier as described above.

ENDFILE STATEMENT

The ENDFILE statement does nothing to disk files. The forms of the ENDFILE statement
are:

ENDFILE u
ENDFILE ([UNIT=] u [,alist])

where: u is the external unit specifier.

alist is optional and consists of zero or more of the following
specifiers:

IOSTAT = an I/O status specifier as described above.

ERR = an error specifier as described above.

INQUIRE STATEMENT

The INQUIRE statement is used to obtain information regarding the properties of files and
units. The forms of the INQUIRE statement are:

INQUIRE ([UNIT=] u, ilist)
INQUIRE (FILE= fin, ilist)

Input/Output and FORMAT Specifications 79

FORTRAN 77 Language Reference Manual

The first form, inquiry by unit, takes a unit number as the principal argument and is used
for making inquiries about specific units. The unit number, u, is a positive integer
expression. The second form, inquiry by file, takes a file name as the principal argument
and is used for making inquiries about specific named files. The file name, fin, is a
character expression. Only one of UNIT= or FILE= may be specified. One or more of the
following ilist specifiers are also used with the INQUIRE statement:

IOSTAT = an I/O status specifier as described above.

ERR = an error specifier as described above.

EXIST = a LOGICAL variable or array element which is defined with a
true value if the unit or file exists.

OPENED = a LOGICAL variable or array element which is defined with a
true value if the unit or file is connected.

NUMBER = an INTEGER variable or array element which is defined with
the number of the unit that is connected to the file.

NAMED = a LOGICAL variable or array element which is defined with a
true value if the file has a name.

NAME = a CHARACTER variable or array element which is defined with
the name of the file.

ACCESS = a CHARACTER variable or array element which is defined with
either the value SEQUENTIAL or DIRECT depending on the
access mode.

SEQUENTIAL = a CHARACTER variable or array element which is defined with the
value YES or NO indicating whether the file can be connected
for sequential access.

DIRECT = a CHARACTER variable or array element which is defined with
the value YES or NO indicating whether the file can be
connected for direct access.

FORM = a CHARACTER variable or array element which is defined with
either the value FORMATTED or UNFORMATTED depending on
whether the file is connected for formatted or unformatted I/O.

FORMATTED = a CHARACTER variable or array element which is defined with
the value YES or NO indicating whether the file can be
connected for formatted I/O.

80 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

UNFORMATTED= a CHARACTER variable or array element which is defined with the
value YES or NO indicating whether the file can be connected
for unformatted I/O.

RECL = an INTEGER variable or array element which is defined with
the record length if the file is connected for direct access.

NEXTREC = an INTEGER variable or array element which is defined with
the value of the next record number to be read or written.

BLANK = a CHARACTER variable or array element which is defined with
either the value NULL or ZERO depending on how blanks are
handled.

SIZE = an INTEGER variable or array element which is defined with
the size of the file in bytes.

Some of the specifiers may not be defined if a unit is not connected or a file does not
exist. For example:

CHARACTER*20 FN,AM
LOGICAL OS
INTEGER RL
INQUIRE (UNIT=18, OPENED=OS, NAME=FN, ACCESS=AM, RECL=RL)

If unit 18 is not connected to a file, OS will be defined with a false value, but FN, AM, and
RL will be undefined. If unit 18 is connected for sequential access, OS, FN, and AM will be
defined appropriately, but record length is meaningless in this context, and RL will be
undefined.

Input/Output and FORMAT Specifications 81

FORTRAN 77 Language Reference Manual

ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements use internal files to effectively transfer data in
internal form to character form, and vise versa. ENCODE can be thought of as writing the
list of variables to the CHARACTER variable char_form with space padding if necessary,
while DECODE reads the values of the variables from char_form. The forms of the ENCODE
and DECODE statements are:

ENCODE (count,fmt,char_form[,IOSTAT=ios][,ERR=label]) [list]
DECODE (count,fmt,char_form[,IOSTAT=ios][,ERR=label]) [list]

where: count is the number of characters to convert to character form in the
ENCODE statement. It is the number of characters to convert to internal
form in the DECODE statement.

fmt is a format specifier described in the Format Specifier section near
the beginning of this chapter.

char_form is a scalar variable or array which will hold the converted
character form for the ENCODE statement. It holds the character form to be
converted for the DECODE statement.

ios is an INTEGER*4 variable used to monitor error and end of file condi-
tions. It is described in the I/O Status Specifier section near the
beginning of this chapter.

label is a statement label at which execution will be continued in the
event of an error during an ENCODE or DECODE conversion.

list is a list of variables separated by commas. These are in internal form.

The following example assigns the ASCII representation of the variables I and J to the
character variable C. After the ENCODE statement, C equals " 123 456 ".

CHARACTER*20 C
I = 123
J = 456
ENCODE (20,100,C) I,J

100 FORMAT (2I4)
END

82 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

GIVING A FORMAT SPECIFICATION

An explicit format specification may be given in either a FORMAT statement or in a char-
acter array or character expression. A FORMAT statement must be labeled so that it can be
referenced by the data transfer statements (READ, WRITE, PRINT, etc.). The form of the
FORMAT statement is:

FORMAT format_specification

When a format specification is given with a CHARACTER array or CHARACTER expression
(CHARACTER variables, array elements, and substrings are simple CHARACTER expressions)
it appears as a format specifier in the cilist of data transfer statements as described later in
this chapter. An array name not qualified by subscripts produces a format specification
which is the concatenation of all of the elements of the array. Leading and trailing blanks
within the CHARACTER item are not significant.

A format specification is given with an opening parenthesis, an optional list of edit
descriptors, and a closing parenthesis. A format specification may be given within a
format specification; that is, it may be nested. When a format specification is given in this
manner it is called a group specifier and can be given a repeat count, called the group
repeat count, which is a positive INTEGER constant immediately preceding the opening
parenthesis. The maximum level of nesting is 20.

The edit descriptors define the fields of a record and are separated by commas except
between a P edit descriptor and an F, E, D, or G edit descriptor and before or after slash
and colon edit descriptors (see below). The fields defined by edit descriptors have an
associated width, called the field width.

An edit descriptor is either repeatable or nonrepeatable. Repeatable means that the edit
descriptor is to be used more than once before going on to the next edit descriptor in the
list. The repeat factor is given immediately before the edit descriptor as a positive integer
constant.

The repeatable edit descriptors and their meanings are:

Iw and Iw.m integer editing
Fw.d floating point editing
Ew.d and Ew.dEe single precision scientific editing
Dw.d double precision scientific editing
Gw.d and Gw.dEe general floating point editing
Lw logical editing
A[w] character editing
Bw and Bw.m binary editing
Ow and Ow.m octal editing
Zw and Zw.m hexadecimal editing

w and e are nonzero, unsigned, integer constants and d and m are unsigned integer con-
stants.

Input/Output and FORMAT Specifications 83

FORTRAN 77 Language Reference Manual

The nonrepeatable edit descriptors and their meanings are:

’h1 h2 … hn ’ character string
nHh1 h2 … hn Hollerith string
nX skip positions
Tc, TLc, and TRc tab to column
kP set scale factor
/ start a new record
: conditionally terminate I/O
S, SP, and SS set sign control
BZ and BN set blank control
$ or \ suppress end of record
Q return count of characters remaining in current record
"h1 h2 … hn " character string

h is an ASCII character; n and c are nonzero, unsigned, integer constants; and k is an
optionally signed integer constant.

FORMAT AND I/O LIST INTERACTION

During formatted data transfers, the I/O list items and the edit descriptors in the format
specification are processed in parallel, from left to right. The I/O list specifies the
variables that are transferred between memory and the fields of a record, while the edit
descriptors dictate the conversions between internal and external representations.

The repeatable edit descriptors control the transfer and conversion of I/O list items. A
repeatable edit descriptor or format specification preceded by a repeat count, r , is treated
as r occurrences of that edit descriptor or format specification. Each repeatable edit
descriptor controls the transfer of one item in the I/O list except for complex items which
require two F, E, D, or G edit descriptors. A complex I/O list item is considered to be two
real items.

The nonrepeatable edit descriptors are used to manipulate the record. They can be used to
change the position within the record, skip one or more records, and output literal strings.
The processing of I/O list items is suspended while nonrepeatable edit descriptors are
processed.

If the end of the format specification is reached before exhausting all of the items in the
I/O list, processing starts over at the beginning of the last format specification
encountered and the file is positioned to the beginning of the next record. The last format
specification encountered may be a group specifier, if one exists, or it may be the entire
format specification. If there is a repeat count in front of a group specifier it is also
reused.

84 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

INPUT VALIDATION

Before numeric conversion from external to internal values using a format specification,
input characters will be checked to assure that they are valid for the specified edit
descriptor.

Valid input under the I edit descriptor:

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
characters: +, -

Valid input under the B edit descriptor:

digits: 0, 1

Valid input under the O edit descriptor:

digits: 0, 1, 2, 3, 4, 5, 6, 7

Valid input under the Z edit descriptor:

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
characters: A, B, C, D, E, F, a, b, c, d, e, f

Valid input under the F, E, D, and G edit descriptors:

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
characters: E, D, e, d, +, -, .

The appearance of any character not considered valid for a particular edit descriptor will
generate a runtime error. However, the appearance of a valid character in an invalid
position will not result in an error. If the ERR= I/O specifier was present in the input
statement generating the error, control will be transferred to the specified line number. If
the IOSTAT= I/O specifier was present in the input statement generating the error, the
specified variable will be defined with the error code.

INTEGER EDITING

The B, O, Z and I edit descriptors control the translation of character strings representing
integer values to and from the appropriate internal formats.

I Editing

The Iw and Iw.m edit descriptors must correspond to an integer I/O list item. The field
width in the record consists of w characters.

Input/Output and FORMAT Specifications 85

FORTRAN 77 Language Reference Manual

On input, the I/O list item will be defined with the value of the integer constant in the
input field which may have an optional leading sign.

The output field consists of a string of digits representing the integer value which is right
justified and may have a leading minus sign if the value is negative. If m is specified, the
string will consist of at least m digits with leading zeros as required. The output field will
always contain at least one digit unless an m of zero is specified in which case only blank
characters will be output. If the specified field width is too small to represent the integer
value, the field is completely filled with the asterisk character.

WRITE (*,10) 12, -12, 12
10 FORMAT (2I4,I6.4)

 12 -12 0012

B, O, and Z Editing

The B, O, and Z edit descriptors are specified in the same manner as the I edit descriptor
and perform bit editing on binary, octal, and hexadecimal fields respectively. The field
width in the record consists of w characters. An input list item can be up to thirty-two bits
in length and may have a LOGICAL, INTEGER, REAL, or COMPLEX data type. An output list
value can be no longer than thirty-two bits in length and may have a LOGICAL, INTEGER,
REAL, or COMPLEX data type. (Note that COMPLEX data requires two edit descriptors per
data item).

On input, the I/O list item will be defined with the binary representation of the external
value.

The output field consists of a string of characters representing the value and is right
justified. If m is specified, the string will consist of at least m digits with leading zeros as
required. The output field will always contain at least one digit unless an m of zero is
specified in which case only blank characters will be output.

WRITE (*,10) 199, 199, 199
10 FORMAT (Z4,O7.6,B9)

 C7 000307 11000111

FLOATING POINT EDITING

The F, E, D, and G edit descriptors control the translation of character strings representing
floating point values (REAL, DOUBLE PRECISION, and COMPLEX) to and from the
appropriate internal formats. The edit descriptor must correspond to a floating point I/O
list item. On input, the I/O list item will be defined with the value of the floating point
constant in the input field.

A complex value consists of a pair of real values and consequently requires two real edit
descriptors.

86 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

F Editing

The field width of the Fw.d edit descriptor consists of w characters. The fractional
portion, if any, consists of d characters. If the specified field width is too small to
represent the value, the field is completely filled with the asterisk character.

The input field consists of an optional sign and a string of digits which can contain a
decimal point. This may be followed by an exponent which takes the form of either a
signed integer constant or the letter E or D followed by an optionally signed integer
constant.

The output field consists of a minus sign if the value is negative and a string of digits
containing a decimal point with d fractional digits. The value is rounded to d fractional
digits and the string is right justified in the field. The position of the decimal point may
be modified by the scale factor as described under the kP edit descriptor.

WRITE (*,10) 1.23, -1.23, 123.0, -123.0
10 FORMAT (2F6.2,F6.1,F6.0)

 1.23 -1.23 123.0 -123.

E and D Editing

The field width of the Ew.d, Ew.dEe, and Dw.d edit descriptors consists of w characters in
scientific notation. d specifies the number of significant digits. If e is specified, the
exponent contains e digits, otherwise, the exponent contains two digits for E editing and
three digits for D editing.

The input field is identical to that specified for F editing.

The output field consists of a minus sign if the value is negative, a zero, a decimal point,
a string of d digits, and an exponent whose form is specified in the table below. The value
is rounded to d fractional digits and the string is right justified in the field. The position
of the decimal point may be modified by the scale factor as described under the kP edit
descriptor.

Edit Absolute value Form of
Descriptor of Exponent Exponent

Ew.d ���� E±nn
Ew. d 100 - 999 ± nnn

Ew. dEe �����e)-1 E± n1n2…ne
Dw. d ���� D±nn
Dw. d 100 - 999 ± nnn

WRITE (*,10) 1.23, -1.23, -123.0E-6, .123D3
10 FORMAT (2E12.4,E12.3E3,D12.4)

 0.1230E+01 -0.1230E+01 -0.123E-003 0.1230D+03

Input/Output and FORMAT Specifications 87

FORTRAN 77 Language Reference Manual

G Editing

The Gw.d and Gw.dEe edit descriptors are similar to the F and E edit descriptors and
provide a flexible method of accomplishing output editing.

The input field is identical to that specified for F editing.

The form of the output field depends on the magnitude of the value in the I/O list. F
editing will be used unless the value of the item would cause the field width to be
exceeded in which case E editing is used. In both cases, the field consists of w right
justified characters.

Magnitude of N Equivalent Conversion

N < 0.1 Ew.d
0.1 < N < 1.0 F(w-4).d, 4X
1.0 < N < 10.0 F(w-4).(d-1), 4X
 . .
 . .
 . .

10d-2 < N < 10d-1 F(w-4).1, 4X

10d-1 < N < 10d F(w-4).0, 4X

N > 10d Ew.d[Ee]

WRITE (*,10) 1.0, 10.0, 100.0, 1000.0, 10000.0
10 FORMAT (5G10.4)

 1.000 10.00 100.0 1000. 0.1000E+05

P Editing

The kP edit descriptor is used to scale floating point values edited with the F, E, D, and G
edit descriptors. k is called the scale factor and is given as an integer constant which may
negative, positive, or zero. The scale factor starts at zero for each formatted I/O
statement.
If there is an exponent in the input field, the scale factor has no effect, otherwise the
external value is equal to the internal value multiplied by 10k.

For output with F editing, the effect of the scale factor is the same as described for input.
For E and D editing, the scale factor is used to control decimal normalization of the output
value. If k is negative, leading zeros are inserted after the decimal point, the exponent is
reduced by k , and |k| significant digits are lost. If k is positive, the decimal point is
moved to the right within the d significant digits, the exponent is reduced by k , and no
significant digits are lost. The field width remains constant in all cases, meaning that -d <
k < d + 2.

88 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

WRITE (*,10) 1.23, 1.23, 1.23
10 FORMAT (1PF8.4,-1PF8.4,1PE12.4)

 12.3000 .1230 1.2300E+00

CHARACTER AND LOGICAL EDITING

The A and L edit descriptors control the translation of character strings representing
CHARACTER and LOGICAL values to and from the appropriate internal formats.

A Editing

The A[w] edit descriptor is used to copy characters (bytes) to and from I/O list items. If
present, w specifies the field width; otherwise the field width is the same as the length of
the I/O list item. The only editing performed is to space fill or truncate for input and
output respectively.

For input, when w is less than the length of the I/O list item, the characters from the field
are left justified and space filled to the length of the item. When w is equal to or greater
than the length of the I/O list item, the rightmost characters in the field are used to define
the item.

For output, when w is less than or equal to the length of the I/O list item, the field will
contain the leftmost w characters of the item. When w is greater than the length of the I/O
list item, the item is right justified in the field with leading spaces added as necessary.

WRITE (*,10) ’HELLO, WORLD ’, ’,’, ’WORLD’
10 FORMAT (A5,A,A6)

HELLO, WORLD

L Editing

The Lw edit descriptor must correspond to a logical I/O list item. The field width in the
record consists of w characters.

The input field consists of an optional decimal point and either the letter T (.TRUE.) or F
(.FALSE.). Other characters may follow, but they do not take part in determining the
LOGICAL value. The field may contain leading spaces.

The output field is right justified and contains either the letter T or F representing the
values .TRUE. and .FALSE., respectively.

Input/Output and FORMAT Specifications 89

FORTRAN 77 Language Reference Manual

WRITE (*,10) .TRUE., .FALSE.
10 FORMAT (2L2)

 T F

SIGN CONTROL EDITING

The S, SP, and SS edit descriptors control the output of optional plus signs. Normally, a
leading plus sign is not output for positive numeric values. The SP edit descriptor forces a
plus sign to appear in the output field. The S and SS edit descriptors return the processing
of plus signs to the default state of not being output.

WRITE (*,10) 123, -123, 123.0, -123.0, 123.0
10 FORMAT (SP,2I5,2F7.1,SS,F7.1)

 +123 -123 +123.0 -123.0 123.0

BLANK CONTROL EDITING

The BN and BZ edit descriptors control the processing of blanks in numeric input fields
which can be interpreted either as nulls or zeros. The default for an individual file
connection is established with the “BLANK=” specifier. If the specifier does not appear in
an OPEN statement blanks are treated as nulls. The BN edit descriptor causes blanks to be
treated as nulls and the BZ edit descriptor causes blanks to be treated as zeros.

POSITIONAL EDITING

The X, T, and / edit descriptors are used to control the position within the record and the
position within the file.

X Editing

The nX edit descriptor moves the position within the record n characters forward. On
input n characters are bypassed in the record. On output n blanks are output to the record.

WRITE (*,10) -123, -123.0
10 FORMAT (I4,1X,F6.1)

-123 -123.0

T, TL, and TR Editing

On output, the entire record is first filled with spaces. The Tc, TLc, and TRc edit
descriptors are also used to move the position within the record, but in a non-destructive
manner. This is called tabbing. Position means character position with the first character

90 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

in the record being at position one. Changing the position within the record does change
the length of the record.

The Tc edit descriptor moves to absolute position c within the record. The TLc and TRc
edit descriptors move to positions relative to the current position. TRc moves the position
c characters to the right and TLc moves the position c characters to the left. c is a
positive integer constant.

WRITE (*,10) 89, 567, 23, 1, 4
10 FORMAT (T8,I2,TL5,I3,T2,I2,TL3,I1,TR2,I1)

123456789

Slash Editing

The / edit descriptor positions the file at the beginning of the next record. On input it
skips the rest of the current record. On output it creates a new record at the end of the
file.

The / edit descriptor can be used to skip entire records on input or to write empty records
on output. Empty records in internal or direct access files are filled with blanks.

When the / edit descriptor is used with files connected for direct access it causes the
record number to be increased and data transfer will be performed with that record.

WRITE (*,10) (A, A=1.0,10.0)
10 FORMAT (5F5.1,/,5F5.1)

 1.0 2.0 3.0 4.0 5.0
 6.0 7.0 8.0 9.0 10.0

Dollar Sign and Backslash Editing

The $ and \ edit descriptors are interchangeable and are used to suppress the normal
output of end of record characters in formatted records. When one of these edit
descriptors appears in a format list, the output of end of record characters will be
suppressed for the remainder of the I/O statement.

COLON EDITING

The : edit descriptor is used to terminate a formatted I/O statement if there are no more
data items to process. For example, the : edit descriptor could be used to stop positional
editing when there are no more items in the I/O list.

APOSTROPHE AND HOLLERITH EDITING

Input/Output and FORMAT Specifications 91

FORTRAN 77 Language Reference Manual

Apostrophe and Hollerith edit descriptors are used to copy strings of characters to the
output record. These edit descriptors may only be used with the WRITE, PRINT and TYPE
statements.

Apostrophe Editing

An apostrophe edit descriptor takes exactly the same form as a character constant as
described in The FORTRAN 77 Program chapter. The field width is equal to the length
of the string.

WRITE (*,10)
10 FORMAT (’APOSTROPHE’,1X,’EDIT FIELDS’)

APOSTROPHE EDIT FIELDS

H Editing

The nH edit descriptor takes exactly the same form as a Hollerith constant as described in
the chapter The FORTRAN 77 Program. The field width is equal to the positive integer
constant, n, which defines the length of the Hollerith constant.

WRITE (*,10)
10 FORMAT (15HHOLLERITH EDIT ,6HFIELDS)

HOLLERITH EDIT FIELDS

Q EDITING

The Q edit descriptor obtains the number of characters remaining in the current input
record and assigns it the corresponding I/O list element. The I/O list element must be four
byte integer variable. The Q edit descriptor has no effect on output except that the
corresponding I/O list item is skipped.

READ (*,10) I,(CHRS(J),J=1,I)
10 FORMAT (Q,80A1)

This example uses the Q edit desciptor to determine the number of characters in a record
and then reads that many characters into the array CHRS.

LIST DIRECTED EDITING

List directed editing is indicated with an asterisk (*) as a format specifier. List directed
editing selects editing for I/O list items appropriate to their data type and value. List
directed editing treats one or more records in a file as a sequence of values delimited by
value separators. A value separator is one or more blanks, a comma, a slash, or an end of
record. Blanks can precede and follow the comma and slash separators. Except within a
quoted character constant, multiple blanks and end of record characters are treated as a

92 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

single blank character. An end of record occurring within a quoted character constant is
treated as a null.

Tabs are expanded modulo eight by default; other tab sizes can be used by setting an
environment variable. Refer to your system documentation for instructions on modifying
this system dependent variable.

The values are either constants, nulls, or one of the forms:

r*c

r*

where r is an unsigned, nonzero, integer constant. The first form is equivalent to r
occurrences of the constant c, and the second is equivalent to r nulls. Null items are
defined by having no characters where a value would be expected, that is, between
successive separators or before the first separator in a record.

List Directed Input

A character value is a string of characters between value separators. If the string is quoted
embedded blanks are significant and the value can span more than one record. The
corresponding I/O list item is defined with the value as though a character assignment
statement was performed; left justified and truncated or blank filled as necessary.

Any form suitable for an I edit descriptor can be used for list directed input of an
INTEGER item.

Any form suitable for an L edit descriptor can be used for list directed input of a LOGICAL
item. In particular, .TRUE. and .FALSE. are acceptable.

DOUBLE PRECISION and REAL input is performed with the effect of a Fw.0 edit
descriptor where w is the number of characters in the constant. The value can be in any
form acceptable to the F edit descriptor.

A COMPLEX constant must have an opening parenthesis, a floating point constant as
described above, a comma, another floating point constant, and a closing parenthesis.
Leading and trailing spaces are permitted around the comma. The first constant
represents the real portion of the value and the second constant represents the imaginary
portion.

Null values have no effect on the corresponding I/O list items; their definition status will
not change.

A slash in the input record terminates a list directed input statement. Any unprocessed
I/O list items will be left unchanged.

Input/Output and FORMAT Specifications 93

FORTRAN 77 Language Reference Manual

List Directed Output

With the exception of CHARACTER constants, all output items are separated by a single
blank that is generated as part of the string.

CHARACTER output is performed using an A edit descriptor. There is no leading blank.

LOGICAL output is performed using an L2 edit descriptor.

INTEGER output is performed using an Iw edit descriptor where w is one digit greater than
the number of digits required to represent the value.

DOUBLE PRECISION and REAL output is performed using 1PG15.6E2 and 1PG24.15E3
edit descriptors respectively.

COMPLEX output consists of an opening parenthesis, the real portion of the value, a
comma, the imaginary portion of the value, and a closing parenthesis. The numeric
portions are formatted with descriptors that match the precision of the data as above.

NAMELIST DIRECTED EDITING

Namelist directed editing, an extension to standard FORTRAN 77, allows a number of
variables to be treated as a group for the purpose of data transfer. Its use is restricted to
formatted external files that have been connected for sequential access. Namelist directed
editing selects editing for a namelist group member based on its type and value. Namelist
directed editing treats one or more records as a group, where each group contains a series
of group-member/value(s) combinations.

Namelist Directed Input

Namelist directed input reads external records until it finds the specified namelist group.
It then assigns data to the specified group members in the order they are encountered.
Group members which are not specified retain their previous values.

Namelist directed input has the following form:

$group member=value,[member=value, ...] $END

where: $ is used to delimit the start and end of a particular group. The
ampersand (&) can also be used for this purpose. The slash (/) can also
be used to delimit the end of input for a given namelist group.

group is the symbolic name of a namelist previously defined in the
program unit. The name cannot contain spaces or tabs.

member is a namelist defined variable. It may be a scalar, an array name,
an array element name, a substring, or an array name with a substring.
The member name cannot contain spaces or tabs. Subscript and substring

94 Input/Output and FORMAT Specifications

FORTRAN 77 Language Reference Manual

specifiers must be integer constants. Use of symbolic (PARAMETER)
constants is not allowed.

value is a constant, a list of constants, or a repetition of constants of the
form r*c. Valid separators for value constants are spaces, tabs, and
commas. A null value is specified by two consecutive commas, a leading
comma, or a trailing comma. The form r* indicates r null values.
Character constants must be delimited by apostrophes or quotation
marks. Occurrences of a character delimiter within the delimited string
are represented by two consecutive occurrences of the delimiter. The end
of record character is equivalent to a single space unless it occurs in a
character constant, in which case it is ignored and the character constant
isassumed to continue on the next record. Hollerith, binary, octal, and
hexadecimal constants are not permitted.

END is an optional part of the terminating delimiter.

Group and member names are not case sensitive and are folded to upper case before use.
Consider the following example:

INTEGER*4 INT,int
NAMELIST /NLIST/INT,int
...
READ (*,NML=NLIST)

where the input looks like:

$NLIST
INT = 12,
int = 15,
$END

Because namelist input is not case sensitive, execution of the read statement will cause
INT to take on the value 15 and the value of int will be unchanged.

Conversion of external to internal representations is performed using the same editing as
list directed input.

It is not necessary to assign values to all members of a namelist group. Group members
not specified in the input retain their previous values. For namelist input of subscripted
arrays and substring, only the values of the specified array elements and substrings are
changed. Input containing group-members which are not actually members of the group
is not permitted.

When namelist input is performed using an asterisk for the unit specifier, the group-name
is written to standard out and the program waits for input from standard in.

An example of namelist directed input follows:

Input/Output and FORMAT Specifications 95

FORTRAN 77 Language Reference Manual

NAMELIST /WHO/NAME,CODE,NEW,RATIO,UNCHANGED
CHARACTER*8 NAME
INTEGER*4 CODE(4)
LOGICAL*4 NEW
REAL*4 RATIO,UNCHANGED
OPEN(10,FILE=’INFO’,FORM=’FORMATTED’,ACCESS=’SEQUENTIAL’)
READ(UNIT=10,NML=WHO)

where the input file test contains:

$WHO
NAME = ’John Doe’,
CODE(3) = 12,13,
NEW = .TRUE.,
RATIO = 1.5,
$END

The NAMELIST statement in this example creates a group named WHO with the members
NAME, CODE, NEW, RATIO, and UNCHANGED. The READ statement then assigns values to the
group members which are present in the input file. After execution of the READ statement,
the variables NAME, NEW, and RATIO will have the values specified in the input. Because
the array CODE has been subscripted, value assignment will begin with element three and
continue until a new group-member name is encountered. As a result, elements 3 and 4
will be assigned the values 12 and 13 respectively. Elements 1 and 2 retain their previous
values. Since the variable UNCHANGED does not appear in the input, it will retain whatever
value it had before execution of the READ statement.

Namelist Directed Output

Namelist directed output transfers the current values of all members of a namelist group.
The values are written in a form acceptable for namelist input. The group and group
member names will be converted to upper case before being output. The order in which
the values are written is determined by the order in which the group members appear in
the NAMELIST statement. An example of namelist output follows:

INTEGER ONE,TWO
CHARACTER*10 ALPHA
NAMELIST /NLIST/ONE,TWO,ALPHA
ONE = 10
TWO = 20
ALPHA = ’ABCDEFGHIJ’
OPEN(10,FILE=’TEST’,ACCCESS=’SEQUENTIAL’,FORM=’FORMATTED’)
WRITE(UNIT=10,NML=NLIST)
...

The WRITE statement produces the following output:

$NLIST
ONE = 10,
TWO = 20,
ALPHA = ’ABCDEFGHIJ’,
$END

97

FORTRAN 77 Language Reference Manual

CHAPTER 7

Programs, Subroutines, and Functions

There are seven types of procedures available in Absoft Fortran 77: main programs,
subroutines, external functions, statement functions, intrinsic functions, BLOCK DATA, and
GLOBAL DEFINE.

The main program is the entry point of a FORTRAN 77 program. The compiler does not
require that the main program occurs first in the source file, however, every FORTRAN
77 program must have exactly one main program.

Subroutines and external functions are procedures that are defined outside of the program
unit that references them. They may be specified either in separate FORTRAN 77
subprograms or by means other than FORTRAN 77 such as assembly language or the C
programming language.

BLOCK DATA subprograms are nonexecutable procedures that are used to initialize
variables and array elements in named COMMON blocks. There may be several block data
subprograms in a FORTRAN 77 program.

GLOBAL DEFINE subprograms are nonexecutable program units which allow for
declarations which define no storage and are visible to an entire FORTRAN source file.
Such declarations are STRUCTURE, PARAMETER, EXTERNAL and INLINE.

PROGRAMS

The PROGRAM statement is given in the following manner:

PROGRAM pgm

The program statement is not required to be present in a FORTRAN 77 program. If it is
present it must be the first line of the main program unit.

SUBROUTINES

A subroutine is a separate procedure that is defined external to the program unit that
references it and is specified in a subroutine subprogram. A subroutine may be referenced
within any other procedure of the executable program.

While the ANSI standard prohibits a subroutine from referencing itself, directly or
indirectly, this implementation of FORTRAN 77 allows recursion.

The form of a subroutine subprogram declaration is:

98 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

SUBROUTINE sub [([arg] [,arg]...)]

where: sub is a unique symbolic name that is used to reference the sub-
routine.

([arg] [,arg]...) is an optional list of variable names, array
names, dummy procedure names, or asterisks that identifies the
dummy arguments that are associated with the actual arguments
in the referencing statement.

A subroutine is referenced with a CALL statement which has the form:

CALL sub [([arg] [,arg]...)]

where: sub is the symbolic name of a subroutine or dummy procedure.

([arg] [,arg]...) is the list of actual arguments which are as-
sociated with the arguments in the SUBROUTINE statement.

Subroutine Arguments

The argument lists of CALL and SUBROUTINE statements have a one to one
correspondence; the first actual argument is associated with the first dummy argument
and so on. The actual arguments in a CALL statement are assumed to agree in number and
type with the dummy arguments declared in the SUBROUTINE statement. No type checking
is performed by the compiler or the run time system to insure that this assumption is
followed.

The addresses of labeled statements may be passed to subroutines by specifying the label
preceded by an asterisk in the actual argument list and specifying an asterisk only in the
corresponding position in the dummy argument list of the SUBROUTINE statement. This
allows you to return to a location in the calling procedure other than the statement that
immediately follows the CALL statement (see RETURN below).

Dummy procedure names allow you pass the names of procedures to other subprograms.
The dummy procedure name can then be referenced as though it were the actual name of
an external procedure.

FUNCTIONS

A function returns a value to the point within an expression that references it. An external
function is specified in a separate procedure called a function subprogram. A statement
function is defined in a single statement within a program unit and is local to that
program unit. Intrinsic functions are library procedures provided with the FORTRAN 77
environment and are available to any program unit in an executable program. A function

Programs, Subroutines, and Functions 99

FORTRAN 77 Language Reference Manual

name may not be used on the left side of an equals sign except for an external function
name and then only within the program unit which defines it.

A function reference is made in the form of an operand in an expression. The function
name is given with an argument list enclosed in parentheses. The parentheses must be
used even if there are no arguments to the function so that the compiler can determine
that a function reference is indeed being made and not simply a reference to a variable.

External Functions

An external function may be referenced within any other procedure in an executable pro-
gram. Character functions must be declared with integer constant lengths so that the
compiler can determine the size of the character value that will be returned.

Absoft FORTRAN 77 allows the recursive use of external functions.

The form of a function subprogram declaration is:

[type [*len]] FUNCTION func ([arg] [,arg]...)

where: func is a unique symbolic name that is used to reference the
function.

([arg] [,arg]...) is an optional list of variable names, array
names, or dummy procedure names that identifies the dummy
arguments that are associated with the actual arguments in the
referencing statement.

As indicated, the function can be given an optional type and length attribute. This can be
done either explicitly in the FUNCTION statement or in a subsequent type statement, or
implicitly following the data typing rules described in The FORTRAN 77 Program
chapter. Note that an IMPLICIT statement may change the data type and size.

When a CHARACTER function is given a length attribute of *(*) it assumes the size
established in the corresponding character declaration in the referencing program unit.

The symbolic name used to define the function must be assigned a value during the
execution of the function subprogram. It is the value of this variable that is returned when
a RETURN or END statement is executed.

Statement Functions

A statement function is specified with a single statement that may appear only after the
declaration section and before the executable section of the program unit in which it is to
be used. A statement function is defined in the following manner:

func ([arg[,arg]...]) = e

100 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

where: func is the name that is used to reference the function.

([arg[,arg]...]) is the dummy argument list, and e is an
expression using the arguments from the dummy argument list.

The dummy argument names used in the statement function argument list are local to the
statement function and may be used elsewhere in the program unit without conflict.

A statement function statement must not contain a forward reference to another statement
function. The compilation of a statement function removes the symbolic name of the
function from the list of available names for variables and arrays within the program unit
in which it is defined. Any variable or array that is defined in a program unit may not be
redefined as a statement function.

CHARACTER statement functions may not use the *(*) length specifier.

Intrinsic Functions

Intrinsic functions contained in the math library do not follow the typing rules for user
defined functions and cannot be altered with an IMPLICIT statement. The types of these
functions and their argument list definitions appear in the table in the Programs,
Subroutines, and Functions chapter.

The generic names listed in that table are provided to simplify the use of intrinsic
functions that take different types of arguments. Except for the type conversion functions,
the type of a generic function is the same as the type of its arguments.

ENTRY STATEMENT

The ENTRY statement may only be used within subroutine and function subprograms and
provides for multiple entry points into these procedures. The form of an ENTRY statement
is the same as that for a SUBROUTINE statement except that the keyword ENTRY is used.
An ENTRY statement appearing within a FUNCTION subprogram may appear in a type
statement. An ENTRY statement may not occur within any block structure (DO, IF, or
CASE).

In a function subprogram, a variable name that is used as the entry name must not appear
in any statement that precedes the appearance of the entry name except in a type
statement. All function and entry names in a function subprogram share an equivalence
association.

Entry names used in character functions must have a character data type and the same
size as the name of the function itself.

RETURN STATEMENT

Programs, Subroutines, and Functions 101

FORTRAN 77 Language Reference Manual

The RETURN statement ends execution in the current subroutine or function subprogram
and returns control of execution to the referencing program unit. The RETURN statement
may only be used in function and subroutine subprograms. Execution of a RETURN
statement in a function returns the current value of the function name variable to the
referencing program unit. The RETURN statement is given in the following manner:

RETURN [e]

where: e is an INTEGER expression allowed only in subroutine RETURN
statements and causes control to be returned to a labeled
statement in the calling procedure associated with an asterisk in
the dummy argument list. The first alternate return address
corresponds to the first asterisk, the second return address to the
second asterisk, etc. If the value of e is less than one or greater
than the number of asterisks, control is returned to the statement
immediately following the CALL statement.

PASSING PROCEDURES IN DUMMY ARGUMENTS

When a dummy argument is used to reference an external function, the associated actual
argument must be either an external function or an intrinsic function. When a dummy
argument is associated with an intrinsic function there is no automatic typing property. If
a dummy argument name is also the name of an intrinsic function then the intrinsic
function corresponding to the dummy argument name is removed from the list of
available intrinsic functions for the subprogram.

If the dummy argument is used as the subroutine name of a CALL statement then the name
cannot be used as a variable or a function within the same program unit.

PASSING RETURN ADDRESSES IN DUMMY ARGUMENTS

If a dummy argument is an asterisk, the compiler will assume that the actual argument is
an alternate return address passed as a statement label preceded by an asterisk. No check
is made by the compiler or by the run time system to insure that the passed parameter is
in fact a valid alternate return address.

COMMON BLOCKS

A COMMON block is used to provide an area of memory whose scoping rules are greater
than the current program unit. Because association is by storage offset within a known
memory area, rather than by name, the types and names of the data elements do not have
to be consistent between different procedures. A reference to a memory location is
considered legal if the type of data stored there is the same as the type of the name used
to access it. However, the compiler does not check for consistency between different
program units and COMMON blocks.

102 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

The total amount of memory required by an executable program can be reduced by using
COMMON blocks as a sharable storage pool for two or more subprograms. Because refer-
ences to data items in common blocks are through offsets and because types do not
conflict across program units, the same memory may be remapped to contain different
variables.

Programs, Subroutines, and Functions 103

FORTRAN 77 Language Reference Manual

Table
Intrinsic Functions

Specific Generic Argument Result
Name Name Usage Type Type Notes

Type Conversion

INT INT INT(x) any integer 1
IINT INT IINT(x) real integer*2 1
JINT INT JINT(x) real integer 1
KINT INT KINT(x) real integer*8 1
IFIX INT IFIX(x) real integer 1
IIFIX INT IIFIX(x) real integer*2 1
HFIX INT HFIX(x) real integer*2 1
KFIX INT KFIX(x) real integer*8 1
JIFIX INT JIFIX(x) real integer 1
IDINT INT IDINT(d) double integer 1
IIDINT INT IIDINT(d) double integer*2 1
JIDINT INT JIDINT(d) double integer 1
REAL REAL REAL(x) any real 2
FLOAT REAL FLOAT(i) integer real 2
FLOATI REAL FLOATI(i) integer*2 real 2
FLOATJ REAL FLOATJ(i) integer real 2
FLOATK REAL FLOATJ(i) integer*8 real 2
SNGL REAL SNGL(d) double real 2
DBLE DBLE DBLE(x) any double 3
DREAL DREAL DREAL(x) any double 3
DFLOAT DBLE DFLOAT(x) any double 3
DFLOTI DBLE DFLOTI(i) integer*2 double 3
DFLOTJ DBLE DFLOTJ(i) integer double 3
DFLOTK DBLE DFLOTJ(i) integer*8 double 3
CMPLX CMPLX CMPLX(x) any complex 4
DCMPLX DCMPLX DCMPLX(x) any complex*16 4
ICHAR ICHAR(a) character integer 5
CHAR CHAR(i) integer character 5

Truncation

AINT AINT AINT(r) real real 1
DINT AINT DINT(d) double double 1

Nearest Whole Number

ANINT ANINT ANINT(r) real real
DNINT ANINT DNINT(d) double double

Nearest Integer

NINT NINT NINT(r) real integer
ININT NINT ININT(r) real integer*2
JNINT NINT JNINT(r) real integer
KNINT NINT JNINT(r) real integer*8
IDNINT NINT IDNINT(d) double integer

104 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

IIDNNT NINT IIDNNT(d) double integer*2
JIDNNT NINT JIDNNT(d) double integer
KIDNNT NINT KDNINT(d) double integer*8

Programs, Subroutines, and Functions 105

FORTRAN 77 Language Reference Manual

Specific Generic Argument Result
Name Name Usage Type Type Notes

Absolute Value

ABS ABS ABS(x) any any 6
IABS ABS IABS(i) integer integer
IIABS ABS IIABS(i) integer*2 integer*2
JIABS ABS JIABS(i) integer integer
KIABS ABS KIABS(i) integer*8 integer*8
DABS ABS DABS(d) double double
CABS ABS CABS(c) complex real 6
CDABS ABS CDABS(cd) complex*16 double 6

Remaindering

MOD MOD MOD(x,y) any any
IMOD MOD IMOD(i,j) integer*2 integer*2
JMOD MOD JMOD(i,j) integer integer
KMOD MOD KMOD(i,j) integer*8 integer*8
AMOD MOD AMOD(r,s) real real
DMOD MOD DMOD(d,e) double double

Transfer of Sign

ISIGN SIGN ISIGN(i,j) integer integer
IISIGN SIGN IISIGN(i,j) integer*2 integer*2
JISIGN SIGN JISIGN(i,j) integer integer
KISIGN SIGN KISIGN(i,j) integer*8 integer*8
SIGN SIGN SIGN(r,s) real real
DSIGN SIGN DSIGN(d,e) double double

Positive Difference

IDIM DIM IDIM(i,j) integer integer
IIDIM DIM IIDIM(i,j) integer*2 integer*2
JIDIM DIM JIDIM(i,j) integer integer
KIDIM DIM KIDIM(i,j) integer*8 integer*8
DIM DIM DIM(r,s) real real
DDIM DIM DDIM(d,e) double double

Double Precision Product

DPROD DPROD(r,s) real double

106 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

Specific Generic Argument Result
Name Name Usage Type Type Notes

Choosing Largest Value

MAX MAX MAX(x,y,…) any any
MAX0 MAX MAX0(i,j,…) integer integer
IMAX0 MAX IMAX0(i,j,…) integer*2 integer*2
JMAX0 MAX JMAX0(i,j,…) integer integer
KMAX0 MAX KMAX0(i,j,…) integer*8 integer*8
AMAX1 MAX AMAX1(r,s,…) real real
DMAX1 MAX DMAX1(d,e,…) double double
AMAX0 AMAX0(i,j,…) integer real
AIMAX0 AIMAX0(i,j,…) integer*2 real
AJMAX0 AIMAX0(i,j,…) integer real
MAX1 MAX1(r,s,…) real integer
IMAX1 IMAX1(r,s,…) real integer*2
JMAX1 JMAX1(r,s,…) real integer
KMAX1 KMAX1(r,s,…) real integer*8

Choosing Smallest Value

MIN MIN MIN(x,y,…) any any
MIN0 MIN MIN0(i,j,…) integer integer
IMIN0 MIN IMIN0(i,j,…) integer*2 integer*2
JMIN0 MIN JMIN0(i,j,…) integer integer
KMIN0 MIN KMIN0(i,j,…) integer*2 integer*2
AMIN1 MIN AMIN1(r,s,…) real real
DMIN1 MIN DMIN1(d,e,…) double double
AMIN0 AMIN0(i,j,…) integer real
AIMIN0 AIMIN0(i,j,…) integer*2 real
AJMIN0 AIMIN0(i,j,…) integer real
MIN1 MIN1(r,s,…) real integer
IMIN1 IMIN1(r,s,…) real integer*2
JMIN1 JMIN1(r,s,…) real integer
KMIN1 KMIN1(r,s,…) real integer*8

Imaginary Part of Complex

AIMAG AIMAG(c) complex real 6
DIMAG DIMAG(cd) complex*16 double 6

Conjugate of Complex

CONJG CONJG(c) complex complex 6
DCONJG DCONJG(cd) complex*16 complex*16 6

Square Root

SQRT SQRT SQRT(r) real real
DSQRT SQRT DSQRT(d) double double
CSQRT SQRT CSQRT(c) complex complex
CDSQRT SQRT CDSQRT(cd) complex*16 complex*16

Programs, Subroutines, and Functions 107

FORTRAN 77 Language Reference Manual

Specific Generic Argument Result
Name Name Usage Type Type Notes

Exponential

EXP EXP EXP(r) real real
DEXP EXP DEXP(d) double double
CEXP EXP CEXP(c) complex complex
CDEXP EXP CDEXP(cd) complex*16 complex*16

Natural Logarithm

LOG LOG LOG(x) any any
ALOG LOG ALOG(r) real real
DLOG LOG DLOG(d) double double
CLOG LOG CLOG(c) complex complex
CDLOG LOG CDLOG(cd) complex*16 complex*16

Common Logarithm

LOG10 LOG10 LOG10(x) any any
ALOG10 LOG10 ALOG10(r) real real
DLOG10 LOG10 DLOG10(d) double double

Sine

SIN SIN SIN(r) real real 7
SIND SIND SIND(r) real real 7
DSIN SIN DSIN(d) double double 7
DSIND SIND DSIND(d) double double 7
CSIN SIN CSIN(c) complex complex 7
CDSIN SIN CDSIN(cd) complex*16 complex*16 7

Cosine

COS COS COS(r) real real 7
COSD COSD COSD(r) real real 7
DCOS COS DCOS(d) double double 7
DCOSD COSD DCOSD(d) double double 7
CCOS COS CCOS(c) complex complex 7
CDCOS COS CDCOS(cd) complex*16 complex*16 7

Tangent

TAN TAN TAN(r) real real 7
TAND TAND TAND(r) real real 7
DTAN TAN DTAN(d) double double 7
DTAND TAND DTAND(d) double double 7

Arcsine

ASIN ASIN ASIN(r) real real
ASIND ASIND ASIND(r) real real
DASIN ASIN DASIN(d) double double

108 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

DASIND ASIND DASIND(d) double double

Specific Generic Argument Result
Name Name Usage Type Type Notes

Arccosine

ACOS ACOS ACOS(r) real real
ACOSD ACOSD ACOSD(r) real real
DACOS ACOS DACOS(d) double double
DACOSD DACOSD DACOSD(d) double double

Arctangent

ATAN ATAN ATAN(r) real real
ATAND ATAND ATAND(r) real real
DATAN ATAN DATAN(d) double double
DATAND ATNAD DATAND(d) double double
ATAN2 ATAN2 ATAN2(r,s) real real
DATAN2 ATAN2 DATAN2(d,e) double double
ATAN2D ATAN2D ATAN2D(r,s) real real
DATAN2D ATAN2D DATAN2D(d,e) double double

Hyperbolic Sine

SINH SINH SINH(r) real real
DSINH SINH DSINH(d) double double

Hyperbolic Cosine

COSH COSH COSH(r) real real
DCOSH COSH DCOSH(d) double double

Hyperbolic Tangent

TANH TANH TANH(r) real real
DTANH TANH DTANH(d) double double

Length of String

LEN LEN(a) character integer 9
LEN_TRIM LEN_TRIM(a) character integer 26

Location of Substring

INDEX INDEX(a,b) character integer 8

Trim Trailing Blanks

TRIM TRIM(a) character character 11

String Replication and Justification

Programs, Subroutines, and Functions 109

FORTRAN 77 Language Reference Manual

REPEAT REPEAT(a,i) character character 12
ADJUSTL ADJUSTL(a) character character 13
ADJUSTR ADJUSTR(a) character character 14

110 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

Specific Generic Argument Result
Name Name Usage Type Type Notes

Lexical Comparisons

LGE LGE(a,b) character logical 10
LGT LGT(a,b) character logical 10
LLT LLT(a,b) character logical 10
LLE LLE(a,b) character logical 10

Zero Extension

ZEXT ZEXT ZEXT(i) integer integer
IZEXT ZEXT IZEXT(i) integer*2 integer
JZEXT ZEXT JZEXT(i) integer integer
KZEXT ZEXT KZEXT(i) integer*8 integer

Memory Addressing

BYTE BYTE(i) integer integer*1 20
WORD WORD(i) integer integer*2 20
LONG LONG(i) integer integer*4 20
[%]LOC [%]LOC(a) any integer*4 20

Pass By Value

[%]VAL [%]VAL(a) any any 22
[%]VAL4 [%]VAL4(a) any any 22
[%]VAL2 [%]VAL2(a) any integer integer*2 22
[%]VAL1 [%]VAL1(a) any integer integer*1 22

Pass By Reference

 [%]REF [%]REF(a) any any 24

Pass By Descriptor

 [%]DESCR [%]DESCR(a) any any 25

Bit Move Subroutine

MVBITS CALL MVBITS(i,j,l,m,n) 19

Get Size of A Data Type

SIZEOF SIZEOF(type) integer 23

Programs, Subroutines, and Functions 111

FORTRAN 77 Language Reference Manual

Specific Generic Argument Result
Name Name Usage Type Type Notes

Bitwise Operations

SHIFT SHIFT(i,j) integer integer 21
ISHFT ISHFT(i,j) integer integer 21
IISHFT IISHFT(i,j) integer*2 integer*2 21
JISHFT JISHFT(i,j) integer integer 21
KISHFT KISHFT(i,j) integer*8 integer*8 21
ISHFTC ISHFTC(i,j,k) integer integer 16
IISHFTC IISHFTC(i,j,k) integer*2 integer*2 16
JISHFTC JISHFTC(i,j,k) integer integer 16
KISHFTC KISHFTC(i,j,k) integer*8 integer*8 16
IOR IOR(i,j) integer integer 15
IIOR IIOR(i,j) integer*2 integer*2 15
JIOR JIOR(i,j) integer integer 15
KIOR KIOR(i,j) integer*8 integer*8 15
IAND IAND(i,j) integer integer 15
IIAND IIAND(i,j) integer*2 integer*2 15
JIAND JIAND(i,j) integer integer 15
KIAND KIAND(i,j) integer*8 integer*8 15
NOT NOT(i) integer integer 15
INOT INOT(i) integer*2 integer*2 15
JNOT JNOT(i) integer integer 15
KNOT KNOT(i) integer*8 integer*8 15
IEOR IEOR(i,j) integer integer 15
IIEOR IIEOR(i,j) integer*2 integer*2 15
JIEOR JIEOR(i,j) integer integer 15
KIEOR KIEOR(i,j) integer*8 integer*8 15
IBITS IBITS(i,j,k) integer integer 17
IIBITS IIBITS(i,j,k) integer*2 integer*2 17
JIBITS JIBITS(i,j,k) integer integer 17
KIBITS KIBITS(i,j,k) integer*8 integer*8 17
BTEST BTEST(i,j) integer logical 18
BITEST BITEST(i,j) integer*2 logical*2 18
BJTEST BJTEST(i,j) integer logical 18
IBSET IBSET(i,j) integer integer 18
IIBSET IIBSET(i,j) integer*2 integer*2 18
JIBSET JIBSET(i,j) integer integer 18
KIBSET KIBSET(i,j) integer*8 integer*8 18
IBCLR IBCLR(i,j) integer integer 18
IIBCLR IIBCLR(i,j) integer*2 integer*2 18
JIBCLR JIBCLR(i,j) integer integer 18
KIBCLR KIBCLR(i,j) integer*8 integer*8 18

112 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

INTRINSIC FUNCTIONS NOTES

Intrinsic functions, sometimes referred to as mathematics library functions, are presented
in the preceding table. This table presents all of the intrinsic functions, their definitions,
number of arguments required, types of arguments and function, and the generic and
specific names of each function. The following are notes referenced in the table:

1. If a is REAL, there are two cases: if |a |<1, then INT(a)=0; if |a |>1, then INT(a) is an
integer which is rounded toward zero and has the same sign as a. If a is COMPLEX
then the real part of the argument is returned.

2. The function REAL(a) will return as much precision as can be specified in a REAL*4
variable. If a is COMPLEX then the real portion is returned. If the argument is integer
then the function FLOAT will return the same result.

3. This function will return a DOUBLE PRECISION result that contains all the precision
of the argument passed. If the argument is of type complex then the real portion is
used.

4. CMPLX may have one or two arguments. If there is one and the type is COMPLEX then
the argument is returned unmodified. If there is one argument of any other type then
the value is converted to a real and returned as the real part and the imaginary part
is zero. If there are two arguments then they must be the same type and cannot be
complex. The first argument is returned as the real part and the second is the
imaginary part.

5. ICHAR provides type conversion from CHARACTER to INTEGER, based on ASCII
value of the argument.

6. A COMPLEX value is expressed as an ordered pair of reals, (ar ,ai), where the first is
the real part and the second is the imaginary part.

7. All arguments are expressed in radians to functions that do not end with the letter D.
Functions which end in the letter D take their arguments expressed in degrees.

8. INDEX(a1,a2) returns an integer value indicating the starting position of the first
occurrence of a2 in a1 . A zero is returned if there is no match or a1 is shorter than
a2 .

9. The string passed to the LEN function does not need to be defined before the refer-
ence to LEN is executed.

10. LGE, LGT, LLE, and LLT return the same result as the standard relational operators.

11. TRIM(a) returns the value of the CHARACTER expression a with trailing blanks
removed.

Programs, Subroutines, and Functions 113

FORTRAN 77 Language Reference Manual

12. REPEAT(a,n) replicates the CHARACTER expression a, n times where n is an INTEGER
expression.

13. ADJUSTL(a) returns a character result which is the same as its argument except
leading blanks have been removed and sufficient trailing blanks have been added to
make the result the same length as a.

14. ADJUSTR(a) returns a character result which is the same as its argument except
trailing blanks have been removed and sufficient leading blanks have been added to
make the result the same length as a.

15. The functions IOR, IAND, NOT, and IEOR are provided as part of the DOD military
standard MIL-STD-1753. They produce the same results for integers as the logical
operators .OR., .AND., .NOT., and .EOR. respectively.

16. The function reference ISHFTC(i,j,k) will circularly shift the rightmost k bits of i j
places. The unshifted bits of i are unchanged in the result. The bits shifted out one
end are shifted into the opposite end. k must be in the range 1-32.

17. The function reference IBITS(i,j,k) extracts a field of k bits from the value i
beginning at position j. The value j+k must be in the range 1-32.

18. The function reference BTEST(i,j) returns .TRUE. if the jth bit if i is set, otherwise
it returns .FALSE.. The functions IBSET(i,j) and IBCLR(i,j) return integer values
equivalent to i except that the jth bit has been set or cleared respectively.

19. The statement CALL MVBITS(i,j,k,l,m) moves k bits from positions j through j+k-1

of i through m+k-1 of l. j+k and m+k must be in the range 1 to 32.

20. Use of a BYTE, WORD or LONG function on the left side of an = in an assignment will
cause data to be written to an absolute address (see the section Memory
Assignment in the chapter Expressions and Assignment Statements). Use of a
BYTE, WORD or LONG function in an expression will cause data to be read from an
absolute address. The [%]LOC function is provided to return the address of a
variable, an array, an array element or a subprogram. The % character is optional at
the beginning of a LOC function reference.

21. The function reference SHIFT(i,j) will logically shift bits in i by j places. If j is
positive, the shift is to the left. If j is negative, the shift is to the right. Zeros are
shifted in from the opposite end.

114 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

22. The [%]VAL functions are used to pass actual arguments by value instead of by
reference which is the default for FORTRAN. Any data type except CHARACTER can
be passed by value. Most often [%]VAL is used to pass arguments to routines written
in other languages which accept arguments by value as the default method of
argument passing. It can also be used to pass arguments to FORTRAN subprograms
which use the VALUE statement to define value arguments. The % character is
optional at the beginning of any VAL function reference. The VAL function is only
valid in an argument list.

NOTE: The subprogram interface protocol for the PowerPC causes value
arguments less than four bytes in length to be sign-extended to four bytes and
passed as four byte entities. This means that there is no difference in the effect of
the VAL1, VAL2, or VAL4 functions and the VAL function may be considered to be a
generic function. However, this is not true of all machine architectures (including
the Intel based Windows systems) and if portability is a consideration, the correct
size function should be chosen.

23. The SIZEOF function is provided to get the size of any data type in a FORTRAN
program. Its syntax is as follows:

SIZEOF(type)

where: type is any FORTRAN data type or a structure name inside of slashes.

Example:

STRUCTURE /str/
INTEGER i
REAL*8 a

END STRUCTURE
INTEGER str_size

str_size = SIZEOF(/str/)

The most common use of SIZEOF is to obtain the size of a RECORD type. On
different systems, the size of a RECORD will vary. SIZEOF can be used to write
portable code which allocates memory for RECORD structures dynamically. Data
types such as INTEGER or REAL can also be passed to SIZEOF. SIZEOF may be used
to define constants in PARAMETER statements.

24. The %REF function is used in subroutine CALL statements and function references
and is provided to assist in porting programs from VAX compatible compilers.
Since all FORTRAN arguments are normally passed by reference, this function has
no affect on the compiled program.

Programs, Subroutines, and Functions 115

FORTRAN 77 Language Reference Manual

25. The %DESCR function is used in subroutine CALL statements and function
references and is provided to assist in porting programs from VAX compatible
compilers. Since FORTRAN arguments do not have descriptors associated with
them, this function has no affect, but does cause the compiler to issue a warning
message.

26. LEN_TRIM(a) returns the length of the CHARACTER expression a with trailing blanks
removed.

Argument Ranges and Results Restrictions

The second argument of the remaindering functions below must not be zero:

MOD
AMOD
DMOD

Zero is returned if the value of the first argument of the sign transfer functions below is
zero:

ISIGN
SIGN
DSIGN

The argument of the square root functions below must not be negative:

SQRT
DSQRT

The following square root functions for complex numbers return the principal value with
the real portion greater than or equal to zero. When the real portion is zero, the imaginary
portion is greater than or equal to zero.

CSQRT
CDSQRT

The argument of the logarithmic functions below must be greater than zero:

ALOG
DLOG
ALOG10
DLOG10

Both portions of a complex number cannot be zero when passed as an argument to the
logarithmic functions below:

CLOG
CDLOG

Automatic argument reduction permits the argument of the trigonometric functions below
to be greater than 2π:

116 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

SIN
DSIN
COS
DCOS
TAN
DTAN

The argument of the arccosine functions below must be less than or equal to one and the
range of the result is between -π/2 and π/2 inclusively:

ASIN
DASIN

The argument of the arccosine functions below must also be less than or equal to one and
the range of the result is between 0 and π inclusively:

ACOS
DACOS

The range of the result for arctangent functions below is between -π/2 and π/2
inclusively:

ATAN
DATAN

If the value of the first argument of ATAN2 or DATAN2 is positive, the result is positive. If
the value of the first argument is zero, the result is zero if the second argument is positive
and π if the second argument is negative. If the value of the first argument is negative, the
result is negative. If the value of the second argument is zero, the absolute value of the
result is π/2. The arguments must not both have the value zero. The range of the result for
ATAN2 and DATAN2 is between -π and π inclusively.

BLOCK DATA

A BLOCK DATA statement takes the following form:

BLOCK DATA [sub]

where: sub is the unique symbolic name of the block data subprogram.

There may be more than one named BLOCK DATA subprogram in a FORTRAN 77
program, but only one unnamed block data subprogram.

Only COMMON, SAVE, DATA, DIMENSION, END, EQUIVALENCE, IMPLICIT, PARAMETER, and
type declaration statements may be used in a BLOCK DATA subprogram.

GLOBAL DEFINE

Programs, Subroutines, and Functions 117

FORTRAN 77 Language Reference Manual

A GLOBAL DEFINE subprogram takes the following form:

GLOBAL DEFINE
[global-declaration]
...
END

where: global-declaration is any FORTRAN declaration which does not
define physical storage.

STRUCTURE declarations, EXTERNAL statements, INLINE statements, and PARAMETER
statements and their related type declarations are valid within a GLOBAL DEFINE

subprogram. The symbols defined are then visible to an entire FORTRAN source file.
The use of a GLOBAL DEFINE subprogram can remove redundant declarations and reduce
internal symbol table sizes and speed compilations. There can be any number of GLOBAL
DEFINE subprograms in a source file, but a symbol name cannot be used before its
declaration.

It should be noted that symbol names defined in EXTERNAL, INLINE, or PARAMETER
statements can no longer be implicitly defined in a subsequent program unit. For

GLOBAL DEFINE
PARAMETER (i=10)

END

INTEGER a(10)

DO i=1,10
a(i) = i

END DO
END

is not a valid program since a PARAMETER cannot be used as a loop induction variable.
The PARAMETER declaration can be over-ridden with a local type declaration, however, as
follows:

GLOBAL DEFINE
PARAMETER (i=10)

END

INTEGER i,a(10)

DO i=1,10
a(i) = i

REPEAT
END

INLINE STATEMENT

118 Programs, Subroutines, and Functions

FORTRAN 77 Language Reference Manual

As an extension to standard FORTRAN, the Absoft implementation supports the INLINE
statement to allow programmers to insert object code directly into a FORTRAN program.
This is useful for customizing the language to the host system. The syntax of the INLINE
statement is as follows:

INLINE ([identifier1=con1[,identifier2=/con1[,con2.../]]])
…
CALL identifier1[(arg1[, arg2...])]
variable = identifier2[(arg1[, arg2...])]

An INLINE declaration can have the same format as a PARAMETER statement or it can
substitute a list of constants for an identifier instead of a single constant. All constants
must be of type INTEGER. The identifier can then be referenced as if it were a subroutine
or function. Instead of generating a call to an external function, the compiler will insert
the constant or constant list directly into the object code. Each constant is output as a 32-
bit opcode. If an argument list is given, the actual arguments will be passed in the same
fashion as they are passed to an external routine. If the identifier is referenced as a
function, the result must be returned using the standard call-return methods.

119

FORTRAN 77 Language Reference Manual

APPENDIX A

Using Structures and Pointers

This appendix is given to provide more information and examples on using STRUCTUREs,
POINTERs, and RECORDs in Absoft Fortran 77. The most common use of these data types
is when mixing FORTRAN with other languages such as C or Pascal that support these
types of data structures. Often, operating systems and software packages that provide
graphic interfaces make use of these types of data structures. The extensions to
FORTRAN 77 provided with the Absoft compiler are rich enough to allow a programmer
to do all of this type of programming in FORTRAN.

COMMON USE OF STRUCTURES

A structure is a composite or aggregate data type that consists of a grouping of two or
more data items. Structures are typically used to group related data items together. For
example, the following structures could be used to describe the time of day and the date:

STRUCTURE /time/
INTEGER hour
INTEGER minute
INTEGER second

END STRUCTURE

STRUCTURE /date/
INTEGER month
INTEGER day
INTEGER year

END STRUCTURE

Instances of structures are declared with RECORD statements and fields of structures are
referenced with the ‘.’ operator as follows:

RECORD /time/ this_time, /date/ this_date

this_time.hour = 9
this_time.minute = 29
this_time.second = 45

this_date.month = 6
this_date.day = 19
this_date.year = 1962

120 Using Structures and Pointers

FORTRAN 77 Language Reference Manual

Structures can contain structures. This is done by placing structure declarations within
other structure declarations or by placing RECORD statements inside of structure
declarations as follows:

STRUCTURE /time/
INTEGER hour
INTEGER minute
INTEGER second

END STRUCTURE

STRUCTURE /complete_time/
STRUCTURE /date/ d

INTEGER month
INTEGER day
INTEGER year

END STRUCTURE
RECORD /time/ t

END STRUCTURE

Fields in nested structures are referenced with multiple ‘.’ operators:

RECORD /complete_time/ appointment

appointment.d.month = 6
appointment.d.day = 19
appointment.d.year = 1962

appointment.t.hour = 9
appointment.t.minute = 29
appointment.t.second = 45

A structure field reference can be placed anywhere a scalar variable is valid in a
FORTRAN program. Entire records can be passed as arguments or placed in assignment
statements to assign all of the fields of one record to another of the same type as follows:

RECORD /complete_time/ appointment
RECORD /time/ this_time

this_time.hour = 9
this_time.minute = 29
this_time.second = 45

appointment.d.month = 6
appointment.d.day = 19
appointment.d.year = 1962

appointment.t = this_time ! assign entire structure

COMMON USE OF POINTERS

A pointer in Absoft Fortran 77 is an INTEGER*4 variable which contains an address. A
pointer-based variable defines storage that is pointed to by a pointer. A pointer-based
variable cannot be referenced until its associated pointer variable has been assigned.
Most often, a pointer variable is assigned through a reference to the LOC function or by a

Using Structures and Pointers 121

FORTRAN 77 Language Reference Manual

call to a routine which returns an address of dynamically allocated memory. For example,
the following program fragment could be used to dynamically allocate an array:

GLOBAL DEFINE
 INCLUDE "Types.inc"
 INCLUDE "Memory.inc"
END

SUBROUTINE dynamic(size)
INTEGER*4 size
INTEGER*4 array(1) ! 1 defeats bounds checking
POINTER(p_array, array)

p_array = NewPtr(VAL(size*4)) ! 4 bytes for each element

DO i = 1, size
 array(i) = 0 ! Fill new array with zeros
END DO
END

Pointers and Optimization

The introduction of pointers into FORTRAN gives the programmer the option of aliasing
any storage which is visible to the compiler. Certain types of aliasing can invalidate
optimized code. Therefore, when optimization is turned on (with the -O option), pointers
should only be assigned with a direct use of the LOC function or via a call to a routine
which allocates memory dynamically. Any other usage has the potential to invalidate
programs which are compiled with optimization enabled. Pointers to variables in COMMON
should also not be passed as arguments. The following is an example which may cause
problems when optimized:

PROGRAM dont_optimize
COMMON /com/ a,b,c
POINTER (preal,r)

preal = LOC(a) + 4
...
END

The optimizer may not be aware that whenever the value of b changes, the value of r also
changes and vice versa. This problem can be solved by declaring storage which can be
aliased as VOLATILE (see section 12.17).

PROGRAM optimize
COMMON /com/ a,b,c
VOLATILE b
POINTER (preal,r)

preal = LOC(a) + 4
...
END

122 Using Structures and Pointers

FORTRAN 77 Language Reference Manual

Pointers as Arguments

It is not legal to declare a pointer-based variable as a dummy argument. Pointer variables
and pointer-based variables can be passed as actual arguments however. When a pointer
variable is passed, the address the pointer contains is passed by reference. The
corresponding dummy argument should be declared as INTEGER. When a pointer-based
variable is passed as an actual argument, the data that the associated pointer points to is
passed by reference. This is equivalent to passing the pointer variable by value.

INTEGER itarget
POINTER (pint, itarget)

...
CALL sub(pint, itarget)
...
END

SUBROUTINE sub(ptr, idum)
INTEGER ptr, idum, ptr_target
POINTER (p_target, ptr_target)
VOLATILE idum, ptr_target

p_target = ptr
...
END

In the above example, the main program passes a pointer and a pointer-based variable. In
the subroutine sub, the dummy argument ptr contains the address of the other dummy
argument, idum. After the assignment of ptr to p_target, a reference to ptr_target is
equivalent to a reference to idum. Note that this is a situation where the VOLATILE
statement must be used to defeat certain optimizations.

MIXING POINTERS AND STRUCTURES

Unlike some other FORTRAN implementations, Absoft Fortran 77 allows pointer
variables and pointer-based variables to be structure fields. This is useful for building
dynamic data structures such as the linked list defined in the following example:

STRUCTURE /list/ my_list
RECORD /list/ next
POINTER (pnext,next)
INTEGER field

END STRUCTURE

The list is linked together by assignment to the field my_list.pnext with the address of
the next list record. Fields in the chain of list structures can be accessed with the pointer-
based field next. For example my_list.next.field references the field in the second
element of the linked list and my_list.next.next.field references the field in the
third element of the linked list.

Using Structures and Pointers 123

FORTRAN 77 Language Reference Manual

FUNCTIONS WHICH RETURN POINTERS

On many systems, functions which return pointers can be declared as INTEGER*4.
However, some systems and/or compilers distinguish an address from an integer in terms
of how the function result is passed. A function which returns a pointer and a call to a
function that returns a pointer can be declared as follows:

FUNCTION pointer_to_int()
INTEGER pointed_to
POINTER (pointer_to_int, pointed_to)
INTEGER get_mem_result
POINTER (get_mem, get_mem_result)
EXTERNAL get_mem

pointer_to_int = get_mem(4) ! allocates a 4 byte integer
pointed_to = 0 ! initializes memory to 0
RETURN
END

The above example returns a pointer to a freshly allocated four byte integer which is
initialized to zero. The symbol pointer_to_int is used to set the address and the
symbol pointed_to is used to address the memory. The function get_mem is defined as
returning a pointer to an INTEGER. The symbol get_mem_result is used for the purpose
of giving a type to get_mem and should not be referenced. A reference to
pointer_to_int would be similar to the reference to get_mem in the above example.

Pointers to C strings

A common problem when interfacing FORTRAN with C is that functions are often
written in C which return C strings. A C string is a string of characters terminated with a
byte of zero. Since there is no data type in FORTRAN which matches a C string, strings
returned from C functions cannot be directly manipulated as CHARACTER data. The
following example demonstrates a method of copying from a pointer to a C string to a
FORTRAN CHARACTER variable.

CHARACTER*80 space_for_result
INTEGER C_fun, C_result, Cstring_pointer
POINTER (Cstring_fun, C_fun)
POINTER (Cstring_pointer, C_result)

Cstring_pointer = Cstring_fun()
CALL copy_Cstring(C_result,space_for_result)
...
END

SUBROUTINE copy_Cstring(Cstring,target)
CHARACTER Cstring(*), target*(*)

target = ‘ ‘ ! initialize to blanks
DO i=1, LEN(target)

IF (Cstring(i) == CHAR(0)) EXIT
target(i:i) = Cstring(i)

END DO
END

124 Using Structures and Pointers

FORTRAN 77 Language Reference Manual

POINTER-BASED FUNCTIONS

A pointer-based variable can be an external function name. When this is done the
associated pointer variable must be set to the address of the function which is to be
called. The following is a simple example of this type of function reference.

INTEGER fun, pb_fun, fun_res
EXTERNAL fun, pb_fun
POINTER (pf, pb_fun)

pf = LOC(fun)
fun_res = pb_fun()
END

The above example calling pb_fun is equivalent to calling fun. No checking is done to
insure that the address contained in the pointer variable is valid.

125

FORTRAN 77 Language Reference Manual

Appendix B

Error Messages

The first part of this appendix lists runtime error numbers and their meanings. These
numbers are assigned to the IOSTAT specifier variable in I/O statements. The last two
sections list the possible error messages from the compiler.

RUNTIME I/O ERROR MESSAGES

This section lists runtime error numbers and their meanings. These numbers are assigned
to the IOSTAT specifier variable in I/O statements. When using the -C option for better
runtime error reporting, these errors appear as:

? System Error:
? The system cannot find the file specified
? OPEN(UNIT=1,...
File "t.f"; Line 23

Low-level file system errors:

1 invalid function
2 file not found
3 path not found
4 too many open files
5 access deined
6 invalid interal file identifier
7 storage control blocks destroyed
8 insufficient memory
9 invalid block address
10 environment incorrect
11 incorrect program format
12 invalid access code
13 invalid data
14 insufficient memory
15 invalid drive
16 current directory cannot be removed
17 file cannot be moved to a different disk drive
18 no more files
19 media is write protected
20 specified drive cannt be found
21 the drive is not ready
22 the device does recognize the command
23 data error
24 command length is incorrect

126 Error Messages

FORTRAN 77 Language Reference Manual

25 drive seek error
26 the specified disk cannot be accessed
27 the specified sector cannot be found
28 the printer is out of paper
29 cannot write to specified device
30 cannot read from specified device
31 device is not responding
32 the file is already open by another process
33 another process has locked the file
34 the wrong disk is the drive
36 too many files open for sharing
38 reached end of file
39 the disk is full

FORTRAN I/O errors:

10000 File not open for read
10001 File not open for write
10002 File not found
10003 Record length negative or 0
10004 Buffer allocation failed
10005 Bad iolist specifier
10006 Error in format string
10007 Illegal repeat count
10008 Hollerith count exceeds remaining format string
10009 Format string missing opening “(”
10010 Format string has unmatched parens
10011 Format string has unmatched quotes
10012 Non-repeatable format descriptor
10013 Attempt to read past end of file
10014 Bad file specification
10015 Format group table overflow
10016 Illegal character in numeric input
10017 No record specified for direct access
10018 Maximum record number exceeded
10019 Illegal file type for namelist directed I/O
10020 Illegal input for namelist directed I/O
10021 Variable not present in current namelist
10022 Variable type or size does not match edit descriptor
10023 Illegal direct access record number
10024 Illegal use of internal file
10025 RECL= only valid for direct access files
10026 BLOCK= only valid for unformatted sequential files
10027 Unable to truncate file after rewind, backspace, or endfile
10028 Can’t do formatted I/O on an entire structure
10029 Illegal (negative) unit specified
10030 Specifications in re-open do not match previous open

Error Messages 127

FORTRAN 77 Language Reference Manual

10031 No implicit OPEN for direct access files
10032 Cannot open an existing file with STATUS=’NEW’
10033 Command not allowed for unit type
10034 MRWE is required for that feature
10035 Bad specification for window
10036 Endian specifier not BIG_ENDIAN or LITTLE_ENDIAN
10037 Cannot ENDIAN convert entire structures
10038 Attempt to read past end of record
10039 Attempt to read past end of record in non-advancing I/O
10040 Illegal specifier for ADVANCE=
10041 Illegal specifier for DELIM=
10042 Illegal specifier for PAD=
10043 SIZE= specified with ADVANCE=YES
10044 EOR= specified with ADVANCE=YES
10045 Cannot DEALLOCATE disassociated pointer or unallocated array
10046 Cannot DEALLOCATE a portion of an original allocation
10047 An allocatable array has already been allocated
10048 Internal or unknown runtime library error
10049 Unknown data type passed to runtime library
10050 Illegal DIM argument to array intrinsic
10051 Size of SOURCE argument to RESHAPE smaller than SHAPE array
10052 SHAPE array for RESHAPE contains a negative value
10053 Unallocated or disassociated array passed to inquiry function
10054 The ncopies argument to REPEAT is negative
10055 The S argument to NEAREST is negative
10056 The ORDER argument to RESHARE contains an illegal value
10057 Result of TRANSFER with no SIZE is smaller than source
10058 SHAPE array for RESHAPE is zero sized array
10059 VECTOR argument to UNPACK contains insufficient values
10060 Attempt to write a record longer than specified record length
10061 ADVANCE= specified for direct access or unformatted file
10062 NAMELIST name is longer than specified record length
10063 NAMELIST variable name exceeds maximum length
10064 PAD= specified for unformatted file
10065 NAMELIST input contains multiple strided arrays
10066 Expected & or $ as first character for NAMELIST input
10067 NAMELIST group does not match current input group
10068 Pointer or allocatable array not associated or allocated
10069 NAMELIST input contains negative array stride
10070 Runtime memory allocation fails
10071 Illegal rank for matrix argument to MATMUL array intrinsic
10072 Matrix arguments to MATMUL array instrinsic are not conformable

128 Error Messages

FORTRAN 77 Language Reference Manual

COMPILER ERROR MESSAGES — SORTED ALPHABETICALLY

The example programs shown after each error message will produce the error.

adjustable array is not a dummy argument Adjustable arrays are only allowed as
dummy arguments.

PROGRAM main
INTEGER m(n), n

alpha character expected The compiler is expecting an alpha character, but has
encountered a digit or special character.

INTEGER i, j
= i + j

argument to SIZEOF is not a data type The argument of the SIZEOF function must be
a valid data type or structure name.

REAL a, b
b = sizeof(a)

argument type mismatch When using statement functions, the data type of the actual
argument must match the dummy argument of the referenced statement function.

REAL area, a, b, ans
INTEGER i, j
area(a, b)=a * b
ans = area(i, j)

array boundary error The use of option -C during compilation will check for attempts
to exceed array boundaries.

CHARACTER text(10)
text(100) = ’a’

array declaration error An array declarator must follow the required format.

CHARACTER*10 text(10

assignment to DO variable The value of the DO variable cannot be altered within the DO
loop.

DO 100 i =1,5
 i = i + 1

100 CONTINUE

Error Messages 129

FORTRAN 77 Language Reference Manual

ASSIGN statement error Required syntax must be followed when using the ASSIGN
statement.

ASSIGN 100 n

blank lines not valid in VS Free-Form If the -N112 option is used, a program unit
cannot contain any blank lines.

PRINT *, "This is an example to show that blank lines"

PRINT *, "can’t appear in VS FORTRAN Free-Form"

branch is further than 32k: use -N11 option This message is generated by the
compiler when the program being compiled contains a branch that requires long
addressing. Recompile the program with the -N11 option.

cannot have an ENTRY in a routine with VALUE VALUE statements cannot appear in
a program unit which contains ENTRY statements.

SUBROUTINE figure(aa)
REAL aa
VALUE aa
ENTRY fig2(aa)
RETURN
END

cannot reference a pointer based function When a pointer is a function, the pointer
based variable is only present to define the data which the returned pointer points
to.

INTEGER pbv
POINTER (ptr, pbv)
EXTERNAL ptr
a = pbv

conditional compilation is nonstandard -x allows conditional compilation. This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,*) ’This is an example of allowing’
X WRITE (*,*) ’conditional compilation using -x’

continuation character expected Using option -8, a line must begin with a continuation
character if the previous line ended with one.

PRINT *, "In this example, the compiler is going to be &
 expecting a continuation character."

DATA statement syntax error Proper syntax must be used for DATA statements.

DATA i, j/ 1, 2

130 Error Messages

FORTRAN 77 Language Reference Manual

%DESCR function ignored The %DESCR function is provided for compatibility with
existing source code. It is recognized by the parser, but no code is generated for it.
The warning indicates that the statement should be examined.

division by zero Dividing a number by zero is not allowed.

REAL a
a = 5.2/0.0

duplicate BLOCKDATA initialization of COMMON Within a program, COMMON
block names cannot be duplicated from one BLOCKDATA program unit to another.

BLOCK DATA one
COMMON /area1/ pi, area
DATA pi/3.1415/
END

BLOCK DATA two
COMMON /area1/ p, a
DATA p/3.14/
END

duplicate COMMON or NAMELIST declaration A variable can only appear once in
a COMMON block or NAMELIST declaration.

COMMON /area2/pi, b
COMMON /area1/pi, b

duplicate DATA initialization A variable may only be initialized once by a DATA
statement.

DATA i, i/10, 20/

duplicate label definition A statement label must be unique to a program unit.

PRINT 100, "Hello"
100 FORMAT (t37, a)

PRINT 200, "World"
100 FORMAT (t40, a)

duplicate name in UNION Field declarations of UNION declarations cannot have been
previously declared or be dummy arguments.

INTEGER long, med1, med2
UNION
 MAP
 INTEGER*4 long
 END MAP
 MAP
 INTEGER*2 med1, med2
 END MAP
END UNION

Error Messages 131

FORTRAN 77 Language Reference Manual

duplicate program unit declaration Each named program unit must have a unique
name.

SUBROUTINE error14()
RETURN
END

PROGRAM error14
CALL error14()
END

duplicate STRUCTURE name Within a program unit, each STRUCTURE must have a
unique name.

STRUCTURE /date/
 INTEGER day
END STRUCTURE

STRUCTURE /date/
 INTEGER time
END STRUCTURE

duplicate variable declaration A specific symbolic name can appear in only one type
declaration statement per program unit.

CHARACTER*10 xyz
INTEGER xyz

ELSE or END IF without IF (e) THEN Each occurrence of an ELSE or END IF
statement must be matched with a corresponding IF (e) THEN statement.

LOGICAL z
IF (a .gt. 10) z = .true.
END IF

$ELSE, $ELSEIF or $ENDIF without $IF Each occurrence of an $ELSE, $ELSEIF or
$ENDIF statement must be matched with a corresponding $IF expr statement.

END DO or REPEAT without DO Every occurrence of an END DO or REPEAT
statement must be matched with a DO statement.

DO i=1,2
 PRINT *, "Welcome"
REPEAT
END DO

END SELECT without SELECT CASE Each occurrence of an END SELECT statement
must have a corresponding SELECT CASE.

CASE (1)
 PRINT *, 1
CASE DEFAULT
END SELECT

132 Error Messages

FORTRAN 77 Language Reference Manual

END STRUCTURE without STRUCTURE All appearances of the END STRUCTURE
statement must be matched with a STRUCTURE statement.

INTEGER mm
INTEGER dd
INTEGER yy
END STRUCTURE

END UNION without UNION Each occurrence of an END UNION statement must
correspond to a UNION statement.

MAP
 INTEGER*2 i
END MAP
MAP
 INTEGER*1 j1, j2
END MAP
END UNION

escape sequences in strings are nonstandard -K allows for escape sequences in strings.
This is not standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,*) ’What goes up...\n Must come down’

EXIT or CYCLE outside of a loop These statements may only appear within DO loops.

READ *, score
IF (score .le. 50.0) THEN
 EXIT
END IF

expecting a MAP statement Each END MAP statement must have a corresponding MAP
statement.

UNION
 MAP
 INTEGER*4 long
 END MAP
 MAP
 INTEGER*2 med1, med2
 END MAP
END MAP
END UNION

expecting an argument list or subscript References to a specific array element must
include the subscript. Functions declared by EXTERNAL and INTRINSIC statements
must have an argument list when used.

INTEGER m(10,10)
i = m

Error Messages 133

FORTRAN 77 Language Reference Manual

expecting end of statement Unless a symbol indicating a comment or a semicolon for
multiple statements is encountered, information cannot appear on a line once the
statement has ended.

CLOSE (10) a, b, c

format specifier is not repeatable A repeat factor can only precede those edit
descriptors denoted to be repeatable.

100 FORMAT (3"Hello!", t19,a)

format string has unmatched parenthesis The number of opening parenthesis must
match the number of closing parenthesis.

100 FORMAT (4(t12,a/)

format string has unmatched quote Character strings must have an ending quote to
match the beginning quote.

100 FORMAT("FORTRAN, t10, a)

format string missing opening parenthesis Format specifications must begin with an
opening parenthesis and end with a closing parenthesis.

100 FORMAT t35,a

Fortran 90 free source form is nonstandard -8 allows this format to be used. This is
not standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,100) ’This is an example of’,&
& ’using Fortran 90 Free&
& Source Form’ !comment line

1 0 0 FORMAT (a/a)

GLOBAL statement is nonstandard -M applies the GLOBAL statement to all COMMON
block declarations. This is not standard ANSI FORTRAN 77, and cannot be
combined with -N32.

COMMON /area2/c, d

GOTO non-integer label The destination of an assigned GOTO statement must be an
integer which contains an address defined with an ASSIGN statement.

REAL a
GOTO a

134 Error Messages

FORTRAN 77 Language Reference Manual

IBM VS free-form is nonstandard -N112 allows for this format to be used.This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,100) ’This is an example of-
 IBM VS Free-
Form’
" comment line
1 0 0 FORMAT (t12,a)

illegal DO loop label The DO loop termination statement cannot be one of the statements
listed in the Loop Statement Section.

DO 100 i = 1,5
IF (i .lt. 3) THEN
 PRINT *, "Less"

100 END IF

illegal DO variable A DO variable must be either an INTEGER, REAL, or DOUBLE
PRECISION scalar variable.

DIMENSION i(100)

DO i=1,3
j = i**2

END DO

illegal dummy argument Once a variable has been referenced in a program unit, its
name cannot be used within the same program unit as a dummy argument in an
ENTRY.

SUBROUTINE sub()
INTEGER i
i=10
ENTRY ent(i)
i=20

illegal EQUIVALENCE or UNION of COMMON blocks An EQUIVALENCE or UNION
statement cannot increase the size of a COMMON block by adding storage units prior
to the first item in the COMMON block.

INTEGER m(10), n(10)
COMMON/ area / m
EQUIVALENCE (m(1), n(2))

illegal expression The rules and syntax governing arithmetic, character, logical and
relational expressions must be followed.

i = 1 (+2)

Error Messages 135

FORTRAN 77 Language Reference Manual

illegal external symbol An external symbolic name cannot be a variable declared as an
array or a symbolic named constant declared by a PARAMETER statement.

INTEGER m(10)
EXTERNAL m

illegal format repeat count The repeat count must be a positive integer constant.

100 FORMAT (-3(t12,a/))

illegal format specifier Format specifiers must follow the correct syntax and be
supported by this implementation of FORTRAN.

100 FORMAT (a1.5)

illegal function call Function calls cannot appear in the specification section of a
program. Use the -O compiler option to compile constant function references.

PARAMETER (a=sqrt(3582.00))

illegal IF clause An IF clause cannot be one of the statements listed in the IF Statement
Section.

IF (i .gt. 100) END

illegal initialization Dummy arguments and functions cannot be initialized with a
DATA statement.

SUBROUTINE calc(m, n)
INTEGER m, n
DATA m, n/100, 200/

illegal metacommand The $ character is the lead-in for a compiler directive. The
characters encountered after the $ in question are not recognizable as a compiler
directive.

$DEFIND FLAG=1

illegal POINTER variable A POINTER variable cannot be one that has already been
declared as a variable.

COMPLEX pa
INTEGER i
POINTER (pa,i)

illegal POINTER based variable In declaring a POINTER based variable, it cannot be a
dummy argument or appear in COMMON, GLOBAL, EQUIVALENCE, or VALUE statements.

COMMON /area/a
POINTER (pa, a)

136 Error Messages

FORTRAN 77 Language Reference Manual

illegal statement function name A dummy argument cannot be used as the name of a
statement function.

SUBROUTINE output(i)
i(j) = i**2

illegal statement in BLOCK DATA procedure IMPLICIT, PARAMETER, DIMENSION,
COMMON, SAVE, EQUIVALENCE, DATA, and type declarations are the only allowable
BLOCK DATA statements.

BLOCK DATA
COMMON /area/ pi ,a
DATA pi, a/ 3.14, 0.0/
RETURN
END

illegal statement in GLOBAL DEFINE Executable statements are not allowed in
GLOBAL DEFINE subprograms.

GLOBAL DEFINE
 PARAMETER (x=3)
 PRINT *, x
END

illegal statement ordering The proper ordering of statements must be followed.

DATA pi, a/3.14, 0.0/
COMMON /area/pi, a

illegal structure definition The STRUCTURE statement must follow the proper syntax.

STRUCTURE calen day
 INTEGER mm
 INTEGER dd
 INTEGER yy
END STRUCTURE

illegal symbol in a DATA statement Record names may not appear in a DATA
statement.

STRUCTURE /name/
 INTEGER i
 INTEGER J
END STRUCTURE
RECORD /name/m
DATA m /11/

illegal syntax A syntax error has been detected, but the compiler is unable to determine
the exact problem.

PRINT *, (m(i), j=1,10

Error Messages 137

FORTRAN 77 Language Reference Manual

illegal use of operator .NOT. is an unary operator and may only be used with one
operand.

IF (i .not. j) i=10

illegal use of RECORD name A RECORD name may be used only where permitted.

RECORD /str/ a, b, c
DATA a/10,20/

illegal use of POINTER based variable Once a POINTER based variable has been
declared, it cannot appear in a COMMON, GLOBAL, or EQUIVALENCE statement.

POINTER (pa, i)
EQUIVALENCE (i, j)

illegal use of statement function argument Statement function arguments cannot be
used as an array reference within the statement function expression.

INTEGER i(10)
ISTF(i,j) = i(10) + j

illegal value parameter a VALUE statement cannot appear in the main program and its
arguments cannot be an array or CHARACTER variable. The VAL function is only
valid in an argument list.

SUBROUTINE FIG(text)
CHARACTER*10 text
VALUE text

illegal variable in NAMELIST Symbolic constants and symbolic names declared as
INTRINSIC or EXTERNAL are not allowed in NAMELIST statements.

PARAMETER (i=10)
NAMELIST /list/ i

incorrect format hollerith count The count on a hollerith string must match the number
of characters appearing after the H.

100 FORMAT (90Hhollerith)

increment expression cannot be zero A DO variable cannot be incremented by zero.

INTEGER m(5)
DO i = 1,5,0
 m(i) = i
END DO

138 Error Messages

FORTRAN 77 Language Reference Manual

intrinsic function data type mismatch The data type of an intrinsic function’s argument
must match the required data type. A common mistake is to use an integer where a
real number is required.

a = sqrt(100)

INTRINSIC name used as EXTERNAL An intrinsic function appearing in an
EXTERNAL statement cannot appear in an INTRINSIC statement.

EXTERNAL max
INTRINSIC max
CALL max(max)

invalid argument Only valid symbolic names can appear in arguments.

INLINE (code=z’10’)
CALL sub(code)

invalid argument to EQUIVALENCE statement Allowable arguments are: variable
names, array element names, array names, and character substring names. Dummy
argument names and function names are not allowed.

SUBROUTINE sub(i,j)
EQUIVALENCE (i,j)

invalid CASE statement Every case statement must follow the proper syntax and the
data type of the case selector must match that of the SELECT CASE argument.

SELECT CASE (i)
 CASE ’1’
 CASE DEFAULT
END SELECT

invalid constant expression A variable cannot appear where a constant is required.

SELECT CASE (i)
 CASE (i)
END SELECT

invalid data type for control list specifier Specifiers that appear in control lists must be
of the data type specified.

OPEN (unit=10, access=’direct’, file=’error’, recl=12.0)

invalid $DEFINE Some element of the symbol or defining expression is not a valid
FORTRAN symbol or component of a constant expression.

$DEFINE L.test = 1

Error Messages 139

FORTRAN 77 Language Reference Manual

invalid field name Field names must correspond to a field name within the specified
STRUCTURE declaration.

STRUCTURE /data/day
 INTEGER mm
 INTEGER dd
 INTEGER yy
END STRUCTURE
day.y = 1991

invalid $IF or $ELSEIF Some element of the expression is not a valid component of a
constant expression.

$IF FLAG = 1 ! should be == or .EQ.

invalid INCLUDE This statement must use a valid file specification and follow the
proper syntax.

INCLUDE (mistake)

invalid I/O control list specifier or syntax Specifiers appearing in an I/O control list
must be supported by this implementation of FORTRAN and follow the specified
syntax.

READ (5,100,ENDI = 10) a, b, c

invalid I/O list or syntax The I/O list must follow the proper syntax.

WRITE (*,*), "Greetings"

invalid option Only valid compiler options may be used when compiling a program.

invalid statement function dummy argument The dummy argument of a statement
function must be a variable. It cannot be a symbolic named constant or a symbolic
name declared in an INTRINSIC or EXTERNAL statement.

PARAMETER (a = 2.0)
calc(a) = (a**2)/10.0

invalid statement label A statement label must be an unsigned integer in the range of 1
to 99999.

PRINT 100, "Hello, World"
-100 FORMAT (t29, a)

invalid $UNDEFINE Some element of the symbol is not a valid FORTRAN symbol.

$UNDEFINE L.test

140 Error Messages

FORTRAN 77 Language Reference Manual

label missing Only statement labels that exist in a particular program unit may be
referenced within that unit.

WRITE (*,200) "What goes up, must come down"
250 FORMAT (t25,a)

local variable never referenced A warning is given for all variables that were declared,
but never referenced.

INTEGER i
PRINT *, "FORTRAN 77"

MAP outside of UNION MAP declarations can only appear within a UNION declaration.

 MAP
 INTEGER*2 i
 END MAP
UNION
 MAP
 INTEGER*1 j1, j2
 END MAP
END UNION

missing END statement A program unit must be terminated with an END statement.

missing END STRUCTURE All appearances of the STRUCTURE statement must be
matched with an END STRUCTURE statement.

STRUCTURE /date/
 INTEGER mm
 INTEGER dd
 INTEGER yy

missing END UNION Each UNION statement must be matched with an END UNION
statement.

UNION
 MAP
 INTEGER*4 long
 END MAP
 MAP
 INTEGER*2 med1, med2
 END MAP

missing label on FORMAT statement All FORMAT statements must begin with a
statement label.

FORMAT (t24, a)

Error Messages 141

FORTRAN 77 Language Reference Manual

missing operand ANSI FORTRAN 77 does not allow more that one arithmetic operator
to appear consecutively.

a = 8.9*-7.2

multiple statement line is nonstandard ANSI FORTRAN 77 (option -N32) does not
allow multiple statement lines.

i = 1; j = 2; k = 3

non-constant case expression The value selector of a CASE expression must be a
constant.

SELECT CASE (i)
CASE (i)
 PRINT *, 1
CASE DEFAULT

END SELECT

nonstandard comment Comment lines must begin with the character C or an asterisk in
ANSI FORTRAN 77 (option -N32).

! This is an example of a nonstandard comment line

nonstandard constant Option -N32, for ANSI FORTRAN 77, does not allow constant
extensions.

CHARACTER*20 greet
DATA greet/14Hgood afternoon/

nonstandard constant delimiter Option -N32, for ANSI FORTRAN 77, does not allow
extensions of the standard delimiters.

WRITE (*,*) "Hello, World"

nonstandard data initialization Initialization of blank COMMON blocks by a DATA
statement is not allowed in ANSI FORTRAN 77 (option -N32).

COMMON a, b
DATA a, b/ 10.2, 8.42/

nonstandard edit descriptor Option -N32, for ANSI FORTRAN 77, does not allow edit
descriptor extensions.

WRITE (*,100) 199,199,199
100 FORMAT (z4,o7.6,b9)

nonstandard intrinsic function Option -N32, for ANSI FORTRAN 77, does not allow
intrinsic function extensions.

CHARACTER*20 text
text = repeat(’a’,20)

142 Error Messages

FORTRAN 77 Language Reference Manual

nonstandard I/O specifier Option -N32, for ANSI FORTRAN 77, does not allow I/O
specifier extensions.

OPEN (unit=10, file=’numbers’, action=’both’)

nonstandard operator Option -N32, for ANSI FORTRAN 77, does not allow extensions
of the standard operators.

IF (a<12) THEN
 WRITE (*,*) a
END IF

nonstandard statement When using option -N32, statements that are an extension of
ANSI FORTRAN 77 may not appear in the program.

IMPLICIT none

nonstandard symbolic name Symbolic names longer than 6 characters and containing
characters other than letters and numerals are not allowed in ANSI FORTRAN 77
(option -N32).

CHARACTER*20 hello_world
hello_world = ’Hello, World’

nonstandard type When using option -N32, data types that are an extension of ANSI
FORTRAN 77 may not appear in the program.

INTEGER*2 i
i=145

non-standard use of assignment operator The assignment operator (=) can appear only
between a variable and an expression in arithmetic, logical,and character
assignment statements.

IF (m = 10) STOP

not an intrinsic function The symbolic name appearing in an INTRINSIC statement
must be a valid intrinsic function name.

INTRINSIC sort

not expecting a label An initial statement line cannot contain a statement label
accompanied by a continuation character.

100 +PRINT *, "FORTRAN 77"

Error Messages 143

FORTRAN 77 Language Reference Manual

number of continuation lines is nonstandard ANSI FORTRAN 77 (option -N32) limits
the number of continuation lines to 19.

WRITE (*,*) ’a
 +b
 +c
 +d
 +e
 +f
 +g
 +h
 +i
 +j
 +k
 +l
 +m
 +n
 +o
 +p
 +q
 +r
 +s
 +t
 +u
 +v
 +w
 +x
 +y
 +z’

numeric overflow The value of a variable must be within the range allowed for that data
type.

i = 51234567890

one trip do loops are nonstandard -d executes all DO loops at least once. This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

DO 100 i=3,1
 WRITE (*,*) ’FORTRAN 77’

100 CONTINUE

optional use of FORMAT specifier is nonstandard -N16 allows for the optional use of
FORMAT specifier (FMT=) while the UNIT specifier is present (UNIT=).This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (unit=6, 100) ’Hello’
100 FORMAT (a)

144 Error Messages

FORTRAN 77 Language Reference Manual

overriding dynamic storage allocation is nonstandard -s allows overriding dynamic
storage allocation. This is not standard ANSI FORTRAN 77, and cannot be
combined with -N32.

CALL calc(a)
END

SUBROUTINE calc(aa)
REAL aa, bb, cc
RETURN
END

PARAMETER declaration error Symbolic names of data types: integer, real, double
precision, and complex, must correspond to an arithmetic expression. A character
type variable must be matched with a character constant, and a logical variable to a
logical constant. Also, proper syntax must be used.

PARAMETER (a=1 b=2)

procedure name conflicts with symbol A procedure name cannot be the same as that of
a variable declared as an array.

INTEGER i(10)
CALL i

program unit declaration syntax error Proper syntax must be followed when
declaring a program unit.

SUBROUTINE calculate a, b

program unit has invalid use of COMMON name A COMMON name cannot be used if it
has not been defined.

SAVE /a/

recursive STRUCTURE definition A field declaration in a STRUCTURE definition
cannot make reference to the STRUCTURE in which it is contained.

STRUCTURE /date/ day
 STRUCTURE /date/ day
 CHARACTER*10 calen
 END STRUCTURE
END STRUCTURE

Error Messages 145

FORTRAN 77 Language Reference Manual

RETURN statement in main program unit RETURN statements cannot appear in the
main program.

PROGRAM main
INTEGER m(10)
DO i=1,5
 m(i) = i**i
REPEAT
RETURN
END

SAVE statement syntax error A SAVE statement must follow the proper syntax.

SAVE (radius)

size of type is undefined A structure name appearing as the argument of a SIZEOF
function must first be defined.

i = sizeof(/structure/)

specification statement syntax error Proper syntax must be followed for all
specification statements.

DIMENSION m(100) n(100)

spelling error Keywords must be spelled correctly.

PRIN *, "Good Afternoon"

statement cannot be reached In every program, the possibility must exist for every
executable statement to be used during execution.

PRINT *, "RED"
GOTO 200
PRINT *, "WHITE"

200 PRINT *, "BLUE"

symbol defines illegal storage in GLOBAL DEFINE GLOBAL DEFINE subprograms
cannot contain declarations that define physical storage.

GLOBAL DEFINE
 INTEGER i,l
END

146 Error Messages

FORTRAN 77 Language Reference Manual

symbol in UNION was in EQUIVALENCE or UNION Once a variable is used in an
EQUIVALENCE list or UNION declaration, it cannot appear in another UNION
declaration.

EQUIVALENCE (long, med1)
UNION
 MAP
 INTEGER*4 long
 END MAP
 MAP
 INTEGER*2 med1, med2
END UNION

synch error in intermediate code Internal compiler error — Call Absoft.

unbalanced parenthesis Each occurrence of an opening parenthesis must be matched
with a corresponding closing parenthesis.

a = MOD(105/68

undetermined size array not valid in I/O statement Standard FORTRAN restricts
whole array I/O of assumed dimension arrays in subprograms.

SUBROUTINE out(text)
CHARACTER*5 text(*)
PRINT *, text

UNION not contained in STRUCTURE When nesting UNION and STRUCTURE
declarations, overlapping cannot occur.

STRUCTURE /str/
 UNION
 MAP
 INTEGER i
 END MAP
 MAP
 INTEGER j
 END MAP
END STRUCTURE
 END UNION

unit required in I/O statement A unit number, either an integer or an asterisk, is
required in all I/O statements.

WRITE (FMT = 400) "Hello, World"
400 FORMAT (a)

unmatched $ELSE No $ENDIF exists which matches the nesting level of the $ELSE.

unmatched $IF or $ELSEIF No $ENDIF exists which matches the nesting level of the
$IF or $ELSEIF.

Error Messages 147

FORTRAN 77 Language Reference Manual

unsupported data type Only data types supported by this implementation of
FORTRAN may be used within a program unit.

INTEGER*12 i
i = 3

unsupported extension Only extensions supported by this implementation of
FORTRAN may be used in a program.

OPTION +x

unterminated DO loop Each DO loop must be terminated with a loop termination
statement (END DO, REPEAT, or a statement with a corresponding statement label).

DO 100 i = 1,10
 j = j + 1

unterminated IF block Every occurrence of a block IF must be terminated with an END
IF statement.

READ *, grade
IF (grade.le.50) THEN
 PRINT *, "FAIL"
ELSE
 PRINT *, "PASS"

unterminated SELECT CASE block Each occurrence of a SELECT CASE statement
must be terminated with an END SELECT statement.

SELECT CASE (i)
 CASE (1)
 CASE DEFAULT

variable data type is undefined All variables in a program unit must be declared either
implicitly or explicitly.

IMPLICIT NONE
a = 5

variable misaligned A variable should be aligned on a boundary which matches its size.

INTEGER*4 i
INTEGER*2 j
INTEGER*1 k
COMMON /area/k, i, j

VAX tab format is nonstandard -V allows for the use of this format This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,100) ’This is an example
1 of VAX Fortran Tab-Format’ !comment line

1 0 0 FORMAT (t12,a)
*comment, comment, comment

148 Error Messages

FORTRAN 77 Language Reference Manual

VOLATILE statement syntax error The rules and syntax governing the VOLATILE
statement must be followed.

VOLATILE (a, i)

wide source format is nonstandard -W extends the last statement column to 132. This
is not standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,*) ’This is an example of using wide format, which accepts
 +statements that exceed column 72’

wrong number of function arguments The number of arguments to statement functions
and intrinsic functions must agree with the number of arguments that are required.

a = mod(1)

wrong number of array dimensions Arrays must be referenced with the same number
of dimensions as they were declared with.

INTEGER m(5,5)
m(5) = 100

Error Messages 149

FORTRAN 77 Language Reference Manual

COMPILER ERROR MESSAGES — SORTED NUMERICALLY

0 illegal syntax
1 numeric overflow
2 division by zero
4 invalid statement label
5 alpha character expected
6 spelling error
7 invalid option
8 invalid INCLUDE
9 specification statement syntax error
10 invalid argument
11 program unit declaration syntax error
12 duplicate label definition
14 duplicate program unit declaration
15 local variable never referenced
16 duplicate variable declaration
17 not an intrinsic function
18 duplicate COMMON or NAMELIST declaration
19 SAVE statement syntax error
20 array declaration error
21 PARAMETER declaration error
22 invalid constant expression
23 missing END statement
24 variable data type is undefined
25 variable misaligned
26 invalid statement function dummy argument
27 illegal statement ordering
28 invalid argument to EQUIVALENCE statement
29 missing label on FORMAT statement
30 statement cannot be reached
31 synch error in intermediate code
32 END DO or REPEAT without DO
33 unbalanced parenthesis
35 illegal expression
36 wrong number of function arguments
37 missing operand
38 wrong number of array dimensions
39 illegal DO variable
40 expecting an argument list or subscript
41 ASSIGN statement error
42 label missing
43 ELSE or END IF without IF (e) THEN
44 unterminated DO loop
45 unterminated IF block
46 expecting end of statement

150 Error Messages

FORTRAN 77 Language Reference Manual

47 END SELECT without SELECT CASE
48 unterminated SELECT CASE block
50 invalid CASE statement
51 invalid I/O control list specifier or syntax
53 illegal variable in NAMELIST
55 illegal EQUIVALENCE or UNION of COMMON blocks
56 intrinsic function data type mismatch
57 procedure name conflicts with symbol
58 DATA statement syntax error
59 illegal symbol in a DATA statement
60 duplicate BLOCKDATA initialization of COMMON
61 illegal statement in BLOCK DATA procedure
62 illegal value parameter
64 illegal external symbol
66 illegal statement function name
67 illegal use of operator
68 array boundary error
70 EXIT or CYCLE outside of a loop
71 unsupported data type
72 non-standard use of assignment operator
73 illegal dummy argument
74 GOTO non-integer label
75 illegal DO loop label
76 illegal IF clause
77 assignment to DO variable
78 increment expression cannot be zero
79 non-constant case expression
80 not expecting a label
81 continuation character expected
82 blank lines not valid in VS Free-Form
84 duplicate DATA initialization
85 VOLATILE statement syntax error
86 illegal initialization
87 unit required in I/O statement
88 invalid I/O list or syntax
89 format string missing opening parenthesis
90 illegal format repeat count
91 illegal format specifier
92 format specifier is not repeatable
93 format string has unmatched quote
94 incorrect format hollerith count
95 format string has unmatched parenthesis
96 adjustable array is not a dummy argument
97 RETURN statement in main program unit
98 INTRINSIC name used as EXTERNAL
99 illegal use of statement function argument
100 undetermined size array not valid in I/O statement
101 unsupported extension

Error Messages 151

FORTRAN 77 Language Reference Manual

102 invalid data type for control list specifier
103 argument type mismatch
104 illegal function call
106 nonstandard statement
107 nonstandard comment
108 nonstandard type
109 nonstandard data initialization
110 nonstandard edit descriptor
111 nonstandard intrinsic function
112 nonstandard I/O specifier
113 nonstandard constant
114 nonstandard symbolic name
115 one trip do loops are nonstandard
116 conditional compilation is nonstandard
117 Fortran 90 free source form is nonstandard
118 extended range do loops are nonstandard
119 IBM VS free-form is nonstandard
120 escape sequences in strings are nonstandard
121 VAX tab format is nonstandard
122 wide source format is nonstandard
123 GLOBAL statement is nonstandard
124 number of continuation lines is nonstandard
125 overriding dynamic storage allocation is nonstandard
126 optional use of FORMAT specifier is nonstandard
127 nonstandard operator
128 nonstandard constant delimiter
129 multiple statement line is nonstandard
130 illegal structure definition
131 END STRUCTURE without STRUCTURE
132 invalid field name
133 duplicate STRUCTURE name
134 illegal use of RECORD name
135 missing END STRUCTURE
136 END UNION without UNION
137 MAP outside of UNION
138 duplicate name in UNION
139 UNION not contained in STRUCTURE
140 missing END UNION
141 expecting a MAP statement
142 symbol in UNION was in EQUIVALENCE or UNION
143 illegal POINTER variable
144 illegal POINTER based variable
145 illegal use of POINTER based variable
146 recursive STRUCTURE definition
147 illegal statement in GLOBAL DEFINE
148 symbol defines illegal storage in GLOBAL DEFINE
149 cannot have an ENTRY in a routine with VALUE
150 cannot reference a pointer based function

152 Error Messages

FORTRAN 77 Language Reference Manual

151 size of type is undefined
152 argument to SIZEOF is not a data type
153 branch is further than 32k: use N11 option
154 32 bit address to a global: do not use N12 option
155 program unit has invalid use of COMMON name
156 invalid $DEFINE
157 $ELSE, $ELSEIF or $ENDIF without $IF
158 unmatched $ELSE
159 illegal metacommand
160 invalid $UNDEFINE
161 invalid $IF or $ELSEIF
162 unmatched $IF or $ELSEIF
163 %DESCR function ignored

153

FORTRAN 77 Language Reference Manual

Appendix C

ASCII Table

ASCII codes 0 through 31 are control codes that may or may not have meaning on Linux.
They are listed for historical reasons and may aid when porting code from other systems.
Codes 128 through 255 are extensions to the 7-bit ASCII standard and the symbol
displayed depends on the font being used; the symbols shown below are from the Times
New Roman font. The Dec, Oct, and Hex columns refer to the decimal, octal, and
hexadecimal numerical representations.

Character Dec Oct Hex Description
NULL 0 000 00 null
SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text
ECT 4 004 04 end of trans
ENQ 5 005 05 enquiry
ACK 6 006 06 acknowledge
BEL 7 007 07 bell code
BS 8 010 08 back space
HT 9 011 09 horizontal tab
LF 10 012 0A line feed
VT 11 013 0B vertical tab
FF 12 014 0C form feed
CR 13 015 0D carriage return
SO 14 016 0E shift out
SI 15 017 0F shift in
DLE 16 020 10 data link escape
DC1 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative ack
SYN 22 026 16 synch idle
ETB 23 027 17 end of trans blk
CAN 24 030 18 cancel
EM 25 031 19 end of medium
SS 26 032 1A special sequence
ESC 27 033 1B escape
FS 28 034 1C file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
US 31 037 1F unit separator

Character Dec Oct Hex Description
 32 040 20 space
! 33 041 21 exclamation
" 34 042 22 quotation mark
35 043 23 number sign
$ 36 044 24 dollar sign
% 37 045 25 percent sign
& 38 046 26 ampersand
’ 39 047 27 apostrophe
(40 050 28 opening paren
) 41 051 29 closing paren
* 42 052 2A asterisk
+ 43 053 2B plus
, 44 054 2C comma
- 45 055 2D minus
. 46 056 2E period
/ 47 057 2F slash
0 48 060 30 zero
1 49 061 31 one
2 50 062 32 two
3 51 063 33 three
4 52 064 34 four
5 53 065 35 five
6 54 066 36 six
7 55 067 37 seven
8 56 070 38 eight
9 57 071 39 nine
: 58 072 3A colon
; 59 073 3B semicolon
< 60 074 3C less than
= 61 075 3D equal
> 62 076 3E greater than
? 63 077 3F question mark

154 ASCII Table

FORTRAN 77 Language Reference Manual

Character Dec Oct Hex Description
@ 64 100 40 commercial at
A 65 101 41 upper case
letter
B 66 102 42 upper case
letter
C 67 103 43 upper case
letter
D 68 104 44 upper case
letter
E 69 105 45 upper case
letter
F 70 106 46 upper case
letter
G 71 107 47 upper case
letter
H 72 110 48 upper case
letter
I 73 111 49 upper case
letter
J 74 112 4A upper case
letter
K 75 113 4B upper case
letter
L 76 114 4C upper case
letter
M 77 115 4D upper case
letter
N 78 116 4E upper case
letter
O 79 117 4F upper case
letter
P 80 120 50 upper case
letter
Q 81 121 51 upper case
letter
R 82 122 52 upper case
letter
S 83 123 53 upper case
letter
T 84 124 54 upper case
letter
U 85 125 55 upper case
letter
V 86 126 56 upper case
letter
W 87 127 57 upper case
letter
X 88 130 58 upper case
letter
Y 89 131 59 upper case
letter
Z 90 132 5A upper case
letter
[91 133 5B opening bracket
\ 92 134 5C back slash
] 93 135 5D closing bracket
^ 94 136 5E circumflex
_ 95 137 5F underscore
‘ 96 140 60 grave accent
a 97 141 61 lower case
letter

b 98 142 62 lower case
letter
c 99 143 63 lower case
letter
d 100 144 64 lower case
letter
e 101 145 65 lower case
letter
f 102 146 66 lower case
letter
g 103 147 67 lower case
letter
h 104 140 68 lower case
letter
i 105 151 69 lower case
letter
j 106 152 6A lower case
letter
k 107 153 6B lower case
letter
l 108 154 6C lower case
letter
m 109 155 6D lower case
letter
n 110 156 6E lower case
letter
o 111 157 6F lower case
letter
p 112 160 70 lower case
letter
q 113 161 71 lower case
letter
r 114 162 72 lower case
letter
s 115 163 73 lower case
letter
t 116 164 74 lower case
letter
u 117 165 75 lower case
letter
v 118 166 76 lower case
letter
w 119 167 77 lower case
letter
x 120 170 78 lower case
letter
y 121 171 79 lower case
letter
z 122 172 7A lower case
letter
{ 123 173 7B opening brace
| 124 174 7C vertical bar
} 125 175 7D closing brace
~ 126 176 7E tilde

127 177 7F delete

ASCII Table 155

FORTRAN 77 Language Reference Manual

Character Dec Oct Hex
? 128 200 80

129 201 81
‚ 130 202 82
ƒ 131 203 83
„ 132 204 84
… 133 205 85
† 134 206 86
‡ 135 207 87
ˆ 136 210 88
‰ 137 211 89
Š 138 212 8A
‹ 139 213 8B
Œ 140 214 8C

141 215 8D
? 142 216 8E

143 217 8F
144 220 90

‘ 145 221 91
’ 146 222 92
“ 147 223 93
” 148 224 94
• 149 225 95
– 150 226 96
— 151 227 97
˜ 152 230 98
™ 153 231 99
š 154 232 9A
› 155 233 9B
œ 156 234 9C

157 235 9D
? 158 236 9E
Ÿ 159 237 9F
 160 240 A0
¡ 161 241 A1
¢ 162 242 A2
£ 163 243 A3
¤ 164 244 A4
¥ 165 245 A5
¦ 166 246 A6
§ 167 247 A7
¨ 168 250 A8
© 169 251 A9
ª 170 252 AA
« 171 253 AB
¬ 172 254 AC
- 173 255 AD
® 174 256 AE
¯ 175 257 AF
° 176 260 B0
± 177 261 B1
² 178 262 B2
³ 179 263 B3
´ 180 264 B4
µ 181 265 B5
¶ 182 266 B6
· 183 267 B7
¸ 184 270 B8
¹ 185 271 B9
º 186 272 BA
» 187 273 BB
¼ 188 274 BC
½ 189 275 BD

¾ 190 276 BE
¿ 191 277 BF

156 ASCII Table

FORTRAN 77 Language Reference Manual

Character Dec Oct Hex
À 192 300 C0
Á 193 301 C1
Â 194 302 C2
Ã 195 303 C3
Ä 196 304 C4
Å 197 305 C5
Æ 198 306 C6
Ç 199 307 C7
È 200 310 C8
É 201 311 C9
Ê 202 312 CA
Ë 203 313 CB
Ì 204 314 CC
Í 205 315 CD
Î 206 316 CE
Ï 207 317 CF
Ð 208 320 D0
Ñ 209 321 D1
Ò 210 322 D2
Ó 211 323 D3
Ô 212 324 D4
Õ 213 325 D5
Ö 214 326 D6
× 215 327 D7
Ø 216 330 D8
Ù 217 331 D9
Ú 218 332 DA
Û 219 333 DB
Ü 220 334 DC
Ý 221 335 DD
Þ 222 336 DE
ß 223 337 DF

Character Dec Oct Hex
à 224 340 E0
á 225 341 E1
â 226 342 E2
ã 227 343 E3
ä 228 344 E4
å 229 345 E5
æ 230 346 E6
ç 231 347 E7
è 232 350 E8
é 233 351 E9
ê 234 352 EA
ë 235 353 EB
ì 236 354 EC
í 237 355 ED
î 238 356 EE
ï 239 357 EF
ð 240 360 F0
ñ 241 361 F1
ò 242 362 F2
ó 243 363 F3
ô 244 364 F4
õ 245 365 F5
ö 246 366 F6
÷ 247 367 F7
ø 248 370 F8
ù 249 371 F9
ú 250 372 FA
û 251 373 FB
ü 252 374 FC
ý 253 375 FD
þ 254 376 FE
ÿ 255 377 FF

157

FORTRAN 77 Language Reference Manual

Appendix D

Bibliography

References on the FORTRAN language

These books and manuals are useful references for the FORTRAN language and the
floating point math format used by Absoft Fortran 77 on Windows.

Page, Didday, and Alpert, FORTRAN 77 for Humans, West Publishing Company (1983)
Highly recommended for beginners

Kruger, Anton, Efficient FORTRAN Programming, John Wiley & Sons, Inc. (1990)
Highly recommended for beginners

Loren P. Meissner and Elliot I. Organick, FORTRAN 77, Addison-Wesley Publishing
Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company (1978)

J.N.P. Hume and R.C. Holt, Programming FORTRAN 77, Reston Publishing Company,
Inc. (1979)

Harice L. Seeds, FORTRAN IV, John Wiley & Sons (1975)

Jehosua Friedmann, Philip Greenberg, and Alan M. Hoffberg, FORTRAN IV, A Self-
Teaching Guide, John Wiley & Sons, Inc. (1975)

James S. Coan, Basic FORTRAN, Hayden Book Company (1980)

Brian W. Kernighan and P.J. Plauger, Software Tools, Addison-Wesley Publishing
Company (1976)

Brian W. Kernighan and P.J. Plauger, The Elements of Programming Style, McGraw-Hill
Book Company (1978)

American National Standard Programming Language FORTRAN, X3.9-1978, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of
IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and I.E. Stegun, Handbook of Mathematical Functions, U.S. Department
of Commerce, National Bureau of Standards (1972)

158 Bibliography

FORTRAN 77 Language Reference Manual

Fortran Forum, Association for Computing Machinery. Phone: 1-212-869-7440.

Fortran Journal, Fortran Users Group. Phone: 1-714-441-2022.

Bibliography 159

FORTRAN 77 Language Reference Manual

References on Windows Programming

These books are suggested reading for learning how to program in the Win32 API for
Windows. Most of these books are available in book stores.

Microsoft Win32 Programmer’s Reference, Volumes 1-5, Mircosoft Press (1993)

Charles Petzold, Programming Windows 3.1, Mircosoft Press (1992)

Jerry Richter, Advanced Windows, The Developer’s Guide to the Win32 API for Windows
NT 3.5 and Windows 95, Mircosoft Press (1995)

160

FORTRAN 77 Language Reference Manual

Appendix E

Technical Support

The Absoft Technical Support Group will provide technical assistance to all registered
users. They will not answer general questions about operating systems, operating system
interfaces, graphical user interfaces, or teach the FORTRAN language. For further help
on these subjects, please consult this manual and any of the books and manuals listed in
the bibliography.

Before contacting Technical Support, please study this manual and the Fortran User
Guide to make sure your problem is not covered here. Specifically, look at the chapter
Using The Compilers in the ProFortran User Guide and the Error Messages
appendices of both manuals. To help Technical Support provide a quick and accurate
solution to your problem, please include the following information in any correspondence
or have it available when calling.

Product Information:

Name of product .
Version number.
Serial number.
Version number of the operating system.

System Configuration:

Hardware configuration (hard drive, etc.).
System software release (i.e. 4.0, 3.5, etc).
Any software or hardware modifications to your system.

Problem Description:

What happens?
When does it occur?
Provide a small (20 line) reproducible program or step-by-step example if
possible.

Contacting Technical Support:

Address: Absoft Corporation
Attn: Technical Support
2781 Bond Street
Rochester Hills, MI 48309

Technical Support 161

FORTRAN 77 Language Reference Manual

Technical Support: (248) 853-0095 9am - 3pm EST
FAX (248) 853-0108 24 Hours
email support@absoft.com 24 Hours
World Wide Web http://www.absoft.com

163

FORTRAN 77 Language Reference Manual

Appendix F

VAX Extensions

This appendix lists the VAX FORTRAN extensions to FORTRAN 77 that are supported
by Absoft Fortran 77. For details about porting code from the VAX, see the Porting
Code chapter of the ProFortran User Guide.

VAX FORTRAN STATEMENT EXTENSIONS

ACCEPT
BYTE
DECODE
DO WHILE...END DO
DO...END DO
ENCODE
EXIT
IMPLICIT NONE
INCLUDE
OPEN statement extensions
 ACCESS=’APPEND’
 CARRIAGECONTROL=
 DISP= (same as DISPOSE=)
 DISPOSE= (or DISP=)
 ’KEEP’ and ’SAVE’
 ’PRINT’ and ’DELETE’
 ’PRINT/DELETE’
 ’SUBMIT’
 ’SUBMIT/DELETE’
 MAXREC=
 NAME=
 NOSPANBLOCKS
 ORGANIZATION=
 RECORDSIZE= (same as RECL=)
 READONLY
 SHARED
 TYPE= (same as STATUS=)
MAP...END MAP
NAMELIST
READ (NAMELIST directed)
RECORD
STRUCTURE...END STRUCTURE
TYPE
UNION...END UNION
VOLATILE
WRITE (NAMELIST directed)

164 VAX Extensions

FORTRAN 77 Language Reference Manual

VAX FORTRAN DATA TYPE EXTENSIONS

BYTE
COMPLEX*16
DOUBLE COMPLEX
INTEGER*2
INTEGER*4
LOGICAL*2
LOGICAL*4
REAL*4
REAL*8
’nnn’X and ’nnn’O format for hexadecimal and octal constants

VAX FORTRAN INTRINSIC FUNCTION EXTENSIONS

ACOSD
AIMAX0
AIMIN0
AJMAX0
AJMIN0
ASIND
ATAND
ATAN2D
BITEST
BJTEST
BTEST
CDABS
CDCOS
CDEXP
CDLOG
CDSIN
CDSQRT

COSD
DACOSD
DASIND
DATAND
DATAN2D
DCMPLX
DCONJG
DCOSD
[%]DESCR
DFLOAT
DFLOTI
DFLOTJ
DIMAG
DREAL
DSIND
DTAND
FLOATI

FLOATJ
IAND
IBCLR
IBITS
IBSET
IEOR
IIABS
IIAND
IIBCLR
IIBITS
IIBSET
IIDIM
IIDINT
IIDNNT
IIEOR
IIFIX
IINT

IIOR
IISHFT
IISHFTC
IISIGN
IMAX0
IMAX1
IMIN0
IMIN1
IMOD
ININT
INOT
IOR
ISHFT
ISHFTC
IZEXT
JIABS
JIAND

JIBCLR
JIBITS
JIBSET
JIDIM
JIDINT
JIDNNT
JIEOR
JIFIX
JINT
JIOR
JISHFT
JISHFTC
JISIGN
JMOD
JMAX0
JMAX1
JMIN0

JMIN1
JNINT
JNOT
JZEXT
LOC
MVBITS
NOT
[%REF]
SIND
SIZEOF
TAND
[%]VAL
ZEXT

OTHER VAX FORTRAN EXTENSIONS

Aggregate assignment
Comment lines beginning with “!”
Conditional compilation with “D” in column 1
DATA statements mixed with declarations
Edit descriptors without field widths
Extended range DO loops
Extended source lines with 132 columns (with -W option)
Initialization in declaration statements (i.e. INTEGER I/31/)
Initialization of COMMON blocks outside of BLOCK DATA
Nested INCLUDE statements
Non-INTEGER array and substring indexes
PARAMETER statements without ()
RECL defines 32-bit words (with -N51 option)
Symbol names may include “$” and “_” in names
Tab-Format source form (with -V option)
Use of intrinsics in PARAMETER (with -O or -N41 options)
VAX file names for implicit unit connections to a file

VAX Extensions 165

FORTRAN 77 Language Reference Manual

- O Z Q $ edit descriptors

167

FORTRAN 77 Language Reference Manual

Appendix G

Language Systems Fortran Extensions

This appendix describes the implementation of Language Systems Fortran extensions
supported by the Absoft Fortran 77 Compiler.

STRING

STRING is a type statement and is used to declare a string entity compatible with Pascal
strings. The first data byte of a STRING is set to the logical length of the string, limiting
the length of a character entity declared in this manner to 255 bytes. With the exception
of internal files and substring expressions, a STRING can be used anywhere a
CHARACTER argument can be used.

POINTER

This is a declaration statement for declaring variables that will contain the address of
other variables. The syntax is:

POINTER /type/ v [, v] ...

where:
type is a type or structure name.
v is a variable name.

A POINTER may be used in an assignment statement or in an integer expression to
manipulate the address it contains. It is dereferenced (the value of what it points to is
extracted) by appending the operator, ^, to the name.

LEAVE

This statement has the same meaning as the EXIT statement (See Control Statements)
and provides a convenient means for abnormal termination of a DO loop. The LEAVE and
EXIT statements cause control of execution to be transferred to the statement following
the terminal statement of a DO loop or block DO.

GLOBAL

The syntax of this statement is similar to the SAVE statement (see Specification and DATA
Statements). The variables specified with a GLOBAL statement are made externally
visible. It can be used in conjunction with GLOBAL DEFINE to create global variables for
the whole file.

168 Language Systems Fortran Extensions

FORTRAN 77 Language Reference Manual

CGLOBAL

The syntax of this statement is similar to the SAVE statement (see Specification and DATA
Statements). The variables specified with a CGLOBAL statement are not affected by case
folding and are made externally visible. It can be used in conjunction with GLOBAL
DEFINE to create global variables for the whole file.

PGLOBAL

The syntax of this statement is similar to the SAVE statement (see Specification and DATA
Statements). The variables specified with a PGLOBAL statement are folded to upper case
and made externally visible. It can be used in conjunction with GLOBAL DEFINE to create
global variables for the whole file.

CEXTERNAL

The syntax of this statement is similar to the EXTERNAL statement (see Specification and
DATA Statements). The functions specified with a CEXTERNAL statement pass all of their
arguments by value as the default. An argument can be passed by reference if the %REF
instrinsic function is used.

PEXTERNAL

The syntax of this statement is similar to the EXTERNAL statement (see Specification and
DATA Statements). The functions specified with a PEXTERNAL statement pass all of their
arguments by value as the default. An argument can be passed by reference if the %REF
instrinsic function is used. Note that this statement has the same effect as the Absoft
PASCAL EXTERNAL declaration.

INT1, INT2, AND INT4

INT1, INT2, and INT4 are type conversion intrinsic functions that convert their arguments
to 1-, 2-, and 4-byte integers respectively.

JSIZEOF

This function returns an integer that represents the size of its argument in bytes. It is
identical to the SIZEOF function (see Programs, Subroutines, and Functions).

%VAL, %REF, AND %DESCR

When appearing in the formal argument list of a FUNCTION or SUBROUTINE declaration
statement, these statements use the syntax of a function reference, but have the affect of
declaring the passing method of the argument. %DESCR has no effect (but will generate a

Language Systems Fortran Extensions 169

FORTRAN 77 Language Reference Manual

warning diagnostic), %REF is the default, and %VAL is the same as using the VALUE
declaration statement (see Specification and DATA Statements). The % is not optional in
this usage.

LANGUAGE SYSTEMS INCLUDE FILES

There are some syntactical difficulties in several of the Language Systems API include
files that are ignored by the Language Systems Fortran compiler. These are detected by
the Absoft Fortran 77 compiler which will issue a diagnostic when they are encountered.

170 Index

FORTRAN 77 Language Reference Manual

.i.CONVERT, 76
/ editing, 90
\ editing, 90
\f, 16
\n, 16
\t, 16
‘3 editing, 90
‘4 editing, 90
A editing, 88
Absoft address, 160
ACCEPT, 73
ACCESS, 75, 79
ACTION, 75
ampersand, 9
ANSI, 1
ANSI standard, 7
apostrophe editing, 91
arithmetic

assignment statement, 33
constant expression, 29
expressions, 27
IF statement, 56

arithmetic expressions
data type, 28

array, 19
actual, 20
adjustable, 20
dummy, 20
dynamic allocation, 121
storage sequence, 21
subscript, 21

array declarator, 19
ASCII conversion, 81
ASCII table, 153
ASSIGN, 34
assigned GOTO, 55
AUTOMATIC statement, 48
B editing, 85
backslash editing, 90
BACKSPACE, 77
bibliography, 157
binary constants, 17
BLANK, 75, 80
blank control editing, 89
BLOCK, 67, 76
BLOCK DATA, 116
block IF, 56
BN editing, 89
books, reference, 157
BUFFER, 76
buffers, 68
BYTE function, 110
BZ editing, 89
C strings, 123
CALL statement, 98
CARRIAGECONTROL, 76
CASE block, 61
CASE DEFAULT, 61
case selector, 62
CASE statement, 61
character, 15

assignment statement, 34
constant delimiter, 15
editing, 88
expressions, 30
set, 3
storage unit, 24
substring, 23

CLOSE, 77
colon editing, 90
Command-Enter, 71
Command-Return, 71
comment line, 8
COMMON, 40

restrictions, 42
COMMON blocks, 101
compatibility, introduction, 1
compiler errors, numeric, 149
compiler options

-8, Fortran 90, 7, 129
-C, check boundaries, 128
-f, case fold, 4
-I, IBM VS Free-Form, 129
-K, escape sequences, 16, 132
-N112, IBM VS Free-Form, 7
-N3, record lengths, 67
-N51, 32-bit RECL, 75
-s, static storage, 25
-V, VAX Tab-Format, 7
-W, wide format, 7
-x, conditional compilation, 8, 10, 129

COMPLEX, 18
complex editing, 85
COMPLEX*16, 18, 39
COMPLEX*8, 39
computed GOTO, 55
conditional compilation, 8, 10, 13
constants

blanks in, 15
character, 15
COMPLEX, 18
COMPLEX*16, 18
double precision, 18
Hollerith, 19
INTEGER, 16
LOGICAL, 16
PARAMETER, 15
real, 17

contacting Absoft, 161
continuation lines, 9
CONTINUE statement, 61
control statements, 55
conventions used in the manual, 2
CONVERT, 76
CYCLE statement, 61
D. see conditional compilation
D editing, 86
data length specifiers, 38

COMPLEX*16, 39
COMPLEX*8, 39
INTEGER*1, 38
INTEGER*2, 38

2 Index

FORTRAN 77 Language Reference Manual

INTEGER*4, 38
INTEGER*8, 38
LOGICAL*1, 38
LOGICAL*2, 38
LOGICAL*4, 38
REAL*4, 38
REAL*8, 38

DATA statement, 52
data type, 14

character, 15
COMPLEX, 18
COMPLEX*16, 18
double precision, 18
Hollerith, 19
IMPLICIT, 15
INTEGER, 16
intrinsic function, 15
LOGICAL, 16
name, 14
real, 17

decimal constants, 17
declaration initialization, 38
DECODE, 81
DESCR function, 110
DIMENSION, 40
dimension bound, 20
dimension declarator, 20
DIRECT, 79
DISP, 76
DISPOSE, 76
DO, 57, 59

extended range, 58
DO variable, 57
DO WHILE, 59
documentation conventions, 2
dollar editing, 90
double precision

editing, 85
double precision, 18
dynamic memory allocation, 121
E editing, 86
edit descriptor, 82
ELSE, 56
ENCODE, 81
END (I/O specifier), 71
END DO, 60
END IF, 56
END MAP statement, 50
END SELECT, 61
END statement, 64
END UNION statement, 50
ENDFILE, 78
endfile record, 66
ENTRY, 100
EQUIVALENCE

arrays, 42
restrictions, 42
statement, 24, 41
substrings, 42

ERR, 70
error messages, 125

compiler, numerical, 149
runtime, 125

escape sequences, 16
exclamation point, 9, 10
EXIST, 79
EXIT statement, 60
expressions, 27

arithmetic, 27
character, 30
relational, 30, 31

extended range DO loops, 58
extensions

VAX FORTRAN, list of, 163
extensions to FORTRAN 77, 2
EXTERNAL, 43
external files, 66
external function, 99
F editing, 86
field width, 82
FILE, 74
files, 66

access, 67
buffering, 68
internal, 68
name, 66
position, 66

files, including, 12
floating point

editing, 85
FMT, 69
FORM, 75, 79
FORMAT, 82
format specification, 82
FORMATTED, 79
formatted data transfer, 73
formatted record, 65
Fortran 77

introduction, 1
FORTRAN 77 extensions, 2, 3, 4, 6, 7, 8, 9, 10, 11,

12, 15, 16, 17, 18, 19, 24, 25, 28, 30, 32, 33, 34,
37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 52, 56,
58, 59, 60, 61, 67, 68, 70, 73, 75, 76, 81, 82, 84,
85, 90, 91, 93, 97, 99, 103, 110, 117, 119, 120
ACCEPT, 73
ACTION specifier, 74, 75
arithmetic and logical type statements, 37
arithmetic assignment statement, 33
AUTOMATIC statement, 48
B editing, 85
backslash editing, 90
binary constants, 17
Block DO, 59
BLOCK specifier, 67, 76
BUFFER specifier, 68, 76
CARRIAGECONTROL specifier, 76
CASE block, 61
character set, 3
character type statement, 39
comment, 8
compiler directives, 6
compiler options

-N3, 67
COMPLEX*16, 18, 39
COMPLEX*8, 39
conditional compilation, 8

Index 3

FORTRAN 77 Language Reference Manual

CYCLE, 61
data length specifiers, 38
data types, 28
declaration initialization, 38
DECODE statement, 81
DESCR function, 110
DISP specifier, 76
DISPOSE specifier, 76
DO WHILE, 59
dollar sign editing, 90
DOUBLE COMPLEX, 37
edit descriptors, 82
ENCODE statement, 81
END DO, 60
END SELECT, 61
escape sequences, 16
EXIT, 60
extended range DO, 58
Fortran 90 Free Source Form, 9
GLOBAL DEFINE, 117
GLOBAL statement, 40
hexadecimal constants, 17
Hollerith Constant, 19
IBM VS FORTRAN free-form, 11
IMPLICIT NONE, 44
IMPLICIT NONE statement, 15
IMPLICIT statement, 43
INCLUDE statement, 12
INLINE statement, 44
input validation, 84
integer editing, 84
INTEGER*1, 38
INTEGER*2, 38
INTEGER*4, 38
INTEGER*8, 38
intrinsic functions, 45, 103, 110
LOC function, 110
logical assignment statement, 33
logical IF statement, 56
logical operators, 32
LOGICAL*1, 38
LOGICAL*2, 38
LOGICAL*4, 38
MAP declaration, 50
MAXREC specifier, 75
memory assignment statement, 34
multiple statement lines, 11
Namelist Specifier, 70
namelist directed editing, 93
NAMELIST statement, 45
NOSPANBLOCKS specifier, 76
numeric bases, 17
O editing, 85
octal constants, 17
ORGANIZATION specifier, 75
PARAMETER statement, 47
POINTER statement, 47, 120
POSITION specifier, 75
Q editing, 91
quotation marks, 15
READONLY specifier, 76
REAL*4, 38
REAL*8, 38

RECORD statement, 48
RECORDSIZE specifier, 75
recursion, 97, 99
REF function, 110
relational expressions, 30
REPEAT, 60
SAVE statement, 48
SELECT CASE, 61
SHARED specifier, 76
source formats, 7
statement field, 7
Statement Order, 12
storage, 24
storage definition, 25
STRUCTURE declaration, 49, 119
symbolic names, 4
TYPE, 73
UNION declaration, 50
VAL function, 110
VALUE statement, 52
VAX FORTRAN Tab-Format, 10
VIRTUAL statement, 40
VOLATILE statement, 52
Z editing, 85
ZEXT function, 110

Fortran 90 free source form, 9
Fortran Forum, 158
FORTRAN I/O errors, 126
FUNCTION statement, 98
functions, 98

external, 99
intrinsic, 100
statement, 99
table of intrinsics, 103

G editing, 87
GLOBAL, 40
GLOBAL DEFINE, 117
GOTO, statement, 55
graying of text, 2
H editing, 91
hexadecimal constants, 17
Hollerith constant, 19
Hollerith editing, 91
I editing, 84
I/O errors, listed, 126
IBM VS FORTRAN free-form, 11
IEEE floating point representation, 18
IF, 56
IMPLICIT, 43
implied DO list, 54, 72
INCLUDE statement, 12
initial line, 8
INLINE object code, 118
INLINE statement, 44
input and output, 65
input validation, 84
INQUIRE, 78
INTEGER, 16
integer constant expression, 29
integer editing, 84
INTEGER*1, 38
INTEGER*2, 38
INTEGER*4, 38

4 Index

FORTRAN 77 Language Reference Manual

INTEGER*8, 38
internal files, 66, 68
INTRINSIC, 44
intrinsic functions, 15, 100, 103

restrictions, 115
IOSTAT, 71
IOSTAT specifier, 125
italicized text, defined, 2
iteration count, 58
keywords, 4
L editing, 88
labels, 5
Language Systems Fortran, 167
list directed

editing, 91
input, 92
output, 93

LOC function, 110, 113
logical

assignment statement, 33
expressions, 31
IF statement, 56
operators, 32

LOGICAL, 16
logical editing, 88
LOGICAL*1, 38
LOGICAL*2, 38
LOGICAL*4, 38
LONG function, 110
looping, 57
MAP statement, 50
MAXREC, 75
memory assignment statement, 34
modifier keys, 2
multiple statement lines, 11
MVBITS subroutine, 113
NAME, 74, 79
NAMED, 79
NAMELIST, 45
namelist directed

editing, 93
input, 93
output, 95

NEXTREC, 80
NML, 70
NOSPANBLOCKS, 76
NUMBER, 79
numeric bases, 17

decimal, 17
hexadecimal, 17
octal, 17

numeric basis
binary, 17

numeric storage unit, 24
O editing, 85
octal constants, 17
OPEN statement, 74
OPENED, 79
operator precedence, 32
optimization

pointers and optimization, 121
options, manual convention, 2
ORGANIZATION, 75

P editing, 87
PARAMETER, 15, 46

statement, 117
parentheses in expressions, 29
pass by value, 114
PAUSE statement, 63
phone number, technical support, 161
POINTER statement, 47, 120

functions which return pointers, 123
mixing pointers and structures, 122
pointer-based functions, 124
pointers and optimization, 121
pointers as arguments, 122
pointers to Cstrings, 123

POSITION, 75
positional editing, 89
precedence, 32
PRINT, 72
printing, 74
problems, technical support for, 160
PROGRAM statement, 97
Q editing, 91
READ, 72
READONLY, 76
real, 17
real editing, 85
REAL*4, 38
REAL*8, 38
REC, 70
RECL, 75, 80
RECORD statement, 48

size of a RECORD, 114
records, 65

endfile, 66
formatted, 65
unformatted, 66

RECORDSIZE, 75
recursion, 97, 99
REF function, 110
relational expressions, 30
relational operators, 30
REPEAT, 60

function, 113
repeat factor, 82
RETURN, 101
REWIND, 78
runtime error messages, 125
S editing, 89
SAVE statement, 48
scalar variable, 19
scale factor, 87
SELECT CASE, 61
SEQUENTIAL, 79
SHARED, 76
shared data, 40
SHIFT functions, 111
sign control editing, 89
SIZE, 80
SIZEOF function, 114
slash editing, 90
source format, 7

ANSI standard, 7
IBM VS FORTRAN free-form, 11

Index 5

FORTRAN 77 Language Reference Manual

VAX FORTRAN tab-format, 10
SP editing, 89
square brackets, defined, 2
SS editing, 89
statement format, 7
statement functions, 99
statement labels, 5
statement line

comment, 8
continuation, 9
END, 8
initial, 8

statement size
Fortran 90, 9
IBM VS FORTRAN, 11

statements, 5
statements, 37

executable, 6
nonexecutable, 6

STATUS, 75
STOP statement, 63
storage, 23
storage association, 24
storage definition, 25
storage sequence, 24
storage unit, 23

character, 24
numeric, 24

strings, C, 123
STRUCTURE declaration, 49, 119

mixing pointers and structures, 122
size of a structure, 114

SUBROUTINE, 98
subroutines, 97
subscript, 21

expression, 21
substring, 23

expressions, 23
symbolic names, 4

global, 4
local, 4

T editing, 89

technical support, 160
TL editing, 89
TR editing, 89
tutorial

books for beginners, 157
TYPE, 73
type statement, 37

CHARACTER, 39
COMPLEX, 37
DOUBLE PRECISION, 37
INTEGER, 37
LOGICAL, 37
REAL, 37

underlined text, defined, 2
UNFORMATTED, 80
unformatted data transfer, 73
unformatted record, 66
UNION statement, 50
UNIT, 68

preconnected, 68
VAL function, 110, 114
value separator, 92
VALUE statement, 52, 114, 129
variable, 19
VAX extensions

data types, 164
intrinsic functions, 164
miscellaneous, 164
statements, 163

VAX FORTRAN
tab-format, 10

VAX hexadecimal format, 17
VOLATILE statement, 52, 121
VS FORTRAN free-form, 11
W option, 7, 10
WORD function, 110
WRITE, 72
X. see conditional compilation
X editing, 89
Z editing, 85
ZEXT function, 110

	Absoft FORTRAN 77 Language Reference Manual
	Copyright Notice

	Table of Contents
	Chapter One: Introduction
	Introduction to this Manual
	Introduction to Absoft FORTRAN 77
	Compatibility
	Conventions Used in this Manual

	Chapter Two: The FORTRAN 77 Program
	Character Set
	Symbolic Names
	Keywords
	Labels
	Statements
	Executable Statements
	Nonexecutable Statements
	Statement Format
	FORTRAN 77 ANSI Standard
	Fortran 90 Free Source Form
	VAX FORTRAN Tab-Format
	IBM VS FORTRAN Free-Form

	Multiple Statement Lines
	Statement Order
	INCLUDE Statement
	Conditional Compilation Statements

	Data Items
	Constants
	Character Constant
	Logical Constant
	Integer Constant
	Alternate Integer Bases

	Real Constant
	Double Precision Constant
	Complex Constant
	Complex *16 Constant
	Hollerith Constant

	Variables
	Arrays
	Array Declarator
	Array Subscript
	Array Name

	Substrings

	Storage
	Numeric Storage Unit
	Character Storage Unit
	Storage Sequence
	Storage Association
	Storage Definition

	Chapter Three: Expressions and Assignment Statements
	Arithmetic Expressions
	Data Type of Arithmetic Expressions
	Arithmetic Constant Expression

	Character Expressions
	Relational Expressions
	Logical Expressions
	Operator Precedence
	Arithmetic Assignment Statement
	Logical Assignment Statement
	Character Assignment Statement
	ASSIGN Statement
	Memory Assignment Statement

	Chapter Four: Specification and DATA Statements
	Type Statements
	Arithmetic and Logical Type Statements
	Character Type Statement

	DIMENSION Statement
	COMMON Statement
	EQUIVALENCE Statement
	Equivalence of Arrays
	Equivalence of Substrings
	COMMON and EQUIVALENCE Restrictions

	EXTERNAL Statement
	IMPLICIT Statement
	INLINE Statement
	INTRINSIC Statement
	NAMELIST Statement
	PARAMETER Statement
	Special use of the PARAMETER Statement

	POINTER Statement
	RECORD Statement
	SAVE Statement
	Automatic Statement
	STRUCTURE Declaration
	UNION Declaration
	VALUE Statement
	VOLATILE Statement
	DATA Statement
	Implied DO List in a DATA Statement

	Chapter Five: Control Statements
	GOTO Statements
	Unconditional GOTO
	Computed GOTO
	Assigned GOTO

	IF Statements
	Arithmetic IF
	Logical IF
	Block IF

	Loop Statements
	Basic DO Loop
	DO Loop Execution
	Transfer into Range of DO Loop

	DO WHILE
	Block DO
	END DO and REPEAT
	EXIT and LEAVE Statements
	CYCLE Statement

	CONTINUE Statement
	BLOCK CASE
	Execution of a block CASE Statement
	Block CASE Example

	STOP Statement
	Pause Statement
	END Statement

	Chapter Six: Input/Output and FORMAT Specification
	Records
	Formatted Record
	Unformatted Record
	Endfile Record

	Files
	File Name
	File Position
	File Access
	Internal Files
	File Buffering

	I/O Specifiers
	Unit Specifier
	Format Specifier
	Namelist Specifier
	Record Specifier
	Error Specifier
	End of File Specifier
	I/O Status Specifier

	I/O List
	Implied DO List in an I/O List

	Data Transfer Statements
	READ, WRITE, and PRINT
	ACCEPT and TYPE
	Unformatted Data Transfer
	Formatted Data Transfer
	Printing

	OPEN Statement
	CLOSE Statement
	BACKSPACE Statement
	REWIND Statement
	ENDFILE Statement
	INQUIRE Statement
	ENCODE and DECODE Statements
	Giving a FORMAT Specification
	FORMAT and I/O List Interaction
	Input Validation
	Integer Editing
	I Editing
	B, O, and Z Editing

	Floating Point Editing
	F Editing
	E and D Editing
	G Editing
	P Editing

	Character and Logical Editing
	A Editing
	L Editing

	Sign Control Editing
	Blank Control Editing
	Positional Editing
	X Editing
	T, TL, and TR Editing
	Slash Editing
	Dollar Sign and Backslash Editing

	Colon Editing
	Apostrophe and Hollerith Editing
	Apostrophe Editing
	H Editing

	Q Editing
	List Directed Editing
	List Directed Input
	List Directed Output

	Namelist Directed Editing
	Namelist Directed Input
	Namelist Directed Output

	Chapter Seven: Programs, Subroutines, and Functions
	Programs
	Subroutines
	Subroutine Arguments

	Functions
	External Functions
	Statement Functions
	Intrinsic Functions

	ENTRY Statement
	RETURN Statement
	Passing Procedures in Dummy Arguments
	Passing Return Addresses in Dummy Arguments
	Common Blocks
	Intrinsic Function Notes
	Argument Ranges and Results Restrictions

	BLOCK DATA
	GLOBAL DEFINE
	INLINE Statement

	Appendix A: Using Structures and Pointers
	Common Use of Structures
	Common Use of Pointers
	Pointers and Optimization
	Pointers as Arguments

	Mixing Pointers and Structures
	Functions Which Return Pointers
	Pointers to C Strings
	Pointer-based Functions

	Appendix B: Error Messages
	Runtime I/O Error Messages
	Compiler Error Messages - Sorted Alphabetically
	Compiler Error Messages - Sorted Numerically

	Appendix C: ASCII Table
	Appendix D: Bibliography
	Appendix E: Technical Support
	Appendix F: VAX Extensions
	VAX FORTRAN Statement Extensions
	VAX FORTRAN Data Type Extensions
	VAX FORTRAN Intrinsic Function Extensions
	Other VAX FORTRAN Extensions

	Appendix G: Language Systems Fortran Extensions
	STRING
	POINTER
	LEAVE
	GLOBAL
	CGLOBAL
	PGLOBAL
	CEXTERNAL
	PEXTERNAL
	INT1, INT2, and INT4
	JSIZEOF
	%VAL, %REF, and %DESCR
	Language Systems Include Files

	Index

