Fortran 77

Reference Manual

Al
absafit
L [ [ J
development tools and languages
2781 Bond Street
Rochester Hills, MI 48309
U.SA.
Tel: (248) 853-0095
Fax: (248) 853-0108
support@absoft.com



All rights reserved. No part of this publication may be reproduced or used in any form by any means, without the prior
written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF WARRANTIES
WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND SPECIFICALLY DIS-
CLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO REVISE THE PROGRAM MATERIAL AND
MAKE CHANGES THEREIN FROM TIME TO TIME WITHOUT OBLIGATION TO NOTIFY THE PUR-
CHASER OF THE REVISION OR CHANGES. IN NO EVENT SHALL ABSOFT BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
PURCHASER'S USE OF THE PROGRAM MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with RE-
STRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. The
contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. ABSOFT AND ITS
LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS
AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE
LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF ABSOFT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSE-
QUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Absoft and

its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of the form of the action
(whether in contract, tort, (including negligence), product liability or otherwise), will be limited to $50.

Absoft, the Absoft logo, Fx, and MacFortran are trademarks of Absoft Corporation

Apple, the Apple logo, and HyperCard are registered trademarks of Apple Computer, Inc.
CF90 is a trademark of Cray Research, Inc.

IBM, MVS, and RS/6000 are trademarks of IBM Corp.

Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MetroWerks and CodeWarrior are trademarks of Metrowerks, Inc.

MS-DOS is a trademark of Microsoft Corp.

Pentium is a trademark of Intel Corp.

PowerPC is a trademark of IBM Corp., used under license.

Sun and SPARC are trademarks of Sun Microsystems Computer Corp.

UNIX is a trademark of the Santa Cruz Operation, Inc.

VAX and VMS are trademarks of Digital Equipment Corp.

Windows NT, Windows 95, Windows 3.1, and Win32s are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 1991- 2000 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America



FORTRAN 77 Language Reference

Contents
CHAPTER 1 INTRODUCTION ..t 1
INtroducCtion £0 THISIMANUA ..........ueiiiiieie ettt e s e e et e e s et e e s sbaeessssbeessasbes e sessesanaessabeness 1
LA gelo [8TeiATo gl (el AN o1 o) i A o 1 =T N A AR 1
(O70] 0] o 7= o1 12U 1
ConventionS USEd iN thISMANUAL .......ooooueiiieeee et s e e s st e e e e s e snte e e sanes 2
CHAPTER 2 THE FORTRAN 77 PROGRAM ..o 3
(O =T =T = = AR 3
Y 0] oo ol NN =T =TT 4
=TT o £ S 4
=1 1 £ 5
S 210 1 1= 0 L6 5
S NIt o (SR = < 1< 0L £ 6
NONEXECULADIE SEALEIMENES. ... viiieeiitei ittt ctee st e e s e e be s s b e s sbe s sab e s sasessbeessbesssbessabessabessssbessssesenbesans 6
1S = R 00 6
FORTRAN 77 ANSI SEANCAIT .......ooiiiieiic ittt st sre s st e s sbe s sab e s saaessbesssbeesbens eenns 7
FOrtran 90 FrEE SOUMCE FOIMM.......veieieeeii ettt ettt e et e e et e s s eaae e s s sabeessasbesesesseeessabeeesans sesnbenesans 9
VAX FORTRAN TaD-FOMME .....ccveiitiiirie ettt s s st s tes st sste s ssae s saaessbesssbessbesssbessnnessabessnean 10
IBM VS FORTRAN FIEE-FOIMM ....vei ittt ettt s et s vt st sat e s sbae s sbesssbessbessanessabessnesssreeenn s 11
MUILIPIE SLAEEMENT LINES.....c.eeieiieieie sttt e e sttt re e e e e se e testeseesbesneeneeseentesnenrennn 11
Stz 11 101 11RO (0 <! 12
INCLUDE SEALEMENT. ... .ecitiiieiiiteiccteecites e tee et e s sbessee s sabessbesssbessabessabesssbessabessasesssesssbesssbesssses essnresssenssnes 12
Conditional ComMPilation SEEEEMENTS.......c.ciiieiirerie et ereee st e e se et e e e se e e eeesaeseeaeseesresreesennnens 13
(D= 1= T = 1 14
(0001 = | £SO 15
(O T = (< GO0 1S =1 | SRR 15
(oo [[or= I @X0] 01 7T | N TPV PRT PR 16
INEEGEE CONSLANT ... ..ottt ettt b e s st e sbe e be e ee s e e she e sbeeeesaeesaeesneen sneenneeneanreenns 16
AREINALE INTEGEN BESES.....c.vi ittt et ae bbb ae e eae e s 17
(R {S= G0 15 =1 | R 17
(D010 o (SN & (= o1 [0 g W OX0 15 7= | R 18
COMPIEX CONSEAN. ...ttt ettt b e s bbbt bt st et e ae e e e e e b e seeebeseesbesaesaeebe e sbesbesaeeneas 18
COMPIEXH 16 CONSLAN.......c.eeeeieerterte ettt ettt ee bbbt ae et eae e e e e e eese e besbesbesbesaesbenae e sbesneeneas 18
[ [0 1< 1 g O] 1 = | R 19
A ! o L= 19
N 1 = Y PP PP R PRPPPI 19
ATTEY DECIAIGLON ...ttt et b e b e bt b ae st et e e e b e se e b e s besbeeb e s bt ebeeae e sbenbesaesbennas 19
F N = VRS T 0= v 4] o U UPT PR 21
ATTAY INBIMIE..... ettt ettt s h e e et e ee s ae e she e et e ae e eheeebeen st e as e eR e e b e enbeeaeeas saresnnesreennesnnas 22



0] =T = SR SSSS 23
NUMENTC SEOFAGE UNIT ......ecviieeiese ettt b et b e et b e e bt b e b seeneere e 23
CharaCter SEOragE UNIT.......coueeeueieeeiriiieiest ettt e et b et s e bt e e b e 24
SEOMBOE SEOUENCE.......eeveeieririeeieeie ettt sttt r et s e s e s e s e Rt s bR e e b e e bt e b e e e e s e e e na e e e e nn e reneeerenre e 24
SEOrAQE ASSOCTBLION .....veueevieeieetese ettt ettt b et b bbbt e e bbb e e e bt e b e b s he e e st e b e e bennene 24
SEOrAgE DEFINITION. ...t ettt s bbb b e 25

CHAPTER 3 EXPRESSIONS AND ASSIGNMENT STATEMENTS................... 27

ATTENMELIC EXPI ESSIONS ....c.titiiteiteiie ettt ettt se s b bt st h et e e e e se e beseesbeebe s et eb e eaeeneeae e e e seebeseeebesaeene 27
Data Type of ArithmetiC EXPIrESSIONS.......cccciivirieirieirierieesiee ettt b s ebe et nean 28
Arithmetic CONSLANT EXPIESSION ......ccueirtirieiriereeie sttt sttt sttt sttt b ettt sttt ne e b e b 29

Char CLEN EXPIESSIONS ... .ottt sttt sttt b et b e et b e se bt b e st bt s b et et e see st ebe £ ebe e ebesrenenre e 29

REIALTONAl EXPIESSIONS ....cueiviiiiiitirieiert ettt b et b e a bbbt b e e se b et e st be e bt e e b et e be st et s bt 30

oo o= It o] =5\ Mo 1 31

(O] g (o gl = o= o (= 0 o TSP 32

Arithmetic ASSIgNMENT SEALEMENT ......c.iiiiiiie e e 33

Logical ASSIgNMENT SEALEMENT .......oviiriiiiiieire ettt bbb s bt nbne 33

Character ASSIgNMENT SEALEMENT ....ccuecieicecerer e e s resr s aeese e e e e ens e sneerennes 33

ASSIGN SEAEEIMIENT ...ttt ettt b et e b et bbbt b ket se e b e Rt e s ae e bebese b ebeneen 34

Memory ASSINMENT SEALEMENT .....c.oiuiieiriiieirie et ettt bt b s e ene e 34

CHAPTER 4 SPECIFICATION AND DATA STATEMENTS.........ooiiiiieeeeen. 37

LY LS L= 1 1= L TP USRS PP 37
Arithmetic and LogiCal TYPE SEALEMENTS.......ccueiirireeieeeieee e se et e b b snee e 37
CharaCter TYPE SEALEIMENT ..ottt a e bbb b bt e aeeae e e e b e seesee b aeebeseeebeseeene 39

DIMENSION SEAEEMENT ....cveviereeiiisieteeseere et rer et r b nn e srnn e nnen e 40

COMM ON SEAEEIMIENT ...ttt ettt sttt se bt e bt s b esese b eb e e s b eb et se ek e st sesbebe e s e e sbebe e snenas 40

EQUIVALENCE SEALEMENT ....viuiiieteiereieiiisieie ettt st b et s bt s b b e bbbt se et st e bene e 41
o WA= =g Lo N o AN o = Y SSPR 42
EQUIVAIENCE Of SUDSIINGS ...voveieieeciecieseee ettt se e et e e besnesresneeneen seesnesrennennens 42
COMMON and EQUIVALENCE RESIICHONS ......ccccieierierie et sesteseeee e ssee e ste e sre s eseeneeneeneenes 42

EXTERNAL SEAEEIMENT ... .coitiiieeieeeieetieie e e steesteestesee e steesseseesseesseeseeeneesneesseenseensesnsesseense seensesnesssennes 42

IMPLICTT SEBEEMENT ...ttt r b e b e s e e n e e n e 43

INLINE SEAEEMENT.....ceitiiiietetiiesie etttk s et e bk e e e b et s b b et se e bt seebenese b ene e b s 44

INTRINSIC SEAEEMENT ... e s s s er e resreerenne e 44



AN Y I RS IS = 1 (= 1 41 L 45
PARAMETER SEALEMENT ...ttt sttt s st e s s bt e s s s be e s s sabaeesssbaessssbeeessabsessanbeessssbes beeessabeness 46
Special use of the PARAMETER SAEMENL.......c.ooiiiirieeieeeese e e 46
POINTER SEALEIMENT ...ttt tee sttt e e ettt e s s e e e s e be e s s easesssabaeesaabaeesasseessabeeesabeeas seessnsnnessbeness 47
R O O R B IS =1 (< 1= | A 47
TN A S = 1 (= 1.1 | 48
YN U0 g = TR =1 0= 1 1< R 48
STRUCTURE DECIAI GLION ....cciieeieieiee ettt e s et e s s te e s s s te e s s s beessessssssssbesssssbesssassssessseeessessssbenesans 49
(TN T @AV B I=et F=T =1 A o) o TSR 50
A I L = 1 (= 0101 L 51
AV O] I N L S =1 0< 10 1= 0 R 52
[N NS = 1= 1 1= ST 52
Implied DO List IN A DATA SEEEMENL......cciiiiece et see e se sttt se e e e sa e besnesresresne s e s 54
CHAPTER 5 CONTROL STATEMENT S ..o e 55
(IO OIS = (= 1 115 015 55
(@[ glele] g o A Kol gr=! I €O 1 I 55
(001001 o 011= o [ C1@ I 1O LSOO 55

F NS Lo 0= s €T I TSP U PO 55
[ = (< 1 1=, | 56
F AN 1101801 T2 L SRR 56
LOGICEL TF ..ttt bbb bt h bbbt b e btk ek R b bt e nenn s 56

2] (o Tox G I TR 56

L OOP SEALEIMENTS ...ttt sttt ettt be et e e bt e ae e e b e e b e e abeeaeeshe e beeasesaeesheesee e e sreeneenneeneenreenns 57
2= S ol B L@ oo o SO P T STTRRPR 57
DO LOOP EXECULION.......couiiitiiieieie sttt ettt b e s bbbt bbbt nae et e s b 58
Transfer int0 RANQE Of DO LOOP .......curuirieirierieesieseeie sttt sttt sttt sttt st st e s 58

(DL @ VAT 1 1 T TR 59

2] 0 Tox - L TR 59
END DO @GN0 REPEAT ..ottt ettt ettt ettt e s sttt e s et e essbe e s s et et e sasaeessbeessaseeesasseeessbeeesass sanreessanens 60
EXIT N0 LEAVE STAEEIMENES ....eeicvveieeeetiee ettt e seeeeeesteessesessssssseesssssesssasssessasssessassesssasssessasseesssssnsesssanens 60
(@A O I = = (< 11<. 1 SR 61
CONTINUE SEAEEMENT ..eeeviie ettt e s et ee s s ete e e s s et e e e s sseesssbeeessssaeessassesssabesesassbesssassssssases srsnesssstenssans 61
[ IO L O L O N TR 61
Execution of abloCK CASE SLAEMENT........occuviii et s e s e s e sbre e s sba e e s s sbbes eeseaens 62
BIOCK CASE EXAMPIE ...ttt e bbbt b e sae it et e e sbe e 63
IO oS == 11 1= 1 | A 63

PAUSE SEALEMENT ... e e e n e resa e r e e sre s 63



L AN LD IS =10 1= ] S 64
CHAPTER 6 INPUT/OUTPUT AND FORMAT SPECIFICATION......ccocovvveennns 65
(RS o0 0 £ 65
FOrMELTEA RECONT......eeei i ettt ettt e e e e st e s e e et e s e ae e e s st eeesasaeesssaeesaabeeesasseesssaeessnsssabeeesanseeessrees 65
(O La 1T ar= 1= 0 2= 1) (o FRU TR 66
10 LTS R = e 0 (o PR RRR 66
I S ettt ettt et et e et e et e e e —eeeaee e e et eeteteateeeteesteeaeteiaaeeaaeeeateeetesateeaene s et earaeeareeeareerares 66
LT N F T 1 66
LT o1 1o o 66
I ALCCESS. ...ttt ettt e s e e b s e s beesab e s st e s eate s sabe s be s e sbeesabessabessabeesabe e e s e beesabeesabeesaneearee s 66
a1 g = B T [ 68
L] S0 1= 1 oo O SRPS 68
L@ IS o= o) 1T OSSPSR 68
UNIE SPECITIE .ttt b e bbbt bt b h e ae e s e et e e e eeseeebeseeeb e et e s e beseenbesbenaeas 68
FOIMIAE SPECITTEN ...ttt b bt b e h et e e e e bese e besaesbe s e e e s e beseenbeseenneas 69
NBIME ISt SPECITIEN ...ttt ettt b e bbb ae bt e st e aeese e e e e e beseenbesbesaeas 70
RECONT SPECITIEN ... bbbt b et e e se b e ee s e e s b e sae b e et nee b e beseesbesbenaeas 70
o S o= ol = ST PP SR PO PO 70
ENA Of FIlE SPECITIEN ..t e e bt b e e e et seesbesaeene s 70
[0 SEALUS SPECITIEN ...ttt bbbttt b bbb e et e beebesaeebeea e e s e beseesbesbenaeas 71
7L I T = 71
IMPlied DO LiSt INAN /O LISt cuvitiiieiiiieieiesieiste ettt sttt st sttt st saesesseseetesaese s e ssenensesens 71
DATA TRANSFER STATEMENTS ...ttt sttt ettt stes st e s s sbe s sabe s satessneessabassbesssressnnes 72
READ, WRITE AND PRINT oottt aa e e e e 72
F AN OO I N1 0 I 120 = 73
UNFOrMAEtEO Data TrANSIEN .....veeeiiteieieeeeie sttt e sttt e s e ettt e s st essataeeseasseessasaeesaasseessassesesasseessasbeeessesesseeessanees 73
FOrMATEA Dala TIaNSIEY ....eiiicveiee it e ettt ettt e e sttt e s ettt e s e e e e sabeeesasseesasseeesasbeeesaaseeesssseeessabeesaeesanseeessanees 73
L LU o SO U PSP RTPOTTRPSURPIN 73
(@] NS =1 (< 1 41 OO 74
(O IO 1S S = 1 (< 1 1< 1 SRR 77
YA O QS o A 08 S = < 1 11| S 77
REWIND SEAEEMENT .....ooivieieie it ceeee ettt sb s s ee e stte s s taeesbesssbessabessbessasessabessbesesbessbessabesssesss sesanssabesssenssres 78
ENDFILE SEAEEMENT ...ttt et e st e et e st e s ae s s ae e e s aee s aesssaeesabessasessasessasessses s sesanesasessnenssres 78
INQUIRE SEALEIMENT .....eeie ettt sttt e esre e b e s beetesmeesaeesaeeneeeneesmeesaeenaeeseneeensesneenseenes 78
ENCODE and DECODE SEALEMENTS........cciciiieieiiicceeestesesteestesstessssessaesssesssasssssesssbessssesssbessssessssnessanns 81
GivVing @ FORMAT SPECITICALION .....couiiiiieieieriese sttt et b et e e et s e eae s 82
FORMAT and [/O List INEEN ACHION......ueeieiitiie ettt ettt e e tr e s st e e s e aa e s s s aeeessabeeesssaesssanneassassbeness 83

(g oTU LAY A= F= LA Yo o OO RTPTSR ST 84



gL ="o 1= G o 11 g Vo S SS 84
[ =0T 1o [OOSR 84
(O = To [ o[ 1] o PSP 85

F10AtiNg POINT EQITING ....cviiiieiieiee ettt et bbb e bt sb e s e e s e beseenbesbesnea 85
L o ] 1] o OSSPSR 86
= 0T D o [ oo OO STTRRP 86
LT o ] (] oo SO SO RRRP 87
L =0 1 1] o OSSO 87

Character and LOogiCal EQITiNG.........ccuiieiiireiriireiesieesi st s snenes 88
N o 1 1] o PSSP 88
I o 1 o S 88

SigN CONEFOl EQITING ..eeiviiiiiieeee ettt et et sbesee et e seenesbe e 89

2] T @do a1 o) I Lo I 1 oo TSR 89

POSITIONAI EQITING ... ettt et b b e b e s bt eb e et e e et e e nbesbenne 89
D G =0 1 (] oo S OSSP P SRS 89
LI I R o I = = T OSSP 89
IS = LS g o ] (] o OSSPSR 20
Dollar Sign and Backslash EitinNg.........cocceiieiniiire e s 90

(67! [o] 0T =To 11 1] oo [T OSSPSR 20

Apostrophe and HollErith EQITiNg ......coooeiiiiiieicrere e e e 90
PN ol ol o] a1l o ] (] oo TR PP PP PO 91
(o I =To 1 £ o TSSOSO PR 91

L0 38 o 1 {1 o S 91

IS B = e 0= o I =l [ 1] oo PO PRSPPI PRURPRURN 91
LiSt DITECLEH INPUL.....cueeetietireeterteiet sttt st b e bbb e b e e s b e s bt b eneebe b et ebe s b e e eneneenes 92
LiSt DITECLEI OULPUL .......eueetireeiirtereetestee ettt sttt se e bt se et e b b e b e se et b e st e st s b e s e bt s et ebe st e e e neneenes 93

Namelist DireCted EditiNg........ccoiiiiire et et 93
N E= T Tc IS A BT (=i (= o I 1 o] o 93
N E= T TS A BT (= et (= o IO 11 | 95

CHAPTER 7 PROGRAMS, SUBROUTINES, AND FUNCTIONS...........cc....... 97

0T | =T 1 1 TSP 97

SUDT OULINES ...t s e R e R e R Rt e sh e R s e e ren et e er et es 97
SUDIOULTNE ATGUITIENTS. ...ttt ettt ettt et sttt sb et eb e et b e e st b et b e s b et b e s e e st b e e eb e et et et see st ebe e ene b 98

FUNCLIONS. ...ttt b e et E et b e Rt R e s et e R e s e e bt s b e ne e st e R e e en e n et re e 98
(= = o0 S 99
S 1 01 00 B S 99
INEFINSIC FUNCLIONS ... ettt et et sttt aeeneese e e e e e e e st e teseesbenae s eseneeseensennnnrens 100

ENTRY SEBLEMENT......cuiiiiitiiriieie ettt bbbt s b et s b e st e bbb et st e b b st s et et ene st ene s 100

L IO L S = 1< 1 2 1< 1 | 100



Vi

Passing Procedur esin DUMMY AT QUMENTS.......coiiiieieeese e steseeeeeeseeaeseesse e sre e ssesnesne e sseesensensesens 101
Passing Return Addressesin DUMMY A QUMENTS........ooi e see e s ee s 101
COMMON BIOCKS. ...ttt ettt et b et b et b et b e bt e s b et b £ ebeseene b e e b nnene 101
INEFINSIC FUNCLIONS NOLES ..ottt b et bbb s 112
Argument Ranges and ReSUITS RESIFICLIONS.........ccoiiiiiireieeeeee e e e 115
BLIOCK DAT A ettt sttt et e e be et e b e s E e eh e e b e e bt eh e e aeea e em e e e e a b e s e e aR e e besbe s e beseeebeneenrenns 116
GLOBAL DEFINE ...ttt sttt e e sa e e s he e s et et e ean e eae e b e emneenneeneenee 116
INLTNE SEBEEIMENL ......coteiii ittt b ettt et ae et e s ae e sae e beeaeeeaeeebeenbeensees sheesbeenbesasesneens 117
APPENDIX A USING STRUCTURESAND POINTERS.........ccoiiiieeeeeeeen, 119
COMMON USE OF SEEUCTUN Sttt sttt st st b e bt b e st e sb et 119
COMMON USE OF POINLEN ...t en e 120
POINLErS N OPLIMIZELION.........oeiveieeietereeie ettt ettt st b et b e et be e bbb e e s nrns 121
POINTEIS @S ATGUITIENES ...ttt sttt ettt sttt sttt ettt b et b e s b et b se e st b e e e bt e b et eb e e st £enenbe e enennens 122
MiXing POINTEr S AN SEFUCLUNES ...ttt st et b et e et se e e b e e b enas 122
Functions Which RELUIN POINLENS.......couiiiiiiiitiieit ettt e 123
o] 01 0= £ (o J O 1 1 o P 123
POINTEr -DASEA FUNCLIONS.......iiitiitiieterieete ettt b e b b b s bt se e s 124
APPENDIX B ERROR MESSAGES........oi ittt 125
RUNEIME 1/O ErTOr IMESSAQES. .. .cuveeertetereistesteetesteseeseseesessessessessessessessessessessessssssesssssessessessessesasessessenses 125
Compiler Error Messages — Sorted AlphabetiCally ..............eeeiieeee e 128
Compiler Error Messages — Sorted NUMEFCAIY ...........oooiiiiiiiiiiiiii e 9..14
APPENDIX C ASCI TABLE ..ot 153
APPENDIX D BIBLIOGRAPHY ... 157
APPENDIX E TECHNICAL SUPPORT ... 160
APPENDIX F VAX EXTENSIONS ... 163
VAX FORTRAN Statement EXIENSIONS .......ciiiiiiiiiiiie ettt e e e 163..
VAX FORTRAN Data TYpe EXIENSIONS.......cccuuiiiiiiiiiiiiieiieee e e e e s e s s s ssitreeeeeer e e e e e eeeae e e e s e e s s snnsnnnnnes 164..
VAX FORTRAN INtrinSic FUNCLION EXIENSIONS. ......cviiiiiiiiiieeiiiiie et 4..16



Vil

Other VAX FORTRAN EXEENSIONS. .....cciiirieiiiriereiresesesesse e ses s sesse e ssesessssss ens 164
APPENDIX G LANGUAGE SYSTEMS FORTRAN EXTENSIONS................. 167
STRING . ..ottt st st ee e bt e ae e ehe e bt e et eaeeeb e e b e eabeeaeeebeenben £esaeesaeeaeeeanesaeenbeenes 167
O LV Il o S 167
L E AV E R R e R R e et e e eR e e Re e R e s £ Eeenennnenreenreene e 167
GLIOBAL ettt ettt ettt et h et e R e e R e e Rt SR e e eR e e R e e ReeReeeRe e Re e R e eReean sheeeRe e et enneeneenreenns 167
(O] @ = RSP SUSRTRUS 168
I ] 2 L S 168
CEXTERNAL .ttt bbbttt e s e e e e b e sh e e b e e Rt eh e e b e e st eh e e s e s e besee e eeseebeseeerenns 168
PEXTERNAL ettt ettt ettt e e ettt h e e b e et e ae e ehe e e R e e b e e a e e eheesbe e b e e ane s £ emeesneeseeenneannas 168
I N 2 o o I A PSR 168
BN 14 = ST 168
VAL, YoREF, aNd Y0DESCR ..ottt sttt sbe st ns e 168

Language SysteMS INCIUAE FIlES..........ooiiiiee et b e e 169






CHAPTER 1

| ntroduction

INTRODUCTION TO THISMANUAL

This is the common reference manual for the Absoft Fortran 77 implementations on both
Intel and PowerPC CPUs. Operating systems supported on the platforms include:
Windows (95, 98, 2000, and NT), Linux/UNIX, and MacOS. Absoft Fortran 77
compilers in these environments are 100% source compatible and most control options
are identical. Options relevant only to a specific environment are noted as such.

INTRODUCTION TO ABSOFT FORTRAN 77

Absoft Fortran 77 is a complete implementation of the 1978 ANSI version of the
FORTRAN programming language: FORTRAN 77. The microprocessor-based
computers of today are vastly more powerful and sophisticated than their predecessors.
They offer more RAM, faster clock speeds, advanced scheduling and excellent
networking capabilities at very low prices. As a result, they are quickly replacing
mainframes and workstations since they provide better performance at much lower
prices. Thistrend is expected to continue indefinitely.

Absoft Fortran 77 is based on a completely new compiler, designed especially for these
modern CPUs. It is not an evolutionary descendent of older compiler technology. It is a
workstation class compiler offering superior execution speed and complete integration
into modern graphical interface-intensive environments. Absoft Fortran 77 brings a
complete software development tool set with exceptional flexibility and improved ease-
of-use to modern personal computers.

COMPATIBILITY

Absoft Fortran 77 provides excellent compatibility with code developed on mainframes
and workstations. Most popular VAX/VMS statement extensions are accepted, as well as
several from IBM/VS, Cray, Sun, and the new Fortran 90 standard. See the chapter
Porting Code in the ProFortran User Guide for additional compatibility information.

NOTE on Fortran 90: While Fortran 90 is the newest standard, most code in use today is
actually FORTRAN 77. Since 1978, various compiler vendors have endowed FORTRAN
77 with many extensions to the origina standard. Code containing such extensions will
not recompile without modification under ANSI F90, because these extensions are not
included in the ANSI Fortran 90 standard. For many users, FORTRAN 77 is still the best
choice for porting, maintaining, and enhancing legacy FORTRAN code. Absoft F90 is
available for users wishing to move to that dialect. Absoft Fortran 77 and Fortran 90 are

FORTRAN 77 Language Reference Manual



2

I ntroduction

fully link compatible, allowing proven legacy FORTRAN 77 routines to be easly
combined with new Fortran 90 routines into a single application.

CONVENTIONSUSED IN THISMANUAL

There are a few typographic and syntactic conventions used throughout this manual for

clarity.

[1 square brackets indicate that a syntactic item is optional.
..indicates arepetition of a syntactic element.

Term definitions are underlined.

-option font indicates a compiler option.

Italics is used for emphasis and book titles.

On-screen text such as menu titles and button names look the same as

in pictures and on the screen (e.g.Riemenu).

The modifier keys on PC keyboards are Shift, Alt, and Control. They
are always used with other keys and are referenced as in the following:

Shift-G press the Shift and ‘G’ keys together
Alt-F4 press the Alt and F4 function keys together
Control-C press the Control and ‘C' keys together

Unless otherwise indicated, all numbers are in decimal form.

FORTRAN examples appear in the following form:

PROGRAM SAMPLE
VR TE(9, *) "Hello Wrld!"
END

Absoft extensions to FORTRAN 77 are highlighted in gray in this
manual.

FORTRAN 77 Language Reference Manual



CHAPTER 2

The FORTRAN 77 Program

FORTRAN 77 source programs consist of one program unit called the main program and
any number of program units called subprograms. A program or program unit is
constructed as an ordered set of statements that describes procedures for execution and
information to be used by the FORTRAN 77 compiler during the compilation of a source
program. Every program unit is written using the FORTRAN 77 character set and
follows a prescribed statement line format. A program unit may be one of the following:

e Main program

e Subroutine subprogram
* Function subprogram

* Block Data subprogram

This chapter describes the format of FORTRAN programs, and the data objects that may
be manipulated by them.

CHARACTER SET

The compiler's character set consists of the following 82 characters:

» All uppercase letters (A - Z)

e Decimal digits 0 - 9

* The special characters below:

Character  Description Character Description
! quotation mark + plus
_ underscore - minus
! exclamation point * asterisk
\ backslash / slash
< less than = equals
> greater than : decimal point
7 000 mowmn- , comma
blank
( opening parenthesig
) closing parenthesis
$ dollar sign
' anostronh

FORTRAN 77 Language Reference Manual



4 The FORTRAN 77 Program

Any of these characters, as well as the remaining printable ASCII characters, may appear
in character and Hollerith constants (see below).

SYMBOLIC NAMES

A symbolic name is used to identify a FORTRAN 77 entity, such as a variable, array,
program unit, or labeled common block. The first character of a symbolic name must be a
letter. The blank character is not significant in a symbolic name but may be used as a
Separator.

The compiler accepts symbolic names of up to thirty-one upper and lower case letters,
digits, underscores and dollar signs. Upper and lower case letters are distinct unless one
of the compiler case fold options (see the chapter Using the Compilers in the
ProFortran User Guide). Symbolic names of greater than 31 characters are acceptable,
but only the first 31 characters are significant to the compiler.

Globa symbolic names are known to every program unit within an executable program
and therefore must be unique. The names of main programs; subroutine, function, block
data subprograms; and common blocks are global symbolic names.

Local symbolic names are known only within the program unit in which they occur. The
names of variables, arrays, symbolic constants, statement functions, and dummy
procedures are local symbolic names.

KEYWORDS

A keyword is a sequence of characters that has a predefined meaning to the compiler. A
keyword is used to identify a statement or serve as a separator in a statement. Some
typical statement identifiers are READ, FORMAT, and REAL. Two separators are TO and
THEN.

There are no reserved words in FORTRAN 77, therefore a symbolic name may assume
the exact sequence of characters as a keyword. The compiler determines the meaning of a
sequence of characters through the context in which the characters are used. A surprising
example of akeyword/symbolic name exchangeis:

Statement Meaning
DO10l =1, 7 Control statement
DO10 | =1. 7 Assignment statement

Note that the embedded blanks are not significant nor are they required as separators for
the compiler to determine that the first statement is the initial statement of a boloop. The

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 5

absence of a comma in the second statement informs the compiler that an assignment is
to be made to the variable whose symbolic name is DO10I .

In some instances it may be impossible for the compiler to determine from the context the
meaning the programmer intended. For example:

CHARACTER*5 CHAR
CHAR(2: 3) = CHAR(64)// CHAR(2: 3)

Such ambiguous contexts should obviously be avoided.

LABELS

A statement label may appear on a FORTRAN 77 statement initial line. Actual placement
of alabel on the initia line is governed by rules described later in this chapter in the
section Statement Format. A statement label is used for reference in other statements.
The following considerations govern the use of the statement label:

* The label is an unsigned integer in the range of 1 to 99999.
* Leading zeros and blanks are not significant to the compiler.
e A label must be unique within a program unit.

* Alabel is not allowed on a continuation line.

« Labels may appear in any numeric order.

The following examples all yield the same label:

1101
1101
11 01
110 1

The use of labels has no effect on either the ultimate size of the compiled program and/or
its execution speed. However, their inclusion in the source program does increase the
memory required for compilation. Labels are used in FORTRAN 77 as their name
implies: to label statement lines for reference purposes. Excessive unnecessary labels
slow compilation and may even prevent compilation and should therefore be avoided.
Labels that are not referenced in your program have no effect on code generation.

STATEMENTS

Individual statements deal with specific aspects of a procedure described in a program
unit and are classified as either executable or nonexecutable. The proper usage and
construction of the various types of statements is described in the following chapters.

FORTRAN 77 Language Reference Manual



6 The FORTRAN 77 Program

Executable Statements

Executable statements specify actions and cause the FORTRAN 77 compiler to generate
executable program instructions. There are 3 types of executable statements:

* Assignment statements
» Control statements
e Input/Output statements

Nonexecutable Statements

Nonexecutable statements are used as directives to the compiler: start a new program
unit, allocate variable storage, initialize data, set the options, etc. There are 7 types of
nonexecutable statements:

* Specification statements

» Data initialization statements

* FORWAT statements

e Function defining statements

* Subprogram statements

» Main program statements

» Compiler directives

Statement For mat

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 7

A FORTRAN statement consists of one or more source records referred to as a statement

line. Historically, arecord is equivalent to a card. In current source file formats, a record

is one line of text terminated by an end of record character (generally a carriage return,

line feed, or carriage return-line feed pair). Numerous FORTRAN statement formats are
accepted by using the various compiler options shown in the table below. The “fixed”
source formats are actually modern names for the FORTRAN 77 ANSI Standard source
format.

Format Name Compiler Options
FORTRAN 77 (ANSI Standard) no additional
Fortran 90 Fixed Source Form no additional
Fortran 90 Free Source Form -8

VAX FORTRAN Fixed-Format no additional
VAX FORTRAN Fixed-Format (wide) | -w

VAX FORTRAN Tab-Format -V

VAX FORTRAN Tab-Format (wide) -V -W

IBM VS FORTRAN Fixed-Form no additional

IBM VS FORTRAN Free-Form -N112

FORTRAN Source Formats

[Note: The FORTRAN language as described in this manual is the same
regardless of the source format chosen.]

FORTRAN 77 ANSI Standard

A FORTRAN 77 statement line consists of 80 character positions or columns, numbered
1 through 80 which are divided into 4 fields.

The-w compiler option may be used to expand the statement field to column 132.

Field Columns
Statement label 1-5
Continuation 6
Statement 7-72
7-132 (using -WWeompiler option)
Identification 73-80
132+ (using -Weompiler option)

The ldentification field is available for any purpose the programmer may desire and is
ignored by the FORTRAN 77 compiler. Historically this field has been used for sequence
numbers and commentary. The statement line itself may exceed the column of the last
field; the compiler ignores all characters beyond the last field.

FORTRAN 77 Language Reference Manual



8 The FORTRAN 77 Program

There are four types of source linesin FORTRAN 77:
Comment Line — used for source program annotation and formatting. A
comment line may be placed anywhere in the source program and
assumes one of the forms:

* Column 1 contains the character C or an asterisk. The remainder of
the line is ignored by the compiler.

* Column 1 contains an exclamation point. The remainder of the line
is ignored by the compiler.

* The line is completely blank.
* An exclamation point not contained within a character constant
designates all characters including the exclamation point through

the end of the line to be commentary.

« Column 1 contains the character D, d, X, or x and the conditional
compilation-x compiler option is not on.

Comment lines have no effect on the object program and are ignored
by the FORTRAN 77 compiler.

End Line - the last line of a program unit.

» The wordeND must appear within the statement field.

» Each FORTRAN 77 program unit must haveEab line as its last
line to inform the compiler that it is at the physical end of the
program unit.

* An END line may follow any other type of line.

Initial Line — the first and possibly only line of each statement.

* Columns 1 through 5 may contain a statement label to identify the
statement.

¢ Column 6 must contain a zero or a blank.

« Statement field contains all or part of the statement.

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 9

Continuation Line — used when additional characters are required to
complete a statement originating on an initial line.

e Columns 1 through 5 must be blank.
+« Column 6 must contain a character other than zero or blank.
+ Statement field contains the continuation of the statement.
* There may be only 19 continuation lines per statement, for a total
of 20 lines per statement. Absoft FORTRAN 77 actually accepts
an unlimited number of continuation lines.
Fortran 90 Free Source Form
A Fortran 90 free source form statement line consists of 132 character positions. In this
source format, there are no “fields” in which labels, statements, or comments must

appear.

A statement label must appear before the statement on a line; it magnyeolumns:

100 =123
J=456
2001 =123
3 0 0 1 =123
400
| =123

Comments in Fortran 90 format begin with an exclamation point character “I" in any col-
umn not in character context. The letter C in column 1 does not indicate a comment.

| This entire line is a conment
A=1 'A trailing coment
I Blank |ine
C="ab! cd"! The excl amati on point in quotes does not begin a coment

To continue a statement across multiple lines, the ampersand character (&) is used
according to the following rules:

« The “&” as thelast non-blank character on a line signifies the line is
continued on the next line. Comment lines may not be continued. A comment,
beginning with “I", may appear after the “&” when not in character context.

» The "“&” as the first non-blank character on the next line will cause
continuation to begin after the “&”. Otherwise, continuation begins with the
first character. When continuing character context, the nextnuse begin
with a "&" as the first non-blank character.

* The maximum size of a statement is 2640 characters.

FORTRAN 77 Language Reference Manual



10 The FORTRAN 77 Program

The following valid program demonstrates Fortran 90 continuation:

I Fortran 90 exanpl e
character s,&
t,&
&u

s="This string &

&cont ai ns NO &

&anper sand synbol s" ! Conment
t="One anpersand: &

&

1 &
0 0 I=1 !This line has |abel 100

VAX FORTRAN Tab-Format

A VAX FORTRAN tab-format statement line consists of 80 character positions or
columns with fields similar to those in the FORTRAN 77 format. The TAB character is
used to begin the continuation and statement fields rather than having them tied to a
specific column. The tab-format is primarily useful for entering FORTRAN source with
many editors since it is generally easier to hit the TAB key once as opposed to hitting the
space bar multiple times before a statement. A TAB character elsewhere in a FORTRAN
statement is treated as spaces. Tab-format may be freely mixed with fixed format source.

A statement label must appear anywhere on aline before the first TAB character:

1(AB) WRITE(*,*) "This line has |abel 1"
(taB) WRI TE(*,*) "No | abel on this |ine"
1 2 3@aB) WRITE(*,*) "This line has |abel 123"

Comments in VAX FORTRAN tab-format begin with a C or asterisk in column 1 or an
exclamation point character “!” in any column not in character context. Having a D or X
in column 1 will also comment an entire line unless -theompiler option is on for
conditional compilation:

I Full-line coment
(taB) 1=123 ! Statenent begins after TAB
D J=456 ! Conpiled only with x option

To continue a statement across multiple lines, the continuation line must have a non-zero
digit after the first tab. Note that the initial line can not start with a digit — no FORTRAN
statement begins with a digit:

(tAB) WRI TE(*,*) "This |ine spans

(taB) 1rmul tiple |ines because

(taB) 2 of the non-zero continuation digit after first
(taB) 3 tab character on each |ine"

The-w compiler option will expand the statement field to column 132.

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 11

IBM VSFORTRAN Free-Form

An IBM VS FORTRAN free-form statement line consists of 80 character positions or
columns. Although labels and statements may appear in any columns, comments must
begin in column 1. All characters not in character context are folded to lower case as if
the -f compiler option ison.

A statement label must appear before the statement on aline; it may be in any columns:

100 1=123
J=456
2001 =123
3 0 0 | =123
400
| =123

Commentsin IBM VS FORTRAN free-form begin with a quotation mark (') in column
1. Theletter C in column 1 does not indicate a comment and blank lines are not permitted
in this source format. The following example has one comment line:

"This line is a comrent
A=1
C="abcdef "

To continue a statement across multiple lines, the minus sign character (-) must appear as
the last character of a continued line. If the last two characters of aline are minus signs,
the last one is treated as a continuation character while the other is treated as a minus
sign. A comment may not be continued. There is a limit of 19 continued lines (20 lines
total), however, the total number of characters permitted for a single statement is only
1320. Absoft FORTRAN 77 actually accepts an unlimited number of continuation lines.
The following is an example of IBM VS FORTRAN free-form continuation:

"Thi s conment cannot be conti nued
VWRI TE(*, *) " -

This string contains -

no m nus signs”

WRI TE(*,*) "This string contains --
one minus sign"

Multiple Statement Lines

Multiple statements may be placed on the same line by separating them with a semicolon

)

1=10; J=10; N(I,J)=0

FORTRAN 77 Language Reference Manual



12 The FORTRAN 77 Program

Statement Order

PROGRAM FUNCTI ON' SUBROUTI NE
| MPLI CI T NONE stgtement
| MPLI CI T statement
| NCLUDE
PARAVETER
Statements | NAVELI ST, Other 5
and ENTRY Specification | 2EMeNtS
Comment and Statements
Lines FORNMVAT
DATA Statement Function
Statements
Statements Statements
Executable
Statements
END Statement

Required Statement Order

INCLUDE Statement

This statement is a compiler directive and is provided as a convenience for copying stan-
dard declaration statements, subroutine libraries, and documentation sections directly into
asource file at compile time. The syntax of this statement is:

| NCLUDE fi | espec

where: filespec isastandard file specification presented as a character constant
(i.e. enclosed in quotation marks or apostrophes).

I NCLUDE statements may be nested up to 10 files deep.

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 13

The -1 compiler option, described in the chapter Using the Compilers in the ProFortran
User Guide, is useful for specifying directories and search paths for include files which
may reside in directories other than the current one.

Conditional Compilation Statements

In addition to the previously described limited capability for conditional compilation
available by placing a D or an X in column one, a complete set of compiler directivesis
also provided which gives dynamic control over the compilation process. These compiler
directives are specified with adollar sign ($) in column 1 and take the following forms:

$DEFI NE nane [ =val ue]
$SUNDEFI NE nane

$PACKON
$PACKOFF

$I F expr
$ELSE
SELSEI F expr
$ENDI F

$PACKON is used to turn storage compression on for STRUCTURE and UNI ON definitions.
$PACKOFF is used to turn off storage compression. The default for Absoft Fortran 77
depends on the host machine architecture and operating system and is described in the
Fortran User Guide.

nane is the symbolic name of a variable that is used only in conditional compilation
directives. It can have the same name as any variable used in standard FORTRAN
statements without conflict. Conditional compilation variables exist from the point they
are defined until the end of the file unless they are undefined with the $UNDEFI NE
directive. val ue is an integer constant expression that is used to give the variable avalue.
If val ue is not present, the variable is given the value of 1.

expr IS any expression using constants and conditional compilation variables which
results in a logical value. These compiler directives operate in a similar manner to the
block 1 F constructs of FORTRAN 77 (described in the Control Statements chapter).
Also provided is the logical function DEFI NED which is used to determine if a variable
has actually been defined. Consider the following:

$| F DEFI NED( debug)
WRITE (**) “iter=",iter
$ENDIF

In this case, you are interested in displaying the value of the variable iter only during
the debugging stages of program development. To turn this feature on, al that is required
isto define debug before the conditional compilation clause in the source file:

FORTRAN 77 Language Reference Manual



14 The FORTRAN 77 Program

$DEFI NE debug

A more complicated example:
$DEFI NE preci si on=8

$IF precision .eq. 4
REAL a, b, c, d(100), pi
pi = atan(1.0)*4.0
$ELSElI F precision .eq. 8
DOUBLE PRECI SI ON a, b, ¢, d(100), pi
pi = datan(1dO0)*4d0
$ENDI F
$ENDI F

Note the first $ENDI F which is required to terminate the $ELSEI F clause.

Conditional compilation variables that are not defined can only be referenced as
arguments to the DEFI NED function. Any other use will result in acompile error.

Conditional compilation statements are particularly useful for managing large groups of
include files with nested dependencies. Suppose you are using an include file named
"graphics.inc” that declares certain structures which are dependent on another include file
named "types.inc”. If you add the statement $DEFI NE TYPES at the end of the "types.inc”
include file and add the following three statements to the beginning of the "graphics.inc"
includefile:

$I F . not. DEFI NED( TYPES)
| NCLUDE "types.inc"
$ENDI F

your source program file only needs to include "graphics.inc" to compile successfully.
This strategy works best when used in a GLOBAL DEFI NE subprogram (described in the
Programs, Subroutines, and Functions chapter), because although the conditiona
compilation variables will have a scope of the entire file, the declarations made in the
include file will have a scope of only the current program unit.

DATAITEMS

The symbolic name used to represent a constant, variable, array, substring, statement
function, or external function identifies its data type, and once established, it does not
change within a particular program unit. The data type of an array element name is
always the same as the type associated with the array.

Special FORTRAN statements, called type statements, may be used to specify a data type
as character, logical, integer, real, double precision, or complex. When a type statement
Is not used to explicitly establish a type, the first letter of the name is used to determine
thetype. If thefirst letter is |, J, K, L, M, N, i, ], k, I, m, or n, the type isinteger; any other
letter yields an implied type of rea. The | MPLI CI T statement, described later, may be
used to change the default implied types.

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 15

The I MPLI O T NONE statement, also described later, causes the compiler to require the
declaration of all variables.

An intrinsic function, LOG, EXP, SQRT, | NT, etc., may be used with either a specific name
or generic name. The data types of the specific intrinsic function names are given in the
the Programs, Subroutines, and Functions chapter. A generic function assumes the
data type of its arguments as discussed in that chapter.

A main program, subroutine, common block, and block data subprogram are all identified
with symbolic names, but have no data type.

Constants

FORTRAN 77 constants are identified explicitly by stating their actual value; they do not
change in value during program execution. The plus (+) character is not required for
positive constants. The value of zero is neither positive nor negative; azero withasignis
just zero.

The data type of a constant is determined by the specific sequence of characters used to
form the constant. A constant may be given a symbolic name with the PARAMETER
Statement.

Except within character and Hollerith constants, blanks are not significant and may be
used to increase legibility. For example, the following forms are equivalent:

3. 14159265358979 3. 1415 92653 58979
2.71828182845904 2.7182 81828 45904

Character Constant

isastring of ASCII characters delimited by either apostrophes (' )
. The character used to delimit the string may be part of the string
|tself by representing |t with two successive delimiting characters. The number of charac-
ters in the string determines the length of the character constant. A character constant
requires a character storage unit (one byte) for each character in the string.

" TEST

" EVERY GOOD BOY’
"Luck is everything
"didn' 't

FORTRAN 77 has no facility for specifying or representing a character constant
consisting of the null string. However, to facilitate linking with the C language, the
compiler will interpret the character constant *° or "" as a single zero byte. A null
terminated C style string can then be created by concatenating the character constant * ’

or"" ontotheend of aFORTRAN string.

FORTRAN 77 Language Reference Manual



16 The FORTRAN 77 Program

As an extension to FORTRAN 77, special escape sequences may be embedded in a
character constant by using the backslash (\ ) followed immediately by one of the letters
in the following list. The actual character value generated in place of the escape sequence
is system dependent. For compatibility with FORTRAN programs which do not expect
the backslash as an escape sequence, these escape sequences are not recognized by the
compiler unless the -K option is used.

Escape Sequence Meaning

\'n Newline

\ 't Tab

\r Carriage return
\ f Form feed

\ b Backspace

\\ Backslash

\ nnn  Sets character position with value nnn, where nnn are octal digits.
For example,
WRI TE(*,*) "First line\nSecond |ine"
When compiled without the -K option, it displays,
First line\nSecond |ine
When compiled with the -K option, it displays,

First |ine
Second |i ne

Logical Constant

Logical constants are formed with the strings of characters, . TRUE. and . FALSE. , repre-
senting the Boolean values true and false respectively. A false value is represented with
the value zero, and a true value is represented with the value one. A default logical
constant requires one numeric storage unit (four bytes).

Integer Constant

An integer constant is an exact binary representation of an integer value in the range of
-2147483648 to +2147483647 with negative integers maintained in two's complement
form. An integer constant is a string of decimal digits that may contain aleading sign. An
integer constant requires one numeric storage unit (four bytes).

15
101
-72
1126
123 456 789

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 17

Alternate I nteger Bases

The compiler normally expects al numeric constants to be in base ten, however, three
aternate unsigned integer bases are available when explicitly specified. These optional
bases are binary, octal, and hexadecimal and are designated by preceding the constant
with the characters B, O, and Z respectively and delimiting the constant itself with
apostrophes. The following examples all result in the assignment of the decimal value
3994575:

I
J
K

B’1111001111001111001111°
O 17171717
Z’ 3CF3CF

As with all numeric constants, spaces may be used freely to enhance legibility. The
following examples produce identical assignment statements:

I
J
K

B’ 0011 1100 1111 0011 1100 1111
O 017 171 717
Z 3C F3 CF

The VAX FORTRAN form of hexadecimal and octal constants may also be used:

J
K

'017171717' O
" 3CF3CF’ X

Real Constant

A real constant consists of an optional sign and a string of digits which contains a
decimal point. The decimal point separates the integer part of the constant from the
fractional part and may be placed before or after the string indicating that either the
integer or fractional part is zero. A real constant may have an exponent that specifies a
power of ten applied to the constant. An exponent is appended to areal constant with the
letter E and an integer constant in the range of a -37 to +39. If an exponent is given and
the fractional part is zero, the decimal point may be omitted. A real constant requires one
numeric storage unit (four bytes).

Constant Vaue
1E2 = 100.0
-12.76 = -12.76
1. 07E-1 = .107
0. 4237E3 = 423.7

Real values are maintained in IEEE single precision floating point representation. The
most significant bit is interpreted as the sign, the next eight bits provide a binary
exponent biased by 127, and the remaining twenty-three bits form the binary mantissa
with a twenty-fourth bit implied. This representation supplies seven digits of precision
and a range of £0.340282839 to £0.117549&-37.

FORTRAN 77 Language Reference Manual



18 The FORTRAN 77 Program

Double Precision Constant

A double precision constant is formed in the same manner as areal constant except that
the exponent is designated with the letter D and must always be given, even if itsvalueis
zero. The exponent range of a double precision constant is -307 to +309. A double
precision constant requires two numeric storage units (eight bytes).

Constant Vaue
1D2 = 100.0
-12. 76D0 = -12.76
1.07D- 1 = .107
0. 4237D3 = 423.7

Double precison values are maintained in IEEE double precison floating point
representation. The most significant bit is interpreted as the sign, the next eleven bits
provide a binary exponent biased by 1023, and the remaining fifty-two bits form the
binary mantissa with a fifty-third bit implied. This representation yields sixteen digits of
precision and a range of £0.179769313486 28309 to +0.22250738585072D307.

Complex Constant

A complex constant is stated using a left parenthesis, a pair of real or integer constants
separated by a comma, and a right parenthesis. The first constant is the real portion (in
the mathematical sense) and the second is the imaginary portion. A complex constant
requires two numeric storage units (eight bytes).

Constant Value
(2.76,-3.81) = 2.76 -3.81j
(-12, 15) = -12.0 +15. 0/

(0.62E2,-0. 22E-1) 62.0 -.022/

Complex*16 Constant
A double complex constant is stated in the same format as a single precision complex
constant, except that double precision constants must be used for the real and imaginary

portions. A double complex constant requires four numeric storage units (sixteen bytes).

Constant Value

(0.62D2, -0.22D-1) = 62.0 -.022/

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 19

Hollerith Constant

The Hollerith data type is an older method of representing characters in FORTRAN.
While it is not included in the current standard, this implementation of FORTRAN
includes the Hollerith data type to provide compatibility for older programs. Like
character constants, a Hollerith constant is formed with a string of any of the characters
from the ASCII character set. Logical, integer, real, double precision, and complex
variables can be defined with a Hollerith value through DATA statements and READ
Statements.

A Hollerith constant is stated with a nonzero, unsigned integer constant, the letter H, and
astring of characters whose length must be the same as the integer constant.

AHTEST
14HEVERY GOOD BOY

When a Hollerith constant is assigned to a variable it is | eft justified and space padded if
the length of the constant is less than the length of the variable.

If a Hollerith constant appears anywhere in the source code except within a DATA state-
ment, a FORMAT statement, or a CALL statement, an error will result. Embedded escape
sequences (i.e. \ n) are not permitted in a Hollerith constant.

Variables

A variable is used to maintain a FORTRAN 77 quantity and is associated with a single
storage location through a symbolic name. Simple variables are often called scalar
variables to distinguish them from arrays and array elements (see below). Unlike a
constant, the value of a variable can be changed during the execution of a program with
assignment statements and input and output statements.

Arrays

An array is a sequence of data elements all of the same type and referenced by one
symbolic name. When an array name is used alone it refers to the entire sequence starting
with the first element. When an array name is qualified by a subscript it refers to an
individual element of the sequence.

Array Declarator

An array declarator is used to assign a symbolic name to an array, define its data type
(either implicitly or explicitly), and declare its dimension information:

a(d[,d...)

where a is the symbolic name that will be used to reference the array and the elements of
the array, and d is called a dimension declarator. An array declarator must contain at

FORTRAN 77 Language Reference Manual



20 The FORTRAN 77 Program

least one and no more than seven dimension declarators. A dimension declarator is given
with either one or two arguments:

[d1:] d2

where d1 and d2 are caled the lower and upper dimension bounds respectively. The
lower and upper dimension bounds must be expressions containing only constants or
integer variables. Integer variables are used only to define adjustable arrays (described
below) in subroutine and function subprograms. If the lower dimension bound is not
specified, it has a default value of one.

An array declarator specifies the size and shape of an array which consists of the number
of dimensions, the upper and lower bounds of each dimension, and the number of array
elements. The number of dimensions is determined by the number of dimension
declarators. Dimension bounds specify the size or extent of an individual dimension.
While the value of a dimension bound may be positive, negative, or even zero, the value
of the lower dimension bound must always be less than than or equal to the value of the
upper dimension bound. The extent of each dimension is defined as d2- d1+1. The
number of elementsin an array is equal to the product of all of its dimension extents.

Array declarators are called constant, adjustable, or assumed size depending on the form
of the dimension bounds. A constant array declarator must have integer constant
expressions for all dimension bounds. An adjustable array declarator contains one or
more integer variables in the expressions used for its bounds. An array declarator in
which the upper bound of the last dimension is an asterisk (*) is an assumed size array
declarator. Adjustable and assumed size array declarators may appear only in subroutine
and function subprograms.

All array declarators are permitted in DI MENSI ON and type statements, however only con-
stant array declarators are allowed in COMMON or SAVE statements. Adjustable and
assumed size array declarators do not supply sufficient information to map the static
memory at compile time.

An array can be either an actual array or a dummy array. An actual array uses constant
array declarators and has storage established for it in the program unit in which it is
declared. A dummy array may use constant, adjustable, or assumed size array declarators
and declares an array that is associated through a subroutine or function subprogram
dummy argument list with an actual array.

The number of dimensions and the dimension extents of arrays associated with one
another either through common blocks, equivalences, or dummy argument lists need not
match.

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 21

Array Subscript

The individual elements of an array are referenced by qualifying the array name with a
subscript:

a(s[,s]...)

where each s in the subscript is called a subscript expression and a is the symbolic name
of the array.

The subscript expressions are numeric expressions whose values fall between the lower
and upper bounds of the corresponding dimension. If the value of the expression is not an
integer, the compiler supplies the appropriate conversion. There must be a subscript
expression for each declared dimension.

Some FORTRAN constructs accept array names unqualified by a subscript. This means
that every element in the array is selected. The elements are processed in column major
order. The first element is specified with subscript expressions all equal to their lower
dimension bounds. The next element will have the leftmost subscript expression
increased by one. After an array subscript expression has been increased through its
entire extent it is returned to the lower bound and the next subscript expression to the
right isincreased by one.

Subscript expressions may contain array element and function references. The evaluation
of a subscript expression must not affect the value of any other expression in the
subscript. This means that functions should not have side effects altering the values of the
other subscript expressions.

Note the following example where A is a two dimensional array and F is an externa
function.

Y = A(X F(X))

The function F(X) will be evaluated before the value of X is fetched from memory.
Therefore, if F(X) altersthe value of X, the atered value will be used as the first subscript
expression.

The order of an array element within the column major storage sequence of the array in
memory is called the subscript value. Thisis calculated according to the following table:

FORTRAN 77 Language Reference Manual



22 The FORTRAN 77 Program

Number
of Dimension Subscript
Dimensions Declarator Subscript Vaue
1 (71 k1) (s1) 1+(s1-] 1)
2 (j1:k1,j2:k2) (s1,s2) 1+(s1-j1)+(s2-j2)*d1
3 (j1:k1,j2:k2,j3:k3) (s1,s2,s3) 1+(s1-j 1) +(s2-j 2) *d1
n (j1:k1,...,jn:kn) (si,...,sn)  1+(s1-j1)+(s2-j2)*d1

+(s3-j3)*d2*d1+...
+(sn-jn)*dn-1*dn-2
*..xdl

where: di = ki-ji+1

Subscript Value

Note that subscript values always range from 1 to the size of the array:

DIMENSION X(-4:4),Y(5,5)

X(3) =Y(2,4)

For the array element name X(3) , the subscript is (3), the subscript expression is 3 with a
value of three, and the subscript value is eight. For the array element name Y(2,4) , the
subscript is (2,4) , the subscript expressions are 2 and 4 with values two and four,
respectively, and the subscript value is seventeen. The effect of the assignment statement
isto replace the eighth element of X with the seventeenth element of v.

Array Name

When an array name is used unqualified by a subscript, it implies that every element in
the array isto be selected as described above. Array names may be used in this manner in
comMmonstatements for data alignment and sharing purposes, in actual and dummy
argument lists to pass entire arrays to other procedures, in EQUIVALENCE statements
where it implies the first element of the array, and in DATA statements for giving every
element an initial value. Array names may also be used in the input and output statements
to specify internal files, format specifications and elements of input and output lists.

Substrings

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 23

A substring is a contiguous segment of a character entity and is itself a character data
type. It can be used as the destination of an assignment statement or as an operand in an
expression. Either a character variable or character array element can be qualified with a
substring name:

v( [el] : [eZ] )
a(s[,s]...)( [e1] : [e2] )

where: el and e2 are called substring expressions and must have integer
values.

v is the symbolic name of a character variable, and a(s
[, s]...) isthe name of acharacter array element.

The values e1 and e2 specify the leftmost and rightmost positions of the substring. The
substring consists of all of the characters between these two positions, inclusive. For
example, if Ais a character variable with a value of 'ABCDEF’, then A( 3: 5) would have a
value of 'CDE.

The value of the substring expression e1 must be greater than or equal to one, and if
omitted implies a value of one. The value of the substring expression e2 must be greater
than or equal to e1 and less than or equal to the length of the character entity, and if
omitted implies the length of the character entity.

As with arrays, substring expressions may contain array or function references. The
evaluation of a function within a substring expression must not alter the value of other
entities also occurring within the substring expression. If a substring expression is not
integer, automatic conversion to integer is supplied by the compiler.

STORAGE

Storage refers to the physical computer memory where variables and arrays are stored.
Variables and arrays can be made to share the same storage locations through
equivalences, common block declarations, and subprogram argument lists. Data items
which share storage in this manner are said to be associated.

The contents of variables and arrays are either defined or undefined. All variables and
arrays not initially defined through DATA statements are undefined.

A storage unit refers to the amount of storage needed to record a particular class of data.
A storage unit can be a numeric storage unit or a character storage unit.

Numeric Storage Unit

FORTRAN 77 Language Reference Manual



24 The FORTRAN 77 Program

A numeric storage unit can be used to hold or store an integer, real, or logical datum. One
numeric storage unit consists of four bytes. The amount of storage for numeric datais as
follows:

Data Type Storage
Integer 1 storage unit
Redl 1 storage unit
Double precision 2 storage units
Complex 2 storage units

L ogl

storage unit

Character Storage Unit

A character datum is a string of characters. The string may consist of any sequence of
ASCII characters. The length of a character datum is the number of characters in the
string. A character storage unit differs from numeric storage units in that one character
storage unit is equal to one byte and holds or stores one character.

Storage Sequence

The storage sequence refers to the sequence of storage units, whether they are held in
memory or stored on external media such asadisk or atape.

Storage Association

The storage locations of variables and arrays become associated in the following ways:

 The EQU VALENCE statement (described in th®pecification and
DATA Statements chapter) causes the storage units of the variables
and array elements listed within the enclosing parentheses to be
shared. Note that the data types of the associated entities need not be
the same.

 The variable and array names appearing in abevoN statements
(described in theSpecification and DATA Statements chapter) of
two different program units are associated.

e The dummy arguments of subroutine and function subprograms are
associated with the actual arguments in the referencing program unit.

* An ENTRY statement (described in tiograms, Subroutines, and
Functions chapter) in a function subprogram causes its corresponding
name to be associated with the name appearing inFUNeTI ON
statement.

FORTRAN 77 Language Reference Manual



The FORTRAN 77 Program 25

Storage Definition

Storage becomes defined through DATA statements, assignment statements, and 1/0 state-
ments. READ statements cause the items in their associated 1/O lists to become defined.
Any 1/O statement can cause items in its parameter list to become defined (the | OSTAT
variable for instance). A DO variable becomes defined as part of the loop initialization
Process.

The fact that storage can become undefined at all should be carefully noted. Some events
that cause storage to become undefined are obvious. starting execution of a program that
does not initially define all of its variables (through DATA statements), attempting to read
past the end of a file, and executing an | NQUI RE statement on a file that does not exist.
When two variables of different types are either partially or totally associated, defining
one causes the other to become undefined.

Because FORTRAN 77 provides for both dynamic as well as static storage allocation,
certain events can cause dynamically alocated storage to become undefined. In
particular, returning from subroutine and function subprograms causes all of their
variables to become undefined except for those:

* in blankcowon.

* specified inSAVE statements.

The-s compiler option has the effect of an implis&vE for every program unit encoun-
tered during the current compilation (see the chapteng the Compilers in the
ProFortran User Guide).

FORTRAN 77 Language Reference Manual






27

CHAPTER 3

Expressions and Assignment Statements

Being primarily a computational language, a large number of FORTRAN statements
employ expressions. The evaluation of an expression results in a single value which may
be used to define a variable, take part in alogical decision, be written to afile, etc. The
simplest form of an expression is a scalar value: a constant or single variable. More
complicated expressions can be formed by specifying operations to be performed on one
or more operands.

There are four types of expressions available in FORTRAN 77: arithmetic, character,
relational, and logical. This chapter describes the rules for the formation and evaluation
of these expressions.

Assignment statements, together with expressions, are the fundamental working tools of
FORTRAN. Assignment statements are used to establish a value for variables and array
elements. Assignment statements assign avalue to a storage location.

ARITHMETIC EXPRESSIONS

An arithmetic expression produces a numeric result and is formed with integer, real,
double precision, and complex operands and arithmetic operators. An arithmetic operand
may be one of the following:

an arithmetic scalar value

an arithmetic array element

an arithmetic expression enclosed in parentheses

the result of an arithmetic function

The arithmetic operators are:

Operator Purpose

i exponentiation

* multiplication

/ division

+ addition or identity

- subtraction or negation

The operators **, *, and / operate only on pairs of operands, while + and - may operate
on either pairs of operands or on single operands. Pairs of operators in succession are not

FORTRAN 77 Language Reference Manual



28 Expressions and Assignment Statements

allowed: A+-B must be stated as A+(-B). In addition, there is precedence among the
arithmetic operators which establishes the order of evaluation:

Operator Precedence
*x highest
*and/ intermediate
+ and - |owest

Except for the exponentiation operator, when two or more operators of equal precedence
occur consecutively within an arithmetic expression they may be evaluated in any order
if the result of the expression is mathematically equivalent to the stated form. However,
exponentiation is always evaluated from right to left:

Expression Evaluation

A+B-C (A+B)-C or A+(B-C)
A**B**C A**(B**C)

A+B/C A+(B/C)

However, the result of an arithmetic expression involving integer operands and the
division operator is the quotient; the remainder is discarded: 10/3 produces an integer
result of 3. Consequently, expressions such as I* JK may have different values depending
on the order of evaluation:

(4*5)/2 =10, but 4*(5/2) = 8

Data Type of Arithmetic Expressions

When all of the operands of an arithmetic expression are of the same data type, the data
type of the result is the same as that of the operands. When expressions involving
operands of different types are evaluated, automatic conversions between types occur.
These conversions are always performed in the direction of the highest ordered data type
presented and the data type of the result is that of the highest ordered operand
encountered. | NTEGER is the lowest ordered data type and COVPLEX is the highest.

An exception to this order occurs for operations between COVPLEX values and DOUBLE
PRECI SI ON. In thisinstance, results are returned as COVPLEX* 16.

Data Type Conversion Order

| NTEGER
REAL
DOUBLE PRECI SI ON

Consider the expression |/R<D+C, where | is INTEGER, R iS REAL, D iS DOUBLE
PRECI SI ON, and C is COVPLEX. The evaluation proceeds as follows:

FORTRAN 77 Language Reference Manual



Expressions and Assignment Statements 29

» the value of is converted t&®EAL and then divided by the value »f

» the result of the division is implicitly convertedOUBLE PRECI SI ON
and multiplied by the value af

» the result of the multiplication is then added to the real portion of the
of the valuec giving DOUBLE PRECI SI ON

» the imaginary portion of the valugis implicitly converted t@™OUBLE
PRECI SI ON in the final result

Parentheses are used to force a specific order of evaluation that the compiler may not
override.

When exponentiation oREAL, DOUBLE PREC!I SI ON, and COVMPLEX operands involves
integer powers, the integer power is not converted to the data type of the other operand.
Exponentiation by an integer power is a special operation which allows expressions such
as-2.1**3 to be evaluated correctly.

Conversion from a lower to a higher precision does not increase the accuracy of the
converted value. For example, converting the result of the real exprassgm to
DOUBLE PRECI SI ONyields:

0. 333333343267441D+00

not:
0. 333333300000000D+00 or 0.333333333333333D+00

Arithmetic Constant Expression

Arithmetic expressions in which all of the operands are constants or the symbolic names
of constants are called arithmetic constant expressiONSEGER, REAL, DOUBLE

PRECI SI ON, and COVPLEX constant expressions may be usedARAVETER statements.

Integer constant expressions may also be used in specification and declaration statements
(see theSpecifications and DATA Statements chapter).

CHARACTER EXPRESSIONS

FORTRAN 77 Language Reference Manual



30 Expressions and Assignment Statements

A CHARACTER expression produces a character result and is formed using character
operands and character operators. A CHARACTER operand may be one of the following:

* ACHARACTER scalar value

* aCHARACTER array element

* A CHARACTER substring

* ACHARACTER expression enclosed in parentheses
» the result of &HARACTER function

The only CHARACTER operator i/, meaning concatenation. Although parentheses are
allowed in character expressions, they do not alter the value of the result. The following
character expressions all produce the vVaileRACTER:

"CHA'/ /' RAC //’ TER
("CHA' //’ RAC )/ /' TER
"CHA'// (" RAC /1’ TER')

RELATIONAL EXPRESSIONS

A relational expression produces a logical resutR(E. or . FALSE.) and is formed
using arithmetic expressions GHARACTER expressions and relational operators. The
relational operators perform comparisons; they are:

Operator Comparison
or LT. less than

or LE. less than or equal to

or EQ equal to

or NE. not equal to

or GT. greater than

or GE. greater than or equal to

Only the. EQ and. NE. relational operators can be applied to complex operands.

All of the relational operators have the same precedence which is lower than the
arithmetic operators and the character operator.

If the data types of two arithmetic operands are different, the operand with the lowest
order is converted to the type of the other operand before the relational comparison is
performed. The same type coersion rules apply to relational operators as arithmetic
operators when comparisons are made, but results are always returoedcas.

Character comparison proceeds on a character by character basis using the ASCII
collating sequence to establish comparison relationships. Since the letter ‘A" precedes the

FORTRAN 77 Language Reference Manual



Expressions and Assignment Statements 31

letter ‘B’ in the ASCII code, ‘A’ islessthan 'B’. Also, all of the upper case characters have
lower "values' than the lower case characters. A complete chart of the ASCII character
set is provided in the appendices.

When the length of one of the CHARACTER operands used in a relational expression is
shorter than the other operand, the comparison proceeds as though the shorter operand
were extended with blank charactersto the length of the longer operand.

When an integer value is compared with a CHARACTER constant, one to four bytes of the
character string are extracted as an integer and a comparison is made between the two
integer values. This is useful if the integer has been defined with a Hollerith data type.

This type of comparison is only defined for character constants with a length less than or
equal to four.

LOGICAL EXPRESSIONS

A LOG CAL expression is formed with LOG CAL or | NTEGER operands and logical
operators. A LOG CAL operand may be one of the following:

* aLOd CAL orl NTEGER scalar value
* alLOd CAL orl NTEGER array element
* alLOd CAL or| NTEGER expression enclosed in parentheses
» arelational expression
* the result of 0@ CAL or | NTEGER function
A LOG CAL expression involvingOa CAL operands and relational expressions produces a

LOG CAL result (TRUE. or .FALSE. ). When applied ta.0d cAL operands the logical
operators, their meanings, and order of precedence are:

Operator Purpose Precedence
. NOT. negation highest

. AND. conjunction

. R inclusive disjunction

. EQV. equivalence lowest

nonequivalence same aBQv

FORTRAN 77 Language Reference Manual



32 Expressions and Assignment Statements

A LOG CAL expression involving | NTEGER operands produces an | NTEGER result. The
operation is performed on a bit-wise basis. When applied to integer operands the logical
operators have the following meanings:

Operator Purpose

. NOT. one’'s complement

. AND. Boolean and

. R Boolean or

. EQV. integer compare

. NEQV. Boolean exclusive or

The integer intrinsic function SHI FT is available to perform left and right logical shifts
(see the chapter Programs, Subroutines, and Functions).

Note that expressionsinvolving | NTEGER and LOG CAL operands are ambiguous.

Consider the following example:

LOG CAL |, m
| NTEGER i

i 2

I . TRUE.

IF (I .AND. i) WRITE(*,*) "first if clause executed"
m= i

IF (I .AND. n) WRITE(*,*) "second if clause executed"
END

Since the LOG CAL constant . TRUE. has a value of one when converted to | NTEGER, the
first | F clause would not normally be executed since a Boolean . AND. between the values
one and two produces a zero which is logically false. For this reason, integers are
converted to LOG CAL when the . AND. operator is used with a LOG CAL. The second | F
clause will execute since the conversion of a non-zero | NTEGER to LOG CAL (in the
assignment statement m = i ) givesthe value . TRUE. (stored as the value one). Note that
the above code is not guaranteed to be portable to other FORTRAN environments.

OPERATOR PRECEDENCE

As described above, a precedence exists among the operators used with the various types
of expressions. Because more than one type of operator may be used in an expression, a
precedence also exists among the operators taken as a whole: arithmetic is the highest,
followed by character, then relational, and finally logical which is the lowest.

A+B .GI. C.AND. DE .LE. F
is evaluated as;

((A+B) .GT. O .AND. ((D-E) .LE. F)

FORTRAN 77 Language Reference Manual



Expressions and Assignment Statements 33

ARITHMETIC ASSIGNMENT STATEMENT

Arithmetic assignment statements are used to store a value in arithmetic variables.
Arithmetic assignment statements take the following form:

vV = e

where: v is the symbolic name of an integer, real, double precision, or
complex variable or array element whose contents are to be
replaced by e.

t or arithmetic expression.

If the datatype of e isarithmetic and different than the type of v , thenthevalueof e is
converted to the type of v before storage occurs. This may cause truncation.

If e is a CHARACTER constant, bytes of datawill be moved directly to the storage location
with no type conversion. If e is a CHARACTER expression, a type mismatch error will
occur.

LOGICAL ASSIGNMENT STATEMENT

LOG CAL assignment statements are used to store avalue in LOG CAL variables. LOG CAL
assignment statements are formed exactly like arithmetic assignment statements:

Vv = e

where: v is the symbolic name of a logical variable or logical array
element.

or logical expression.

If the data type of e is not LOG CAL, the value assigned to v is the LOG CAL value
. FALSE. if the value of the expression e is zero. For non-zero values of e, the value
assigned to v isthe LOG CAL value . TRUE. . Thisrule for the conversion of an arithmetic
expression to aLOod CAL value applies wherever aLOG CAL expression is expected (i.e. an
| F statement).

CHARACTER ASSIGNMENT STATEMENT

FORTRAN 77 Language Reference Manual



34 Expressions and Assignment Statements

CHARACTER assignment statements are used to store avalue in CHARACTER variables:

vV = e

where: v is the symbolic name of a character variable, character array
element, or character substring. e is an expression whose type is
character.

If the length of e is greater than the length of v, the leftmost characters of e are used.

If the length of e islessthan the length of v , blank characters are added to the right of e
until itisthe samelengthasv .

ASSIGN STATEMENT

The ASSI GN statement is used to store the address of a labeled statement in an integer
variable. Once defined with a statement label, the integer variable may be used as the
destination of an assigned Goro statement (Control Statements chapter) or as a format
descriptor in an 1/O statement (Input/Output and Format Specification chapter). The
ASS| GN statement is given in the following manner.

ASSIGN s TO |

where: s is the label of a statement appearing in the same program unit
that the ASSI GN statement does.

i isSan | NTEGER variable name.

Caution: No protection is provided against attempting to use a variable
that does not contain a valid address as established with the
ASSI GN statement.

MEMORY ASSIGNMENT STATEMENT

Memory assignment statements are used to store values in absolute memory addresses:
m = e
where: na isan absolute memory address
e isanany arithmetic, logical, or character expression.

A memory addressis formed as follows:

BYTE (e) byte (8 bit) reference
WORD (e) word (16 bit) reference
LONG (e) long (32 bit) reference

FORTRAN 77 Language Reference Manual



Expressions and Assignment Statements 35

where: e isan absolute memory address.
For example:
BYTE (Z FFFFEQ’) = 10
stores the decimal value 10 at the hexadecima memory byte address FFFEO.

The BYTE, WORD, and LONG keywords also represent intrinsic functions allowing indirect
addressing:

WORD (WORD( O 4000’ )) = Z' FFFF

stores the sixteen bit hexadecimal value FFFF at the absolute memory location whose
address is the address contained at the octal address 4000.

FORTRAN 77 Language Reference Manual






37

CHAPTER 4

Specification and DATA Statements

Specification statements are used to define the properties of the symbolic entities, vari-
ables, arrays, symbolic constants, etc. that are used within a program unit. For this
reason, specification statements are also called declaration statements and are grouped
together in the declaration section of a program unit: before any statement function
statements, DATA statements, and executable statements. Specification statements
themselves are classified as nonexecutable.

DATA statements are used to establish initial values for the variables and arrays used
within a FORTRAN 77 program. Variables not appearing in DATA statements may
contain random values when a program starts executing. The use of undefined variables
can cause problems that are difficult to detect when transporting a program from one
environment to another, because the previous environment may have set al storage to
zeros while the new environment performs no such housekeeping.

TYPE STATEMENTS

The most common of the specification statements are the type statements. They are used
to give data types to symbol names and declare array names. Once a data type has been
associated with a symbol name it remains the same for all occurrences of that name
throughout a program unit.

Arithmetic and L ogical Type Statements
The forms of the type statement for the arithmetic and logical data types are:

type v [,v]...
type [*len] v[/valuell [,v[/valuell]...

where: type can be any of the following specifiers: LOG CAL, | NTEGER,
REAL, DOUBLE PRECI S| ON, COVPLEX, OF |

v isthe symbolic name of avariable, an array, a constant, a func-
tion, adummy procedure, or an array declaration.

I en is an unsigned integer constant that specifies the length, in
bytes, of a variable, an array element, a symbolic constant, or a
function.

FORTRAN 77 Language Reference Manual



38

Specification and DATA Statements

val ue is an optional initial value for the preceding variable or
array. When initializing an array, val ue must contain constants
separated by commas for each element of the array.

The following I en specifiers are available:

LOG CAL*4 is the default foLOa CAL and occupies one numeric storage
unit. The default may be changeduoa cAL*2 with the -in compiler
option (see the chaptéising the Compilers in the ProFortran User
Guide).

LOG CAL*2 data is a representation of the logical values of true and
false. This type of logical data occupies one half of one numeric storage
unit. A false value is represented by the number zero and a true value is
represented by the number one.

LOG CAL*1 data is a representation of the logical values of true and
false. This type of logical data occupies one byte. A false value is repre-
sented by the number zero and a true value is represented by the number
one.

| NTEGER* 8 data is an exact binary representation of an integer in the
range of -9223372036854775808 to +9223372036854775807 with
negative integers carried in two's complement form. This type of integer
IS maintained in two numeric storage units.

| NTEGER* 4 is the default for NTEGER and occupies one numeric storage
unit. The default may be changed toreEGER*2 or | NTEGER* 8 with the

-in compiler option (see the chaptélsing the Compilers in the
ProFortran User Guide).

| NTEGER* 2 data is an exact binary representation of an integer in the
range of -32768 to +32767 with negative integers carried in two's com-
plement form. This type of integer is maintained in one half of one
numeric storage unit.

I NTEGER*1 data is an exact binary representation of an integer in the
range of -128 to +127 with negative integers carried in two's comple-
ment form. This type of integer is maintained in one byte of storage.

REAL*4 is the default foREAL and occupies one numeric storage unit.
The default may be changedRBAL* 8 with the-N113 compiler option
(see the chaptéssing the Compilersin theProFortran User Guide).

REAL*8 data is identical toDOUBLE PRECI SION and occupies two
numeric storage units.

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 39

* COWLEX*8 data is identical tacOVPLEX and occupies two numeric
storage units. The default may be changetbi®LEX* 16 with the-N113
compiler option (see the chaptddsing the Compilers in the
ProFortran User Guide).

e COWLEX*16 data is similar taCOVPLEX except that both halves of the
complex value are represented ESBLE PRECI SI ON and it occupies
four numeric storage units.

Character Type Statement
The form of the type statement for the character data type is:
*|

*| *|

where: v is a variable name, an array hame, an array declaration, the sym-
bolic name of a constant, a function name, or a dummy procedure
name

I en is either an unsigneldNTEGER constant, amNTEGER constant
expression within parentheses, or an asterisk within parentheses
and specifies the length, in bytes, of a variable, an array element,
a symbolic constant, or a function.

val ue is an optional initial value for the preceding variable or
array. When initializing an arrayal ue must contain constants
separated by commas for each element of the array.

If /en directly follows the wordCHARACTER, the length specification applies to all
symbols not qualified by their own length specifications. When is not specified
directly after the keywordHARACTER, all symbols not qualified by their own length
specifications default to one byte.

The length of symbolicCHARACTER constants, dummy arguments S¥BROUTI NE and

FUNCTI ON subprograms, an@HARACTER functions may be given as an asterisk enclosed

in parenthesed;*) . The length of a symbolic constant declared in this manner is the
number of characters appearing in the associ®&RAVETER statement. Dummy
arguments and functions assume the length of the actual argument declared by the
referencing program unit.

CHARACTER TI TLE* (*)
PARAMETER (TI TLE = ' FORTRAN 77’)

produces a ten byte symbotiBARACTER constant.

FORTRAN 77 Language Reference Manual



40 Specification and DATA Statements

DIMENSION STATEMENT

The DI MENSI ON statement declares the names and supplies the dimension information for
arrays to be used within a program unit.

DIMENSION a(d) [,a(d)]...

where a(d) is an array declarator as described in the chapter The FORTRAN 77
Program.

Arrays may be declared with either DI MENSI ON statements, COVWWON statements, or type
statements, but multiple declarations are not allowed. That is, once a symbolic hame has
been declared to be an array it may not appear in any other declaration statement with an
array declarator in the same program unit. The following three statements declare the
same array:

DI MENSI ON A(5, 5, 5)
REAL A(5, 5, 5)
COWON A(5, 5, 5)

The VI RTUAL statement has the same effect as the DI MENSI ON statement in order to be
compatible with other implementations of FORTRAN. Absoft Fortran 77, however, has
no means of declaring virtual storage.

COMMON STATEMENT

The cowwoN statement is used to declare the storage order of variables and arrays in a
consistent and predictable manner. This is done through a FORTRAN data structure
called a common block, which is a contiguous block of storage. A common block may be
identified by a symbolic name but does not have a data type. Once the order of storagein
a common block has been established, any program unit that declares the same common
block can reference the data stored there without having to pass symbol names through
argument lists.

The GLOBAL statement may be used to make the common block accessible to other tasks
on systems which support shared data.

Common blocks are specified in the following manner:

bl

where: c¢b is the symbolic name of the common block. If ¢b is omitted,
thefirst pair of slashes may also be omitted.

nl i st contains the symbolic names of variables, arrays, and array
declarators.

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 41

When the covwoN block name is omitted, the COWON block is called blank cowoN. The
symbolic name "BLANK" is reserved by the compiler for blank cowoN and if used
explicitly as a cOuvoN block name will result in al entitiesin the n/ i st being placed in
blank COMVON.

Any cOMON block name or an omitted name (blank COVWWON) can occur more than oncein
the cowoN statements in a program unit. The list of variables and arrays following each
successive appearance of the same common block name is treated as a continuation of the
list for that common block name.

A cowoN block name can be the same as that of avariable, array, or program unit.

EQUIVALENCE STATEMENT

The EQUI VALENCE statement provides a means for one or more variables to share the
same storage location. Variables that share storage in this manner are said to be associ-
ated. The association may be total if both variables are the same size or partial if they are
of different sizes. The EQUI VALENCE statement is used in the following manner:

EQUI VALENCE (nlist) [,(nlist)]...

The symbolic names of at least two variables, arrays, array elements, or character sub-
strings must be specified in each n/ i st. Only integer constant expressions may be used
in subscript and substring expressions. An array hame unqualified by a subscript implies
the first element of the array.

An EQUI VALENCE statement causes storage for all items in an individual n/ist to be
alocated at the same starting location:

REAL A B
| NTEGER 1, J
EQUI VALENCE (A B), (I1,J)

The variables A and B share the same storage location and are totally associated. The vari-
ables| and J share the same storage location and are totally associated.

Items that are equivalenced can be of different data types and have different lengths.
When a storage association is established in this manner several elements of one data
type may occupy the same storage as one element of a different data type:

DOUBLE PRECI SI ON D
| NTEGER 1 (2)
EQUI VALENCE (D, 1)

The array element | (1) shares the same storage location as the upper (most significant)
thirty-two bits of D, and the array element | (2) shares the same storage location as the
lower (least significant) thirty-two bits of D. Because only a portion of D is stored in the
same location as| (1), these entities are only partially associated.

FORTRAN 77 Language Reference Manual



42 Specification and DATA Statements

The EQUI VALENCE may not specify that an item occupy more than one storage location or
that a gap occur between consecutive array elements.

Equivalence of Arrays

The EQUI VALENCE statement can be used to cause the storage locations of arrays to
become either partialy or totally associated.

REAL A(8), B(8)
I NTEGER 1(5), J(7)
EQUI VALENCE (A(3),B(1)), (A(1),1(1)), (1(4),3(1))

Storage would be alocated as follows:

| 112131415161 7]8]09] 10]
| -rm e Acosmnsaniins |

Equivalence of Substrings

The EQUI VALENCE statement can be used to cause the storage locations of substrings to
become either partially or totally associated.

CHARACTER A(2)*5
CHARACTER B*8
EQUI VALENCE (A(2) (2:4),B(4:7))

Byte storage would be allocated as follows:
| 1] 2] 3] 4] 5| 6] 7| 8] 9| 10| 11]

R TR Acmmnsnio |
| <eme e B - - mnn e |

Notice that the lengths of the equivalenced substrings need not be the same, as in the
above example.

COMMON and EQUIVALENCE Restrictions

The EQUI VALENCE statement can be used to increase the size of a common block by
adding storage to the end, but it cannot increase the size by adding storage units prior to
the first item in a COMMON bl ock.

The EQUI VALENCE statement must not cause two different COMMON blocks to have their
storage associated.

EXTERNAL STATEMENT

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 43

The EXTERNAL statement allows symbolic names to be used as arguments in CALL
statements and function references without the compiler automatically creating a variable
at the point of reference. Symbolic names so declared may or may not have an associated
data type. The EXTERNAL statement is given with alist of external or dummy procedure
names or intrinsic function names:

EXTERNAL proc [, proc]...
where: proc isasymbolic name of a procedure or intrinsic function.

An intrinsic function name appearing in an EXTERNAL statement specifies that the
particular intrinsic function has been replaced by a user supplied routine.

IMPLICIT STATEMENT

The I MPLI QI T statement is used to establish implicit data typing that differs from the
default | NTEGER and REAL typing described in chapter The FORTRAN 77 Program.
The I MPLI CI T statement can also be used to remove implied typing atogether. The
| MPLI CI T statement takes the following form:

IMPLICIT type [*len] (a[,a]...) [.type [*len] (a[,a]...)]...

where: type is a type chosen from the set CHARACTER, LOG CAL
DOUBLE PRECI SION,  COWPLEX,

I en is an unsigned integer constant specifying the length, in bytes,
of | Or CHARACTER variables.

a is an aphabetic specifier which is either asingle letter or arange
of letters. A range of letters is specified with a character
representing the lower bound of the range, a minus, and a character
representing the upper bound of the range. The range A- z specifies
all the letters of the alphabet.

If I enisnot specified, the defaults are:

CHARACTER 1 byte

LOG CAL 4 bytes
| NTEGER 4 bytes
REAL 4 bytes
COVPLEX 8 bytes

The I MPLI CI T statement must appear before all other declaration statements except
PARAMETER statements and specifies the data type of all symbolic names that can take a
data type that are not given one explicitly with a type statement. The data type will be the
data type that corresponds to the first character of their names.

FORTRAN 77 Language Reference Manual



44 Specification and DATA Statements

When NONE appears in place of atype specifier, all variables used within the program unit
must appear in an explicit type statement.

INLINE STATEMENT

As an extension to standard FORTRAN, Absoft Fortran 77 supports the I NLI NE
statement to allow programmers to insert object code directly into a FORTRAN program.
Thisis useful for customizing the language to the host system. The syntax of the | NLI NE
statement is as follows:

INLINE ([identifierl=conl|,identifier2=/conl],con2.../]]1])

CALL identifieri[( argl], arg2.])]
vari able= identifier2[( argl], arg2..])]

An INLINE declaration can have the same format as a PARAMETERstatement or it can
substitute a list of constants for an identifier instead of a single constant. All constants
must be of type INTEGER The identifier can then be referenced as if it were a subroutine
or function. Instead of generating a call to an external function, the compiler will insert
the constant or constant list directly into the object code. Each constant is output as a 32-
bit opcode. If an argument list is given, the actual arguments will be passed in the same
fashion as they are passed to an external routine. If the identifier is referenced as a
function, the result must be returned using the standard call-return methods.

INTRINSIC STATEMENT

The INTRINSIC statement designates symbolic names as intrinsic functions (see the
chapter Programs, Subroutines, and Functions). Similar to the EXTERNALStatement,
this allows intrinsic functions to be used as arguments in CALL statements and function
references without the compiler automatically creating a variable at the point of
reference. The intrinsic function name specified in an INTRINSIC statement retains its
associated datatype. The INTRINSIC statement is given in the following manner:

INTRINSIC func|[, func]..

where: f unc isthe name of an intrinsic function.

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 45

The following intrinsic functions do not follow conventional FORTRAN calling
conventions and may not appear in an | NTRI NSI C statement:

AVAXO0 LEN
AVAX1 LGE
AM NO LGT
AM N1 LLE
CHAR LLT
CWPLX MAX
DBLE MAXO
DCMVPLX MAX1
DVAX1 M N
FLOAT M NO

| CHAR M N1

| DI NT REAL

I FI X SNGL

I NT

DFLOATI I'1FI X
DFLOATJ I 1 NT
FLQOATI JI DI NT
FLOATJ JIFI X
HFI X JINT
1 DI NT

Thisrestriction also applies to the Absoft Fortran 77 intrinsic functions below:

ADJUSTL VAL?2
ADJUSTR VAL4
TRIM [ % LOC
REPEAT [ 9% VAL

The | NTRI NSI C statement is used to pass intrinsic functions to external procedures:

I NTRI NSI C SI N, COS

DI MENSI ON A( 100) , B( 100)
CALL TR G(SI N, A)

CALL TRI G COS, B)

END

SUBROUTI NE TRI G( FUNC, ARRAY)
DI MENSI ON ARRAY( 100)
DO 10 | =1, 100

10  ARRAY(l) = FUNC(FLOAT(1))
END

NAMELIST STATEMENT

The NAMELI ST statement associates a unique group name with a list of variable or array
names. The group-name is used in namelist directed input and output operations.
Namelists are specified in the following manner:

NAMVELI ST / group _nanel nlist[[,]/ group _nanel nlijst]...

where: group_nane isasymbolic name.

FORTRAN 77 Language Reference Manual



46 Specification and DATA Statements

nli st isalist of variables or array names that is to be associated
with group_nane

The group_nanme must be a unique identifier and cannot be used for any purpose other
than namelist directed 1/O in the program unit in which it appears.

Variables in a namelist can be of any data type and can be explicitly or implicitly typed.
Subscripted array names and CHARACTER substrings cannot appear in the NAMELI ST,
however NAMELI ST directed I/O can be used to assign values to array elements and
CHARACTER substrings.

The order of appearance of variables in a NAMELI ST controls the order in which the
values are written during NAVELI ST directed output. The order of appearance has no
affect on NAMELI ST directed input.

Adjustable arrays are not permitted in NAMELI ST statements.

PARAMETER STATEMENT

The PARAVETER statement allows a constant to be given a symbolic name in the following
manner:

PARAMETER (p=c [, p=c]...)

where p is the symbolic name that is used to reference the constant and ¢ is a constant
expression.

If the data type and length attributes of the symbolic name are to be other than the
implied default for that name, then the type (and size) must be previously defined in an
explicit type statement or through the typing supplied by an | MPLI CI T statement. A
character parameter may have its length declared as an asterisk in parentheses, in which
case the actual size will be the number of charactersin the expression.

The type of the constant expression must match the type of the symbolic name.

| NTEGER EOF

CHARACTER TI TLE* (*)

PARAVETER (Pl =3. 1415926, THI RD=1. 0/ 3. 0)
PARAVETER ( EOF=- 1)

PARAVETER ( TI TLE=' FORTRAN 77')

Special use of the PARAMETER statement

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 47

As a means of defining CHARACTER symbolic names with non-printing ASCII characters,
a character symbolic name may be defined with an | NTEGER constant in the range of 1-
255:

CHARACTER EQL, EOF
PARAMETER (EOL=10, ECF=0 377’)

POINTER STATEMENT

The PO NTER statement is used to extablish a means for directly manipulating the address
of avariable. Normally, when a FORTRAN variable is created, either explicitly with a
declaration statement of implicitly by reference in the program, its location or address in
memory is fixed by the compiler or the linker. However, there are situations where it is
useful for the location of a variable to be dynamic. The POINTER statement provides this
mechanism by associating a pointer to avariable as follows:

PO NTER (ptr, pbv) [, (ptr, pbv),...]

where: pt r isthe symbolic name that is used to manipul ate the address of the
associated variable and pbv isthe pointer-based variable.

Before the pointer-based variable can be used, the pointer must be defined with the initial
address of the variable. The Loc function is useful for this purpose:

| NTEGER m(100), a
PO NTER (pa, a)

pa = LOC(m
DO i =1, 100

a =i

pa = pa + 4
END DO

The array will contain the integers from 1 to 100 after the execution of the DOloop.

When a pointer-based variable is referenced, its address is extablished from the current
value of the associated pointer variable. Pointers can be used just asif they were | NTEGER
variables except that they cannot appear as dummy arguments. Pointer-based variables
can be of any FORTRAN data type. Pointer-based variables cannot be dummy arguments
or appear in COWWON, GLOBAL, EQUI VALENCE, NAMELI ST, SAVE, VALUE OF PARAMETER
statements. Further information and examples are presented in the appendices.

RECORD STATEMENT

FORTRAN 77 Language Reference Manual



48 Specification and DATA Statements

RECORD statements are used to define variables that are instances of structures defined in
STRUCTURE declarations. Variables declared in RECORD statements are composite or
aggregate data items. RECORD statements are defined as follows:

RECORD / structure-namel rlist[,/structure-namelrlist...]
where: st ruct ur e- name is aname given in a STRUCTURE definition.

rlist isoneor morevariable names, array names or array
declarators separated by commas.

Record names cannot appear in NAVELI ST statements and can only be read from and
written to UNFORMATTED files. For more information on the use of records, see the
appendices.

SAVE STATEMENT

FORTRAN 77 permits dynamic as well as static storage allocation. Variables, arrays, and
COMMON blocks declared in a main program are allocated statically and always retain their
definition status. Variables and arrays that are declared locally in subprograms are allo-
cated dynamically when the subprogram is invoked. When the subprogram executes a
RETURN or END statement, these items are deallocated and lose their definition status. The
SAVE statement is used to retain the definition status of these items by specifying them in
the following manner:

SAVE [a [,4a]...]

where: a is either a common block name delimited with slashes, a
variable name, or an array name.

If a isnot specified, the effect is as though all items in the program unit were presented in
thelist.

In order to maintain portability in FORTRAN programs, it is recommended that the SAVE
statement be used on covwoN blocks declared only in subprograms. Although it has no
effect in this implementation, other FORTRAN compilers may cause deallocation of
common blocks upon returning from a subprogram if they are not SAVEd.

AUTOMATIC STATEMENT

FORTRAN 77 permits dynamic as well as static storage allocation. Variables and arrays
which are declared locally in subprograms and not associated in a COMWON block are
alocated dynamically when the subprogram is invoked. When the subprogram executes a
RETURN Or END statement, these items are deallocated and lose their definition status. A
compile time option (see the chapter Using the Compilers in the ProFortran User
Guide) is provided to change this behavior and force the memory for all variables to be

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 49

alocated statically. When this option is specified, the AUTOMATIC statement may be
used to override static allocation:

AUTOMATIC [a [, 4a]...]
where: a is either a variable name or an array name.

If aisnot specified, the effect is as though al items in the program unit were presented in
thelist.

Note that local variables (variables not associated in a cowoN block) are allocated
dynamically by default in Absoft Fortran 77. This statement is provided for compatibility
with other compilers and to override the static memory allocation compiler option.

STRUCTURE DECLARATION

The STRUCTURE declaration provides a mechanism for organizing various data items into
meaningful groups forming an aggregate data type caled a structure. The STRUCTURE
declaration establishes the data types, ordering, and alignment of a structure, but may not
actually define storage for a structure. Storage for the actual structure may be defined in
the STRUCTURE declaration or with a RECORD statement (see above section RECORD
Statement). A STRUCTURE declaration takes the following form:

STRUCTURE [/ structure-namel|[rlist [,rlist...]]
fi el d-decl aration
[fiel d-decl arati on]

t fi el d-decl arati on]
END STRUCTURE

where:st ruct ur e- nane is the name used to identify the structure
declaration.

rlist isalist of symbolic names or array declarators allocating
records having the form defined in the STRUCTURE declaration.

fi el d-decl ar at i on defines adataitem in the structure.

The st ruct ure- name must be unique among STRUCTURE declarations, but can be used
for variable and global names.

A fiel d-decl aration can be any FORTRAN type statement, a PO NTER declaration, a
UNI ON declaration, a RECORD statement, or another STRUCTURE declaration. Arithmetic
and logical type statements may take an optiona /val ue/ specifier to provide
initialization for the data item in each instance of the structure as described earlier in this
chapter.

FORTRAN 77 Language Reference Manual



50 Specification and DATA Statements

The name %I LL can be used in place of the symbol namein afi el d- decl ar ati on. (e.g
I NTEGER*2 %I LL). In this case, no field name is defined, but empty space is added to
the structure for the purpose of alignment. This extension is provided for compatability
with other FORTRAN environments.

If the fi el d- decl ar at i on IS another STRUCTURE declaration, the st r uct ur e- name may
be omitted, but the r/ist must be given. In this case the symbolic names in r/i st
become fields of the structure which contains it. If the st ruct ur e- nane is given, it can
be used in RECORD statements to define instances of the substructure.

The structure fields extablished with field-declarations are accessed by appending a
period and the field name to the record name:

STRUCTURE / dat e/ day
| NTEGER nm
| NTEGER dd
| NTEGER yy

END STRUCUTRE

day.nm = 9
day. dd 12
day. yy 90

See the appendix Using Structures and Pointers for examples using STRUCTURE
declarations.

UNION DECLARATION

A UNI ON declaration defines a data area which is shared by one or more fields or groups
of fields. It begins with a UNI ON statement and ends with an ENDUNI ON statement. In
between are MAP and ENDMVAP statements which define the field or groups of fields which
will share the storage area. A UNI ON declaration is as follows:

UNI ON
map- decl ar ati on
map- decl ar ati on
[ map- decl ar at i on]

tnap—declaration]
END UNI ON

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 51

where: map- decl ar at i on takes the following form:

VAP
fi el d-decl aration
[ fiel d-decl arati on]
t fi el d-decl arati on]
END MAP

A fiel d-decl ar at i on contains one or more of the following, a STRUCTURE declaration,
a PO NTER declaration, another UNI ON declaration, a RECORD statement or a standard
FORTRAN type declaration. Field-declarations cannot have been previously declared or
be dummy arguments.

The size of the shared data area for the union is the size of the largest map area contained
within the union. The fields of only one of the map areas are defined at any given time
during program execution.

Example:

UNI ON
MAP
| NTEGER*4 | ong
END MAP
MAP
| NTEGER*2 shortl, short?2
END MAP
END UNI ON

In the above example, the storage for the first half of the field | ong is shared by the field

short 1, and the storage for the second half of the field | ong is shared by the field
short 2.

VALUE STATEMENT

FORTRAN 77 Language Reference Manual



52 Specification and DATA Statements

The VALUE statement informs the compiler that certain dummy arguments are going to be
passed by value to a subroutine or function. When a value parameter is passed, the
contents of a variable rather than its address is passed. The result is that the actual
argument cannot be changed by the program unit. Pass by value is the default method for
C and Pascal programs and is used when the VAL intrinsic function is used in Absoft
Fortran 77.

VALUE a [[,a]...]
where: a isthe name of a dummy argument.

Vaue arguments can be of any data type except CHARACTER. Value arguments cannot be
arrays, but they can be of type RECORD. VALUE statements cannot appear in program units
which contain ENTRY statements.

VOLATILE STATEMENT

The VOLATI LE statement disables optimization for any symbol, array, or cOwoN block. It
Is useful when a variable is actually an absolute address, when two dummy arguments
can represent the same location, or when a PO NTER variable points to defined storage.

VOLATILE a [[, 4d]...]

where: ais either acommon block name delimited with slashes, a variable
name, or an array hame.

DATA STATEMENT

Variables, substrings, arrays, and array elements are given initial values with DATA state-
ments. DATA statements may appear only after the declaration statements in the program
unit in which they appear. DATA statements take the following form:

DATA viisticlist/ [[,] viisticlist/]...

where: v/ ist contains the symbolic names of variables, arrays, array
elements, substrings, and implied DO lists

cli st contains the constants which will be used to provide the
initial valuesfor theitemsin v/ i st

FORTRAN 77 Language Reference Manual



Specification and DATA Statements 53

A constant may be specified in ¢/ i st with an optional repeat specifier: a positive integer
constant (or symbolic name of a constant) followed by an asterisk. The repeat specifier is
used to indicate one or more occurrences of the same constant:

DATA A/B,C D, E1.0,1.0,1.0,1.0,1.0/

can be written as;

DATA A B, C D, E/ 5*1. 0/

An array name unqualified by a subscript implies every element in the array:

| NTEGER M 5)
DATA M 5*0/

means.

| NTEGER M 5)
DATA M1), M 2), M3),M4),M5)/0,0,0,0,0/

Type conversion is automatically performed for arithmetic constants (I NTEGER, REAL,
DOUBLE PRECI SI ON, and COVPLEX) when the data type of the corresponding item in
vl i st isdifferent. CHARACTER constants are either truncated or padded with spaces when
the length of the corresponding character item in v/ i st is either shorter or longer than
the constant respectively.

The items specified in v/ i st may not be dummy arguments, functions, or items in blank
COMMVON. Items in a named common block can be initialized only within a BLOCK DATA
subprogram (see the chapter Programs, Subroutines, and Functions).

FORTRAN 77 Language Reference Manual



54 Specification and DATA Statements

Implied DO List In A DATA Statement

An implied DO list is used to initialize array elements as though the assignments were
within aboloop. Theimplied DOlist is of the form:

(dlist, i =i, n2[,nB])
where: dl i st contains array elements and implied DOlists

i isthe DOvariable and must be an integer

ml, ng2, and n8 are integer constant expressions which establish
theinitial value, limit value, and increment value respectively (see
the Control Statements chapter)

| NTEGER M 10, 10), N( 10), L( 4)
CHARACTER*3 S(5)

DATA (N(1),1=1,10), ((M1,J),J=3,8),1=3,8)/5*1, 5*2, 36*99/
DATA (L(1),1=1,4)/" ABCD ,’ EFGH ,’ 1 JKL’,’ MNOP' /
DATA (S(1),1=1,5)/" ABC ,’ DEF ,’ GH’,’ JKL',’ MNO /

FORTRAN 77 Language Reference Manual



55

CHAPTER 5

Control Statements

Control statements direct the flow of execution in a FORTRAN 77 program. Included in
the control statements are constructs for looping, conditional and unconditional
branching, making multiple choice decisions, and halting program execution.

GOTO STATEMENTS

Unconditional GOTO

The unconditional GOTO statement causes immediate transfer of control to a labeled state-
ment:

G010 s

The statement label s must be in the same program unit as the GOTO statement.

Computed GOTO

The computed GOTO statement provides a means for transferring control to one of several
different destinations depending on a specific condition:

&orto (s [,8]...) [,] e

e isan expression which is converted as necessary to integer and is used to select a desti-
nation from one of the statementsin thelist of labels (s [,s]...). The selection is made such
that if the value of e isone, the first label is used, if the value of e is two, the second
label is used, and so on. The same label may appear more than once in the label list. If the
value of e islessthan 1 or greater than the number of labels in the list no transfer is
made. All of the statement labels in the list must be in the same program unit as the
computed GOTO statement.

Assigned GOTO

The assigned GOTO statement is used with an integer variable that contains the address of
alabeled statement as established with an ASSI GN statement:

GOro 7 [[,] (s [,s]...)]

The address of the labeled statement contained in the integer variable /i is used as the
destination. If the optional list of statement labels, (s [,s]...), appears then i must be
defined with the address of one of them or no transfer is made.

FORTRAN 77 Language Reference Manual



56 Control Statements

IF STATEMENTS

Arithmetic|F

The arithmetic | F statement is used to transfer control based on the sign of the value of
an expression:

IF (e) s1, s2, s3

€ can be an I NTEGER, REAL, or DOUBLE PRECI SI ON expression which if negative,
transfers control to the statement labeled s1; if zero, transfers control to the statement
labeled s2; and if positive, transfers control to the statement labeled s 3. The statements
labeled s1, s2, and s3 must be in the same program unit as the arithmetic | F
statement.

Logical IF

The logical | F statement is used to execute another statement based on the value of a
logical expression:

IF (e) st

The statement st is executed only if the value of the logical expression e is. TRUE. The
statement st cannot be any of the following: DO, | F, ELSE | F, ELSE, END | F, END,

Block IF

A block | F consists of |1 F (e) THEN, ELSE, and END | F statements. Each | F (e) THEN
statement must be balanced by an END | F statement. A block | F provides for the
selective execution of a particular block of statements depending on the result of the
LOG CAL expression e.

IF (e) THEN

bl ock of statenents
ELSE

bl ock of statenents
END | F

The ELSE statement and the second block of statements are optional. If the value of the
LOG CAL expression e is . TRUE., the first block of statements is executed and then
control of execution is transferred to the statement immediately following the END | F
statement. If e has a . FALSE. value, then, if a second block of statements exists
(constructed by ELSE or ELSE | F statements) it is executed, and control of execution is
transferred to the statement immediately following the END | F statement.

Each block of statements may contain more block | F constructs. Since each block | F
must be terminated by an END | F statement there is no ambiguity in the execution path.

FORTRAN 77 Language Reference Manual



Control Statements 57

A more complicated block | F can be constructed using the alternate form of the ELSE
statement: the ELSE | F (e) THEN statement. Multiple ELSE | F (e) THEN statements can
appear within a block I F, each one being evaluated if the previous logical expression e
hasa. FALSE. value:

IF (I.GI.0 .AND. |.LE. 10) THEN
bl ock of statenents

ELSE IF (1.GT.10 . AND. |.LE. 100) THEN
bl ock of statenents

ELSE IF (I.GT.100 . AND. |.LE. 1000) THEN
bl ock of statenents

ELSE
bl ock of statenents

END | F

LOOP STATEMENTS

The DO statements provide the fundamental structure for constructing loops in
FORTRAN 77. The standard Do loop and Absoft Fortran 77 extensions to the Do loop are
discussed in this section.

Basic DO loop
The basic Do statement takes the following form:

DOs |[,] i =el €e2],eq

where: s isthelabel of the statement that defines the range of the DO loop
and must follow the DO statement in the same program unit

i is caled the DO variable and must be either an | NTEGER, REAL,
or DOUBLE PRECI S| ON scalar variable

el, e2, and e3 may be integer, real, or double precision expres-
sions whose values are called the initial value, the limit value, and
the increment value, respectively

The loop termination statement, labeled s, must not be a DO, arithmetic | F, block | F,
ELSE, END | F, unconditional GOTO, assigned GOTO, RETURN, STOP, END, £
statement.

DO loops may be nested to any level, but each nested loop must be entirely contained
within the range of the outer loop. The termination statements of nested DO loops may be
the same.

DO loops may appear within 1 F blocks and | F blocks may appear within DO loops, but
each structure must be entirely contained within the enclosing structure.

FORTRAN 77 Language Reference Manual



58 Control Statements

DO Loop Execution

The following steps govern the execution of a Do loop:

1

Variables that appear in the expressions e1, e2, and e3 may be modified within the loop,

The expression e1, theinitia value, is evaluated and assigned to the DO
variable i , with appropriate type conversion as necessary.

The expressions e2 and e3, the limit value and increment val ue respec-
tively, are evaluated. If e3 is omitted, it is given the default value of
one.

The iteration count is calculated from the following expression:

MAX( INT( (e2 - el + e3)/e3), 0)

and determines how many times the statements within the loop will be
executed.

The iteration count is tested, and if it is zero, control of execution is
transferred to the statement immediately following the loop
termination statement.

The statements within the range of the loop are executed.

The Dovariable isincreased by the increment value, the iteration count
Is decreased by one, and control branchesto step four.

without affecting the number of times the loop is iterated.

10

When the execution of both the inner and outer loops is finished, the values of both 1 and

K=20
L =10
DO 10 1=1, L
DO 10 J=1, |
L=1
K = K+1

J are 11, the value of K is 55, and the value of L is 10.

Transfer into Range of DO Loop

Under certain conditions, FORTRAN 66 permitted transfer of control into the range of a
DO loop from outside the range. This was known as the “extended rangesbfSuch a
transfer is considered highly unstructured and is prohibited in ANSI FORTRAN 77.

However, in Absoft Fortran 77, ao loops may be considered extended range, although

it is not good programming practice.

FORTRAN 77 Language Reference Manual



Control Statements 59

DO WHILE

The DO WHI LE statement is an extension to standard FORTRAN 77 and provides a
method of looping not necessarily governed by an iteration count. The form of the Do
VWH LE statement is:

[DO [s[.]]] WHILE (e)

where: s isthe statement label of an executable statement that defines the range
of the loop. The statement identified by s must follow the DO statement
in the sequence of statements within the same program unit as the DO
statement. If the label s is omitted, the loop must be terminated with a
REPEAT or END DO statement.

eisaLOG CAL expression.

The DO WHI LE statement tests the LOG CAL expression at the top of the loop. If the
expression evaluates to a . TRUE. value, the statements within the body of the loop are
executed. If the expression evaluates to a . FALSE. value, execution proceeds with the
statement following the loop:

| NTECER st at us, eof ; PARAMETER (eof =-1)
DATA a, b,c /3*0.0/

status = 0
VHI LE (st at us<>eof)

c =c + a*b

READ (*,*, | OSTAT=status) a, b
END DO

Block DO

The block DO extension to standard FORTRAN 77 provides four additional methods for
constructing aloop. They are asfollows:

1. DO
bl ock
END DO

2. DO ( i=el, e2 [,e3]) DO i=el, e2 [, e3]
bl ock or bl ock
END DO END DO

3. DO (e4 TI MES)
bl ock
END DO

4, DO (e4) TIMES
bl ock
END DO

FORTRAN 77 Language Reference Manual



60 Control Statements

All four forms of block DO require a REPEAT or END DO statement to terminate the loop.
An EXI T or LEAVE statement (described below) may be used to abnormally exit the loop
and a CYCLE statement (also described below) may be used to force iteration of the loop.

Thefirst case is essentially a DO forever construct for use in situations where the number
of loop iterations is unknown and must be determined from some external condition (i.e.
processing text files).

The second case is identical to the standard DO loop without a terminating statement
label. The value i isthe Dovariable, ez isitsinitial value, e2 isits terminating value and
e3, if present, isthe increment value.

The value e4, in the third case, is the iteration count and may be an integer, real, or
double precision expression. Where the value e4 is not an integer, it isfirst converted to
an integer and the truncated value becomes the iteration count. At least one blank
character must be present between the iteration count expression and the keyword TI MES.

END DO and REPEAT

The END DO and REPEAT statements are extensions to standard FORTRAN 77 and are
used to terminate DO WHI LE loops and block DO structures. Each block DO must have a
matching END DO or REPEAT statement. After execution of an END DO Or REPEAT
statement, the next statement executed depends on the result of the DO loop
incrementation processing. The form of the END DO and REPEAT statementsiis:

END DO (or REPEAT)

EXIT and LEAVE statements

The EXI T and LEAVE statements are also extensions to standard FORTRAN 77 and
provides a convenient means for abnormal termination of a DO loop. These statements
cause control of execution to be transferred to the statement following the terminal
statement of a DO loop or block DO.

DO
READ (*,*,| OSTAT=ios) v1,v2; IF (ios==-1) EXIT
CALL process(vil, v2)

END DO

FORTRAN 77 Language Reference Manual



Control Statements 61

CYCLE statement

The CYCLE statement is an extension to FORTRAN 77 and causes immediate loop index
and iteration count processing to be performed for the DO loop or block DO structure to
which the CYCLE statement belongs.

READ (*,*) n

z = 0.0

DO (n TI MES)
READ (*,*) x,y; |F (y==0.0) CYCLE
z =z +xly

END DO

CONTINUE STATEMENT

The CONTI NUE statement is used to provide a reference point. It is usually used as the
terminating statement of a basic DO loop, but it can appear anywhere in the executable
section of a program unit. Executing the CONTI NUE statement itself has no effect. The
form of the CONTI NUE statement is:

CONTI NUE

BLOCK CASE

The block CASE structure is an extension to the FORTRAN standard for constructing
blocks which are executed based on comparison and range selection. The SELECT CASE
statement is used with an END SELECT statement, at least one CASE statement and,
optionally, a CASE DEFAULT statement to control the execution sequence. The SELECT
CASE statement is used to form a block CASE.

The form of ablock CASE is:

SELECT CASE (e)
CASE (case_sel ector)
[ bl ock]
[ CASE (case_sel ector)
[ bl ock]

e
[ CASE DEFAULT]
[ bl ock]
END SELECT

where: e is an expression formed from one of the enumerative data types:
CHARACTER, | NTEGER, REAL, Or DOUBLE PRECI SI ON. For the purposes of
the block CASE construct, the value of CHARACTER expression is its posi-
tion in the ASCII collating sequence.

A CASE block must contain at least one CASE statement and must be terminated by an END
SELECT statement. Control of execution must not be transferred into a block CASE.

FORTRAN 77 Language Reference Manual



62 Control Statements

CASE blocks are delimited by a CASE statement and the next CASE, CASE DEFAULT, Or END
SELECT statement. A CASE block may be empty. After execution of a CASE block, control
of execution is transferred to the statement following the END SELECT statement with the
same CASE level. Block CASE structures may be nested. Since each block CASE must be
terminated by an END SELECT statement there is no ambiguity in the execution sequence.

A case_sel ect or takesthe form of either of the following:
CASE (con[, con, ..., conl)

CASE DEFAULT

con may be either a value selector or a range selector. A value selector is a constant. A
range selector takes one of the following three forms:

conl: con2 where (conl .LE. e) .AND. (e .LE. con2)
con: where con .LE e
:con where e .LE. con

All constants must be of the same type as the expression e in the SELECT CASE state-
ment. A block CASE may have only one CASE DEFAULT statement where control of
execution is transferred if no match is found in any other CASE statement. If a CASE
DEFAULT statement is not present and no match is found, a run-time error is reported.

Execution of a block CASE statement

Execution of block CASE statement causes evaluation of the expression e in the SELECT
CASE statement. The value of the expression is then compared sequentialy with the
parameters of the case selectors. If a match is made, transfer of control is passed to that
case block. If the comparison fails, the next case selector is checked.

FORTRAN 77 Language Reference Manual



Control Statements

63

Block CASE Example

in atext file

E I I

| MPLI CI T | NTEGER( a- z)
CHARACTER | i ne*80
PARAVETER ( eof =- 1)

lines=0; alf=0; num=0; bl k=0; trm=0; spl =0

DO
READ (*,’ (a)’',| OSTAT=ios) |ine
I F (ios==eof) EXIT
chars = LEN(TRI M1 ine))
lines = lines+l
DO (i =1, chars)
SELECT CASE (line(i:i))
CASE ("A":"Zz"',"a":"z")
alf = alf+1
CASE ("0":"9")
num = numtl

CASE (" ")
bl k = bl k+1
CASE (".","I","?")
trm= trml
CASE DEFAULT
spl = spl +1
END SELECT
END DO
END DO
END
STOP STATEMENT

The STOP statement terminates execution of a program:

STOPR [ s]

routine to count the nunber and types of characters

The optional string s may be a CHARACTER constant or string of five or fewer digitsand is

output to standard out with end of record characters.

PAUSE STATEMENT

The PAUSE statement suspends execution until a carriage return character is read from

standard input (usually from the keyboard).

PAUSE [ s]

FORTRAN 77 Language Reference Manual



64 Control Statements

The optional string s may be a CHARACTER constant or string of five or fewer digitsand is
output to unit * without end of record characters.

END STATEMENT

Every program unit must have an END statement which terminates the range of individual
program units within a source file. A source file itself may contain more than one
program unit; the entry points of the individual program units in the compiled object file
are available to the linker.

An END statement is executable and if encountered in a main program has the effect of a
STOP statement and if encountered in a subroutine or function subprogram has the effect
of a RETURN statement. An END statement is given on a statement line by itself with no
other characters:

END

FORTRAN 77 Language Reference Manual



65

CHAPTER 6

| nput/Output and FORMAT Specification

Input and output statements provide a channel through which FORTRAN 77 programs
can communicate with the outside world. Facilities are available for accessing disk and
tape files, communicating with terminals and printers, and controlling external devices.
FORTRAN 77 input and output statements are designed to allow access to the wide
variety of features implemented on various computer systems in the most portable
manner possible.

A format specification is used with formatted input and output statements to control the
appearance of data on output and provide information regarding the type and size of data
on input. Converting the internal binary representation of a floating point number into a
string of digits requires a format specification and is called editing. A format
specification divides a record into fields, each field representing a value. An explicitly
stated format specification designates the exact size and appearance of values within
fields.

When an asterisk (*) is used as a format specification it means “list directed” editing.
Instead of performing editing based on explicitly stated formatting information, data will
be transferred in a manner which is “reasonable” for its type and size.

Throughout the remainder of this chapter, input and output will be referred to in the
conventional abbreviated form: I/O.

RECORDS

All FORTRAN I/O takes place through a data structure called a record. A record can be a
single character or sequence of characters or values. A record might be a line of text, the
data received from a bar code reader, the coordinates to move a plotter pen, or a punched
card. FORTRAN uses three types of records:

* Formatted
* Unformatted
+ Endfile

Formatted Record

A formatted record is a sequence of ASCII characters. It may or may not be terminated
depending on the operating system. If it is terminated, the usual terminating characters
are a carriage return, a line feed, or both. A single line of text on this page is a formatted

FORTRAN 77 Language Reference Manual



66 I nput/Output and FORMAT Specifications

record. The minimum length of a formatted record is zero. The maximum record length
is limited only by available memory.

Unformatted Record

An unformatted record is a sequence of values. Its interpretation is dependent on the data

type of the value. For example, the binary pattern 01010111 can be interpreted as the

integer value 87 or the character value “W” depending on its data type. The minimum

length of an unformatted record is zero. Records in unformatted sequential access files
which contain no record length information (see below) have unlimited length. Records

in unformatted sequential access files that contain imbedded record length information
have a maximum size of 2,147,483,647 bytes. The maximum length of direct access
unformatted records is limited only by available memory.

Endfile Record

The endfile record is the last record of a file and has no length. An endfile record may or
may not be an actual record depending on the file system of a particular operating
system.

FILES

A file is composed of zero or more records and can be created and accessed by means
other than FORTRAN 77 programs. For example, a text processor might be used to
create and edit a document file and a FORTRAN 77 program used to manipulate the
information in the file.

Files that are usually stored on disks or tapes are called external files. Files can also be
maintained in main memory. These are called internal files.

File Name

Most external files are accessed explicitly by their names. While the file naming
conventions of operating systems vary greatly, FORTRAN 77 can accommodate most of
the differences. The circumstances where a name is not required to access a file are
discussed later in this chapter.

File Position

The position within a file refers to the next record that will be read or written. When a

file is opened it is usually positioned to just before the first record. The end of the file is

just after the last record. Some of the I/O statements allow the current position within a
file to be changed.

File Access

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 67

The method used to transfer records to and from files is called the access mode. External
files may contain either formatted or unformatted records. When the records in afile can
be read or written in an arbitrary manner, randomly, the access mode is direct. Individual
records are accessed through a record number, a positive integer. All of the recordsin a
direct access file have the same length and contain only the data actually written to them;
there are no record termination characters. Records may be rewritten, but not deleted.
Generally, only disk files can use the direct access mode of record transfer.

When the records are transferred in order, one after another, the access mode is
sequential. The records in a sequential access file may be of different lengths. Some files,
like terminals, printers, and tape drives, can only use the sequential access mode.

Formatted sequential access files usually contain textual information and each record has
aterminating character(s) as described above.

Unformatted sequential access is generally used for two conflicting, but equally common
pUrpOSES:

* For controlling external devices such as plotters, graphics terminals,
and machinery as well as processing unencoded binary information
such as object files. In this case it is important that the data transferred
to and from the external media be a true byte stream containing no
record length information.

* For its data compression and speed of access characteristics. In this
case it must be possible to determine the length of a record for partial
record reads and backspacing purposes.

This implementation of FORTRAN 77 contains provisions for both of these
requirements. The default manner of unformatted processing of a sequential access
device is to treat it as a pure byte stream. Partial record reads and backspacing are not
possible. The data transmitted is exactly what y®uIrE statement specifies or what the
external media contains. There is no limit on the length of a record.

When partial record reads and backspacing of unformatted sequential files are required,
two methods may be employed:

1. On a file-by-file basis, the runtime system can be informed by addingltbex<=- 1”
specifier to thedPEN statement. TheLOCK specifier is an extension normally used to
specify the blocking factor applied to magnetic tape. When a file is opened for
unformatted sequential access and this specifier is negatively valued, each record
written will be preceded and followed by four bytes containing the length of the
record.

2. Compile your program with th&i3 compiler option. This causes altEN statements
for sequential unformatted files to have embedded record information (i.e. as though
“BLOCK=- 1" had been specified for eachEN).

FORTRAN 77 Language Reference Manual



68 I nput/Output and FORMAT Specifications

Internal Files

Internal files are comprised of CHARACTER variables, CHARACTER array elements,
CHARACTER substrings, or CHARACTER arrays. An internal file which is a CHARACTER
variable, CHARACTER array element, or character substring has one record whose length is
the length of the character entity. An internal file that is a CHARACTER array has as
many records as there are array elements. The length of an individual record is the length
of a CHARACTER array element. Data may only be transferred through the formatted
sequential access mode. Internal files are usualy used to convert variables between
numeric and CHARACTER data types.

File Buffering

The 1/0O library uses double buffering for al external files. One buffer, referred to below
as the transfer buffer, is used to hold the data transferred during the input or output of a
single logical record. Since the data held in the transfer buffer is only used during the
input or output of a single record, the same buffer is used for al connected files. In
addition to the transfer buffer, a second buffer is associated with each connected file.
This buffer, referred to below as the physical buffer, is used to hold multiple logical
records before writing them to disk. By default, the physical buffer is 1024 bytes for
sequential access files. For direct access files, the default physical buffer is either 1024
bytes or the logical record size, whichever islarger.

The physical buffer size can be adjusted by using the BUFFER= specifier in the OPEN
statement (see below).

/O SPECIFIERS

FORTRAN 77 1/O statements are formed with lists of specifiers that are used to identify
the parameters of the operation and direct the control of execution when exceptions
occur.

Unit Specifier

The mechanism through which a channel of communication with afile is established and
maintained is called a unit. A unit may be either explicitly or implicitly identified, and
may refer to an external or internal file. When the channel is established, the unit is said
to be connected to the file. The relationship is symmetric; that is, you can also say that
thefileis connected to the unit.

A connection to an externa file is established and maintained with an externa unit
identifier that is an integer expression whose value is an arbitrary positive integer. An
external unit identifier is global to the program; afile opened in one program unit may be
referenced with the same unit number in other program units. There is no relationship
between a FORTRAN unit specifier and the numbers used by various operating systems
to identify files.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 69

A connection to an internal file is made with an interna file identifier which is the name
of the CHARACTER variable, CHARACTER array element, CHARACTER substring, or
CHARACTER array that comprises thefile.

Unit numbers that are “preconnected” to system devices and default files are:
1. Unit O is preconnected to “standard error”, usually the screen.

2. Units 5, 6, and 9 are preconnected to “standard input”, usually the
keyboard, for input operations and “standard output”, usually the
screen, for output operations.

3. An asterisk as a unit identifier refers to “standard input” for input
operations and “standard output” for output operations.

4. All other unit numbers are preconnected to default files for sequential
input and output operations. If a sequential input or output operation
references a unit which has not been connected with a FORTRAN
OPEN statement, the effect is as if @REN statement with only the
UNI T= specifier present had been executed to connect the unit.
Execution of direct access input and output operations is not permitted
on preconnected units.

With the exception of the asterisk, the preconnection of a unit number may be defeated
by explicitly connecting the unit number to a file with the FORTR&¥EN statement.
A unit specifier is given as:

[UNIT=] w

where: u is either a positiveNTEGER expression representing an external

unit identifier, or aCHARACTER entity representing an internal file
identifier.

The characters$/NI T= may be omitted if the unit identifier occurs first in the list of
identifiers.

Format Specifier

The format specifier establishes the method of converting between internal and external
representations. It can be given in one of two ways:

[FMI=] f
or
[FMr=]

FORTRAN 77 Language Reference Manual



70 I nput/Output and FORMAT Specifications

where: f isthe statement label of a FORVAT statement, an integer variable
that has been assigned a FORMVAT statement label with an ASSI GN
statement, a CHARACTER array name, or any CHARACTER expression

* indicates “list directed” editing

The charactersMr= may be omitted if the format specifier occurs second in the list of
identifiers and the first item is the unit specifier with the characters= also omitted.
The following are equivalent:

WRI TE (UNI T=9, FMr=1000)
VR TE (9, 1000)

Namelist Specifier

The namelist specifier establishes that conversion from internal and external
representations is to be accomplished through namelist directed 1/0O and is given as:

[NM.=] n
wheren is the name of a previously defined namelist identifier.

The charactersM_.= may be omitted if the namelist specifier occurs second in the list of
identifiers and the first item is the unit specifier with the characters= also omitted.

Record Specifier

The record specifier establishes which direct access record is to be accessed and is given
as:

REC = rn
wherer n is a positive integer expression.

Error Specifier

The error specifier provides a method to transfer control of execution to a different
section of the program unit if an error condition occurs during an 1/O statement. It takes
as an argument the label of the statement where control is to be transferred:

ERR = s

where: s is the statement label.

End of File Specifier

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 71

The end of file specifier provides a method to transfer control of execution to a different
section of the program unit if an end of file condition occurs during an I/O statement. It
also takes as an argument the label of the statement where control isto be transferred:

END = s
where: s isthe statement |abel.

To generate an end of file from the keyboard, type either Command-Return or Command-
Enter.

I/O Status Specifier

The 1/O status specifier is used to monitor error and end of file conditions after the
completion of an I/O statement. Its associated integer variable becomes defined with a-1
if end of file has occurred, a positive integer if an error occurred, and zero if there is
neither an error nor end of file condition:

| OSTAT = ios

where: jos is the symbolic name of an | NTEGER variable or array
element.

[/OLIST
The 1/0O list, iolist, contains the names of variables, arrays, array elements, and
expressions (only in output statements) whose values are to be transferred with an 1/O
statement. The following items may appear in aniolist:

* Avariable name

* An array element name

e A CHARACTER substring name

* An array name which is interpreted as every element in the array

* Any expression (only in an output statement)

Implied DO List In An /O List

FORTRAN 77 Language Reference Manual



72 I nput/Output and FORMAT Specifications

The elements of aniolist in an implied DOlist are transferred as though the I/0O statement
was within aboloop. Animplied DOlist is stated in the following manner:

(dlist, i =el, e2],ed])
where: | isthe bovariable

el, e2, and e3 establish the initia value, the limit value, and
increment value respectively (see the Control Statements
chapter).

dl i st isaniolist and may consist of other implied DOlists

In a READ statement (see below), the DO variable, i, must not occur within o/ i st except
as an element of subscript, but may occur in theiolist prior to theimplied Dolist.

DATA TRANSFER STATEMENTS

Datatransfer statements transfer one or more records of data.

READ, WRITE AND PRINT

The READ statements transfer input data from files into storage and the WRI TE and PRI NT
statements transfer output data from storage to files.

READ (cilist) [iolist]
READ f [,iolist]

WRITE (cilist) [iolist]
PRINT f [,iolist]

PRI NT n

where: f isaformat identifier

iolistisanl/Olist

ci i st isaparameter control list that may contain:

1. A unit specifier identifying the file connection.

atted data t

3. Anoptional record specifier for direct access connections.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 73

4. An optional error specifier directing the execution path in the event of
error occurring during the data transfer operation.

5. An optional end of file specifier directing the execution path in the
event of end of file occurring during the data transfer operation.

6. An optiona 1/O status specifier to monitor the error or end of file
status.

The PRI NT statements, as well as the READ statements which do not contain a ci /i st,
implicitly use the asterisk as a unit identifier.

ACCEPT AND TYPE

The ACCEPT statements transfer input data from records accessed in sequential mode and
the TYPE statements transfer output data to records accessed in sequential mode.

ACCEPT f [,iolist]
ACCEPT n
TYPE f [,iolist]

TYPE n
where: f isaformat identifier
iolistisanl/Olist
nisalist name previously defined in a NAVELI ST statement
The ACCEPT and TYPE statements implicitly use the asterisk as a unit identifier.

Unformatted Data Transfer

Unformatted data transfer is permitted only to external files. One unedited record is
transferred per data transfer statement.

Formatted Data Transfer

Formatted data transfer requires a format specifier which directs the interpretation
applied to itemsin the j o/ i st . Formatted data transfer causes one or more records to be
transferred.

Printing

FORTRAN 77 Language Reference Manual



74 I nput/Output and FORMAT Specifications

WRI TE statements which specify a unit connected with ACTI ON=' PRINT’ in the OPEN
statement (see below) use the first character of each record to control vertical spacing.

This character, called the carriage control character, is not printed and causes the
following vertical spacing to be performed before the record is output:

Character Vertical Spacing

blank oneline

0 two lines
1 top of page
+ no advance (over print)

Any other character appearing in the first position of record or a record containing no
characters causes vertical spacing of one line.

OPEN STATEMENT

The OPEN statement connects a unit to an existing file, creates afile and connects a unit to
it or modifies an existing connection. The OPEN statement has the following form:

OPEN ([UNIT=] w [,olist])
where: v isthe external unit specifier

ol i st is optional and consists of zero or more of the following
specifiers, each of which must have a variable or constant
following the equal sign:

| OSTAT = an|/O status specifier as described above.
ERR = an error specifier as described above.
FI LE = aCHARACTER expression which represents the name of the file to

be connected to the unit. If this specifier is omitted and the
specified unit is not currently connected, a file name will be
created.

NAVE = NAME= isasynonym for FI LE= in the OPEN statement.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 75

STATUS

ACCESS

ORGANI ZATI ON

FORM

RECL

RECORDSI ZE

BLANK

MAXREC

PCSI TI ON

ACTI ON

a CHARACTER expression which must be OLD, NEW SCRATCH, or
UNKNOWN. The file must already exist when OLD is specified. The
file must not exist when NEwis specified. If SCRATCH is specified
afile will be created which will exist only during the execution
of the program and FI LE= must not specified. If UNKNOWN is
specified, afile will be created if one does not already exist. The
default value IS UNKNOAN.

a CHARACTER expression which must be SEQUENTI AL, DI RECT, or
APPEND and specifies the access mode or position. The default
value is SEQUENTI AL.

ORGANI ZATI ON= is a synonym for ACCESS=.

a CHARACTER expression which must be FORMATTED or
UNFORMATTED specifying the type of records in the file. The
default value is UNFORMATTED for direct access files and
FORMATTED for sequential access files.

a positive | NTEGER expression which must be given for direct
access file connections and specifies, in bytes, the length of each
direct access record. The -N51 option may be used for the length
to be specified in 4-byte units.

RECORDSI| ZE= IS a synonym for RECL=.

a CHARACTER expression which must be NULL or ZERO specifying
how blank characters in formatted numeric input fields are to be
handled. A value of zERO causes blanks in the input field
(leading, embedded, and trailing) to be replaced with zeros. The
default value isNULL and causes blanks to be ignored.

an | NTEGER expression specifying the maximum number of
records permitted with direct accessfiles.

a CHARACTER expression which must be REW ND, APPEND, or
ASl S. If REW ND is specified the file is opened at its beginning
position for input or output. If APPEND is specified, the file is
opened at its end position for output. The default isASI S and has
the same effect as REW ND.

a CHARACTER expression which must be READ, WRI TE, BOTH, or
PRI NT. If READ is specified, only READ statements and file
positioning statements are allowed to refer to the connection. If
WRI TE is specified, only WRI TE, PRINT, and file positioning
statements are allowed to refer to the connection. If BOTH is
specified, any input/output statement may be used to refer to the

FORTRAN 77 Language Reference Manual



76 I nput/Output and FORMAT Specifications

READONLY

BUFFER =

DI SPOSE

Dl SP =

BLCOCK =

CARRI AGECONTRCL=

SHARED

NOSPANBL OCKS

CONVERT

connection. If PRINT is specified, the first character in each
record is interpreted for carriage control (see the previous section
on printing) and only WRI TE and PRI NT statements are allowed to
refer to the connection. The default for ACTI ONiS BOTH.

aspecifier without an equal sign equivalent to ACTI ON=READ.

an integer expression which specifies the physical size (in bytes)
of the I/O buffer. A value of zero is useful in that no buffering is
used.

a CHARACTER expression which must be KEEP, SAVE, DELETE,
PRI NT, PRI NT/ DELETE, SUBM T or SUBM T/ DELETE. When set to
KEEP or SAVE, the file is retained after closing. When set to
DELETE or SUBM T/ DELETE, the file is not retained after closing.
When set to PRI NT/ DELETE, the first character in each record is
interpreted as carriage control and the file is not retained after
closing. suBM T has no effect and is provided for compatibility
only.

DI SP= isa synonym for DI SPOSE-=.

an | NTEGER expression. When the expression is negative (i.e -1),
each record written will be preceded and followed by four bytes
containing the length of the record. This specifier is to be used
only with files opened for unformatted sequential access. See the
File Access section near the beginning of this chapter for more
information about BL OCK.

a CHARACTER expression which must be FORTRAN, LI ST or NONE.
Setting the value to FORTRAN is equivalent to ACTI ON=" PRI NT' .
Setting the value to LI ST or NONE has no effect and is only
supported for compatibility.

a specifier without an equal sign which has no effect, and is
supplied for compatibility only.

a specifier without an equa sign which has no effect, and is
supplied for compatibility only.

a CHARACTER expression which must evaluate to Bl G_ENDI AN or
LI TTLE_ENDI AN. This specifier controls the byte ordering of
binary data in unformatted files. The default is the ordering
appropriate for the type of processor the compiler isinstalled on.

If aunit is already connected to a file, execution of an OPEN statement for that unit is
alowed. If the file to be connected is not the same as the file which is connected, the

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 77

current connection is terminated before the new connection is established. If the file to be
connected is the same as the file which is connected, only the BLANK= and ACTI ON=
specifiers may have a different value from the ones currently in effect. Execution of the
OPEN statement causes the new values of BLANK= and ACTI ON= to be in effect.

CLOSE STATEMENT

The cLGsSE statement flushes afile's buffers and disconnects a file from a unit. The CLOSE
statement has the following form:

CLCSE ([UNIT=] u [,clist])
where: v isthe external unit specifier.
clist is optiona and consists of zero or more of the following

specifiers, each of which must have a variable or constant
following the equals sign:

| OSTAT = an|/O status specifier as described above.
ERR = anerror specifier as described above.
STATUS = a character expression which must be KEEP or DELETE which

determines whether afile will continue to exist after it has been
closed. STATUS has no effect if the value of the STATUS specifier
in the OPEN statement was SCRATCH. The default value is KEEP.

Normal termination of execution of a FORTRAN 77 program causes all units that are
connected to be closed.

BACKSPACE STATEMENT

The BACKSPACE statement causes the file pointer to be positioned to a point just before
the previous record. The forms of the BACKSPACE statement are:

BACKSPACE u
BACKSPACE ([UNIT=] u [, alist])

where: v isthe external unit specifier.

al i st is optional and consists of zero or more of the following
specifiers:

| OSTAT an |/O status specifier as described above.

ERR an error specifier as described above.

FORTRAN 77 Language Reference Manual



78 I nput/Output and FORMAT Specifications

REWIND STATEMENT

The REW ND statement causes the file pointer to be positioned to a point just before the
first record. The forms of the REW ND statement are:

REW ND u
REWND ([UNIT=] u [, alist])

where: v isthe external unit specifier.

ali st is optional and consists of zero or more of the following

specifiers.
| OSTAT = an |/O status specifier as described above.
ERR = an error specifier as described above.

ENDFILE STATEMENT

The ENDFI LE statement does nothing to disk files. The forms of the ENDFI LE statement
are:

ENDFI LE u
ENDFILE ([UNIT=] w [, alist])

where: v isthe external unit specifier.

al i st is optional and consists of zero or more of the following

specifiers:
| OSTAT = an /O status specifier as described above.
ERR = anerror specifier as described above.

INQUIRE STATEMENT

The | NQUI RE statement is used to obtain information regarding the properties of files and
units. The forms of the | NQUI RE statement are:

INQURE ([UNIT=] wu, ilist)
INQUIRE (FILE= fin, ilist)

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 79

The first form, inquiry by unit, takes a unit number as the principal argument and is used

for making inquiries about specific units. The unit number, u, is a positive integer
expression. The second form, inquiry by file, takes a file name as the principal argument
and is used for making inquiries about specific named files. The file name, fin, is a
character expression. Only one of UNI T= or FI LE= may be specified. One or more of the
following i /i st specifiers are also used with the | NQUI RE statement:

| OSTAT =

ERR =

EXI ST =

OPENED =

NUVBER =

NAMVED =

NAME =

ACCESS =

an 1/0 status specifier as described above.
an error specifier as described above.

aLOd CAL variable or array element which is defined with a
true value if the unit or file exists.

a LOd CAL variable or array element which is defined with a
true value if the unit or file is connected.

an | NTEGER variable or array element which is defined with
the number of the unit that is connected to thefile.

aLOd CAL variable or array element which is defined with a
true value if the file has aname.

a CHARACTER variable or array element which is defined with
the name of thefile.

a CHARACTER variable or array element which is defined with
either the value SEQUENTI AL or DI RECT depending on the
access mode.

SEQUENTI AL = a CHARACTER variable or array element which is defined with the

DI RECT

FORM =

FORVATTED =

value YES or NO indicating whether the file can be connected
for sequential access.

a CHARACTER variable or array element which is defined with
the value YES or NO indicating whether the file can be
connected for direct access.

a CHARACTER variable or array element which is defined with
either the value FORVATTED or UNFORMATTED depending on
whether the file is connected for formatted or unformatted I/O.

a CHARACTER variable or array element which is defined with
the value YES or NO indicating whether the file can be
connected for formatted 1/0.

FORTRAN 77 Language Reference Manual



80 I nput/Output and FORMAT Specifications

UNFORMATTED= a CHARACTER variable or array element which is defined with the

RECL

NEXTREC

BLANK

S| ZE

value YES or NO indicating whether the file can be connected
for unformatted 1/0.

an | NTEGER variable or array element which is defined with
the record length if the file is connected for direct access.

an | NTEGER variable or array element which is defined with
the value of the next record number to be read or written.

a CHARACTER variable or array element which is defined with
either the value NULL or zZERO depending on how blanks are
handled.

an | NTEGER variable or array element which is defined with
the size of the file in bytes.

Some of the specifiers may not be defined if a unit is not connected or a file does not

exist. For example:

CHARACTER*20 FN, AM

LOG CAL OS
I NTEGER RL

| NQUI RE (UNI T=18, OPENED=0S, NAME=FN, ACCESS=AM RECL=RL)

If unit 18 is not connected to afile, os will be defined with a false value, but FN, AM and
RL will be undefined. If unit 18 is connected for sequential access, oS, FN, and AMwill be
defined appropriately, but record length is meaningless in this context, and RL will be

undefined.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 81

ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements use internal files to effectively transfer data in
internal form to character form, and vise versa. ENCODE can be thought of as writing the
I'i st of variables to the CHARACTER variable char _f or mwith space padding if necessary,
while DECODE reads the values of the variables from char _f or m The forms of the ENCODE
and DECODE statements are:

ENCODE ( count, fnt, char_fornj,| OSTAT=j os] [, ERR=/ abel]) [/ist]
DECODE ( count, fnt, char_fornj,| OSTAT=i os] [, ERR=/ abel]) [/ist]

where: count is the number of characters to convert to character form in the

ENCODE statement. It is the number of characters to convert to internal
form in the DECODE statement.

fn isaformat specifier described in the Format Specifier section near
the beginning of this chapter.

char_formis a scalar variable or array which will hold the converted
character form for the ENCODE statement. |t holds the character form to be
converted for the DECODE statement.

i os 1ISan | NTEGER* 4 variable used to monitor error and end of file condi-
tions. It is described in the 1/0 Status Specifier section near the
beginning of this chapter.

| abel is a statement label at which execution will be continued in the
event of an error during an ENCODE or DECODE conversion.

listisalist of variables separated by commas. These arein internal form.

The following example assigns the ASCII representation of the variables| and J to the
character variable C. After the ENCODE statement, Cequals” 123 456

100

CHARACTER*20 C

= 123

J = 456

ENCODE (20, 100, C) 1, J
FORMAT (21 4)

END

FORTRAN 77 Language Reference Manual



82 I nput/Output and FORMAT Specifications

GIVING A FORMAT SPECIFICATION

An explicit format specification may be given in either a FORVAT statement or in a char-
acter array or character expression. A FORVAT statement must be labeled so that it can be
referenced by the data transfer statements (READ, WRI TE, PRI NT, etc.). The form of the
FORVAT statement is:

FORMAT fornmat_speci fication

When a format specification is given with a CHARACTER array or CHARACTER expression
(CHARACTER variables, array elements, and substrings are simple CHARACTER expressions)
it appears as aformat specifier in the cilist of datatransfer statements as described later in
this chapter. An array name not qualified by subscripts produces a format specification
which is the concatenation of all of the elements of the array. Leading and trailing blanks
within the CHARACTER item are not significant.

A format specification is given with an opening parenthesis, an optional list of edit
descriptors, and a closing parenthesis. A format specification may be given within a
format specification; that is, it may be nested. When aformat specification isgivenin this
manner it is called a group specifier and can be given a repeat count, called the group
repeat count, which is a positive | NTEGER constant immediately preceding the opening
parenthesis. The maximum level of nesting is 20.

The edit descriptors define the fields of a record and are separated by commas except
between a P edit descriptor and an F, E, D, or G edit descriptor and before or after slash
and colon edit descriptors (see below). The fields defined by edit descriptors have an
associated width, called the field width.

An edit descriptor is either repeatable or nonrepeatable. Repeatable means that the edit
descriptor is to be used more than once before going on to the next edit descriptor in the
list. The repeat factor is given immediately before the edit descriptor as a positive integer
constant.

The repeatable edit descriptors and their meanings are:

lwand | wm integer editing

Fw d floating point editing

Ew d and Ew dEe single precision scientific editing
Dw d double precision scientific editing
Gw d and Gw dEe general floating point editing

Lw logical editing

Al W character editing

Bw and Bw m binary editing

Ow and Ow. m octal editing

Zw and Zw. m hexadecimal editing

wand e are nonzero, unsigned, integer constants and d and mare unsigned integer con-
stants.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 83

The nonrepeatabl e edit descriptors and their meanings are:

"hih2... hn character string

nHh1 h2 ... hn Hollerith string

nx sKip positions

Tc, TLe, and TRC tab to column

kP set scale factor

/ start a new record

; conditionally terminate I/O
S, SP, and SS set sign control

BZ and BN set blank control

$ or\ suppress end of record

Q return count of characters remaining in current record
"h1h2...hn " character string

h is an ASCII character; n and ¢ are nonzero, unsigned, integer constants; and k is an
optionally signed integer constant.

FORMAT AND I/O LIST INTERACTION

During formatted data transfers, the /O list items and the edit descriptors in the format
specification are processed in parallel, from left to right. The I/O list specifies the
variables that are transferred between memory and the fields of a record, while the edit
descriptors dictate the conversions between internal and external representations.

The repeatable edit descriptors control the transfer and conversion of /O list items. A
repeatable edit descriptor or format specification preceded by a repeat count, r, is treated
as r occurrences of that edit descriptor or format specification. Each repeatable edit
descriptor controls the transfer of one item in the 1/O list except for complex items which
require two F, E, D, or G edit descriptors. A complex |/O list item is considered to be two
real items.

The nonrepeatable edit descriptors are used to manipulate the record. They can be used to
change the position within the record, skip one or more records, and output literal strings.
The processing of 1/0 list items is suspended while nonrepeatable edit descriptors are
processed.

If the end of the format specification is reached before exhausting all of the itemsin the
/O list, processing starts over at the beginning of the last format specification
encountered and the file is positioned to the beginning of the next record. The last format
specification encountered may be a group specifier, if one exists, or it may be the entire
format specification. If there is a repeat count in front of a group specifier it is aso
reused.

FORTRAN 77 Language Reference Manual



84 I nput/Output and FORMAT Specifications

INPUT VALIDATION

Before numeric conversion from external to internal values using a format specification,
input characters will be checked to assure that they are valid for the specified edit
descriptor.

Valid input under the | edit descriptor:

digits: 0,1,2,3,4,5,6,7,8,9
characters, +, -

Valid input under the B edit descriptor:
digits: 0,1

Valid input under the O edit descriptor:
digits: 0,1,2,3,4,5,6,7

Valid input under the z edit descriptor:

digits: 0,1,2,3,4,5,6,7,8,9
characters: A, B,C,D,E,F,a,b,c,d,e,f

Valid input under the F, E, D, and G edit descriptors:

digits: 0,1,2,3,4,5,6,7,8,9
characters: E, D, e, d, +, -, .

The appearance of any character not considered valid for a particular edit descriptor will
generate a runtime error. However, the appearance of a valid character in an invalid
position will not result in an error. If the ERR= /O specifier was present in the input
statement generating the error, control will be transferred to the specified line number. If
the 1 OSTAT= I/O specifier was present in the input statement generating the error, the
specified variable will be defined with the error code.

INTEGER EDITING

edit descriptors control the translation of character strings representing
es to and from the appropriate internal formats.

| Editing

The | wand | w. medit descriptors must correspond to an integer /O list item. The field
width in the record consists of wcharacters.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 85

On input, the 1/O list item will be defined with the value of the integer constant in the
input field which may have an optional leading sign.

The output field consists of a string of digits representing the integer value which is right
justified and may have aleading minus sign if the value is negative. If mis specified, the
string will consist of at least mdigits with leading zeros as required. The output field will
always contain at least one digit unless an mof zero is specified in which case only blank
characters will be output. If the specified field width is too small to represent the integer
value, thefield is completely filled with the asterisk character.

WRI TE (*,10) 12, -12, 12
10  FORMAT (214,16.4)

12 -12 0012

B, O, and Z Editing

The B, O, and z edit descriptors are specified in the same manner as the | edit descriptor
and perform bit editing on binary, octal, and hexadecimal fields respectively. The field
width in the record consists of wcharacters. An input list item can be up to thirty-two bits
in length and may have a LOG CAL, | NTEGER, REAL, Or COVPLEX data type. An output list
value can be no longer than thirty-two bits in length and may have a LOG CAL, | NTEGER,
REAL, or COVPLEX data type. (Note that COVPLEX data requires two edit descriptors per
dataitem).

On input, the I/O list item will be defined with the binary representation of the externa
value.

The output field consists of a string of characters representing the value and is right
justified. If mis specified, the string will consist of at least mdigits with leading zeros as
required. The output field will always contain at least one digit unless an mof zero is
specified in which case only blank characters will be output.

WRI TE (*,10) 199, 199, 199
10  FORMAT (z4, O7. 6, B9)

C7 000307 11000111

FLOATING POINT EDITING

TheF, E, D, and G edit descriptors control the translation of character strings representing
floating point values (REAL, DOUBLE PRECI SION, and COWLEX) to and from the
appropriate internal formats. The edit descriptor must correspond to a floating point 1/0
list item. On input, the I/O list item will be defined with the value of the floating point
constant in the input field.

A complex value consists of a pair of rea values and consequently requires two rea edit
descriptors.

FORTRAN 77 Language Reference Manual



86 I nput/Output and FORMAT Specifications

F Editing

The field width of the Fw d edit descriptor consists of w characters. The fractional
portion, if any, consists of d characters. If the specified field width is too small to
represent the value, the field is completely filled with the asterisk character.

The input field consists of an optional sign and a string of digits which can contain a
decimal point. This may be followed by an exponent which takes the form of either a
signed integer constant or the letter E or D followed by an optionaly signed integer
constant.

The output field consists of a minus sign if the value is negative and a string of digits
containing a decimal point with d fractional digits. The value is rounded to d fractional
digits and the string is right justified in the field. The position of the decimal point may
be modified by the scale factor as described under the kP edit descriptor.

WRITE (*,10) 1.23, -1.23, 123.0, -123.0
10 FORVAT (2F6. 2, F6. 1, F6. 0)

1.23 -1.23 123.0 -123.

E and D Editing

The field width of the Ew d, Ew dEe, and Dw: d edit descriptors consists of wcharactersin
scientific notation. d specifies the number of significant digits. If e is specified, the
exponent contains e digits, otherwise, the exponent contains two digits for E editing and
three digits for D editing.

Theinput field isidentical to that specified for F editing.

The output field consists of a minus sign if the value is negative, a zero, a decimal point,
astring of d digits, and an exponent whose form is specified in the table below. The value
is rounded to d fractional digits and the string is right justified in the field. The position
of the decimal point may be modified by the scale factor as described under the kP edit
descriptor.

Edit Absolute value Form of
Descriptor of Exponent Exponent
Ew d < 99 E+nn

Ew d 100 - 999 + nnn

Ew dEe < (106)-1 E+ nin2..ne
Dw d < 99 D+nn

Dw d 100 - 999 + nnn

WRITE (*,10) 1.23, -1.23, -123.0E-6, .123D3
10  FORMAT (2E12.4,E12.3E3,D12.4)

0.1230E+01 -0.1230E+01 -0.123E-003 0.1230D+03

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 87

G Editing

The Gw d and Gw dEe edit descriptors are similar to the F and E edit descriptors and
provide a flexible method of accomplishing output editing.

Theinput field isidentical to that specified for F editing.

The form of the output field depends on the magnitude of the value in the 1/O list. F
editing will be used unless the value of the item would cause the field width to be
exceeded in which case E editing is used. In both cases, the field consists of w right
justified characters.

Magnitude of N Equivalent Conversion
N<O0.1 Ew d

0.1 <N< 10 F(w4).d, 4X

1.0 < N< 10.0 F(w4).(d-1), 4X
100-2 < N < 100-1 F(w4).1, 4X

100-1 < N < 109 F(w4).0, 4X

N > 10d Ew d[ Ee]

WRI TE (*,10) 1.0, 10.0, 100.0, 1000.0, 10000.0
10  FORVAT (5GLO. 4)

1. 000 10. 00 100.0 1000. 0. 1000E+05

P Editing

The kP edit descriptor is used to scale floating point values edited with the F, E, D, and G
edit descriptors. k is called the scale factor and is given as an integer constant which may
negative, positive, or zero. The scale factor starts at zero for each formatted 1/0
Statement.

If there is an exponent in the input field, the scale factor has no effect, otherwise the
external valueis equal to theinternal value multiplied by 10k,

For output with F editing, the effect of the scale factor is the same as described for input.
For E and D editing, the scale factor is used to control decimal normalization of the output
value. If k is negative, leading zeros are inserted after the decimal point, the exponent is
reduced by k , and || significant digits are lost. If k is positive, the decima point is
moved to the right within the d significant digits, the exponent is reduced by k , and no
significant digits are lost. The field width remains constant in all cases, meaning that - d <
k<d+2.

FORTRAN 77 Language Reference Manual



88 I nput/Output and FORMAT Specifications

WRI TE (*,10) 1.23, 1.23, 1.23
10  FORMAT (1PF8. 4, -1PF8. 4, 1PE12. 4)

12. 3000 . 1230 1. 2300E+00

CHARACTER AND LOGICAL EDITING

The A and L edit descriptors control the translation of character strings representing
CHARACTER and LOG CAL values to and from the appropriate internal formats.

A Editing

The Al W edit descriptor is used to copy characters (bytes) to and from 1/0 list items. If
present, wspecifies the field width; otherwise the field width is the same as the length of
the I/O list item. The only editing performed is to space fill or truncate for input and
output respectively.

For input, when wis less than the length of the I/O list item, the charactersfrom thefield
are left justified and space filled to the length of the item. When wis equal to or greater
than the length of the I/O list item, the rightmost charactersin the field are used to define
the item.

For output, when wis less than or equal to the length of the 1/O list item, the field will
contain the leftmost wcharacters of the item. When wis greater than the length of the I/0
list item, theitemisright justified in the field with leading spaces added as necessary.

WRI TE (*,10) ' HELLO, WORLD ', ',’, ' WORLD
10  FORMAT (A5, A, A6)

HELLO, WORLD

L Editing

The Lwedit descriptor must correspond to a logical 1/O list item. The field width in the
record consists of wcharacters.

The input field consists of an optional decimal point and either the letter T (. TRUE. ) or F
(. FALSE. ). Other characters may follow, but they do not take part in determining the
LOG CAL value. Thefield may contain leading spaces.

The output field is right justified and contains either the letter T or F representing the
values. TRUE. and . FALSE. , respectively.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 89

WRI TE (*,10) .TRUE., .FALSE.
10  FORMAT (2L2)

TF

SIGN CONTROL EDITING

The s, sP, and Ss edit descriptors control the output of optional plus signs. Normally, a
leading plus sign is not output for positive numeric values. The SP edit descriptor forces a
plus sign to appear in the output field. The S and SS edit descriptors return the processing
of plus signs to the default state of not being output.

WRI TE (*,10) 123, -123, 123.0, -123.0, 123.0
10  FORMAT (SP, 215, 2F7. 1, SS, F7. 1)

+123 -123 +123.0 -123.0 123.0

BLANK CONTROL EDITING

The BN and Bz edit descriptors control the processing of blanks in numeric input fields
which can be interpreted either as nulls or zeros. The default for an individua file
connection is established with thBLANK=" specifier. If the specifier does not appear in
an OPEN statement blanks are treated as nulls. BMedit descriptor causes blanks to be
treated as nulls and tisz edit descriptor causes blanks to be treated as zeros.

POSITIONAL EDITING

TheX, T, and/ edit descriptors are used to control the position within the record and the
position within the file.

X Editing

The nx edit descriptor moves the position within the receardharacters forward. On
input n characters are bypassed in the record. On outplainks are output to the record.

WRI TE (*, 10) -123, -123.0
10  FORMAT (14, 1X, F6. 1)

-123 -123.0

T, TL,and TR Editing

On output, the entire record is first filled with spaces. The TLc, and TRe edit
descriptors are also used to move the position within the record, but in a non-destructive
manner. This is called tabbing. Position means character position with the first character

FORTRAN 77 Language Reference Manual



90 I nput/Output and FORMAT Specifications

in the record being at position one. Changing the position within the record does change
the length of the record.

The Tc edit descriptor moves to absolute position ¢ within the record. The TLc and TRe
edit descriptors move to positions relative to the current position. TRc moves the position
¢ characters to the right and TLc moves the position ¢ characters to the left. ¢ isa
positive integer constant.

WRI TE (*,10) 89, 567, 23, 1, 4
10 FORMAT (T8,12,TL5,13,T2,12,TL3,11, TR2,11)

123456789

Slash Editing

The / edit descriptor positions the file at the beginning of the next record. On input it
skips the rest of the current record. On output it creates a new record at the end of the
file.

The/ edit descriptor can be used to skip entire records on input or to write empty records
on output. Empty recordsin internal or direct accessfiles are filled with blanks.

When the / edit descriptor is used with files connected for direct access it causes the
record number to be increased and data transfer will be performed with that record.

WRI TE (*,10) (A, A=1.0,10.0)
10  FORWAT (5F5.1,/,5F5. 1)

Dollar Sign and Backslash Editing

The $ and \ edit descriptors are interchangeable and are used to suppress the normal
output of end of record characters in formatted records. When one of these edit
descriptors appears in a format list, the output of end of record characters will be
suppressed for the remainder of the 1/O statement.

COLON EDITING

The : edit descriptor is used to terminate a formatted 1/0 statement if there are no more
data items to process. For example, the : edit descriptor could be used to stop positional
editing when there are no more itemsin the I/O list.

APOSTROPHE AND HOLLERITH EDITING

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 91

Apostrophe and Hollerith edit descriptors are used to copy strings of characters to h
output record. These edit descriptors may only be used with the WRI TE, PRI NT an
statements.

Apostrophe Editing

An apostrophe edit descriptor takes exactly the same form as a character constant as
described in The FORTRAN 77 Program chapter. The field width is equal to the length
of the string.

WRI TE (*, 10)
10  FORVAT (' APOSTROPHE , 1X,’ EDI T FI ELDS)

APCSTROPHE EDI T FI ELDS

H Editing

The nH edit descriptor takes exactly the same form as a Hollerith constant as described in
the chapter The FORTRAN 77 Program. The field width is equal to the positive integer
constant, n, which defines the length of the Hollerith constant.

VR TE (*, 10)
10  FORMAT (15HHOLLERI TH EDI T , 6HFI ELDS)

HOLLERI TH EDI T FI ELDS

Q EDITING

The Q edit descriptor obtains the number of characters remaining in the current input
record and assigns it the corresponding 1/O list element. The 1/O list element must be four
byte integer variable. The Q edit descriptor has no effect on output except that the
corresponding I/O list item is skipped.

READ (*,10) I, (CHRS(J), J=1,1)
10  FORMAT (Q 80A1)

This example uses the Q edit desciptor to determine the number of charactersin a record
and then reads that many characters into the array CHRS.

LIST DIRECTED EDITING

List directed editing is indicated with an asterisk (*) as a format specifier. List directed
editing selects editing for 1/0O list items appropriate to their data type and value. List
directed editing treats one or more records in afile as a sequence of values delimited by
value separators. A value separator is one or more blanks, a comma, a slash, or an end of
record. Blanks can precede and follow the comma and slash separators. Except within a
guoted character constant, multiple blanks and end of record characters are treated as a

FORTRAN 77 Language Reference Manual



92 I nput/Output and FORMAT Specifications

single blank character. An end of record occurring within a quoted character constant is
treated asanull.

Tabs are expanded modulo eight by default; other tab sizes can be used by setting an
environment variable. Refer to your system documentation for instructions on modifying
this system dependent variable.

The values are either constants, nulls, or one of the forms:
r*c

r*

where r is an unsigned, nonzero, integer constant. The first form is equivaent to r
occurrences of the constant ¢, and the second is equivalent to r nulls. Null items are
defined by having no characters where a value would be expected, that is, between
successive separators or before the first separator in a record.

List Directed Input

A character value is a string of characters between value separators. If the string is quoted
embedded blanks are significant and the value can span more than one record. The
corresponding 1/O list item is defined with the value as though a character assignment
statement was performed; left justified and truncated or blank filled as necessary.

Any form suitable for an | edit descriptor can be used for list directed input of an
| NTEGER item.

Any form suitable for an L edit descriptor can be used for list directed input of aLOG CAL
item. In particular, . TRUE. and. FALSE. are acceptable.

DOUBLE PRECISION and REAL input is performed with the effect of a Fw 0 edit
descriptor where wis the number of characters in the constant. The value can be in any
form acceptable to the F edit descriptor.

A COWPLEX constant must have an opening parenthesis, a floating point constant as
described above, a comma, another floating point constant, and a closing parenthesis.
Leading and trailing spaces are permitted around the comma. The first constant
represents the real portion of the value and the second constant represents the imaginary
portion.

Null values have no effect on the corresponding 1/0 list items; their definition status will
not change.

A dlash in the input record terminates a list directed input statement. Any unprocessed
1/O list items will be left unchanged.

FORTRAN 77 Language Reference Manual



I nput/Output and FORMAT Specifications 93

List Directed Output

With the exception of CHARACTER constants, all output items are separated by a single
blank that is generated as part of the string.

CHARACTER output is performed using an A edit descriptor. There is no leading blank.
LOG CAL output is performed using an L2 edit descriptor.

I NTEGER output is performed using an | wedit descriptor where wis one digit greater than
the number of digits required to represent the value.

DOUBLE PRECI SI ON and REAL output is performed using 1PGL5. 6E2 and 1PG24. 15E3
edit descriptors respectively.

COVPLEX output consists of an opening parenthesis, the real portion of the value, a
comma, the imaginary portion of the value, and a closing parenthesis. The numeric
portions are formatted with descriptors that match the precision of the data as above.

NAMELIST DIRECTED EDITING

Namelist directed editing, an extension to standard FORTRAN 77, allows a number of
variables to be treated as a group for the purpose of data transfer. Its use is restricted to
formatted external files that have been connected for sequential access. Namelist directed
editing selects editing for a namelist group member based on its type and value. Namelist
directed editing treats one or more records as a group, where each group contains a series
of group-member/value(s) combinations.

Namelist Directed I nput

Namelist directed input reads external records until it finds the specified namelist group.
It then assigns data to the specified group members in the order they are encountered.
Group members which are not specified retain their previous values.

Namelist directed input has the following form:

$group nenber=val ue, [ menber=val ue, ...] $END

where: $ is used to delimit the start and end of a particular group. The
ampersand (&) can also be used for this purpose. The slash (/) can aso
be used to delimit the end of input for a given namelist group.

group is the symbolic name of a namelist previously defined in the
program unit. The name cannot contain spaces or tabs.

menber is anamelist defined variable. It may be a scalar, an array name,
an array element name, a substring, or an array name with a substring.
The member name cannot contain spaces or tabs. Subscript and substring

FORTRAN 77 Language Reference Manual



94 I nput/Output and FORMAT Specifications

specifiers must be integer constants. Use of symbolic (PARAVETER)
constantsis not allowed.

val ue is a constant, a list of constants, or a repetition of constants of the
form r*c. Valid separators for value constants are spaces, tabs, and
commas. A null value is specified by two consecutive commas, a leading
comma, or a trailing comma. The form r* indicates r null values.
Character constants must be delimited by apostrophes or quotation
marks. Occurrences of a character delimiter within the delimited string
are represented by two consecutive occurrences of the delimiter. The end
of record character is equivalent to a single space unless it occurs in a
character constant, in which case it isignored and the character constant
isassumed to continue on the next record. Hollerith, binary, octal, and
hexadecimal constants are not permitted.

ENDis an optional part of the terminating delimiter.

Group and member names are not case sensitive and are folded to upper case before use.
Consider the following example:

| NTEGER*4 | NT, i nt
NAMELI ST / NLI ST/ | NT, i nt

READ (*, NML=NLI ST)
where the input looks like:

$NLI ST
INT = 12,
int = 15,
$END

Because namelist input is not case sensitive, execution of the read statement will cause
| NT to take on the value 15 and the value of i nt will be unchanged.

Conversion of external to internal representations is performed using the same editing as
list directed input.

It is not necessary to assign values to all members of a namelist group. Group members
not specified in the input retain their previous values. For namelist input of subscripted
arrays and substring, only the values of the specified array elements and substrings are
changed. Input containing group-members which are not actually members of the group
IS not permitted.

When namelist input is performed using an asterisk for the unit specifier, the group-name
Iswritten to standard out and the program waits for input from standard in.

An example of namelist directed input follows:

FORTRAN 77 Language Reference Manual



| nput/Output and FORMAT Specifications 95

NAVELI ST / WHQ' NAME, CODE, NEW RATI O, UNCHANGED

CHARACTER* 8 NANE

| NTEGER* 4 CODE( 4)

LOGI CAL*4 NEW

REAL*4 RATI O, UNCHANGED

OPEN( 10, FI LE=' | NFO , FORMVE' FORVATTED , ACCESS=" SEQUENTI AL’ )
READ( UNI T=10, NML=VHO)

where the input file test contains:

$VHO

NANVE = ' John Doe’,
CODE(3) = 12,13,

NEW = . TRUE. ,
RATIO = 1.5,

$END

The NAVELI ST statement in this example creates a group named WHO with the members
NAME, CODE, NEW RATI O, and UNCHANGED. The READ statement then assigns values to the
group members which are present in the input file. After execution of the READ statement,
the variables NAMVE, NEW and RATI O will have the values specified in the input. Because
the array CODE has been subscripted, value assignment will begin with element three and
continue until a new group-member name is encountered. As a result, elements 3 and 4
will be assigned the values 12 and 13 respectively. Elements 1 and 2 retain their previous
values. Since the variable UNCHANGED does not appear in the input, it will retain whatever
value it had before execution of the READ statement.

Namelist Directed Output

Namelist directed output transfers the current values of all members of a namelist group.
The values are written in a form acceptable for namelist input. The group and group
member names will be converted to upper case before being output. The order in which
the values are written is determined by the order in which the group members appear in
the NAMVELI ST statement. An example of namelist output follows:

I NTEGER ONE, TWO

CHARACTER* 10 ALPHA

NAMELI ST / NLI ST/ ONE, TWO, ALPHA

ONE = 10

TWO = 20

ALPHA = ' ABCDEFGHI J’

OPEN( 10, FI LE=" TEST' , ACCCESS=" SEQUENTI AL’ , FORM=" FORVATTED )
VRl TE( UNI T=10, NML=NLI ST)

The WRrI TE statement produces the following output:

$NLI ST

ONE = 10,

TWO = 20,

ALPHA = ' ABCDEFGHI J’
$END

FORTRAN 77 Language Reference Manual






97

CHAPTER 7

Programs, Subroutines, and Functions

There are seven types of procedures available in Absoft Fortran 77: main programs,
brouti ernal functions, statement functions, intrinsic functions, BLOCK DATA, and

The main program is the entry point of a FORTRAN 77 program. The compiler does not
require that the main program occurs first in the source file, however, every FORTRAN
77 program must have exactly one main program.

Subroutines and external functions are procedures that are defined outside of the program
unit that references them. They may be specified either in separate FORTRAN 77
subprograms or by means other than FORTRAN 77 such as assembly language or the C
programming language.

BLOCK DATA subprograms are nonexecutable procedures that are used to initiaize
variables and array elements in named COWON blocks. There may be several block data
subprogramsin a FORTRAN 77 program.

GLOBAL DEFI NE subprograms are nonexecutable program units which allow for
declarations which define no storage and are visible to an entire FORTRAN source file.
Such declarations are STRUCTURE, PARAVETER, EXTERNAL and | NLI NE.

PROGRAMS

The PROGRAM Statement is given in the following manner:

PROGRAM pgm

The program statement is not required to be present in a FORTRAN 77 program. If it is
present it must be the first line of the main program unit.

SUBROUTINES

A subroutine is a separate procedure that is defined external to the program unit that
referencesit and is specified in a subroutine subprogram. A subroutine may be referenced
within any other procedure of the executable program.

While the ANSI standard prohibits a subroutine from referencing itself, directly or
indirectly, thisimplementation of FORTRAN 77 alows recursion.

The form of a subroutine subprogram declaration is:

FORTRAN 77 Language Reference Manual



98 Programs, Subroutines, and Functions

SUBRQUTINE sub [([arg] [,arg]l...)]

where: sub is a unique symbolic name that is used to reference the sub-
routine.

([arg]l [,arg]..) is an optiona list of variable names, array
names, dummy procedure names, or asterisks that identifies the
dummy arguments that are associated with the actual arguments
in the referencing statement.

A subroutineisreferenced with aCALL statement which has the form:

CALL sub [([arg] [,arg]l...)]
where: sub isthe symbolic name of a subroutine or dummy procedure.

([arg] [,arg]...) isthelist of actual arguments which are as-
sociated with the arguments in the SUBROUTI NE statement.

Subroutine Arguments

The argument lists of CALL and SUBROUTI NE statements have a one to one
correspondence; the first actual argument is associated with the first dummy argument
and so on. The actual argumentsin a CALL statement are assumed to agree in number and
type with the dummy arguments declared in the SUBROUTI NE statement. No type checking
is performed by the compiler or the run time system to insure that this assumption is
followed.

The addresses of labeled statements may be passed to subroutines by specifying the label
preceded by an asterisk in the actual argument list and specifying an asterisk only in the
corresponding position in the dummy argument list of the SUBROUTI NE statement. This
allows you to return to a location in the calling procedure other than the statement that
immediately follows the CALL statement (See RETURN below).

Dummy procedure names allow you pass the names of procedures to other subprograms.
The dummy procedure name can then be referenced as though it were the actual name of
an external procedure.

FUNCTIONS

A function returns a value to the point within an expression that references it. An external
function is specified in a separate procedure called a function subprogram. A statement
function is defined in a single statement within a program unit and is local to that
program unit. Intrinsic functions are library procedures provided with the FORTRAN 77
environment and are available to any program unit in an executable program. A function

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 99

name may not be used on the left side of an equals sign except for an externa function
name and then only within the program unit which definesit.

A function reference is made in the form of an operand in an expression. The function
name is given with an argument list enclosed in parentheses. The parentheses must be
used even if there are no arguments to the function so that the compiler can determine
that a function reference is indeed being made and not simply areference to avariable.

External Functions

An external function may be referenced within any other procedure in an executable pro-
gram. Character functions must be declared with integer constant lengths so that the
compiler can determine the size of the character value that will be returned.

Absoft FORTRAN 77 alows the recursive use of external functions.

The form of afunction subprogram declarationis:

[type [*1en]] FUNCTION func ([arg]l [,arg]...)

where: func 1S a unique symbolic name that is used to reference the
function.

([arg] [,arg]...) isan optiona list of variable names, array
names, or dummy procedure names that identifies the dummy
arguments that are associated with the actual arguments in the
referencing statement.

As indicated, the function can be given an optional type and length attribute. This can be
done either explicitly in the FUNCTI ON statement or in a subsequent type statement, or
implicitly following the data typing rules described in The FORTRAN 77 Program
chapter. Note that an | MPLI CI T statement may change the data type and size.

When a CHARACTER function is given a length attribute of *(*) it assumes the size
established in the corresponding character declaration in the referencing program unit.

The symbolic name used to define the function must be assigned a value during the
execution of the function subprogram. It isthe value of this variable that is returned when
aRETURN Or END statement is executed.

Statement Functions

A statement function is specified with a single statement that may appear only after the
declaration section and before the executable section of the program unit in which it isto
be used. A statement function is defined in the following manner:

func ([arg[,arg]...]) = e

FORTRAN 77 Language Reference Manual



100 Programs, Subroutines, and Functions

where: f unc isthe namethat is used to reference the function.

([argl[,arg]...]) is the dummy argument list, and e is an
expression using the arguments from the dummy argument list.

The dummy argument names used in the statement function argument list are local to the
statement function and may be used el sewhere in the program unit without conflict.

A statement function statement must not contain a forward reference to another statement
function. The compilation of a statement function removes the symbolic name of the
function from the list of available names for variables and arrays within the program unit
inwhich it is defined. Any variable or array that is defined in a program unit may not be
redefined as a statement function.

CHARACTER statement functions may not use the * (*) length specifier.

Intrinsic Functions

Intrinsic functions contained in the math library do not follow the typing rules for user
defined functions and cannot be altered with an | MPLI CI T statement. The types of these
functions and their argument list definitions appear in the table in the Programs,
Subroutines, and Functions chapter.

The generic names listed in that table are provided to simplify the use of intrinsic
functions that take different types of arguments. Except for the type conversion functions,
the type of ageneric function is the same as the type of its arguments.

ENTRY STATEMENT

The ENTRY statement may only be used within subroutine and function subprograms and
provides for multiple entry points into these procedures. The form of an ENTRY statement
Is the same as that for a SUBROUTI NE statement except that the keyword ENTRY is used.
An ENTRY statement appearing within a FUNCTI ON subprogram may appear in a type
statement. An ENTRY statement may not occur within any block structure (DO, I F, or

In afunction subprogram, a variable name that is used as the entry name must not appear
in any statement that precedes the appearance of the entry name except in a type
statement. All function and entry names in a function subprogram share an equivalence
association.

Entry names used in character functions must have a character data type and the same
size as the name of the function itself.

RETURN STATEMENT

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 101

The RETURN statement ends execution in the current subroutine or function subprogram
and returns control of execution to the referencing program unit. The RETURN statement
may only be used in function and subroutine subprograms. Execution of a RETURN
statement in a function returns the current value of the function name variable to the
referencing program unit. The RETURN statement is given in the following manner:

RETURN [ €]

where: e is an | NTEGER expression allowed only in subroutine RETURN
statements and causes control to be returned to a labeled
statement in the calling procedure associated with an asterisk in
the dummy argument list. The first alternate return address
corresponds to the first asterisk, the second return address to the
second asterisk, etc. If the value of e is less than one or greater
than the number of asterisks, control is returned to the statement
immediately following the CALL statement.

PASSING PROCEDURESIN DUMMY ARGUMENTS

When a dummy argument is used to reference an external function, the associated actual
argument must be either an external function or an intrinsic function. When a dummy
argument is associated with an intrinsic function there is no automatic typing property. If
a dummy argument name is also the name of an intrinsic function then the intrinsic
function corresponding to the dummy argument name is removed from the list of
availableintrinsic functions for the subprogram.

If the dummy argument is used as the subroutine name of a CALL statement then the name
cannot be used as a variable or afunction within the same program unit.

PASSING RETURN ADDRESSESIN DUMMY ARGUMENTS

If adummy argument is an asterisk, the compiler will assume that the actual argument is
an aternate return address passed as a statement label preceded by an asterisk. No check
is made by the compiler or by the run time system to insure that the passed parameter is
in fact avalid alternate return address.

COMMON BLOCKS

A COMMON block is used to provide an area of memory whose scoping rules are greater
than the current program unit. Because association is by storage offset within a known
memory area, rather than by name, the types and names of the data elements do not have
to be consistent between different procedures. A reference to a memory location is
considered legal if the type of data stored there is the same as the type of the name used
to access it. However, the compiler does not check for consistency between different
program units and COMVION bl ocks.

FORTRAN 77 Language Reference Manual



102 Programs, Subroutines, and Functions

The total amount of memory required by an executable program can be reduced by using
COMVON blocks as a sharable storage pool for two or more subprograms. Because refer-
ences to data items in common blocks are through offsets and because types do not
conflict across program units, the same memory may be remapped to contain different
variables.

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 103
Intrinsic Functions
Specific Generic Argument Result
Name Name Usage Type Type Notes
Type Conversion
I NT I NT I NT( x) any i nt eger 1
I I NT | NT I 1 NT( x) r eal i nteger*2 1
JI NT I NT JI NT( x) real i nt eger 1
KI NT I NT Kl NT( x) real i nteger*8 1
I FI X I NT I FI X(x) real i nt eger 1
I'1FI X | NT 1 FIX(x) r eal i nteger*2 1
HFI X I NT HFI X( x) real i nt eger*2 1
KFI X I NT KFI X( x) real i nteger*8 1
JIFI X I NT JI FI X( x) r eal i nt eger 1
| DI NT I NT | DI NT(d) doubl e i nt eger 1
| 1 DI NT | NT | 1 DI NT(d) doubl e i nt eger*2 1
JI DI NT | NT JI DI NT( d) doubl e i nt eger 1
REAL REAL REAL( x) any real 2
FLOAT REAL FLOAT(i) i nt eger real 2
FLOATI REAL FLOATI (i) i nt eger*2 real 2
FLOATJ REAL FLOATJI(i ) i nt eger real 2
FLOATK REAL FLOATJ (i) i nteger*8 r eal 2
SNGL REAL SNG_( d) doubl e real 2
DBLE DBLE DBLE( x) any doubl e 3
DREAL DREAL DREAL ( x) any doubl e 3
DFLCAT DBLE DFLQOAT( x) any doubl e 3
DFLOTI DBLE DFLOTI (i) i nteger*2 doubl e 3
DFLOTJ DBLE DFLOTJ(i ) i nt eger doubl e 3
DFLOTK DBLE DFLOTJ(i ) i nteger*8 doubl e 3
CMPLX CMPLX CVPLX( x) any conpl ex 4
DCVPL X DCVPL X DCMVPLX( x) any conpl ex*16 4
| CHAR | CHAR( a) character i nt eger 5
CHAR CHAR( i) i nt eger character 5
Truncation

Al NT Al NT Al NT(r) real real 1
DI NT Al NT DI NT( d) doubl e doubl e 1

Nearest Whole Number
ANI NT ANI NT ANI NT(r) real real
DNI NT ANI NT DNI NT( d) doubl e doubl e

Nearest I nteger

NI NT NI NT NI NT(r) real i nt eger
I NI NT NI NT I NI NT(r) real i nt eger*2
JNI NT NI NT JNINT(r) r eal i nt eger
KNI NT NI NT JNINT(r) r eal i nteger*8
| DNI' NT NI NT | DNI NT( d) doubl e i nt eger

FORTRAN 77 Language Reference Manual



104 Programs, Subroutines, and Functions

| | DNNT NI NT | 1 DNNT( d) doubl e
J1 DNNT NI NT J1 DNNT( d) doubl e
KI DNNT NI NT KDNI NT( d) doubl e

i nt eger*2
i nt eger
i nteger*8

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 105
Specific Generic Argument Result
Name Name Usage Type Type Notes
Absolute Value
ABS ABS ABS( x) any any 6
| ABS ABS | ABS(i) i nt eger i nt eger
I I ABS ABS I 1 ABS(i) i nt eger*2 i nt eger*2
JI ABS ABS JI ABS(i ) i nt eger i nt eger
Kl ABS ABS Kl ABS(i ) i nteger*8 i nt eger*8
DABS ABS DABS( d) doubl e doubl e
CABS ABS CABS( ¢) conpl ex real 6
CDABS ABS CDABS( cd) conpl ex*16 doubl e 6
Remaindering
MOD MOD MOD( X, Y) any any
I MOD MOD I MOD(i, ) i nteger*2 i nteger*2
JMOD MOD JMOD(i, ) i nt eger i nt eger
KMoD MOD KMOD(i , j) i nteger*8 i nteger*8
AMOD MOD AMOI( r, S) real real
DMOD MOD DMOD( d, e) doubl e doubl e
Transfer of Sign
I SI GN | GN I SIGN(i,j) i nt eger i nt eger
I'1SIGN | GN I1SIGN(i, ] i nteger*2 i nt eger*2
JI SI GN SI GN JISIG\(i, | i nt eger i nt eger
Kl SI GN SI GN KISIG\(i,j i nteger*8 i nteger*8
SI GN SI GN SIGN(r, s) real real
DSI GN SIGN DSI G\(d, e) doubl e doubl e
Positive Difference
| DI M D M D Mi,j) i nt eger i nt eger
I1DM D M [1DMi,j) i nteger*2 i nteger*2
JI DI M DI M JIDIMi,j) i nt eger i nt eger
Kl DI M DM KIDIMi,j) i nteger*8 i nteger*8
DM DM D Mr,s) real real
DDI M D M DDI M d, e) doubl e doubl e
Double Precision Product
DPRCD DPROD(r, S) real doubl e

FORTRAN 77 Language Reference Manual



106 Programs, Subroutines, and Functions
Specific Generic Argument Result
Name Name Usage Type Type Notes
Choosing Largest Value
MAX MAX MAX(x,Y,...) any any
MAXO MAX MAXO(i,j,...) integer integer
IMAXO0 MAX IMAXO(i,j,...) integer*2 integer*2
JMAXO0 MAX JMAXO(i,j,...) integer integer
KMAXO0 MAX KMAXO(,j,...) integer*8 integer*8
AMAX1 MAX AMAX1(r,s,...) real real
DMAX1 MAX DMAX1(d,e,...) double double
AMAXO AMAXO(i,j,...) integer real
AIMAXO AIMAXO(i,j,...) integer*2 real
AIJMAXO0 AIMAXO0(i,j,...) integer real
MAX1 MAX1(r,s,...) real integer
IMAX1 IMAX1(r,s,...) real integer*2
JMAX1 JMAX1(r,s,...) real integer
KMAX1 KMAX1(r,s,...) real integer*8
Choosing Smallest Value
MIN MIN MIN(X,Y,...) any any
MINO MIN MINO(,j,...) integer integer
IMINO MIN IMINO(i,j, ...) integer*2 integer*2
JMINO MIN JMINO(i,j,...) integer integer
KMINO MIN KMINO(i,j,...) integer*2 integer*2
AMIN1 MIN AMINL(r,s,...) real real
DMIN1 MIN DMIN1(d,e,...) double double
AMINO AMINO(,j,...) integer real
AIMINO AIMINO(,j,...) integer*2 real
AJMINO AIMINO(i,j,...) integer real
MIN1 MINZ1(r,s,...) real integer
IMIN1 IMINL(r,s,...) real integer*2
JMIN1 JMINA(r,s,...) real integer
KMIN1 KMINL(r,s,...) real integer*8
Imaginary Part of Complex
AIMAG AIMAG(c) complex real 6
DIMAG DIMAG(cd) complex*16 double 6
Conjugate of Complex
CONJG CONJG(c) complex complex 6
DCONJG DCONJG(cd) complex*16 complex*16 6
Squar e Root
SQRT SQRT SQRT(r) real real
DSQRT SQRT DSQRT(d) double double
CSORT SQRT CSQRT(c) complex complex
CDSQRT SQRT CDSQRT(cd) complex*16 complex*16

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 107
Specific Generic Argument Result
Name Name Usage Type Type Notes
Exponential
EXP EXP EXP(r) real real
DEXP EXP DEXP( d) doubl e doubl e
CEXP EXP CEXP( c) conpl ex conpl ex
CDEXP EXP CDEXP( cd) conpl ex* 16 conpl ex* 16
Natural Logarithm
LOG LOG LOF x) any any
ALCG LOG ALOGE(r) real real
DLOG LOG DLOE d) doubl e doubl e
CLOG LOG CLOF ) conpl ex conpl ex
CDLOG LOG CDLOE cd) conpl ex*16 conpl ex*16
Common Logarithm
LOGLO LOGLO LOGLO( x) any any
ALOGLO0 LOGLO ALOGLO(r) real real
DLOGLO LOGLO DLOGLO( d) doubl e doubl e
Sine
SIN SIN SIN(r) real real 7
SI ND SI ND SIND(r) r eal r eal 7
DSI N SIN DSI N( d) doubl e doubl e 7
DSI ND SI ND DSI ND( d) doubl e doubl e 7
CSIN SI'N CSIN(c) conpl ex conpl ex 7
CDSI N SIN CDSI N( cd) conpl ex*16 conpl ex*16 7
Cosine
CcGos cos COos(r) r eal r eal 7
Cosbh COosD COosD(r) r eal r eal 7
DCOSs Ccos DCOs( d) doubl e doubl e 7
DCOSD CosD DCOSD( d) doubl e doubl e 7
CCOs cos CCOs( ¢) conpl ex conpl ex 7
CDCOS CCs CDCOS( cd) conpl ex*16 conpl ex*16 7
Tangent
TAN TAN TAN(T) real real 7
TAND TAND TAND( r) r eal r eal 7
DTAN TAN DTAN( d) doubl e doubl e 7
DTAND TAND DTAND( d) doubl e doubl e 7
Arcsine
ASI N ASI N ASI N(r) real real
ASI ND ASI ND ASI ND(r) real real
DASI N ASI N DASI N( d) doubl e doubl e

FORTRAN 77 Language Reference Manual



108 Programs, Subroutines, and Functions

DASI ND ASI ND DASI ND( d) doubl e doubl e
Specific Generic Argument Result
Name Name Usage Type Type Notes
Arccosine
ACCS ACCS ACOS(r) real real
ACCSD ACCSD ACOSD( r) real real
DACCS ACCS DACOS( d) doubl e doubl e
DACCSD DACGCSD DACGCSI( d) doubl e doubl e
Arctangent
ATAN ATAN ATAN(T) real real
ATAND ATAND ATAND( r) r eal r eal
DATAN ATAN DATAN( d) doubl e doubl e
DATAND ATNAD DATAND( d) doubl e doubl e
ATAN2 ATAN2 ATAN2(r, S) real real
DATAN2 ATAN2 DATAN2( d, e) doubl e doubl e
ATAN2D ATAN2D ATAN2D(r, S) real real
DATAN2D ATAN2D DATAN2D( d, e) doubl e doubl e
Hyperbolic Sine
SI NH SI NH SINH(r) real real
DSI NH SI NH DSI NH( d) doubl e doubl e
Hyperbolic Cosine
CCsH CCsH COSH(r) real real
DCOSH CCsH DCOSH( d) doubl e doubl e
Hyper bolic Tangent
TANH TANH TANH(r) r eal r eal
DTANH TANH DTANH( d) doubl e doubl e
Length of String
LEN LEN( a) character i nt eger 9
LEN TRI M LEN TRI M a) char acter i nt eger 26
L ocation of Substring
| NDEX | NDEX( a, b) character i nt eger 8
Trim Trailing Blanks
TRI M TRI M a) char act er character 11

String Replication and Justification

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 109

REPEAT REPEAT(a, i) char act er character 12
ADJUSTL ADJUSTL( a) char act er character 13
ADJUSTR ADJUSTR( a) char act er character 14

FORTRAN 77 Language Reference Manual



110 Programs, Subroutines, and Functions

Specific Generic Argument Result

Name Name Usage Type Type Notes
Lexical Comparisons

LGE LCE(a, b) charact er | ogi cal 10

LGT LGT(a, b) character | ogi cal 10

LLT LLT(a, b) character | ogi cal 10

LLE LLE(a, b) char acter | ogi cal 10

Zero Extension

ZEXT ZEXT ZEXT(i) i nt eger i nt eger

| ZEXT ZEXT | ZEXT(i) i nteger*2 i nt eger

JZEXT ZEXT JZEXT(i) i nt eger i nt eger

KZEXT ZEXT KZEXT( i) i nteger*8 i nt eger
Memory Addressing

BYTE BYTE(i ) i nt eger integer*1 20

WORD VAORD( i ) i nt eger integer*2 20

LONG LONG(i ) i nt eger i nteger*4 20

[94 LCC [94 LOC(a) any integer*4 20

Pass By Value

[ %4 VAL [ %4 VAL( a) any any 22

[ 94 VAL4 [ 94 VALA( a) any any 22

[ 99 VAL2 [ 94 VAL2( a) any i nteger integer*2 22

[ 94 VAL1 [ 94 VAL1( a) any i nteger integer*l 22

Pass By Reference
[ %4 REF [ 94 REF( a) any any 24
Pass By Descriptor
[ 94 DESCR [ 94 DESCR( a) any any 25

Bit Move Subroutine

MBI TS CALL MVBITS(i,j,|l,mn) 19

Get Sizeof A Data Type
S| ZEOF S| ZEOF(t ype) i nt eger 23

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 111

Specific Generic Argument Result
Name Name Usage Type Type Notes
Bitwise Operations

SHI FT SHI FT(i,j) i nt eger i nt eger 21
| SHFT | SHFET(i,j) i nt eger i nt eger 21
|| SHFT I 1 SHFT(i,j) i nt eger *2 integer*2 21
JI SHFT JI SHFT(i, ) i nt eger i nt eger 21
Kl SHFT KI SHFT(i, j) i nteger*8 i nteger*8 21
| SHFTC | SHFTC(i, |, k) i nt eger i nt eger 16
|1 SHFTC I I SHFTC(i , j, k) i nt eger *2 integer*2 16
JI SHFTC JI SHFTC(i , j , k) i nt eger i nt eger 16
Kl SHFTC KI SHFTC(i , | , k) i nteger*8 i nteger*8 16
I OR I OR(i,j) i nt eger i nt eger 15
I'1OR I1TOR(i,j) i nt eger *2 integer*2 15
JI OR JIOR(i,j) i nt eger i nt eger 15
Kl OR KIOR(i,j) i nteger*8 i nteger*8 15
| AND I AND(i , j) i nt eger i nt eger 15
I 1 AND I 1 AND(i,j) i nt eger *2 integer*2 15
J1 AND JIAND(i, j) i nt eger i nt eger 15
Kl AND KI AND( i, j) i nteger*8 i nteger*8 15
NOT NOT(i ) i nt eger i nt eger 15
I NOT | NOT(i ) i nt eger*2 integer*2 15
JNOT JNOT( i) i nt eger i nt eger 15
KNOT KNOT (i ) i nteger*8 i nteger*8 15
| EOR | EOR(i, ) i nt eger i nt eger 15
I EOR 1 EOR(i,j) i nt eger *2 integer*2 15
JI EOR JIEOR(i, ) i nt eger i nt eger 15
Kl EOR KI EOR(i,j) i nteger*8 i nteger*8 15
IBITS I BI TS(i, ], k) i nt eger i nt eger 17
I1BITS 1Bl TS(i,j, k) i nt eger *2 integer*2 17
JIBITS JIBITS(i, |, k) i nt eger i nt eger 17
KIBI TS KI Bl TS(i, j, k) i nteger*8 i nteger*8 17
BTEST BTEST(i,]j) i nt eger | ogi cal 18
Bl TEST Bl TEST(i,j) i nt eger*2 | ogical *2 18
BJTEST BJTEST(i,]) i nt eger | ogi cal 18
| BSET | BSET(i, ) i nt eger i nt eger 18
I | BSET I 1 BSET(i,]j) i nt eger*2 integer*2 18
JI BSET JIBSET(i,j) i nt eger i nt eger 18
Kl BSET KI BSET(i, ) i nteger*8 i nteger*8 18
| BCLR | BCLR(i, | ) i nt eger i nt eger 18
1 BCLR I 1 BCLR(i, ) i nt eger*2 integer*2 18
JI BCLR JI BCLR(i,j) i nt eger i nt eger 18
Kl BCLR KI BCLR(i, ) i nteger*8 integer*8 18

FORTRAN 77 Language Reference Manual



112

Programs, Subroutines, and Functions

INTRINSIC FUNCTIONSNOTES

Intrinsic functions, sometimes referred to as mathematics library functions, are presented
in the preceding table. This table presents all of the intrinsic functions, their definitions,
number of arguments required, types of arguments and function, and the generic and
specific names of each function. The following are notes referenced in the table:

1.

10.

11.

If aisREAL, there are two cases: if |a |[<1, then | NT(a)=0; if |a [>1, then | NT(a) is an
integer which is rounded toward zero and has the same sign as a. If a is COWPLEX
then the real part of the argument is returned.

The function REAL(a ) will return as much precision as can be specified in a REAL* 4
variable. If a is COVWPLEX then the real portion is returned. If the argument is integer
then the function FLOAT will return the same result.

This function will return a DOUBLE PRECI SI ON result that contains all the precision
of the argument passed. If the argument is of type complex then the real portion is
used.

CMPLX may have one or two arguments. If there is one and the type is COVWPLEX then
the argument is returned unmodified. If there is one argument of any other type then
the value is converted to area and returned as the real part and the imaginary part
is zero. If there are two arguments then they must be the same type and cannot be
complex. The first argument is returned as the real part and the second is the
imaginary part.

| CHAR provides type conversion from CHARACTER to | NTEGER, based on ASCII
value of the argument.

A COWPLEX value is expressed as an ordered pair of reals, (ar ,ai ), where the first is
the real part and the second is the imaginary part.

All arguments are expressed in radians to functions that do not end with the letter D.

| NDEX( a1, a2) returns an integer value indicating the starting position of the first
occurrence of a2 in al . A zeroisreturned if there is no match or a1 is shorter than
az.

The string passed to the LEN function does not need to be defined before the refer-
ence to LEN is executed.

LGE, LGT, LLE, and LLT return the same result as the standard relational operators.

TRI Ma) returns the value of the CHARACTER expression a with trailing blanks
removed.

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 113

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

REPEAT (a,n) replicates the CHARACTER expression a, n timeswhere n isan | NTEGER
expression.

ADJUSTL(a) returns a character result which is the same as its argument except
leading blanks have been removed and sufficient trailing blanks have been added to
make the result the same length as a.

ADJUSTR(a) returns a character result which is the same as its argument except
trailing blanks have been removed and sufficient leading blanks have been added to
make the result the same length as a.

The functions 1 OR, | AND, NOT, and | ECR are provided as part of the DOD military
standard MIL-STD-1753. They produce the same results for integers as the logical
operators. OR., . AND. , . NOT. , and . EOR. respectively.

The function reference | SHFTC(i ,j ,k) will circularly shift the rightmost k bitsof i j
places. The unshifted bits of i are unchanged in the result. The bits shifted out one
end are shifted into the opposite end. k must be in the range 1-32.

The function reference | BI TS(i ,j ,k) extracts a field of k bits from the value i
beginning at position j . The valuej +k must be in the range 1-32.

The function reference BTEST(i ,j ) returns . TRUE. if the j th bit if / is set, otherwise
it returns . FALSE. . The functions | BSET(i ,j ) and | BCLR(/ ,j ) return integer values
equivalent to i except that the j t bit has been set or cleared respectively.

The statement CALL MBI TS(i ,j ,k,/ ,m) moves k bits from positions; through j +k-1
of i through m+k-1 of /. j +k and mk must be in the range 1 to 32.

Use of a BYTE, WORD or LONG function on the left side of an = in an assignment will
cause data to be written to an absolute address (see the section Memory
Assignment in the chapter Expressions and Assignment Statements). Use of a
BYTE, WORD or LONG function in an expression will cause data to be read from an
absolute address. The [ % LOC function is provided to return the address of a
variable, an array, an array element or a subprogram. The %character is optional at
the beginning of a Loc function reference.

The function reference sH FT(i ;) will logically shift bitsini by j places. If j is
positive, the shift is to the left. If j is negative, the shift is to the right. Zeros are
shifted in from the opposite end.

FORTRAN 77 Language Reference Manual



114

Programs, Subroutines, and Functions

22.

23.

24,

The [ 94 VAL functions are used to pass actual arguments by value instead of by
reference which is the default for FORTRAN. Any data type except CHARACTER can
be passed by value. Most often [ 94 VAL is used to pass arguments to routines written
in other languages which accept arguments by value as the default method of
argument passing. It can also be used to pass arguments to FORTRAN subprograms
which use the VALUE statement to define value arguments. The % character is
optional at the beginning of any VAL function reference. The VAL function is only
valid in an argument list.

NOTE: The subprogram interface protocol for the PowerPC causes value
arguments less than four bytes in length to be sign-extended to four bytes and
passed as four byte entities. This means that there is no difference in the effect of
the VAL1, VAL2, or VAL4 functions and the VAL function may be considered to be a
generic function. However, this is not true of all machine architectures (including
the Intel based Windows systems) and if portability is a consideration, the correct
size function should be chosen.

The sl zECF function is provided to get the size of any data type in a FORTRAN
program. Its syntax is as follows:

S| ZEO( t ype)

where: t ype isany FORTRAN datatype or a structure name inside of slashes.

Exanpl e:

STRUCTURE /str/
| NTEGER i
REAL*8 a

END STRUCTURE

| NTEGER str_si ze

str_size = S| ZEOF(/str/)

The most common use of SI ZECF is to obtain the size of a RECORD type. On
different systems, the size of a RECORD will vary. Sl ZEOF can be used to write
portable code which allocates memory for RECORD structures dynamically. Data
types such as | NTEGER or REAL can also be passed to SI ZEOF. SI ZEOF may be used
to define constants in PARAVETER statements.

The %REF function is used in subroutine CALL statements and function references
and is provided to assist in porting programs from VAX compatible compilers.
Since all FORTRAN arguments are normally passed by reference, this function has
no affect on the compiled program.

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 115

25. The %ESCR function is used in subroutine CALL statements and function
references and is provided to assist in porting programs from VAX compatible
compilers. Since FORTRAN arguments do not have descriptors associated with
them, this function has no affect, but does cause the compiler to issue a warning

message.

26. LEN_TRI Ma) returns the length of the CHARACTER expression a with trailing blanks
removed.

Argument Ranges and Results Restrictions

The second argument of the remaindering functions below must not be zero:

MCD
AMOD
DMOD

Zero isreturned if the value of the first argument of the sign transfer functions below is

Zero:
I SI GN
SI GN
DSI GN

The argument of the square root functions below must not be negative:

SQRT
DSQRT

The following sgquare root functions for complex numbers return the principal value with
the real portion greater than or equal to zero. When the real portion is zero, the imaginary
portion is greater than or equal to zero.

CSQRT
CDSQRT

The argument of the logarithmic functions below must be greater than zero:

ALOG
DLOG
ALOGLO0
DLOGLO

Both portions of a complex number cannot be zero when passed as an argument to the
logarithmic functions below:

CLOG
CDLOG

Automatic argument reduction permits the argument of the trigonometric functions below
to be greater than 21t

FORTRAN 77 Language Reference Manual



116 Programs, Subroutines, and Functions

SI'N
DSI N
(003
DCOS
TAN
DTAN

The argument of the arccosine functions below must be less than or equal to one and the
range of the result is between -1/2 and 172 inclusively:

ASI N
DASI N

The argument of the arccosine functions below must also be less than or equal to one and
the range of the result is between 0 and Ttinclusively:

ACOS
DACGCS

The range of the result for arctangent functions below is between -1W2 and 172
inclusively:

ATAN
DATAN

If the value of the first argument of ATAN2 or DATANZ2 is positive, the result is positive. If
the value of the first argument is zero, the result is zero if the second argument is positive
and Ttif the second argument is negative. If the value of the first argument is negative, the
result is negative. If the value of the second argument is zero, the absolute value of the
result is 1v2. The arguments must not both have the value zero. The range of the result for
ATAN2 and DATANZ2 is between -ttand ttinclusively.

BLOCK DATA

A BLOCK DATA statement takes the following form:

BLOCK DATA [ sub]
where: sub isthe unique symbolic name of the block data subprogram.

There may be more than one named BLOCK DATA subprogram in a FORTRAN 77
program, but only one unnamed block data subprogram.

Only COMMON, SAVE, DATA, DI MENSI ON, END, EQUI VALENCE, | MPLI CI T, PARAMETER, and
type declaration statements may be used in aBLOCK DATA subprogram.

GLOBAL DEFINE

FORTRAN 77 Language Reference Manual



Programs, Subroutines, and Functions 117

A GLOBAL DEFI NE subprogram takes the following form:

GLOBAL DEFI NE
[ gl obal - decl ar at i on]

END

where: g/ obal - decl ar ati on isany FORTRAN declaration which does not
define physical storage.

STRUCTURE declarations, EXTERNAL statements, | NLI NE statements, and PARAMETER
statements and their related type declarations are valid within a GLOBAL DEFI NE
subprogram. The symbols defined are then visible to an entire FORTRAN source file.
The use of a GLOBAL DEFI NE subprogram can remove redundant declarations and reduce
internal symbol table sizes and speed compilations. There can be any number of GLOBAL
DEFI NE subprograms in a source file, but a symbol name cannot be used before its
declaration.

It should be noted that symbol names defined in EXTERNAL, | NLI NE, Or PARAVETER
statements can no longer be implicitly defined in a subsequent program unit. For

GLOBAL DEFI NE
PARAMETER (i =10)
END

| NTEGER a( 10)

DO i =1, 10
a(i) =i

END DO

END

Is not a valid program since a PARAMVETER cannot be used as a loop induction variable.
The PARAMETER declaration can be over-ridden with alocal type declaration, however, as
follows:

GLOBAL DEFI NE
PARAVETER (i =10)
END

| NTEGER i, a( 10)
DO i =1, 10
a(i) =i

REPEAT
END

INLINE STATEMENT

FORTRAN 77 Language Reference Manual



118 Programs, Subroutines, and Functions

As an extension to standard FORTRAN, the Absoft implementation supports the | NLI NE
statement to allow programmers to insert object code directly into a FORTRAN program.
Thisis useful for customizing the language to the host system. The syntax of the I NLI NE
statement is as follows:

INLINE ([/identifierl=conl|,identifier2=/conl],con2.../]]1])

CALL identifierl]( argl] arg2.])]
variable= identifier2[( argl], arg2..])]

An INLINE declaration can have the same format as a PARAMETERstatement or it can
substitute a list of constants for an identifier instead of a single constant. All constants
must be of type INTEGER The identifier can then be referenced as if it were a subroutine
or function. Instead of generating a call to an external function, the compiler will insert
the constant or constant list directly into the object code. Each constant is output as a 32-
bit opcode. If an argument list is given, the actual arguments will be passed in the same
fashion as they are passed to an externa routine. If the identifier is referenced as a
function, the result must be returned using the standard call-return methods.

FORTRAN 77 Language Reference Manual



119

APPENDIX A

Using Structures and Pointers

This appendix is given to provide more information and examples on using STRUCTURES,
PO NTERS, and RECORDs in Absoft Fortran 77. The most common use of these data types
is when mixing FORTRAN with other languages such as C or Pascal that support these
types of data structures. Often, operating systems and software packages that provide
graphic interfaces make use of these types of data structures. The extensions to
FORTRAN 77 provided with the Absoft compiler are rich enough to allow a programmer
to do al of thistype of programming in FORTRAN.

COMMON USE OF STRUCTURES

A structure is a composite or aggregate data type that consists of a grouping of two or
more data items. Structures are typically used to group related data items together. For
example, the following structures could be used to describe the time of day and the date:

STRUCTURE /ti e/
| NTEGER hour
| NTEGER mi nut e
| NTEGER second
END STRUCTURE

STRUCTURE / dat e/
| NTEGER nont h
| NTECER day
| NTEGER year
END STRUCTURE

Instances of structures are declared with RECORD statements and fields of structures are
referenced with the ' operator as follows:

RECORD /time/ this tinme, /date/ this_date

this_time.hour =9
this_time. mnute
this_time. second

29
45

this_date.nonth = 6
this_date.day = 19
this_date.year = 1962

FORTRAN 77 Language Reference Manual



120

Using Structures and Pointers

Structures can contain structures. This is done by placing structure declarations within
other structure declarations or by placing RECORD statements inside of structure
declarations as follows:

Fields

STRUCTURE /ti e/
| NTEGER hour
| NTEGER mi nut e
| NTEGER second
END STRUCTURE

STRUCTURE / conpl ete_tine/
STRUCTURE /date/ d
I NTEGER nont h
| NTEGER day
| NTEGER year
END STRUCTURE
RECORD /tine/ t
END STRUCTURE

in nested structures are referenced with multiplegerators:

RECORD / conpl ete_tinme/ appoi nt nent

appoi ntment.d.nonth = 6
appoi ntment . d. day = 19

appoi nt ment . d. year = 1962
appoi ntment.t. hour = 9

appoi ntnment.t.mnute = 29
appoi ntment . t. second = 45

A structure field reference can be placed anywhere a scalar variable is valid in a
FORTRAN program. Entire records can be passed as arguments or placed in assignment
statements to assign all of the fields of one record to another of the same type as follows:

RECORD / conpl ete_tinme/ appoi nt nent
RECORD /tinme/ this tine

this tinme. hour = 9
this_time. nmnute
this_time. second

29
45

appoi ntnment.d.nonth = 6
appoi ntment . d. day = 19
appoi ntment . d. year = 1962

appointnment.t = this_ tine ! assign entire structure

COMMON USE OF POINTERS

A pointer in Absoft Fortran 77 is arNTEGER* 4 variable which contains an address. A
pointer-based variable defines storage that is pointed to by a pointer. A pointer-based
variable cannot be referenced until its associated pointer variable has been assigned.
Most often, a pointer variable is assigned through a reference itat¢Hanction or by a

FORTRAN 77 Language Reference Manual



Using Structuresand Pointers 121

call to aroutine which returns an address of dynamically allocated memory. For example,
the following program fragment could be used to dynamically allocate an array:

GLOBAL DEFI NE
I NCLUDE " Types.inc"
I NCLUDE " Menory.inc"
END

SUBROUTI NE dynani c(si ze)
| NTEGER* 4 si ze

| NTECER*4 array(1)

PO NTER(p_array, array)

p_array = NewPtr (VAL(size*4))

DOi =1, size
array(i) =0

END DO

END

Pointersand Optimization

! 1 defeats bounds checki ng

! 4 bytes for each el ement

!' Fill new array with zeros

The introduction of pointersinto FORTRAN gives the programmer the option of aliasing
any storage which is visible to the compiler. Certain types of aliasing can invalidate
optimized code. Therefore, when optimization is turned on (with the -O option), pointers
should only be assigned with a direct use of the LOC function or via a call to a routine
which allocates memory dynamically. Any other usage has the potentia to invalidate
programs which are compiled with optimization enabled. Pointers to variables in cCOWoON
should also not be passed as arguments. The following is an example which may cause

problems when optimized:

PROCGRAM dont _opti m ze
COMMON /comf a, b, c

PO NTER (preal,r)
LOC(a) + 4

preal =

END

The optimizer may not be aware that whenever the value of b changes, the value of r aso
changes and vice versa. This problem can be solved by declaring storage which can be

aliased as VOLATI LE (see section 12.17).

PROCRAM opti m ze
COMMON /com a,b,c
VCLATI LE b

PO NTER (preal,r)
LOC(a) + 4

preal =

END

FORTRAN 77 Language Reference Manual



122 Using Structures and Pointers

Pointersas Arguments

It isnot legal to declare a pointer-based variable as a dummy argument. Pointer variables
and pointer-based variables can be passed as actual arguments however. When a pointer
variable is passed, the address the pointer contains is passed by reference. The
corresponding dummy argument should be declared as | NTEGER. When a pointer-based
variable is passed as an actual argument, the data that the associated pointer points to is
passed by reference. Thisis equivalent to passing the pointer variable by value.

| NTEGER it ar get
PO NTER (pint, itarget)

CALL sub(pint, itarget)
END

SUBROUTI NE sub(ptr, idum

I NTEGER ptr, idum ptr_target
PO NTER (p_target, ptr_target)
VOLATI LE i dum ptr_target

p_target = ptr
END

In the above example, the main program passes a pointer and a pointer-based variable. In
the subroutine sub, the dummy argument pt r contains the address of the other dummy
argument, i dum After the assignment of ptr to p_t arget, areferenceto ptr_t arget is
equivalent to a reference to i dum Note that this is a situation where the VOLATI LE
statement must be used to defeat certain optimizations.

MIXING POINTERS AND STRUCTURES

Unlike some other FORTRAN implementations, Absoft Fortran 77 alows pointer
variables and pointer-based variables to be structure fields. This is useful for building
dynamic data structures such as the linked list defined in the following example:

STRUCTURE /1ist/ ny_list
RECORD /Ilist/ next
PO NTER ( pnext, next)
| NTEGER field

END STRUCTURE

Thelist is linked together by assignment to the field ny_I i st. pnext with the address of
the next list record. Fields in the chain of list structures can be accessed with the pointer-
based field next . For example ny_I i st. next . fi el d referencesthefi el d in the second
element of the linked list and nmy_Ii st. next.next.field referencesthe field in the
third element of the linked list.

FORTRAN 77 Language Reference Manual



Using Structuresand Pointers 123

FUNCTIONSWHICH RETURN POINTERS

On many systems, functions which return pointers can be declared as | NTEGER* 4.
However, some systems and/or compilers distinguish an address from an integer in terms
of how the function result is passed. A function which returns a pointer and a call to a
function that returns a pointer can be declared as follows:

FUNCTI ON pointer_to_int()

| NTEGER poi nted_to

PO NTER (pointer_to_int, pointed_to)
| NTEGER get _nmem resul t

PO NTER (get_nem get_nmemresult)
EXTERNAL get _nem

pointer_to_int = get_men(4) ! allocates a 4 byte integer
pointed_to = 0 ' initializes menory to O
RETURN

END

The above example returns a pointer to a freshly allocated four byte integer which is
initialized to zero. The symbol pointer_to_int is used to set the address and the
symbol poi nt ed_t o is used to address the memory. The function get _memis defined as
returning a pointer to an | NTEGER. The symbol get _mem resul t is used for the purpose
of giving a type to get_mem and should not be referenced. A reference to
poi nter _to_i nt would be similar to the reference to get _nemin the above example.

Pointersto C strings

A common problem when interfacing FORTRAN with C is that functions are often
written in C which return C strings. A C string is a string of characters terminated with a
byte of zero. Since there is no data type in FORTRAN which matches a C string, strings
returned from C functions cannot be directly manipulated as CHARACTER data. The
following example demonstrates a method of copying from a pointer to a C string to a
FORTRAN CHARACTER variable.

CHARACTER*80 space for _result

I NTEGER C fun, Cresult, Cstring_pointer
PO NTER (Cstring_fun, C fun)

PO NTER (Cstring_pointer, Cresult)

Cstring_pointer = Cstring_fun()
CALL copy_Cstring(C_result,space for_result)

END

SUBRQUTI NE copy_Cstring(Cstring,target)
CHARACTER Cstring(*), target*(*)

target="" l'initialize to blanks
DO i=1, LEN(target)
IF (Cstring(i) == CHAR(0)) EXIT
target(i:i) = Cstring(i)
END DO
END

FORTRAN 77 Language Reference Manual



124 Using Structures and Pointers

POINTER-BASED FUNCTIONS

A pointer-based variable can be an external function name. When this is done the
associated pointer variable must be set to the address of the function which is to be

called. Thefollowing is a simple example of this type of function reference.

| NTEGER fun, pb_fun, fun_res
EXTERNAL fun, pb_fun
PO NTER (pf, pb_fun)

pf = LOC(fun)
fun_res = pb_fun()
END

The above example calling pb_f un is equivaent to calling f un. No checking is done to

insure that the address contained in the pointer variable is valid.

FORTRAN 77 Language Reference Manual



125

Appendix B

Error Messages

The first part of this appendix lists runtime error numbers and their meanings. These
numbers are assigned to the | OSTAT specifier variable in 1/O statements. The last two
sections list the possible error messages from the compiler.

RUNTIME 1/0 ERROR MESSAGES

This section lists runtime error numbers and their meanings. These numbers are assigned
to the | OSTAT specifier variable in 1/O statements. When using the -C option for better
runtime error reporting, these errors appear as.

? System Error:

? The systemcannot find the file specified
? OPEN(UNIT=1, ...

File "t.f"; Line 23

Low-level file system errors:

1 invalid function

2 file not found

3 path not found

4 too many open files

5 access deined

6 invalid interal file identifier

7 storage control blocks destroyed

8 insufficient memory

9 invalid block address

10 environment incorrect

11 incorrect program format

12 invalid access code

13 invalid data

14 insufficient memory

15 invalid drive

16 current directory cannot be removed
17 file cannot be moved to a different disk drive
18 no more files

19 mediais write protected

20 specified drive cannt be found

21 the driveis not ready

22 the device does recognize the command
23 dataerror

24 command length isincorrect

FORTRAN 77 Language Reference Manual



126 Error Messages

25
26
27
28
29
30
31
32
33
34
36
38
39

drive seek error

the specified disk cannot be accessed
the specified sector cannot be found
the printer is out of paper

cannot write to specified device
cannot read from specified device
deviceis not responding

thefileis aready open by another process
another process has locked thefile
the wrong disk isthe drive

too many files open for sharing
reached end of file

thedisk isfull

FORTRAN 1/O errors:

10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030

File not open for read

File not open for write

File not found

Record length negative or O

Buffer alocation failed

Bad iolist specifier

Error in format string

[llegal repeat count

Hollerith count exceeds remaining format string
Format string missing opening “(”

Format string has unmatched parens

Format string has unmatched quotes
Non-repeatable format descriptor

Attempt to read past end of file

Bad file specification

Format group table overflow

lllegal character in numeric input

No record specified for direct access

Maximum record number exceeded

lllegal file type for namelist directed 1/0

lllegal input for namelist directed 1/0

Variable not present in current namelist
Variable type or size does not match edit descriptor
lllegal direct access record number

lllegal use of internal file

RECL= only valid for direct access files

BLOCK= only valid for unformatted sequential files
Unable to truncate file after rewind, backspace, or endfile
Can’t do formatted 1/0O on an entire structure
lllegal (negative) unit specified

Specifications in re-open do not match previous open

FORTRAN 77 Language Reference Manual



Error Messages 127

10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072

No implicit OPEN for direct accessfiles

Cannot open an existing file with STATUS=" NEW

Command not allowed for unit type

MRWE isrequired for that feature

Bad specification for window

Endian specifier not BIG_ENDIAN or LITTLE_ENDIAN
Cannot ENDIAN convert entire structures

Attempt to read past end of record

Attempt to read past end of record in non-advancing 1/0
Illegal specifier for ADVANCE=

[llegal specifier for DELIM=

Illegal specifier for PAD=

SIZE= specified with ADVANCE=YES

EOR= specified with ADVANCE=YES

Cannot DEALLOCATE disassociated pointer or unallocated array
Cannot DEALLOCATE aportion of an original allocation
An allocatable array has already been allocated

Internal or unknown runtime library error

Unknown data type passed to runtime library

[llegal DIM argument to array intrinsic

Size of SOURCE argument to RESHAPE smaller than SHAPE array
SHAPE array for RESHAPE contains a negative value
Unallocated or disassociated array passed to inquiry function
The ncopies argument to REPEAT is negative

The S argument to NEAREST is negative

The ORDER argument to RESHARE contains an illegal value
Result of TRANSFER with no SIZE is smaller than source
SHAPE array for RESHAPE is zero sized array

VECTOR argument to UNPACK contains insufficient values
Attempt to write arecord longer than specified record length
ADVANCE= specified for direct access or unformatted file
NAMELIST name islonger than specified record length
NAMELIST variable name exceeds maximum length

PAD= specified for unformatted file

NAMELIST input contains multiple strided arrays

Expected & or $ asfirst character for NAMELIST input
NAMELIST group does not match current input group
Pointer or allocatable array not associated or allocated
NAMELIST input contains negative array stride

Runtime memory allocation fails

[llegal rank for matrix argument to MATMUL array intrinsic
Matrix argumentsto MATMUL array instrinsic are not conformable

FORTRAN 77 Language Reference Manual



128 Error Messages

COMPILER ERROR MESSAGES — SORTED ALPHABETICALLY

The example programs shown after each error message will produce the error.

adjustable array is not a dummy argument Adjustable arrays are only alowed as
dummy arguments.

PROGRAM mai n
I NTEGER m(n), n

alpha character expected The compiler is expecting an apha character, but has
encountered a digit or special character.

| NTEGER i, |
= | +j

argument to SIZEOF is not a data type The argument of the sI zEOF function must be
avalid data type or structure name.

REAL a, b
b = sizeof(a)

argument type mismatch When using statement functions, the data type of the actual
argument must match the dummy argument of the referenced statement function.

REAL area, a, b, ans

| NTEGER i, |
area(a, b)=a * b
ans = area(i, j)

array boundary error The use of option -C during compilation will check for attempts
to exceed array boundaries.

CHARACTER t ext ( 10)
text (100) = "a’

array declaration error An array declarator must follow the required format.
CHARACTER* 10 text (10

assignment to DO variable The value of the DO variable cannot be altered within the Do
loop.

DO 100 i =1,5
i =i +1
100 CONTI NUE

FORTRAN 77 Language Reference Manual



Error Messages 129

ASSIGN statement error Required syntax must be followed when using the ASSI G\
statement.

ASS|I GN 100 n

blank lines not valid in VS Free-Form If the -N112 option is used, a program unit
cannot contain any blank lines.

PRINT *, "This is an exanple to show that blank Iines"

PRINT *, "can’t appear in VS FORTRAN Free- Forni

branch is further than 32k: use -N11 option This message is generated by the
compiler when the program being compiled contains a branch that requires long
addressing. Recompile the program with the -N11 option.

cannot have an ENTRY in aroutinewith VALUE VALUE statements cannot appear in
aprogram unit which contains ENTRY statements.

SUBROUTI NE fi gure(aa)
REAL aa

VALUE aa

ENTRY fig2(aa)

RETURN

END

cannot reference a pointer based function When a pointer is a function, the pointer
based variable is only present to define the data which the returned pointer points
to.

| NTEGER pbv

PO NTER (ptr, pbv)
EXTERNAL ptr

a = pbv

conditional compilation is nonstandard -x allows conditional compilation. This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,*) "This is an exanple of allow ng’
X WRITE (*,*) ’'conditional conpilation using -x’

continuation character expected Using option -8, aline must begin with a continuation
character if the previous line ended with one.

PRINT *, "In this exanple, the conpiler is going to be &
expecting a continuation character."

DATA statement syntax error Proper syntax must be used for DATA statements.

DATA i, j/ 1, 2

FORTRAN 77 Language Reference Manual



130 Error Messages

%DESCR function ignored The %DESCR function is provided for compatibility with
existing source code. It is recognized by the parser, but no code is generated for it.
The warning indicates that the statement should be examined.

division by zero Dividing a number by zero is not allowed.

REAL a
a=>5.20.0

duplicate BLOCKDATA initialization of COMMON Within a program, COMVON
block names cannot be duplicated from one BLOCKDATA program unit to another.

BLOCK DATA one

COWMON / areal/ pi, area
DATA pi /3. 1415/

END

BLOCK DATA two
COWMWDON /areal/ p, a
DATA p/ 3. 14/

END

duplicate COMMON or NAMELIST declaration A variable can only appear once in
a COMVON block or NAVELI ST declaration.

COMMON /area2/pi, b
COMMON /areall/pi, b

duplicate DATA initialization A variable may only be initialized once by a DATA
statement.

DATA i, i/10, 20/
duplicate label definition A statement label must be unique to a program unit.

PRI NT 100, "Hell 0"
100  FORMAT (t37, a)

PRI NT 200, "World"
100  FORMAT (t40, a)

duplicate name in UNION Field declarations of UNI ON declarations cannot have been
previously declared or be dummy arguments.

| NTEGER | ong, medl, med2
UNI ON
VAP
| NTEGER*4 | ong
END MAP
VAP
| NTEGER*2 medl, ned2
END MAP
END UNI ON

FORTRAN 77 Language Reference Manual



Error Messages 131

duplicate program unit declaration Each named program unit must have a unique
name.

SUBROUTI NE error 14()
RETURN
END

PROGRAM error 14
CALL error14()
END

duplicate STRUCTURE name Within a program unit, each STRUCTURE must have a
unique name.

STRUCTURE / dat e/
| NTEGER day
END STRUCTURE

STRUCTURE / dat e/
| NTEGER ti ne
END STRUCTURE

duplicate variable declaration A specific symbolic name can appear in only one type
declaration statement per program unit.

CHARACTER* 10 xyz
| NTEGER xyz

ELSE or END IF without IF (¢) THEN Each occurrence of an ELSE or END | F
statement must be matched with a corresponding | F (e) THEN statement.

LOGE CAL z
IF (a .gt. 10) z = .true.
END | F

$EL SE, $EL SEIF or $ENDIF without $IF Each occurrence of an $EL SE, $EL SEIF or
$ENDIF statement must be matched with a corresponding $IF expr statement.

END DO or REPEAT without DO Every occurrence of an END DO Or REPEAT
statement must be matched with a DO statement.

DOi=1,2

PRI NT *, "Wel cone"
REPEAT
END DO

END SELECT without SELECT CASE Each occurrence of an END SELECT statement
must have a corresponding SELECT CASE.

CASE (1)
PRINT *, 1

CASE DEFAULT

END SELECT

FORTRAN 77 Language Reference Manual



132 Error Messages

END STRUCTURE without STRUCTURE All appearances of the END STRUCTURE
statement must be matched with a STRUCTURE statement.

| NTEGER nm
| NTEGER dd
| NTEGER yy
END STRUCTURE

END UNION without UNION Each occurrence of an END UNI ON statement must
correspond to a UNI ON statement.

MAP
| NTEGER* 2 i
END MAP
VAP
INTEGER*1 j1, j2
END MAP
END UNI ON

escape sequencesin strings are nonstandard -K allows for escape sequences in strings.
Thisisnot standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,*) ' What goes up...\n Must conme down’
EXIT or CYCLE outside of aloop These statements may only appear within DOloops.

READ *, score

| F (score .le. 50.0) THEN
EXIT

END | F

expecting a MAP statement Each END MAP statement must have a corresponding MAP
statement.

UNI ON
MAP
| NTEGER*4 | ong
END MAP
VAP
| NTEGER*2 medl, ned2
END MAP
END MAP
END UNI ON

expecting an argument list or subscript References to a specific array element must
include the subscript. Functions declared by EXTERNAL and | NTRI NSI C statements
must have an argument list when used.

| NTEGER n{( 10, 10)
i = m

FORTRAN 77 Language Reference Manual



Error Messages 133

expecting end of statement Unless a symbol indicating a comment or a semicolon for
multiple statements is encountered, information cannot appear on a line once the
statement has ended.

CLCSE (10) a, b, ¢

format specifier is not repeatable A repeat factor can only precede those edit
descriptors denoted to be repeatabl e.

100 FORMAT (3"Hello!", t19, a)

format string has unmatched parenthesis The number of opening parenthesis must
match the number of closing parenthesis.

100  FORMAT (4(t12,al)

format string has unmatched quote Character strings must have an ending quote to
match the beginning quote.

100  FORMAT("FORTRAN, t10, a)

format string missing opening parenthesis Format specifications must begin with an
opening parenthesis and end with a closing parenthesis.

100 FORVAT t 35, a

Fortran 90 free source form is nonstandard -8 allows this format to be used. Thisis
not standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRI TE (*,100) 'This is an exanple of’, &
& "using Fortran 90 Free&
& Source Form Iconment |ine

1 0 0 FORNMAT (al a)

GLOBAL statement isnonstandard -M applies the GLOBAL statement to all COMMON
block declarations. This is not standard ANSI FORTRAN 77, and cannot be
combined with -N32.

COMWON /area2/c, d

GOTO non-integer label The destination of an assigned GOTO statement must be an
integer which contains an address defined with an ASSI G\ statement.

REAL a
GOTO a

FORTRAN 77 Language Reference Manual



134 Error Messages

IBM VS free-form is nonstandard -N112 allows for this format to be used.This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRI TE (*,100) 'This is an exanple of -
| BM VS Free-
Form
" comrent |ine
1 0 0 FORNAT (t12, a)

illegal DO loop label The DO loop termination statement cannot be one of the statements
listed in the Loop Statement Section.

DO 100 i = 1,5
IF (i .1t. 3) THEN
PRINT *, "Less"
100 END IF

illegal DO variable A DO variable must be either an | NTEGER, REAL, Or DOUBLE
PRECI SI ON scalar variable.

DI MENSI ON i (100)

DO i=1,3
j o= i*2
END DO

illegal dummy argument Once a variable has been referenced in a program unit, its
name cannot be used within the same program unit as a dummy argument in an
ENTRY.

SUBROUTI NE sub()
| NTEGER i

i =10

ENTRY ent (i)

i =20

illegal EQUIVALENCE or UNION of COMMON blocks An EQUI VALENCE or UNI ON
statement cannot increase the size of a COMMVON block by adding storage units prior
to the first item in the covwoN block.

| NTEGER m(10), n(10)
COMWON area / m
EQUI VALENCE (m(1), n(2))

illegal expression The rules and syntax governing arithmetic, character, logical and
relational expressions must be followed.

i =1 (+2)

FORTRAN 77 Language Reference Manual



Error Messages 135

illegal external symbol An external symbolic name cannot be a variable declared as an
array or asymbolic named constant declared by a PARAVETER statement.

| NTEGER m( 10)
EXTERNAL m

illegal format repeat count The repeat count must be a positive integer constant.
100  FORMAT (-3(t12,al))

illegal format specifier Format specifiers must follow the correct syntax and be
supported by this implementation of FORTRAN.

100  FORMAT (al.5)

illegal function call Function calls cannot appear in the specification section of a
program. Use the -0 compiler option to compile constant function references.

PARAMETER (a=sqrt (3582. 00))

illegal IF clause An | F clause cannot be one of the statements listed in the | F Statement
Section.

IF (i .gt. 100) END

illegal initialization Dummy arguments and functions cannot be initialized with a
DATA statement.

SUBROUTI NE cal c(m n)
INTEGER m n
DATA m n/ 100, 200/

illegal metacommand The $ character is the lead-in for a compiler directive. The
characters encountered after the $ in question are not recognizable as a compiler
directive.

$DEFI ND FLAG=1

illegal POINTER variable A PO NTER variable cannot be one that has aready been
declared as avariable.

COVPLEX pa
| NTEGER i
PO NTER (pa,i)

illegal POINTER based variable In declaring a PO NTER based variable, it cannot be a
dummy argument or appear in COMMON, GLOBAL, EQUI VALENCE, Or VAL UE statements.

COVMON / areal a
PO NTER (pa, a)

FORTRAN 77 Language Reference Manual



136 Error Messages

illegal statement function name A dummy argument cannot be used as the name of a
statement function.

SUBROUTI NE out put (i)
i(j) =i**2

illegal statement in BLOCK DATA procedure | MPLI CI T, PARAVETER, DI MENSI ON,
COWMON, SAVE, EQUI VALENCE, DATA, and type declarations are the only allowable
BLOCK DATA statements.

BLOCK DATA

COMMON /areal/ pi ,a
DATA pi, a/ 3.14, 0.0/
RETURN

END

illegal statement in GLOBAL DEFINE Executable statements are not alowed in
GLOBAL DEFI NE subprograms.

GLOBAL DEFI NE
PARAMETER (x=3)
PRINT *, x

END

illegal statement ordering The proper ordering of statements must be followed.

DATA pi, a/3.14, 0.0/
COWMON /areal/ pi, a

illegal structure definition The STRUCTURE statement must follow the proper syntax.

STRUCTURE cal en day
| NTEGER nm
| NTEGER dd
| NTEGER yy

END STRUCTURE

illegal symbol in a DATA statement Record names may not appear in a DATA

statement.
STRUCTURE / nane/
| NTEGER i
| NTEGER J

END STRUCTURE
RECORD / name/ m
DATA m/ 11/

illegal syntax A syntax error has been detected, but the compiler is unable to determine
the exact problem.

PRINT *, (n(i), j=1,10

FORTRAN 77 Language Reference Manual



Error Messages 137

illegal use of operator .NOT. is an unary operator and may only be used with one
operand.

IF (i .not. j) i=10
illegal use of RECORD name A RECORD name may be used only where permitted.

RECORD /str/ a, b, c
DATA a/ 10, 20/

illegal use of POINTER based variable Once a PO NTER based variable has been
declared, it cannot appear in a COWON, GLOBAL, Or EQUI VALENCE statement.

PO NTER (pa, i)
EQUI VALENCE (i, j)

illegal use of statement function argument Statement function arguments cannot be
used as an array reference within the statement function expression.

| NTEGER i (10)
I STF(i,j) = i(10) + j

illegal value parameter a VALUE statement cannot appear in the main program and its
arguments cannot be an array or CHARACTER variable. The VAL function is only
valid in an argument list.

SUBROUTI NE FI G(t ext)
CHARACTER* 10 t ext
VALUE t ext

illegal variable in NAMELIST Symbolic constants and symbolic names declared as
| NTRI NSI C or EXTERNAL are not allowed in NAMELI ST statements.

PARAVETER (i =10)
NAVELI ST /list/ i

incorrect format hollerith count The count on a hollerith string must match the number
of characters appearing after the H.

100 FORMAT (90Hhol I erith)

increment expression cannot be zero A DO variable cannot be incremented by zero.

| NTEGER ( 5)
DOi = 1,50
i) =i

END DO

FORTRAN 77 Language Reference Manual



138 Error Messages

intrinsic function data type mismatch The datatype of an intrinsic function’s argument
must match the required data type. A common mistake is to use an integer where a
real number is required.

a = sqgrt(100)

INTRINSIC name used as EXTERNAL An intrinsic function appearing in an
EXTERNAL Statement cannot appear in an | NTRI NSI C statement.

EXTERNAL nax
I NTRI NSI C max
CALL max( max)

invalid argument Only valid symbolic names can appear in arguments.

I NLI NE (code=z’ 10")
CALL sub(code)

invalid argument to EQUIVALENCE statement Allowable arguments are: variable
names, array element names, array names, and character substring names. Dummy
argument names and function names are not allowed.

SUBROUTI NE sub(i , j )
EQUI VALENCE (i, )

invalid CASE statement Every case statement must follow the proper syntax and the
data type of the case selector must match that of the SELECT CASE argument.

SELECT CASE (i)
CASE ' 1’
CASE DEFAULT
END SELECT
invalid constant expression A variable cannot appear where a constant is required.
SELECT CASE (i)
CASE (i)
END SELECT

invalid data typefor control list specifier Specifiersthat appear in control lists must be
of the data type specified.

OPEN (uni t=10, access="direct’, file="error’, recl=12.0)

invalid $DEFINE Some element of the symbol or defining expression is not a valid
FORTRAN symbol or component of a constant expression.

$DEFINE L.test =1

FORTRAN 77 Language Reference Manual



Error Messages 139

invalid field name Field names must correspond to a field name within the specified
STRUCTURE declaration.

STRUCTURE / dat a/ day
| NTEGER nm
| NTEGER dd
| NTEGER yy

END STRUCTURE

day.y = 1991

invalid $IF or $ELSEIF Some element of the expression is not a valid component of a
constant expression.

$IF FLAG = 1 ! should be == or .EQ

invalid INCLUDE This statement must use a valid file specification and follow the
proper syntax.

I NCLUDE (mi st ake)

invalid 1/0 control list specifier or syntax Specifiers appearing in an 1/O control list
must be supported by this implementation of FORTRAN and follow the specified
syntax.

READ (5,100, ENDI = 10) a, b, ¢
invalid I/0 list or syntax The I/O list must follow the proper syntax.
WRITE (*,*), "G eetings"
invalid option Only valid compiler options may be used when compiling a program.

invalid statement function dummy argument The dummy argument of a statement
function must be a variable. It cannot be a symbolic nhamed constant or a symbolic
name declared in an | NTRI NSI C or EXTERNAL statement.

PARAMETER (a = 2.0)
calc(a) = (a**2)/10.0

invalid statement label A statement label must be an unsigned integer in the range of 1
to 99999.

PRINT 100, "Hello, Wrld"
-100 FORMAT (t29, a)

invalid SUNDEFINE Some element of the symbol is not avalid FORTRAN symbol.

$UNDEFI NE L.t est

FORTRAN 77 Language Reference Manual



140 Error Messages

label missing Only statement labels that exist in a particular program unit may be
referenced within that unit.

WRI TE (*, 200) "What goes up, nust come down"
250 FORMAT (t 25, a)

local variable never referenced A warning isgiven for al variables that were declared,
but never referenced.

| NTEGER i
PRINT *, "FORTRAN 77"

MAP outside of UNION MAP declarations can only appear within a UNI ON declaration.

VAP
| NTEGER* 2 i
END MAP
UNI ON
VAP
INTEGER*1 j1, j2
END MAP
END UNI ON

missing END statement A program unit must be terminated with an END statement.

missing END STRUCTURE All appearances of the STRUCTURE statement must be
matched with an END STRUCTURE statement.

STRUCTURE / dat e/
| NTEGER nm
| NTEGER dd
| NTEGER yy

missing END UNION Each UNI ON statement must be matched with an END UNI ON
statement.

UNI ON
MAP
| NTEGER*4 | ong
END MAP
MAP
| NTEGER*2 nedl, ned2
END MAP

missing label on FORMAT statement All FORVAT statements must begin with a
statement label.

FORMAT (t24, a)

FORTRAN 77 Language Reference Manual



Error Messages 141

missing operand ANSI FORTRAN 77 does not allow more that one arithmetic operator
to appear consecutively.

a=8.9*-7.2

multiple statement line is nonstandard ANSI FORTRAN 77 (option -N32) does not
allow multiple statement lines.

i =1, ] =2; k=3

non-constant case expresson The value selector of a CASE expresson must be a
constant.

SELECT CASE (i)

CASE (i)

PRINT *, 1

CASE DEFAULT
END SELECT

nonstandard comment Comment lines must begin with the character C or an asterisk in
ANS| FORTRAN 77 (option -N32).

! This is an exanple of a nonstandard conment |ine

nonstandard constant Option -N32, for ANSI FORTRAN 77, does not allow constant
extensions.

CHARACTER* 20 gr eet
DATA greet/ 14Hgood afternoon/

nonstandard constant delimiter Option -N32, for ANSI FORTRAN 77, does not allow
extensions of the standard delimiters.

WRITE (*,*) "Hello, Wrld"

nonstandard data initialization Initialization of blank cowoN blocks by a DATA
statement is not allowed in ANSI FORTRAN 77 (option -N32).

COWON a, b
DATA a, b/ 10.2, 8.42/

nonstandard edit descriptor Option -N32, for ANSI FORTRAN 77, does not allow edit
descriptor extensions.

WRI TE (*, 100) 199, 199, 199
100  FORMAT (z4, 07. 6, b9)

nonstandard intrinsic function Option -N32, for ANSI FORTRAN 77, does not allow
intrinsic function extensions.

CHARACTER* 20 t ext
text = repeat(’a’, 20)

FORTRAN 77 Language Reference Manual



142 Error Messages

nonstandard 1/O specifier Option -N32, for ANSI FORTRAN 77, does not allow 1/0
specifier extensions.

OPEN (uni t=10, file=" nunbers’, action="both")

nonstandard operator Option -N32, for ANSI FORTRAN 77, does not allow extensions
of the standard operators.

| F (a<12) THEN
WRI TE (*,*) a
END | F

nonstandard statement When using option -N32, statements that are an extension of
ANSI FORTRAN 77 may not appear in the program.

| MPLICI T none

nonstandard symbolic name Symbolic names longer than 6 characters and containing
characters other than letters and numerals are not alowed in ANSI FORTRAN 77
(option -N32).

CHARACTER* 20 hell o_worl d
hello world = "Hello, World

nonstandard type When using option -N32, data types that are an extension of ANSI
FORTRAN 77 may not appear in the program.

| NTEGER*2 i
i =145

non-standard use of assignment operator The assignment operator (=) can appear only
between a variable and an expression in arithmetic, logical,and character
assignment statements.

IF (m= 10) STOP

not an intrinsic function The symbolic name appearing in an | NTRI NSI C statement
must be avalid intrinsic function name.

I NTRINSI C sort

not expecting a label An initia statement line cannot contain a statement label
accompanied by a continuation character.

100 +PRINT *, "FORTRAN 77"

FORTRAN 77 Language Reference Manual



Error Messages 143

number of continuation linesisnonstandard ANSI FORTRAN 77 (option -N32) limits
the number of continuation linesto 19.

WRITE (*,*) "a
+b
+C
+d
+e
+f
+9
+h
+i
+
+k
+|
+m
+Nn
+0
P
+q
+r
+S
+t
+U
+V
+W
+X
Ty
+7’

numeric overflow The value of avariable must be within the range allowed for that data
type.

i = 51234567890

one trip do loops are nonstandard -d executes all DO loops at least once. This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

DO 100 i=3,1
WRITE (*,*) 'FORTRAN 77’
100 CONTI NUE

optional use of FORMAT specifier isnonstandard -N16 allows for the optional use of
FORMVAT specifier (FMr=) while the UNI T specifier is present (UNI T=).This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

VWRI TE (unit=6, 100) 'Hello’
100 FORMAT (a)

FORTRAN 77 Language Reference Manual



144 Error Messages

overriding dynamic storage allocation is nonstandard -s alows overriding dynamic
storage allocation. This is not standard ANSI FORTRAN 77, and cannot be
combined with -N32.

CALL cal c(a)
END

SUBRQOUTI NE cal c(aa)
REAL aa, bb, cc
RETURN

END

PARAMETER declaration error Symbolic names of data types. integer, real, double
precision, and complex, must correspond to an arithmetic expression. A character
type variable must be matched with a character constant, and a logical variable to a
logical constant. Also, proper syntax must be used.

PARAMETER (a=1 b=2)

procedur e name conflictswith symbol A procedure name cannot be the same as that of
avariable declared as an array.

| NTEGER i (10)
CALL i

program unit declaration syntax error Proper syntax must be followed when
declaring a program unit.

SUBRQUTI NE cal cul ate a, b

program unit hasinvalid use of COMMON name A COMVON name cannot be used if it
has not been defined.

SAVE [ a/

recursive STRUCTURE definition A field declaration in a STRUCTURE definition
cannot make reference to the STRUCTURE in which it is contai ned.

STRUCTURE / dat e/ day
STRUCTURE / dat e/ day
CHARACTER* 10 cal en
END STRUCTURE
END STRUCTURE

FORTRAN 77 Language Reference Manual



Error Messages 145

RETURN statement in main program unit RETURN statements cannot appear in the
main program.

PROGRAM nai n
| NTEGER n{10)
DOi=1,5

i) = i**i
REPEAT
RETURN
END

SAVE statement syntax error A SAVE statement must follow the proper syntax.
SAVE (radi us)

size of type is undefined A structure name appearing as the argument of a Sl ZEOF
function must first be defined.

i = sizeof (/structure/)

specification statement syntax error  Proper syntax must be followed for all
specification statements.

DI MENSI ON n( 100) n(100)
spelling error Keywords must be spelled correctly.
PRIN *, "CGood Afternoon”

statement cannot be reached In every program, the possibility must exist for every
executabl e statement to be used during execution.

PRI NT *, "RED"

GOTO 200

PRI NT *, "WH TE"
200 PRI NT *, "BLUE"

symbol defines illegal storage in GLOBAL DEFINE G.OBAL DEFI NE subprograms
cannot contain declarations that define physical storage.

GLOBAL DEFI NE
| NTEGER i, |
END

FORTRAN 77 Language Reference Manual



146 Error Messages

symbol in UNION was in EQUIVALENCE or UNION Once avariable is used in an
EQUI VALENCE list or UNI ON declaration, it cannot appear in another UNI ON
declaration.

EQUI VALENCE (I ong, nedl)
UNI ON
VAP
| NTEGER*4 | ong
END MAP
VAP
| NTEGER*2 medl, ned2
END UNI ON

synch error in intermediate code Internal compiler error — Call Absoft.

unbalanced parenthesis Each occurrence of an opening parenthesis must be matched
with a corresponding closing parenthesis.

a = MOD( 105/ 68

undetermined size array not valid in I/O statement Standard FORTRAN restricts
whole array 1/0O of assumed dimension arrays in subprograms.

SUBROUTI NE out (t ext)
CHARACTER*5 t ext (*)
PRI NT *, text

UNION not contained in STRUCTURE When nestinguNl ON and STRUCTURE
declarations, overlapping cannot occur.

STRUCTURE /str/
UNI ON
MAP
| NTEGER i
END MAP
MAP
| NTEGER |
END MAP
END STRUCTURE
END UNI ON

unit required in I/O statement A unit number, either an integer or an asterisk, is
required in all I/O statements.

WRI TE (FMI = 400) "Hello, Wrld"
400  FORMAT (a)

unmatched $EL SE No $ENDIF exists which matches the nesting level of the $ELSE.

unmatched $IF or $ELSEIF No $ENDIF exists which matches the nesting level of the
$IF or $ELSEIF.

FORTRAN 77 Language Reference Manual



Error Messages 147

unsupported data type Only data types supported by this implementation of
FORTRAN may be used within a program unit.

| NTEGER* 12
i =3

unsupported extension Only extensions supported by this implementation of
FORTRAN may be used in a program.

OPTI ON +Xx

unterminated DO loop Each DO loop must be terminated with a loop termination
statement (END DO, REPEAT, or a statement with a corresponding statement |abel).

DO 100 i = 1,10
i =j +1

unterminated |F block Every occurrence of a block | F must be terminated with an END
| F statement.

READ *, grade
IF (grade.le.50) THEN
PRI NT *, "FAIL"
ELSE
PRI NT *, " PASS"

unterminated SELECT CASE block Each occurrence of a SELECT CASE statement
must be terminated with an END SELECT statement.

SELECT CASE (i)
CASE (1)
CASE DEFAULT

variable data type is undefined All variables in a program unit must be declared either
implicitly or explicitly.

| MPLI CI' T NONE
a=>5

variable misaligned A variable should be aligned on a boundary which matchesits size.

| NTEGER* 4 i
| NTEGER*2 |
| NTEGER*1 k
COMMON /areal k, i, |j

VAX tab format is nonstandard -v alows for the use of this format This is not
standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRI TE (*,100) 'This is an exanple

1 of VAX Fortran Tab-Format’' !comrent |ine
1 0 0 FORMAT (t12, a)
*comrent, comrent, coment

FORTRAN 77 Language Reference Manual



148 Error Messages

VOLATILE statement syntax error The rules and syntax governing the VOLATI LE
statement must be followed.

VOLATI LE (a, i)

wide source format is nonstandard -w extends the last statement column to 132. This
is not standard ANSI FORTRAN 77, and cannot be combined with -N32.

WRITE (*,*) 'This is an exanple of using wide format, which accepts
+statenents that exceed colum 72’

wrong number of function arguments The number of arguments to statement functions
and intrinsic functions must agree with the number of arguments that are required.

a = nod(1)

wrong number of array dimensions Arrays must be referenced with the same number
of dimensions as they were declared with.

| NTEGER n{( 5, 5)
m5) = 100

FORTRAN 77 Language Reference Manual



Error Messages

149

COMPILER ERROR MESSAGES — SORTED NUMERICALLY

illegal syntax

numeric overflow

division by zero

invalid statement label

alpha character expected

spelling error

invalid option

invalid INCLUDE

specification statement syntax error
invalid argument

program unit declaration syntax error
duplicate label definition

duplicate program unit declaration
local variable never referenced
duplicate variable declaration

not an intrinsic function

duplicate COMMON or NAMELIST declaration
SAVE statement syntax error

array declaration error

PARAMETER declaration error
invalid constant expression

missing END statement

variable data type is undefined
variable misaligned

invalid statement function dummy argument
illegal statement ordering

invalid argument to EQUIVALENCE statement
missing label on FORMAT statement
statement cannot be reached

synch error in intermediate code

END DO or REPEAT without DO
unbalanced parenthesis

illegal expression

wrong number of function arguments
missing operand

wrong number of array dimensions
illegal DO variable

expecting an argument list or subscript
ASSIGN statement error

label missing

ELSE or END IF without IF () THEN
unterminated DO loop

unterminated |F block

expecting end of statement

FORTRAN 77 Language Reference Manual



150 Error Messages

47
48
50
51
53
55
56
57
58
59
60
61
62
64
66
67
68
70
71
72
73
74
75
76
77
78
79
80
81
82
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

END SELECT without SELECT CASE
unterminated SELECT CASE block
invalid CASE statement

invalid 1/0O control list specifier or syntax
illegal variablein NAMELIST

illegal EQUIVALENCE or UNION of COMMON blocks
intrinsic function data type mismatch
procedure name conflicts with symbol
DATA statement syntax error

illegal symbol inaDATA statement
duplicate BLOCKDATA initialization of COMMON
illegal statement in BLOCK DATA procedure
illegal value parameter

illegal external symbol

illegal statement function name

illegal use of operator

array boundary error

EXIT or CYCLE outside of aloop
unsupported data type

non-standard use of assignment operator
illegal dummy argument

GOTO non-integer |abel

illegal DO loop label

illegal IF clause

assignment to DO variable

increment expression cannot be zero
non-constant case expression

not expecting alabel

continuation character expected

blank lines not valid in VS Free-Form
duplicate DATA initialization
VOLATILE statement syntax error

illegal initialization

unit required in 1/0 statement

invalid I/O list or syntax

format string missing opening parenthesis
illegal format repeat count

illegal format specifier

format specifier is not repeatable

format string has unmatched quote
incorrect format hollerith count

format string has unmatched parenthesis
adjustable array is not adummy argument
RETURN statement in main program unit
INTRINSIC name used as EXTERNAL
illegal use of statement function argument
undetermined size array not valid in 1/O statement
unsupported extension

FORTRAN 77 Language Reference Manual



Error Messages

151

102
103
104
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

invalid data type for control list specifier
argument type mismatch

illegal function call

nonstandard statement

nonstandard comment

nonstandard type

nonstandard datainitialization

nonstandard edit descriptor

nonstandard intrinsic function

nonstandard 1/0 specifier

nonstandard constant

nonstandard symbolic name

one trip do loops are nonstandard

conditional compilation is nonstandard

Fortran 90 free source form is nonstandard
extended range do loops are nonstandard

IBM VS free-form is nonstandard

escape sequences in strings are nonstandard

VAX tab format is nonstandard

wide source format is nonstandard

GLOBAL statement is nonstandard

number of continuation lines is nonstandard
overriding dynamic storage allocation is nonstandard
optional use of FORMAT specifier is nonstandard
nonstandard operator

nonstandard constant delimiter

multiple statement line is nonstandard

illegal structure definition

END STRUCTURE without STRUCTURE
invalid field name

duplicate STRUCTURE name

illegal use of RECORD name

missing END STRUCTURE

END UNION without UNION

MAP outside of UNION

duplicate name in UNION

UNION not contained in STRUCTURE

missing END UNION

expecting a MAP statement

symbol in UNION was in EQUIVALENCE or UNION
illegal POINTER variable

illegal POINTER based variable

illegal use of POINTER based variable

recursive STRUCTURE definition

illegal statement in GLOBAL DEFINE

symbol definesillegal storagein GLOBAL DEFINE
cannot have an ENTRY in aroutine with VALUE
cannot reference a pointer based function

FORTRAN 77 Language Reference Manual



152 Error Messages

151
152
153
154
155
156
157
158
159
160
161
162
163

size of type is undefined

argument to SIZEOF is not a data type

branch is further than 32k: use N11 option

32 bit address to aglobal: do not use N12 option
program unit has invalid use of COMMON name
invalid $DEFINE

$EL SE, $EL SEIF or $ENDIF without $I F
unmatched $EL SE

illegal metacommand

invalid SUNDEFINE

invalid $IF or SEL SEIF

unmatched $IF or $EL SEIF

%DESCR function ignored

FORTRAN 77 Language Reference Manual



Appendix C

ASCII Table

153

ASCII codes 0 through 31 are control codes that may or may not have meaning on Linux.
They are listed for historical reasons and may aid when porting code from other systems.
Codes 128 through 255 are extensions to the 7-bit ASCII standard and the symbol
displayed depends on the font being used; the symbols shown below are from the Times
New Roman font. The Dec, Oct, and Hex columns refer to the decimal, octal, and
hexadecimal numerical representations.

Character Dec Oct Hex  Description
NULL 0 000 00 null

SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text

ECT 4 004 04 end of trans
ENQ 5 005 05 enquiry

ACK 6 006 06 acknowledge
BEL 7 007 07 bell code

BS 8 010 08 back space

HT 9 011 09 horizontal tab
LF 10 012 0A  linefeed

VT 11 013 0B vertical tab

FF 12 014 0C  formfeed

CR 13 015 0D  cariagereturn
SO 14 016 OE  shiftout

Sl 15 017 OF shiftin

DLE 16 020 10 data link escape
DC1 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative ack
SYN 22 026 16 synchidle

ETB 23 027 17 end of trans blk
CAN 24 030 18 cancel

EM 25 031 19 end of medium
SS 26 032 1A specia sequence
ESC 27 033 1B escape

FS 28 034 1C  file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
us 31 037 1F unit separator

Character Dec  Oct Hex  Description
32 040 20 space

! 33 041 21 exclamation
34 042 22 quotation mark

# 35 043 23 number sign

$ 36 044 24 dollar sign

% 37 045 25 percent sign

& 38 046 26 ampersand

' 39 047 27 apostrophe

( 40 050 28 opening paren

) 41 051 29 closing paren

* 42 052 2A asterisk

+ 43 053 2B plus

, 44 054 2C comma

- 45 055 2D minus

. 46 056 2E period

/ 47 057 2F slash

0 48 060 30 zero

1 49 061 31 one

2 50 062 32 two

3 51 063 33 three

4 52 064 34 four

5 53 065 35 five

6 54 066 36 six

7 55 067 37 seven

8 56 070 38 eight

9 57 071 39 nine

: 58 072 3A colon

; 59 073 3B semicolon

< 60 074 3C less than

= 61 075 3D equal

> 62 076 3E greater than

? 63 077 3F question mark

FORTRAN 77 Language Reference Manual



154 ASCII Table

Character Dec Oct Hex Description b 98 142 62 lower case
@ 64 100 40 commercia at letter

A 65 101 41 upper case c 99 143 63 lower case
letter letter

B 66 102 42 upper case d 100 144 64 lower case
letter letter

C 67 103 43 upper case e 101 145 65 lower case
letter letter

D 68 104 44 upper case f 102 146 66 lower case
letter letter

E 69 105 45 upper case g 103 147 67 lower case
letter letter

F 70 106 46 upper case h 104 140 68 lower case
letter letter

G 71 107 47 upper case i 105 151 69 lower case
letter letter

H 72 110 48 upper case i 106 152 6A lower case
letter letter

I 73 111 49 upper case k 107 153 6B lower case
letter letter

J 74 112 4aA upper case I 108 154 6C lower case
letter letter

K 75 113 4B upper case m 109 155 6D lower case
letter letter

L 76 114 4C upper case n 110 156 6E lower case
letter letter

M 77 115 4D upper case o 111 157 6F lower case
letter letter

N 78 116 4E upper case p 112 160 70 lower case
letter letter

(0] 79 117 4F upper case q 113 161 71 lower case
letter letter

P 80 120 50 upper case r 114 162 72 lower case
letter letter

Q 81 121 51 upper case s 115 163 73 lower case
letter letter

R 82 122 52 upper case t 116 164 74 lower case
letter letter

S 83 123 53 upper case u 117 165 75 lower case
letter letter

T 84 124 54 upper case v 118 166 76 lower case
letter letter

U 85 125 55 upper case w 119 167 77 lower case
letter letter

\Y 86 126 56 upper case X 120 170 78 lower case
letter letter

w 87 127 57 upper case y 121 171 79 lower case
letter letter

X 88 130 58 upper case z 122 172 A lower case
letter letter

Y 89 131 59 upper case { 123 173 7B opening brace
letter | 124 174 7C vertical bar
z 90 132 5A upper case } 125 175 7D closing brace
letter ~ 126 176 7E tilde

[ 91 133 5B opening bracket 127 177 7F delete

\ 92 134 5C back slash

] 93 135 5D closing bracket

A 94 136 5E circumflex

_ 95 137 5F underscore

‘ 96 140 60 grave accent

a 97 141 61 lower case

letter

FORTRAN 77 Language Reference Manual



ASCII Table 155

Character Dec Oct Hex
? 128 200 80
129 201 81
, 130 202 82
f 131 203 83
N 132 204 84
133 205 85
t 134 206 86
¥ 135 207 87
- 136 210 88
%o 137 211 89
S 138 212 8A
< 139 213 8B
E 140 214 8C
141 215 8D
? 142 216 8E
143 217 8F
144 220 90
‘ 145 221 91
' 146 222 92
“ 147 223 93
" 148 224 94
. 149 225 95
- 150 226 96
— 151 227 97
- 152 230 98
™ 153 231 99
S 154 232 9A
> 155 233 9B
® 156 234 9C
157 235 9D
? 158 236 9E
Y 159 237 9F
160 240 A0
i 161 241 Al
¢ 162 242 A2
£ 163 243 A3
o} 164 244 A4
¥ 165 245 A5
| 166 246 A6
8§ 167 247 A7
" 168 250 A8
© 169 251 A9
a 170 252 AA
« 171 253 AB
- 172 254 AC
- 173 255 AD
® 174 256 AE
N 175 257 AF
° 176 260 BO
+ 177 261 B1
2 178 262 B2
3 179 263 B3
’ 180 264 B4
M 181 265 B5
i 182 266 B6
. 183 267 B7
, 184 270 B8
1 185 271 B9
° 186 272 BA
» 187 273 BB
Ya 188 274 BC
1 189 275 BD

Ya 190 276 BE
é 191 277 BF

FORTRAN 77 Language Reference Manual



156 ASCII Table

Character Dec Oct Hex
A 192 300 Co
A 193 301 c1
A 194 302 c2
A 195 303 Cc3
A 196 304 c4
A 197 305 C5
/£ 198 306 C6
C 199 307 c7
E 200 310 C8
E 201 311 c9
E 202 312 CA
E 203 313 CB
] 204 314 cC
i 205 315 CD
i 206 316 CE
T 207 317 CF
D) 208 320 DO
N 209 321 D1
6] 210 322 D2
) 211 323 D3
o) 212 324 D4
6] 213 325 D5
o) 214 326 D6
x 215 327 D7
@ 216 330 D8
V] 217 331 D9
U 218 332 DA
0 219 333 DB
U 220 334 DC
Y 221 335 DD
b 222 336 DE
R 223 337 DF

Character Dec Oct Hex
a 224 340 EO
a 225 341 El
a 226 342 E2
a 227 343 E3
a 228 344 E4
a 229 345 E5
® 230 346 E6
c 231 347 E7
e 232 350 E8
é 233 351 E9
é 234 352 EA
e 235 353 EB
i 236 354 EC
i 237 355 ED
7 238 356 EE
T 239 357 EF
o) 240 360 FO
fi 241 361 F1
0 242 362 F2
6 243 363 F3
0] 244 364 F4
0 245 365 F5
0] 246 366 F6
+ 247 367 F7
[} 248 370 F8
u 249 371 F9
a 250 372 FA
1} 251 373 FB
v} 252 374 FC
y 253 375 FD
b 254 376 FE
y 255 377 FF

FORTRAN 77 Language Reference Manual



157

Appendix D

Bibliography

References on the FORTRAN language

These books and manuals are useful references for the FORTRAN language and the
floating point math format used by Absoft Fortran 77 on Windows.

Page, Didday, and Alpert, FORTRAN 77 for Humans, West Publishing Company (1983)
Highly recommended for beginners

Kruger, Anton, Efficient FORTRAN Programming, John Wiley & Sons, Inc. (1990)
Highly recommended for beginners

Loren P. Meissner and Elliot I. Organick, FORTRAN 77, Addison-Wesley Publishing
Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company (1978)

JN.P. Hume and R.C. Holt, Programming FORTRAN 77, Reston Publishing Company,
Inc. (1979)

Harice L. Seeds, FORTRAN 1V, John Wiley & Sons (1975)

Jehosua Friedmann, Philip Greenberg, and Alan M. Hoffberg, FORTRAN 1V, A Sf-
Teaching Guide, John Wiley & Sons, Inc. (1975)

James S. Coan, Basic FORTRAN, Hayden Book Company (1980)

Brian W. Kernighan and P.J. Plauger, Software Tools, Addison-Wesley Publishing
Company (1976)

Brian W. Kernighan and P.J. Plauger, The Elements of Programming Style, McGraw-Hill
Book Company (1978)

American National Standard Programming Language FORTRAN, X3.9-1978, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Sandard for Binary Floating-Point Arithmetic, Draft 8.0 of
|EEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and I.E. Stegun, Handbook of Mathematical Functions, U.S. Department
of Commerce, National Bureau of Standards (1972)

FORTRAN 77 Language Reference Manual



158  Bibliography

Fortran Forum, Association for Computing Machinery. Phone: 1-212-869-7440.

Fortran Journal, Fortran Users Group. Phone: 1-714-441-2022.

FORTRAN 77 Language Reference Manual



Bibliography 159

Refer ences on Windows Programming

These books are suggested reading for learning how to program in the Win32 API for
Windows. Most of these books are available in book stores.

Microsoft Win32 Programmer’s Reference, Volumes 1-5, Mircosoft Press (1993)
Charles Petzold, Programming Windows 3.1, Mircosoft Press (1992)

Jerry Richter, Advanced Windows, The Developer’s Guide to the Win32 API for Windows
NT 3.5 and Windows 95, Mircosoft Press (1995)

FORTRAN 77 Language Reference Manual



160

Appendix E

Technical Support

The Absoft Technical Support Group will provide technical assistance to all registered
users. They will not answer general questions about operating systems, operating System
interfaces, graphical user interfaces, or teach the FORTRAN language. For further help
on these subjects, please consult this manual and any of the books and manuals listed in
the bibliography.

Before contacting Technical Support, please study this manual and the Fortran User
Guide to make sure your problem is not covered here. Specifically, look at the chapter
Using The Compilers in the ProFortran User Guide and the Error Messages
appendices of both manuals. To help Technical Support provide a quick and accurate
solution to your problem, please include the following information in any correspondence
or haveit available when calling.

Product I nformation:

Name of product .

Version number.

Serial number.

Version number of the operating system.

System Configuration:

Hardware configuration (hard drive, etc.).
System software release (i.e. 4.0, 3.5, €tc).
Any software or hardware modifications to your system.

Problem Description:

What happens?

When does it occur?

Provide a small (20 line) reproducible program or step-by-step example if
possible.

Contacting Technical Support:

Address: Absoft Corporation
Attn: Technical Support
2781 Bond Street
Rochester Hills, MI 48309

FORTRAN 77 Language Reference Manual



Technical Support 161

Technical Support: (248) 853-0095 9am - 3pm EST
FAX (248) 853-0108 24 Hours

email support@absoft.com 24 Hours
World Wide Web http://www.absoft.com

FORTRAN 77 Language Reference Manual






163

Appendix F

VAX Extensions

This appendix lists the VAX FORTRAN extensions to FORTRAN 77 that are supported
by Absoft Fortran 77. For details about porting code from the VAX, see the Porting
Code chapter of the ProFortran User Guide.

VAX FORTRAN STATEMENT EXTENSIONS

ACCEPT

BYTE

DECCDE

DO WHI LE. . . END DO
DO .. END DO
ENCCODE

EXIT

I MPLI CI' T NONE

| NCLUDE

OPEN statement extensions
ACCESS=" APPEND
CARRI AGECONTROL=

DI SP= (same as DI SPOSE=)
DI SPOSE= (Or DI SP=)
' KEEP' and’ SAVE'

' PRINT' and’' DELETE

" PRI NT/ DELETE
"SUBM T
" SUBM T/ DELETE'
MAXREC=
NAME=
NOSPANBL OCKS
ORGANI ZATI ON=

RECORDSI ZE= (Same as RECL=)
READONLY
SHARED
TYPE= (Same as STATUS=)
MAP. . . END MAP
NAVEL| ST
READ (NANMELI ST directed)
RECORD
STRUCTURE. . . END STRUCTURE
TYPE
UNI ON. . . END UNI ON
VOLATI LE

WRI TE (NAMELI ST directed)

FORTRAN 77 Language Reference Manual



164 VAX Extensions

VAX FORTRAN DATA TYPE EXTENSIONS

BYTE

COVPLEX* 16

DOUBLE COWPLEX

| NTEGER* 2

| NTEGER* 4

LOG CAL*2

LOG CAL* 4

REAL* 4

REAL* 8

" nnn’ Xand’ nnn Oformat for hexadecimal and octal constants

VAX FORTRAN INTRINSIC FUNCTION EXTENSIONS

ACOSD CasD FLOATJ I1OR JI BCLR JM N1
Al MAXO DACOSD I AND I'1 SHFT JIBITS JNINT
Al'M NO DASI ND | BCLR I 1 SHFTC JI BSET JNOT
AIMAXO DATAND I BI TS I'1SIGN JID'M JZEXT
AIM NO DATAN2D | BSET I MAXO J1I DI NT LCC
AS| ND DCMVPLX | EOR I MAX1 J1 DNNT MBI TS
ATAND DCONJG I 1 ABS I M NO JI EOR NOT
ATAN2D DCOSD I 1 AND I M N1 JI FI X [ 9REF]
Bl TEST [ 94 DESCR I 1 BCLR | MCD JINT SI ND
BJTEST DFLOAT I1BITS I NI NT JIOR SI ZEOF
BTEST DFLOTI | 1 BSET | NOT JI SHFT TAND
CDABS DFLOTJ 1Dl M I OR JI SHFTC [ 94 VAL
CDCOs DI MAG I'1 DI NT | SHFET JI SI GN ZEXT
CDEXP DREAL I 1 DNNT | SHFTC JMCD

CDLOG DSI ND 1 ECR I ZEXT JMAXO0

CDSI N DTAND I1FIX JI ABS JMAX1

CDSQRT FLOATI I I NT J1 AND JM NO

OTHER VAX FORTRAN EXTENSIONS

Aggregate assignment

Comment lines beginning with

Conditional compilation with¥’ in column 1

DATA statements mixed with declarations

Edit descriptors without field widths

Extended rangeo loops

Extended source lines with 132 columns (with option)
Initialization in declaration statements (IL&TEGER 1/31/)
Initialization of covwwON blocks outside OBLOCK DATA
Nested NCLUDE statements

Non+ NTEGER array and substring indexes

PARAMETER statements without ()

RECL defines 32-bit words (witiN51 option)

Symbol names may includg™and “_” in names
Tab-Format source form (witv option)

Use of intrinsics IlPARAVETER (with -O or -N41 options)
VAX file names for implicit unit connections to a file

FORTRAN 77 Language Reference Manual



VAX Extensions 165

- 0 Z Q $ edit descriptors

FORTRAN 77 Language Reference Manual






167

Appendix G

L anguage Systems Fortran Extensions

This appendix describes the implementation of Language Systems Fortran extensions
supported by the Absoft Fortran 77 Compiler.

STRING

STRI NG is a type statement and is used to declare a string entity compatible with Pascal
strings. The first data byte of a STRI NG is set to the logical length of the string, limiting
the length of a character entity declared in this manner to 255 bytes. With the exception
of internal files and substring expressions, a STRING can be used anywhere a
CHARACTER argument can be used.

POINTER

This is a declaration statement for declaring variables that will contain the address of
other variables. The syntax is:

PO NTER / typel v [, V]

where:
type isatypeor structure name.
v isavariable name.

A PO NTER may be used in an assignment statement or in an integer expression to
manipulate the address it contains. It is dereferenced (the value of what it points to is
extracted) by appending the operator, ~, to the name.

LEAVE

This statement has the same meaning as the ExI T statement (See Control Statements)
and provides a convenient means for abnormal termination of a Do loop. The LEAVE and
EXI T statements cause control of execution to be transferred to the statement following
the terminal statement of a DOloop or block Do.

GLOBAL

The syntax of this statement is similar to the SAVE statement (see Specification and DATA
Statements). The variables specified with a GLOBAL statement are made externally
visible. It can be used in conjunction with GLOBAL DEFI NE to create global variables for
the wholefile.

FORTRAN 77 Language Reference Manual



168 Language Systems Fortran Extensions

CGLOBAL

The syntax of this statement is similar to the SAVE statement (see Specification and DATA
Statements). The variables specified with a CGLOBAL statement are not affected by case
folding and are made externally visible. It can be used in conjunction with GLOBAL
DEFI NE to create global variables for the wholefile.

PGLOBAL

The syntax of this statement is similar to the SAVE statement (see Specification and DATA
Statements). The variables specified with a PGLOBAL statement are folded to upper case
and made externally visible. It can be used in conjunction with GLOBAL DEFI NE to create
global variables for the wholefile.

CEXTERNAL

The syntax of this statement is similar to the EXTERNAL statement (see Specification and
DATA Statements). The functions specified with a CEXTERNAL statement pass all of their
arguments by value as the default. An argument can be passed by reference if the %REF
instrinsic function is used.

PEXTERNAL

The syntax of this statement is similar to the EXTERNAL statement (see Specification and
DATA Statements). The functions specified with a PEXTERNAL statement pass all of their
arguments by value as the default. An argument can be passed by reference if the %REF
instrinsic function is used. Note that this statement has the same effect as the Absoft
PASCAL EXTERNAL declaration.

INTL, INT2, AND INT4

I NT1, | NT2, and | NT4 are type conversion intrinsic functions that convert their arguments
to 1-, 2-, and 4-byte integers respectively.

JSIZEOF

This function returns an integer that represents the size of its argument in bytes. It is
identical to the SI ZECF function (see Programs, Subroutines, and Functions).

% VAL, % REF, AND % DESCR

When appearing in the formal argument list of a FUNCTI ON or SUBROUTI NE declaration
statement, these statements use the syntax of a function reference, but have the affect of
declaring the passing method of the argument. %OESCR has no effect (but will generate a

FORTRAN 77 Language Reference Manual



L anguage Systems Fortran Extensions 169

warning diagnostic), 9%REF is the default, and %w/AL is the same as using the VALUE
declaration statement (see Specification and DATA Statements). The % is not optional in
this usage.

LANGUAGE SYSTEMSINCLUDE FILES

There are some syntactical difficulties in severa of the Language Systems APl include
files that are ignored by the Language Systems Fortran compiler. These are detected by
the Absoft Fortran 77 compiler which will issue a diagnostic when they are encountered.

FORTRAN 77 Language Reference Manual



170 Index

1.CONVERT, 76 assignment statement, 34
/ editing, 90 constant delimiter, 15
\ editing, 90 editing, 88

\f, 16 expressions, 30

\n, 16 set, 3

\t, 16 storage unit, 24

‘3 editing, 90 substring, 23

‘4 editing, 90 CLOSE, 77

A editing, 88 colon editing, 90

Absoft address, 160 Command-Enter, 71
ACCEPT, 73 Command-Return, 71
ACCESS, 75, 79 comment linge, 8
ACTION, 75 COMMON, 40
ampersand, 9 restrictions, 42
ANSI, 1 COMMON blocks, 101

ANS] standard, 7
apostrophe editing, 91
arithmetic
assignment statement, 33
constant expression, 29

compatibility, introduction, 1
compiler errors, numeric, 149
compiler options

-8, Fortran 90, 7, 129

-C, check boundaries, 128

expressions, 27 -f, casefold, 4

|F statement, 56 -l, IBM VS Free-Form, 129
arithmetic expressions -K, escape sequences, 16, 132

datatype, 28 -N112, IBM VS Free-Form, 7
array, 19 -N3, record lengths, 67

actual, 20 -N51, 32-bit RECL, 75

adjustable, 20 -s, static storage, 25

dummy, 20 -V, VAX Tab-Format, 7

dynamic allocation, 121
storage sequence, 21
subscript, 21
array declarator, 19
ASCII conversion, 81
ASCII table, 153
ASSIGN, 34
assigned GOTO, 55
AUTOMATIC statement, 48
B editing, 85
backslash editing, 90
BACKSPACE, 77
bibliography, 157
binary constants, 17
BLANK, 75, 80
blank control editing, 89
BLOCK, 67, 76
BLOCK DATA, 116
block IF, 56
BN editing, 89
books, reference, 157
BUFFER, 76
buffers, 68
BY TE function, 110
BZ editing, 89
C strings, 123
CALL statement, 98
CARRIAGECONTROL, 76
CASE block, 61
CASE DEFAULT, 61
case selector, 62
CASE statement, 61
character, 15

-W, wide format, 7

-X, conditional compilation, 8, 10, 129

COMPLEX, 18
complex editing, 85
COMPLEX*16, 18, 39
COMPLEX*8, 39
computed GOTO, 55

conditional compilation, 8, 10, 13

constants
blanksin, 15
character, 15
COMPLEX, 18
COMPLEX*16, 18
double precision, 18
Hollerith, 19
INTEGER, 16
LOGICAL, 16
PARAMETER, 15
rea, 17

contacting Absoft, 161

continuation lines, 9

CONTINUE statement, 61

control statements, 55

conventions used in the manual, 2

CONVERT, 76

CY CLE statement, 61

D. see conditional compilation

D editing, 86

data length specifiers, 38
COMPLEX*16, 39
COMPLEX*8, 39
INTEGER* 1, 38
INTEGER*2, 38

FORTRAN 77 Language Reference Manual



2 I ndex

INTEGER*4, 38
INTEGER*8, 38
LOGICAL*1, 38
LOGICAL*2, 38
LOGICAL*4, 38

escape sequences, 16
exclamation point, 9, 10
EXIST, 79

EXIT statement, 60
expressions, 27

REAL*4, 38 arithmetic, 27
REAL*8, 38 character, 30
DATA statement, 52 relational, 30, 31
datatype, 14 extended range DO loops, 58
character, 15 extensions
COMPLEX, 18 VAX FORTRAN, list of, 163

COMPLEX*16, 18
double precision, 18

extensions to FORTRAN 77, 2
EXTERNAL, 43

Hollerith, 19 external files, 66
IMPLICIT, 15 external function, 99
INTEGER, 16 F editing, 86
intrinsic function, 15 field width, 82
LOGICAL, 16 FILE, 74
name, 14 files, 66
real, 17 access, 67
decimal constants, 17 buffering, 68
declaration initialization, 38 internal, 68
DECODE, 81 name, 66
DESCR function, 110 position, 66
DIMENSION, 40 files, including, 12
dimension bound, 20 floating point
dimension declarator, 20 editing, 85
DIRECT, 79 FMT, 69
DI SP, 76 FORM, 75, 79
DISPOSE, 76 FORMAT, 82
DO, 57, 59 format specification, 82
extended range, 58 FORMATTED, 79
DO variable, 57 formatted data transfer, 73
DO WHILE, 59 formatted record, 65
documentation conventions, 2 Fortran 77
dollar editing, 90 introduction, 1
double precision FORTRAN 77 extensions, 2, 3,4, 6,7, 8,9, 10, 11,
editing, 85 12, 15, 16, 17, 18, 19, 24, 25, 28, 30, 32, 33, 34,
double precision, 18 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 52, 56,
dynamic memory allocation, 121 58, 59, 60, 61, 67, 68, 70, 73, 75, 76, 81, 82, 84,
E editing, 86 85, 90, 91, 93, 97, 99, 103, 110, 117, 119, 120
edit descriptor, 82 ACCEPT, 73
ELSE, 56 ACTION specifier, 74, 75
ENCODE, 81 arithmetic and logical type statements, 37
END (/O specifier), 71 arithmetic assignment statement, 33
END DO, 60 AUTOMATIC statement, 48
END IF, 56 B editing, 85
END MAP statement, 50 backdlash editing, 90
END SELECT, 61 binary constants, 17
END statement, 64 Block DO, 59
END UNION statement, 50 BLOCK specifier, 67, 76
ENDFILE, 78 BUFFER specifier, 68, 76
endfile record, 66 CARRIAGECONTROL specifier, 76
ENTRY, 100 CASE block, 61
EQUIVALENCE character set, 3
arrays, 42 character type statement, 39
restrictions, 42 comment, 8
statement, 24, 41 compiler directives, 6
substrings, 42 compiler options
ERR, 70 -N3, 67
error messages, 125 COMPLEX* 16, 18, 39
compiler, numerical, 149 COMPLEX*8, 39
runtime, 125 conditional compilation, 8

FORTRAN 77 Language Reference Manual



I ndex

CYCLE, 61

data length specifiers, 38
datatypes, 28

declaration initialization, 38
DECODE statement, 81
DESCR function, 110

DISP specifier, 76

DISPOSE specifier, 76

DO WHILE, 59

dollar sign editing, 90
DOUBLE COMPLEX, 37

edit descriptors, 82

ENCODE statement, 81

END DO, 60

END SELECT, 61

escape sequences, 16

EXIT, 60

extended range DO, 58

Fortran 90 Free Source Form, 9
GLOBAL DEFINE, 117
GLOBAL statement, 40
hexadecimal constants, 17
Hollerith Constant, 19

IBM VS FORTRAN free-form, 11
IMPLICIT NONE, 44
IMPLICIT NONE statement, 15
IMPLICIT statement, 43
INCLUDE statement, 12
INLINE statement, 44

input validation, 84

integer editing, 84
INTEGER*1, 38

INTEGER*2, 38

INTEGER*4, 38

INTEGER*8, 38

intrinsic functions, 45, 103, 110
LOC function, 110

logical assignment statement, 33
logical IF statement, 56

logical operators, 32
LOGICAL*1, 38

LOGICAL*2, 38

LOGICAL*4, 38

MAP declaration, 50
MAXREC specifier, 75
memory assignment statement, 34
multiple statement lines, 11
Namelist Specifier, 70
namelist directed editing, 93
NAMELIST statement, 45
NOSPANBLOCKS specifier, 76
numeric bases, 17

O editing, 85

octal constants, 17
ORGANIZATION specifier, 75
PARAMETER statement, 47
POINTER statement, 47, 120
POSITION specifier, 75

Q editing, 91

guotation marks, 15
READONLY specifier, 76
REAL*4, 38

REAL*8, 38

RECORD statement, 48
RECORDSIZE specifier, 75
recursion, 97, 99

REF function, 110
relational expressions, 30
REPEAT, 60

SAVE statement, 48
SELECT CASE, 61
SHARED specifier, 76
source formats, 7
statement field, 7
Statement Order, 12

STRUCTURE declaration, 49, 119
symbolic names, 4
TYPE, 73
UNION declaration, 50
VAL function, 110
VALUE statement, 52
VAX FORTRAN Tab-Format, 10
VIRTUAL statement, 40
VOLATILE statement, 52
Z editing, 85
ZEXT function, 110
Fortran 90 free source form, 9
Fortran Forum, 158
FORTRAN 1/O errors, 126
FUNCTION statement, 98

functions, 98

external, 99

intrinsic, 100

statement, 99

table of intrinsics, 103
G editing, 87
GLOBAL, 40
GLOBAL DEFINE, 117
GOTO, statement, 55
graying of text, 2
H editing, 91
hexadecimal constants, 17
Hollerith constant, 19
Hollerith editing, 91
| editing, 84
1/O errors, listed, 126
IBM VS FORTRAN free-form, 11
| EEE floating point representation, 18
IF, 56
IMPLICIT, 43
implied DO list, 54, 72
INCLUDE statement, 12
initial line, 8
INLINE object code, 118
INLINE statement, 44
input and output, 65
input validation, 84

INQUIRE, 78

INTEGER, 16

integer constant expression, 29
integer editing, 84

INTEGER*1, 38
INTEGER*2, 38
INTEGER*4, 38

FORTRAN 77 Language Reference Manual



4 I ndex

INTEGER*8, 38
internal files, 66, 68
INTRINSIC, 44
intrinsic functions, 15, 100, 103
restrictions, 115
IOSTAT, 71
IOSTAT specifier, 125
italicized text, defined, 2
iteration count, 58
keywords, 4
L editing, 88
labels, 5
Language Systems Fortran, 167
list directed
editing, 91
input, 92
output, 93
LOC function, 110, 113
logical
assignment statement, 33
expressions, 31
IF statement, 56
operators, 32
LOGICAL, 16
logical editing, 88
LOGICAL*1, 38
LOGICAL*2, 38
LOGICAL*4, 38
LONG function, 110
looping, 57
MAP statement, 50
MAXREC, 75
memory assignment statement, 34
modifier keys, 2
multiple statement lines, 11
MVBITS subroutine, 113
NAMNE, 74, 79
NAMED, 79
NAMELIST, 45
namelist directed
editing, 93
input, 93
output, 95
NEXTREC, 80
NML, 70
NOSPANBLOCKS, 76
NUMBER, 79
numeric bases, 17
decimal, 17
hexadecimal, 17
octal, 17
numeric basis
binary, 17
numeric storage unit, 24
O editing, 85
octal constants, 17
OPEN statement, 74
OPENED, 79
operator precedence, 32
optimization
pointers and optimization, 121
options, manual convention, 2
ORGANI ZATI ON, 75

P editing, 87
PARAMETER, 15, 46
statement, 117
parenthesesin expressions, 29
pass by value, 114
PAUSE statement, 63
phone number, technical support, 161
POINTER statement, 47, 120
functions which return pointers, 123
mixing pointers and structures, 122
pointer-based functions, 124
pointers and optimization, 121
pointers as arguments, 122
pointers to Cstrings, 123
POSITION, 75
positional editing, 89
precedence, 32
PRINT, 72
printing, 74
problems, technical support for, 160
PROGRAM statement, 97
Q editing, 91
READ, 72
READONLY, 76
real, 17
real editing, 85
REAL*4, 38
REAL*8, 38
REC, 70
RECL, 75, 80
RECORD statement, 48
size of aRECORD, 114
records, 65
endfile, 66
formatted, 65
unformatted, 66
RECORDSI ZE, 75
recursion, 97, 99
REF function, 110
relational expressions, 30
relational operators, 30
REPEAT, 60
function, 113
repeat factor, 82
RETURN, 101
REWIND, 78
runtime error messages, 125
Sediting, 89
SAVE statement, 48
scalar variable, 19
scale factor, 87
SELECT CASE, 61
SEQUENTIAL, 79
SHARED, 76
shared data, 40
SHIFT functions, 111
sign control editing, 89
SIZE, 80
SIZEOF function, 114
slash editing, 90
source format, 7
ANSI standard, 7
IBM VS FORTRAN free-form, 11

FORTRAN 77 Language Reference Manual



I ndex

VAX FORTRAN tab-format, 10
SP editing, 89
sguare brackets, defined, 2
SS editing, 89
statement format, 7
statement functions, 99
statement labels, 5
statement line

comment, 8

continuation, 9

END, 8

initial, 8
statement size

Fortran 90, 9

IBM VSFORTRAN, 11
statements, 5
statements, 37

executable, 6

nonexecutable, 6
STATUS, 75
STOP statement, 63
storage, 23
storage association, 24
storage definition, 25
storage sequence, 24
storage unit, 23

character, 24

numeric, 24
strings, C, 123
STRUCTURE declaration, 49, 119

mixing pointers and structures, 122

size of astructure, 114
SUBROUTINE, 98
subroutines, 97
subscript, 21

expression, 21
substring, 23

expressions, 23
symbolic names, 4

global, 4

local, 4
T editing, 89

technical support, 160
TL editing, 89
TR editing, 89
tutorial
books for beginners, 157
TYPE, 73
type statement, 37
CHARACTER, 39
COMPLEX, 37
DOUBLE PRECISION, 37
INTEGER, 37
LOGICAL, 37
REAL, 37
underlined text, defined, 2
UNFORMATTED, 80
unformatted data transfer, 73
unformatted record, 66
UNION statement, 50
UNIT, 68
preconnected, 638
VAL function, 110, 114
value separator, 92
VALUE statement, 52, 114, 129
variable, 19
VAX extensions
datatypes, 164
intrinsic functions, 164
miscellaneous, 164
statements, 163
VAX FORTRAN
tab-format, 10
VAX hexadecimal format, 17
VOLATILE statement, 52, 121
VS FORTRAN free-form, 11
W option, 7, 10
WORD function, 110
WRITE, 72
X. see conditional compilation
X editing, 89
Z editing, 85
ZEXT function, 110

FORTRAN 77 Language Reference Manual



	Absoft FORTRAN 77 Language Reference Manual
	Copyright Notice

	Table of Contents
	Chapter One: Introduction
	Introduction to this Manual
	Introduction to Absoft FORTRAN 77
	Compatibility
	Conventions Used in this Manual

	Chapter Two: The FORTRAN 77 Program
	Character Set
	Symbolic Names
	Keywords
	Labels
	Statements
	Executable Statements
	Nonexecutable Statements
	Statement Format
	FORTRAN 77 ANSI Standard
	Fortran 90 Free Source Form
	VAX FORTRAN Tab-Format
	IBM VS FORTRAN Free-Form

	Multiple Statement Lines 
	Statement Order
	INCLUDE Statement
	Conditional Compilation Statements

	Data Items
	Constants
	Character Constant
	Logical Constant
	Integer Constant
	Alternate Integer Bases

	Real Constant
	Double Precision Constant
	Complex Constant
	Complex *16 Constant
	Hollerith Constant

	Variables
	Arrays
	Array Declarator
	Array Subscript
	Array Name

	Substrings

	Storage
	Numeric Storage Unit
	Character Storage Unit
	Storage Sequence
	Storage Association
	Storage Definition


	Chapter Three: Expressions and Assignment Statements
	Arithmetic Expressions
	Data Type of Arithmetic Expressions
	Arithmetic Constant Expression

	Character Expressions
	Relational Expressions
	Logical Expressions
	Operator Precedence
	Arithmetic Assignment Statement
	Logical Assignment Statement
	Character Assignment Statement
	ASSIGN Statement
	Memory Assignment Statement

	Chapter Four: Specification and DATA Statements
	Type Statements
	Arithmetic and Logical Type Statements
	Character Type Statement

	DIMENSION Statement
	COMMON Statement
	EQUIVALENCE Statement
	Equivalence of Arrays
	Equivalence of Substrings
	COMMON and EQUIVALENCE Restrictions

	EXTERNAL Statement
	IMPLICIT Statement
	INLINE Statement
	INTRINSIC Statement
	NAMELIST Statement
	PARAMETER Statement
	Special use of the PARAMETER Statement

	POINTER Statement
	RECORD Statement
	SAVE Statement
	Automatic Statement
	STRUCTURE Declaration
	UNION Declaration
	VALUE Statement
	VOLATILE Statement
	DATA Statement
	Implied DO List in a DATA Statement


	Chapter Five: Control Statements
	GOTO Statements
	Unconditional GOTO
	Computed GOTO
	Assigned GOTO

	IF Statements
	Arithmetic IF
	Logical IF
	Block IF

	Loop Statements
	Basic DO Loop
	DO Loop Execution
	Transfer into Range of DO Loop

	DO WHILE
	Block DO
	END DO and REPEAT
	EXIT and LEAVE Statements
	CYCLE Statement

	CONTINUE Statement
	BLOCK CASE
	Execution of a block CASE Statement
	Block CASE Example

	STOP Statement
	Pause Statement
	END Statement

	Chapter Six: Input/Output and FORMAT Specification
	Records
	Formatted Record
	Unformatted Record
	Endfile Record

	Files
	File Name
	File Position
	File Access
	Internal Files
	File Buffering

	I/O Specifiers
	Unit Specifier
	Format Specifier
	Namelist Specifier
	Record Specifier
	Error Specifier
	End of File Specifier
	I/O Status Specifier

	I/O List
	Implied DO List in an I/O List

	Data Transfer Statements
	READ, WRITE, and PRINT
	ACCEPT and TYPE
	Unformatted Data Transfer
	Formatted Data Transfer
	Printing

	OPEN Statement
	CLOSE Statement
	BACKSPACE Statement
	REWIND Statement
	ENDFILE Statement
	INQUIRE Statement
	ENCODE and DECODE Statements
	Giving a FORMAT Specification
	FORMAT and I/O List Interaction
	Input Validation
	Integer Editing
	I Editing
	B, O, and Z Editing

	Floating Point Editing
	F Editing
	E and D Editing
	G Editing
	P Editing

	Character and Logical Editing
	A Editing
	L Editing

	Sign Control Editing
	Blank Control Editing
	Positional Editing
	X Editing
	T, TL, and TR Editing
	Slash Editing
	Dollar Sign and Backslash Editing

	Colon Editing
	Apostrophe and Hollerith Editing
	Apostrophe Editing
	H Editing

	Q Editing
	List Directed Editing
	List Directed Input
	List Directed Output

	Namelist Directed Editing
	Namelist Directed Input
	Namelist Directed Output


	Chapter Seven: Programs, Subroutines, and Functions
	Programs
	Subroutines
	Subroutine Arguments

	Functions
	External Functions
	Statement Functions
	Intrinsic Functions

	ENTRY Statement
	RETURN Statement
	Passing Procedures in Dummy Arguments
	Passing Return Addresses in Dummy Arguments
	Common Blocks
	Intrinsic Function Notes
	Argument Ranges and Results Restrictions

	BLOCK DATA
	GLOBAL DEFINE
	INLINE Statement

	Appendix A: Using Structures and Pointers
	Common Use of Structures
	Common Use of Pointers
	Pointers and Optimization
	Pointers as Arguments

	Mixing Pointers and Structures
	Functions Which Return Pointers
	Pointers to C Strings
	Pointer-based Functions

	Appendix B: Error Messages
	Runtime I/O Error Messages
	Compiler Error Messages - Sorted Alphabetically
	Compiler Error Messages - Sorted Numerically

	Appendix C: ASCII Table
	Appendix D: Bibliography
	Appendix E: Technical Support
	Appendix F: VAX Extensions
	VAX FORTRAN Statement Extensions
	VAX FORTRAN Data Type Extensions
	VAX FORTRAN Intrinsic Function Extensions
	Other VAX FORTRAN Extensions

	Appendix G: Language Systems Fortran Extensions
	STRING
	POINTER
	LEAVE
	GLOBAL
	CGLOBAL
	PGLOBAL
	CEXTERNAL
	PEXTERNAL
	INT1, INT2, and INT4
	JSIZEOF
	%VAL, %REF, and %DESCR
	Language Systems Include Files

	Index

