
 

F

    
ortran 90/95
Concise Reference

Jerrold L . Wagener

Published by Absoft Corporation
Rochester Hills , Michigan



  

 any
tion

 form,

iable.
plied,

ation,
Concise Fortran 90/95 Reference

Jerrold L. Wagener, author

Absoft Corporation, Publisher
2781 Bond Street
Rochester Hills, MI   48309

Copyright © 1998 by Jerrold L. Wagener. 

All rights reserved. No part of this book may be reproduced in any form or by
electronic or mechanical means (including photocopying, recording, or informa
storage and retrieval) without written permission from the publisher.

This book was set by the author and published, in both printed and electronic
in the United States of America by Absoft Corporation.

ISBN

The information contained in this publication is believed to be accurate and rel
However, the publisher makes no representation of warranties, express or im
with respect to the use or the results of the use of the information in this public
and will not be liable for any damages resulting from such use.



 

Table of Contents

 

i

            
FF oo rr tt rr aa nn   99 00 /95  CC oo nn cc ii ss ee   RR ee ff ee rr ee nn cc ee

Contents

         Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

         Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

11     Program Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
program units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

22     Intrinsic Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

integer data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
real data type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
complex data type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
logical data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
character data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
save  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
numeric computations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
character computations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
implicit declaration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

33     User-defined Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

derived-type definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
derived-type objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
structure constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
derived-type operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
private types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
sequence types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



 

ii

 

Fortran 90/95 Concise Reference

                
44     Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

array-valued expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
conformability and element-by-element computation . . . . . . 26
array constants - array constructors . . . . . . . . . . . . . . . . . . . . 27
masked array assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
assumed-shape dummy arguments  . . . . . . . . . . . . . . . . . . . . 30
array elements and sections . . . . . . . . . . . . . . . . . . . . . . . . . . 30
dynamic arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
array-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
example - picture refinement . . . . . . . . . . . . . . . . . . . . . . . . . 36
example - Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . 37

55     Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

common blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
equivalence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
attribute statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
block data program unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
deprecated features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

66     Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

inputting data (read) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
outputting data (write ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
data formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
opening and closing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
file inquiry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
sequential and random files . . . . . . . . . . . . . . . . . . . . . . . . . . 56
partial-record (nonadvancing) I/O . . . . . . . . . . . . . . . . . . . . . 57
list-directed and name-directed I/O . . . . . . . . . . . . . . . . . . . . 60

77    Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

if construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
case construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
do construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
goto statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



 

Table of Contents

 

iii

           
88      Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

module structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
module use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
module applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

99      Procedures 75

subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
host association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
procedure arguments and argument association  . . . . . . . . . . 79
interface blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
generic procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
return statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
statement functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
entry statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
intrinsic procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 00     Intrinsic Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

11 11     Syntax Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

general structure (R201-216) . . . . . . . . . . . . . . . . . . . . . . . . 109
tokens (names, operators ...) R301-313 . . . . . . . . . . . . . . . . 112
data types (R401-435)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
declarations and attributes (R501-549)  . . . . . . . . . . . . . . . . 115
variables (R601-631) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
expressions (R701-743) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
control structures (R801-844)  . . . . . . . . . . . . . . . . . . . . . . . 122
input, output (R901-924) . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
I/O formatting (R1001-1017) . . . . . . . . . . . . . . . . . . . . . . . . 126
program units (R1101-1112)  . . . . . . . . . . . . . . . . . . . . . . . . 127
procedures (R1201-1226)  . . . . . . . . . . . . . . . . . . . . . . . . . . 128



 

iv

 

Fortran 90/95 Concise Reference

    
11 22     A Fortran 90 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 131

implementation-dependent values . . . . . . . . . . . . . . . . . . . . 131
language extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
compiler directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
command-line compiler options  . . . . . . . . . . . . . . . . . . . . . 143

              Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



 

Preface

 

v

  

since
ortran

t sup-
gram-
e yet

Fortran
sing
ortran

opera-
e. 

                  

 form,
 part),
 reli-

7 will
rs. All
), and
ted. 

 called
t time
 of the
cedure
ism).

jor fea-
ortran
new

t with
e For-
ortran

 here
t) I/O
to fully
ve For-
Preface

Fortran has been the principal programming language of the scientific community 
the mid-1950s and has evolved over that time. The 1978 standard version, called F
77, saw extremely wide use. Fortran 90 is the next step in the evolution of Fortran; i
ports all of the features of Fortran 77 as well as many new ones which can make pro
ming easier and more efficient. The purpose of this book is to provide a concis
complete reference for Fortran 90.

Though there are numerous examples, this reference is neither a programming nor 
90 tutorial; it assumes some familiarity with Fortran 77 programming. Though focu
mainly on standard Fortran 90, a separate chapter on the Absoft implementation of F
90 describes implementation-specific features, including extensions to support inter
bility with other languages and to facilitate porting of extended Fortran 77 legacy cod

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Chapter 1 summarizes various “structural” aspects of a Fortran 90 program: source
program units (e.g., procedures, modules) “parts” (e.g., specification part, execution
etc. it also indicated how to read the formal syntax rules (BNF), upon which heavy
ance is used throughout.

Chapter 2 describes the Fortran 90 intrinsic data types. Those familiar with Fortran 7
recognize them all. The one new feature here is the type “kinds” and kind paramete
implementations must provide at least two kinds of real (single and double precision
may provide more; accordingly the Fortran 77 data type double precision is depreca

Chapter 3 describes the Fortran 90 features for user-defined data types, formally
derived types (as they are derived from the intrinsic types). This provides for the firs
in standard Fortran, data structures, including dynamic (linked) structures, and most
data abstraction capabilities of a modern object-oriented language. The generic pro
and data abstraction features are superb (but lacking are inheritance and polymorph

Chapter 4 describes the Fortran 90 array-processing language. this is one of the ma
tures of Fortran 90, and gives the language much of the array power (albeit with F
syntax and efficiency) of APL. In addition to array-level operations, there are two 
facilities for dynamic arrays, including a couple of flavors of allocatable arrays and.

Chapter 5 is an identification of many of the Fortran 90 features that are redundan
other (usually more modern) features. This includes the features “deprecated” in th
tran 90 standard and which may therefore be removed in future versions of the F
standard.

Chapter 6 describes the Fortran 90 Input/Output facilities. There's not much new
beyond Fortran 77, additional file connection specifiers and name-directed (namelis
being the main ones. These features require two chapters and 47 (large) pages 
describe in the Fortran standard; they consume 127 (smaller) pages in the exhausti
tran 90 Handbook (see below).



 

vi

 

Fortran 90/95 Concise Reference

     

n

o

e

es, a

  

n-

                    

e
e

 

Chapter 7 describes the Fortran 90 control structures. To the Fortran 77 if  construct are
added: a case construct and three modern loop constructs (do while, do forever with exit, a
modern form of the indexed do). 

Chapter 8 describes the Fortran 90 module program unit and its uses. This is a major addi-
tion to Fortran and provides flexible software “packaging”, complete with informatio
hiding (public, private) capabilities.

Chapter 9 describes the Fortran 90 procedure facilities. Much of this will be familiar t
Fortran programmers, but there are some significant features new in Fortran 90. These
include explicit procedure interfaces, user-defined generic procedures, module and intr-
nal procedures, and operator definition. 

Chapter 10 summarizes Fortran 90's 113 intrinsic procedures. These include, in addition to
the traditional numeric and character computational functions, numeric environmental
inquiry functions, array-processing and inquiry functions, bit-processing procedur
few intrinsic subroutines. 

Chapter 11 is the complete BNF for Fortran 90, extracted from the Fortran standard. This
is the rigorous description of the Fortran syntax, and this reference relies very heavily on
it; in many cases reference to the syntax rules in chapter 11 is the extent to which the syn-
tax is described, with the text devoted primarily to describing the semantics and co
straints related to the syntax.

Chapter 12 describes various implementation-specific values (e.g., kind values), options
(e.g., compiler options), and extensions in the Absoft implementation of Fortran 90.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

This reference is intended to completely describe all of Fortran 90, but being concise it
may give short shrift to some of the more subtle details of the language. The recom-
mended sources to pursue these details are the following:

1. The Fortran standard. A committee draft of the version of the Fortran standard cur-
rently under development is available on the Fortran standard committee’s web site,
http://www.ionet.net/~jwagener/j3. As of this writing standing document J3/007 is th
working draft of the Fortran 2000 standard, a very substantial subset of which is th
official definition of Fortran 90 (less five of the deprecated Fortran 90 features);
because of copyright restrictions the Fortran 90 standard cannot be posted publically. 

2. The Fortran 90 Handbook, by Adams, Brainerd, Martin, Smith, and Wagener. This
book was published by McGraw-Hill in 1992, and is an exhaustive, 740-page refer-
ence on Fortran 90; it’s chapter organization is the same as the Fortran 90 standard and
it was intended as a “readable version” of that standard.

Jerry Wagener
June 1998

Jerry@Wagener.com



 

Program Structure

 

1

     

 crisp,
ial; it
. 

ource
cution
ut.

  

 com-
yntax

e var-
h some

ing of
scrib-

            

([ ] ...)
ame
ints, an
t of a

  

llion

 style

        

-

        

n of

         
11    Program Structure

This concise reference to Fortran 90 summarizes all aspects of the language in a
concise manner. This reference is neither a programming nor Fortran 90 tutor
assumes some (but not extensive) familiarity with Fortran 77 programming concepts

This chapter summarizes various "structural" aspects of a Fortran 90 program: s
form, program units (e.g., procedures, modules), "parts" (e.g., specification part, exe
part), etc. It also indicates how to read the formal syntax rules (BNF) used througho

syntax

Chapters 1-9 rely heavily on, and make frequent reference to, chapter 11, which is a
plete BNF description of Fortran 90; while there are numerous examples of s
throughout, this reference primarily lets syntax rules (each with an “R” number) of chapter
11 "do the talking" for a complete and rigorous account of the Fortran 90 syntax. Th
ious chapters describe the associated semantics; no semantics are omitted, thoug
(especially those related to the "deprecated" features) are indeed brief.

The characteristics of the formal BNF of chapter 11 are summarized at the beginn
that chapter. A somewhat more informal form often will be used in chapters 1-9 in de
ing a feature. For example: a Fortran 90 programmer-defined name is (R304):

letter  [ name-character  ] ... 

where a name-character is a letter, (decimal) digit, or underscore(_) character.
The maximum length of a name is 31 characters; letters may be either upper or
lower case (the case is not significant in names and keywords). 

Square brackets ([ ]) indicate optionality and square brackets followed by three dots 
indicate optionally repeated any number of times. Constraints (like the 31 limit for n
lengths) will be mentioned. In those cases where the language imposes no constra
implementation might. To take an extreme example, the internal subprogram par
function (say) may contain, according to the BNF, [ internal-subprogram ] ... without limit;
clearly no contemporary implementation could cope with a function having ten tri
internal functions, even if the programmer could (!?).

Chapters 1-9 will contain a number of short, illustrative examples. The predominant
in these examples will be: keywords in all lower case (if , end), procedure and variable
names starting with a lower-case letter (x, midPoint ), main program, module, and derived
type names starting with an upper-case letter (HelloWorld , RangeArithmetic ), constants in
all upper case (N, QUAD), "free-form" source (described below), and modest indentatio
internal structure. A (nonsense) example is:

program HelloWorld ! nonsense example 
   use RangeArithmetic ! this program uses a module 
   real(QUAD) :: X(N) ! a "quad-precision" array 
   type(Range) :: m1=Range(0,6) ! variable of user-defined type

   x(1) = midPoint(m1)



 

2

 

Fortran 90/95 Concise Reference

   

,

 line,
 the C
e n

-

 be

t.)

 

   if (x(1) > 0) then 
      print *, "Hello, world; the midpoint of m1 is: ", x(1) 
   end if 
end program 

There are no column restrictions in free-form source, except that lines have a 132 charac-
ter limit, and an exclamation point (!) initiates an end-of-line comment (from where it
begins to the end of that line). Blanks must be used to separate keywords and names (e.g.
the blanks are significant in program Hello World  and use RangeArithmetic  above); the other
blanks in the above example are used for purposes of readability, not because they are syn-
tactically required by the language)1. The above program is syntactically legal Fortran 90
if (and only if) a module named RangeArithmetic  exists and it defines integer constants N
and QUAD, a derived-type named Range , and a real (or integer) function named mid Point
that takes an argument of type Range . 

Every Fortran program is a set of program units, each of which is a sequence of statements
- the above example has nine statements, each on a separate line. This is the normal pat-
tern, but there are two other aspects of free-form source, both used occasionally, but spar-
ingly, in subsequent examples: (1) two (or more) statements can appear on the same
separated by a semicolon (the second statement can be null if you want to simulate
style of ending a statement with a semicolon); (2) a statement can be continued on thext
line by ending the (first) line (before any end-of-line comment) with an ampersand (&). 

program units

A Fortran program is a set of (related) individual program units (R201), consisting of one
main program (R1101), zero or more external subprograms (R203), zero or more modules
(R1104), and zero or more block data units (R1110). The Fortran standard does not spec
ify "where" these parts reside on a computing system, but typically one or more complete
units are placed in a file; each such file is a separately-compiled compilation unit. The
order of compiling such compilation units is normally immaterial, except that a module
must be compiled before any units using that module, and the main program should
compiled last if an executable program is to be prepared therefrom. (For small programs
everything can be placed in one file, with the modules first and the main program las

1. In Fortran’s original fixed-form source (see chapter 5) blanks are never significant (e.g., 
never required) except in character strings, but blanks could be used freely for improv-
ing readability. Blanks could even be used within keywords and names; for example:    
integer  could be written int eger . In free-form source blanks are significant (token 
delimiters) and must not be used within a keyword, name, or constant (except character 
constants), and (one or more) must be used to separate (delimit) consecutive keywords 
and names. The exceptions to this rule are that the separating blanks are optional in the
following keyword sequences: blo ck data , double precision , else if , go to , in out , select case , 
and all that start with the word end. The nonletter nondigit characters serve as delimiters 
and blanks may be freely used with (on either side of) them.



Program Structure 3

 with
(but
e
tents
 For-

dules
bal”
rfaces.

g dia-

ly sec-
ules it

al
ot pro-

its

1

2

3

4

in
of
ternal

5

6

7

ay).

)

8

A large program unit can be spread across multiple files and “put back together”
include lines in a compilation unit. The include line, which is not a Fortran statement 
rather a compiler directive), has the form include  file-name and cannot have an end-of-lin
comment; during compilation the compiler replaces the include line with the con
(e.g., common block definitions) of the specified file. With the advent of modules in
tran, there are not many situations in which the include line is needed.

Execution of a program begins with its main program, which may call procedures defined
in external subprogram units and modules to perform computations. In addition, mo
may provide the main program (or any of the procedures it calls) with various “glo
entities, such as global constants and variables, type definitions, and procedure inte
Ignoring the (unnecessary and not recommended) “attribute” statements (R519-538) - see
chapter 5 - the eight sections of these program units are as depicted in the followin
grams.

Sections 1 and 8 define the beginning and end of the program unit, and are the on
tions that are not optional. Section 2 provides the program unit access to any mod
uses. Section 3 modifies the implicit environment (or replaces it with implicit none ). Sec-
tion 4 is the heart of the specification part of the program unit; it is here that all the loc
constants and variables are declared and any derived types and interface blocks n

main programs external subprograms module program un

program  statement (R1102)
function  statement (R1216) or 
subroutine  statement (R1219) module  statement (R1105)

use  statements (R1107)

implicit  statements (R540)

specifications a

(R422, R1201, R501)

a. Section 4 may also contain common  (R548), data (R529), equivalence  (R545), namelist  (R543), and
save (R523) statements; format  statements (R1001) may be included in sections 3-5 of ma
programs and external subprograms, and entry  statements (R1223) may be included in parts 3-5 
external subprograms and part 7 of modules (but not in part 7 of main programs and ex
subprograms).

executable constructs (R215) see noteb

b. Module program units do not have section 5.

contains  statement (R1225)

internal subprogramsc (R211)

c. Internal subprograms must not contain internal subprograms (but module subprograms m

module subprograms (R213

end  statement (R1103) end  statement (R1218, R1222) end  statement (R1106)



4 Fortran 90/95 Concise Reference

n 6 is
);
rnal or

ay
t mod-

th a

-
mputed
, 
e

os-
2), the

s

ent (see

ly

d

vided by modules are defined. Section 5 is the execution part, which represents the pri-
mary computation part of the program unit; note that modules do not have an execution
part (they are intended as a source of definitions used by other program units). Sectio
a keyword that marks the beginning of any internal or module subprograms (section 7
sections 6 and 7 go together - if one is present the other must be also. Each inte
module subprogram has the same structure as an external subprogram, except that internal
subprograms cannot themselves contain internal subprograms. Note that a module m
access other modules (and pass their definitions on to other program units using tha
ule).

statements

A Fortran statement is made up of keywords, names, expressions, and delimiters. Key-
words are predefined words that have some special meaning; most statements start wi
keyword (e.g., print , end , intege r, function , etc.). Names are programmer-defined, as
described above, and are used to give unique identifiers to variables, constants, proce
dures, modules, etc. Expressions are the “computational engines” that generate co
results; they are formed from operands and operators. Operands include constantsvari-
ables, and function calls, and are described in the next chapter and in other appropriat
places throughout; operators are either special characters (+, -, *, **, /, //, ==, /=, <, <=, >, >=)
or letters enclosed in periods (.eq., .ne., .lt. , .le., .gt. , .ge., .and. , .or., .eqv., .neqv., .not. , and
user-defined operators, R311).

Delimiters include blanks (as described above), = (for assignment - see below), % (struc-
ture component selector, R612 and chapter 3), left and right parentheses (multiple “encl
ing” uses), single and double quotes (character constant delimiters - see chapter 
comma (list separator), : and ::  (other separators), ! (comment initiator), & (statement con-
tinuation), and the semicolon (statement separation).

The only statements that do not begin with a keyword are the assignment statement (R735)
and the statement function (R1226), which have similar forms; the statement function i
described in chapter 9. The assignment statement has the form

variable  = expression

and has the purpose of saving the value of a computation (expression) so that the value can
be used in subsequent computations. The variable (R601-602) is where the value of the
expression (R723) is saved (the previous value of the variable is replaced); the variable may
be a scalar variable name, an array variable name (for results of an array expression - see
chapter 4), an array element, an array section (see chapter 4), a structure compon
chapter 3), or a substring (see chapter 2). Normally the type and kind of the variable must
be the same as the type and kind of the expression value, but this rule is relaxed when
numeric values are involved (see chapter 2). The expression can represent an arbitrari
complex computation involving operators and operands; the main features of expressions
are described in chapter 2, with expressions involving user-defined types in chapter 3 an
whole arrays (and array sections) in chapter 4.



Intrinsic Data Types 5

 as the
d logi-
e
pre-
vide
ional
-byte)
era-

et (or
uld be
ters of
can be
has a
citly
d the

odeled
see

d an

nstants
t

tions
nd
r

22    Intrinsic Data Types

Fortran 90 has “built-in” (intrinsic) data types and user-defined (derived) data types; the
latter are described in the next chapter. The intrinsic data types may be categorized
numeric types (integer, real, and complex) and the nonnumeric types (character an
cal). Each of these may have any number of kinds, though an implementation need provid
only one kind of integer, character, and logical, and two kinds (“single” and “double” 
cision) of real and complex. Typical additional kinds that an implementation may pro
are long and short integers, “quad” precision for real and complex, additional nat
character sets (the default character kind is essentially ASCII), and one-bit (or one
logically. Arrays of any of these intrinsic type/kinds are permitted, with full array op
tions appropriate for that type.

The kinds are specified by integer constants called kind type parameters, and allow types
to be “parameterized”. Thus a given program can, for example, be run with some s
all) of the real variables having single precision; on another run these variables co
double precision. Across procedure boundaries both the type and type kind parame
associated actual and dummy arguments must match, and thus kind mechanism 
used to provide families of generic procedures in procedure libraries. Each type 
“default” kind that is used for variables for which a kind type parameter is not expli
declared; for example, the default real (and complex) kind is “single precision” an
default character kind is (essentially) ASCII.

integer data type

The integer type is intended to represent integer numeric values, and as such is m
by v = s∑dir

i, 0≤i<n, where for integer value v, s is the sign (+1 or -1), r is the radix (
intrinsic function radix ), n is the number of digits (see intrinsic function digits ), and the d’s
are digits in the base-r system. 

An integer constant is specified with decimal digits, with an optional sign (+ or -) an
optional kind parameter (R403). Examples of integer constants are:

42

135843_LONG

-687

The second of these examples illustrates how the kind parameter is specified for co
(“attached” to the value by the underscore); in this case LONG is a named integer constan
having a valid kind value provided by the implementation. (See the intrinsic func
kind , and selected-int-kind  to determine the implementation’s kind values for integers a
see the intrinsic functions range , huge , and tiny  to determine the range for any intege
kind.)



6 Fortran 90/95 Concise Reference

t
s

nd
meric

-

s)
The usual operations are provided intrinsically for two integer operands: addition (+), sub-
traction (-), multiplication (*), division (/), and exponentiation (**). Such operations all pro-
duce (the usual) integer results, the only potentially surprising one being integer division,
which results in the truncated arithmetical result. Plus (+) and minus (-) may also be used
as unary operators with integer operands with the usual results. The other intrinsic opera-
tions on integers are the relational operators ==, /=, <, <=, >, >= (or, equivalently, .eq., .ne.,
.lt., .le., .gt., .ge.) for comparing two integer values. Respectively, these operations resul
in the logical value .tru e. if the first integer operand value is equal to, not equal to, les
than, less than or equal to, greater than, or greater than or equal to the second integer oper-
and value, and .fals e. otherwise. Examples of operations involving integer operands are:

j + k

j - k * n  ! evaluated as j - (k * n)

(j - k) * n

j - k + n  ! evaluated as (j - k) + n

- j + k  ! evaluated as (-j) + k

-(j + k)

- j * k  ! evaluated as -(j * k)

(-j) * k

j / k * n  ! evaluated as (j / k) * n

j / (k * n)

k ** n

j < k

j + k > n - m  ! evaluated as (j + k) > (n - m)

Note that parentheses may be used in the usual way to specify evaluation order in expres-
sions containing multiple operations. The usual default precedence (e.g., left-to-right a
multiplication-before-addition) is used in the absence of parentheses, and the nu
operations take precedence over the relational operations. See R723 for a rigorous descrip-
tion of the precise rules for evaluation of expressions involving integer operands. Addi-
tional (user-defined) operations may be provided for integers - see chapter 9.

Though (arguably) Fortran does not provide an intrinsic bit data type (but see the logical
type) a complete bit processing facility is provided via integer objects and intrinsic proce
dures btest , iand , ibclr, ibits , ibset , ieor, io r, ishft , icshft , mvbits , and not . These provide bit-
by-bit operations on non-negative scalar integer values represented by binary digits (bit
according to the model v = ∑bi2

i, 0≤i<m.  Integer constants may, alternatively, be speci-
fied or printed as a set of binary digits, octal digits, or hexadecimal digits, in accordance
with R407, and R1005. The rightmost bit in the integer object is b0 and, for example, the
integer value 13 (or B"1101"  or O"15"  or Z"D" ) represents the bit string . . . 0001101.



Intrinsic Data Types 7

nd as
 is
ic
nt (an

n for
 r=2,

 kind

s are:

stant -
enta-
ds of
 
hat,
e real

ly in a
ard).

, with
noted

 with
d

rands,
ands. 
real data type

The real type is intended to represent the real, or floating-point, numeric values, a
such is modeled by v = s re ∑dir

-i, 0<i<q. where for real value v, s is the sign (+1 or -1), r
the radix (see intrinsic function radix ), q is the number of mantissa digits (see intrins
function digits ), the d’s are the mantissa digits in base-r system and e is the expone
integer - see intrinsic function exponent ). Intrinsic functions epsilon , huge , minexponent ,
maxexponent , nearest , precision , range , rrspacing , scale , set-exponent , spacing , and tiny
provide access to the numeric properties of any real kind. A common implementatio
the default real kind is the single precision IEEE floating point standard, for which
q=24, and -126≤e≤127. 

A real constant is specified with decimal digits, and optional sign (+ or -), an optional
parameter, and either a fractional part, an exponent, or both; see R412 for the syntactic
details of the various forms that a real constant may take. Examples of real constant

-15.24

2.6E7 ! value is 26,000,000.0

4.3

-22.9E22_QUAD

.123

123.

7E4 ! value is 70,000 in single precision

7D4 ! value is 70,000 in double precision

-1.1D-3 ! value is -0.0011 (double precision)

The fourth of these examples illustrates the use of a kind parameter in a real con
QUAD is a named integer constant having a valid kind value provided by the implem
tion for reals. As mentioned above, an implementation must provide at least two kin
real, informally known as single and double precision. (See the intrinsic functionskind
and selected-real-kind  to determine the implementation’s kind values for reals.) Note t
unlike for integers, a real constant may not be representable exactly; for example th
constant 0.1, though within range for (most) real types, is not representable exact
binary implementation (that is, one for which r=2 - e.g., the IEEE floating point stand

Exactly the same intrinsic operations as for integers are provided for real operands
the same meanings, except that division works “normally”. Because of the potential 
above for inexact representation of real values, the equality relational operators (== and /=)
may at times yield “unreliable” results and thus should be used with care (if at all)
real operands. As for integers, see R723 for a detailed descriptions of the syntax an
semantics (precedence) of expressions involving intrinsic operators with real ope
and see chapter 9 for expressions involving user-defined expressions with real oper



8 Fortran 90/95 Concise Reference

lt) sin-

n

y a

l

efault
e

al
The last two examples above are double precision constants; using the D (instead of E or
neither) makes the constant the double precision kind of real rather than the (defau
gle precision kind. The data type double precision (R502), before the advent of the kind
concept in Fortran, was the only way that double precision objects could be declared. The
double precision  type is still available, but is now deprecated in favor of real(kind(1D0)) ;
double precision  and real(kind(1D0))  represent identical type/kind combinations.

complex data type

The complex type is intended to represent complex numeric values, and as such is a
ordered (real part, imaginary part) pair of reals; there is a complex kind for every real kind.
A complex constant comprises values for the real part and imaginary part, separated b
comma and enclosed in parentheses, as described in R417. Note that integers may be used
for these values, in which case they are converted to the equivalent real value; different
kinds of reals may be used for these two values, in which case the one with the lower kind
value is converted to the equivalent value of the other kind; the kind of the complex con-
stant is the kind of the parts (after any conversion). Examples of complex constants are:

( 1.0, -1.0 )

( 5, 5.5E5 )

( -3.3_QUAD, 4.4_QUAD )

The complex type has the same intrinsic numeric operators (+, -, *, /, **) as the other
numeric types, with the usual meanings. However, since complex values do not have a nat-
ural ordering, the equality operators (== and /=) are the only intrinsically defined relationa
operators for complex. Because comparison of complex values involves comparison of
real values, the same comparison caveat applies to complex values as to real values.
Though intrinsic meanings for <, >, etc., are not provided for complex, an application may
provide such meanings as user-defined operators - see chapter 9.

Intrinsic functions real  and aimag  return the real and imaginary parts, respectively, of a
complex argument. Function conjg  returns the complex conjugate of a complex argument,
and function cmplx  allows construction of a complex value of any kind from any integer or
real values (e.g., any integer or real expressions, not just constants) and conversion of
complex values to different complex kinds. Intrinsic function int  converts any integer, real
or complex argument to any kind of integer value, and function real  converts any integer,
real or complex argument to any kind of real value.

logical data type

The logical type is intended to represent boolean (true, false) values. A logical constant is
either .tru e. or .fals e., optionally appended with a kind parameter, as described in R421. A
default logical value is defined to require the same storage (most often 32 bits) as a d
integer value and a default real value (both of which, by definition, require the sam
amount of storage - this unit of storage is called a numeric storage unit). The role of differ-
ent kinds of logical is to allow for different amounts of storage (usually less) for logic



Intrinsic Data Types 9

ting a
d in
s of a

ing

 then

ues may
large)
uch an
y one of
 kind),
ional
upport

quotes

r con-
values than is required for default logical values. One bit is adequate for represen
true/false (1/0) value, though one byte (8 bits) is often used as well. A logical kin
which exactly one bit is used to represent a logical value has many of the propertie
bit data type (especially in the form of logical operations on logical arrays). 

There are four intrinsic binary operators that take logical operands (.and. , .or. , .eqv. , .neqv. )
and one unary operator (.not. ). The results of these operations are shown in the follow
table, where T stands for .true.  and F stands for .false. 

Note that relational operations on numeric values result in logical values, which can
be used as operands in logical operations; for example: x < y .and. y < z  (meaning x<y<z).

character data type

The character type is used to represent and process character strings. Character val
be any length, from one character to an implementation-defined (usually pretty 
number of characters. Arrays of character strings are allowed, but each element of s
array has the same length (same number of characters). Each character may be an
the characters in the implementation-defined character set (the default character
which is often a subset or superset of ASCII. An implementation may provide addit
character sets, with different character kind parameters; this is often used to s
national character sets (e.g., kanji, greek, cyrillic, etc.). 

A character constant is simply a character sequence delimited by (single or double) 
and optionally preceded by a kind parameter (R420). A (single or double) quote delimiter
may be included in a character constant by repeating it once. Examples of characte
stants are:

"now is the time"

'x'

GREEK_"µø πß"

"He said ""OK"", and left." ! "OK"  in quotes

There is just one intrinsic character operator, the concatenation operator (//); it appends the
second operand to the first, forming a longer character string: 

"blue" // "whale" !  results in "bluewhale"

x=T x=F x=T x=F x=T x=F x=T x=F

y=T T F T T T F F T F

y=F F F T F F T T F T

x .and. y x .or. y x .eqv. y x .neqv. y .not.y



10 Fortran 90/95 Concise Reference

-

ac-

,
ish
n

ions

 to
 kind
There are a number of intrinsic procedures that are very useful for a wide range of charac
ter processing, including the following functions: len , ind ex, trim , adjustl , scan , etc. Two
such functions, char  and icha r, provide conversion between characters and integers. The
characters have a collating sequence, which is a one-to-one mapping between the char
ters and (a subset of) the integers. Function char  takes an integer argument and returns the
character associated with that integer value in the collating sequence; function ichar  does
the reverse, returning the collating-sequence integer associated with the character argu-
ment.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

declarations

Making a specific variable name have a specific type is known as a data object declaration
type declaration, or just declaration for short. Declarations are used as well to establ
named constants and to type function results. The simplest form of a type declaratio
(R501) is:

type-spec  [ ::  ] object-list

where type-spec (R502) is, for intrinsic types, the type name (intege r, real , compl ex, logi-
cal , character ) with an optional kind specification and, for characte r, an optional length
specification. Examples of declarations of simple, uninitialized scalar variables
are:

integer :: i, j

integer(SHORT) :: k

real :: ab, cd

real(QUAD) :: eps

real(DOUBLE) :: p, q2

complex :: z1, z2

complex(QUAD) :: tp3

logical :: done

character(20) :: s1, s2, s3*30

character(10, GREEK) :: g, h5

The ::  is optional, but it makes a nice visual barrier for the more complicated declarat
(to be described below) and so will be used consistently in examples henceforth. The kind
parameters (SHORT, QUAD, GREEK) are named integer constants; the actual integer values
could be used in place of the named constants, but since kind parameter values are not
standardized, and differ from implementation to implementation, the better practice is
have the actual value appear only once - where the named constant is defined. If the
value DOUBLE  has the appropriate integer value, the fifth example above is equivalent to
using (the deprecated) type name double precision  (without a kind specification). The



Intrinsic Data Types 11

-spec,
oth
e 1 is

 illus-
e given

paren-

 range
 are
 (for

ons:

n that

nly of
itial-
ough
same declaration is obtained by using real(kind(1D0))  instead of real (DOUBLE) , and indeed
the value of DOUBLE  could have been specified, in its definition, as kind(1D0) . 

All of the objects in a character type declaration have the length specified in the type
unless overridden as illustrated by s3*30 in the next-to-last example above; s1 and s2 b
have length 20, while s3 has length 30. If the length specification is omitted, the valu
assumed; if the length is omitted and the kind is not, then the kind=  keyword must be used;
if both the length and kind are specified, with kind first, both the kind=  and len=  keywords
must be used; otherwise the kind=  and len=  keywords are optional (and the kind=  keyword
is always optional in declarations of the other intrinsic types).

The above examples declared uninitialized scalar variables. The following examples
trate how array objects can be declared and how objects (scalars or arrays) can b
initial values. 

integer :: i, j(10) ! j is an array of 10 elements

integer(SHORT) :: k=0 ! k has initial value zero

real :: ab(100), cd(100,100) ! a one dimensional and a two dimensional array

real(QUAD) :: eps=0.000001

real(DOUBLE) :: p=0D0, q2 ! p initialized to (a double precision) zero

complex :: z1, z2=(1.0,-1.0)

complex(QUAD) :: tp3(1000,1000)

logical :: done=.false.

character(20) :: s1, s2(250), s3*30=”the third degree .....”

character(10, GREEK) :: g, h5="µø πß"

Arrays can have up to seven dimensions, the specification of which are enclosed in 
theses, and separated by commas; each has the form [ lower  : ] upper, where lower and
upper are integer values which specify the lower and upper bounds of the subscript
for that dimension; if the optional part is omitted, the lower bound is 1. Arrays
described in detail in chapter 4, together with additional forms of array declaration
dynamic and dummy argument arrays). 

An initial value is specified by an initialization expression, which can by any expression
(of an appropriate type) involving only constant values, with the following two excepti
(1) operators must be intrinsic operators and any exponentiation operator (**) must have a
second operand of type integer; (2) a procedure call must be to an intrinsic functio
(a) can be evaluated at compile type and (b) except for the reshape , transfer , and inquiry
functions, have arguments only of type integer and character and deliver a result o
type integer or character. A variable local to a procedure may be initialized, but that in
ization is effective only at the first execution of the procedure and the variable, th
saved (see below) is not reinitialized at the beginning of subsequent executions.



12 Fortran 90/95 Concise Reference

d

h

 in

,

attrib utes

The properties of data objects are called attributes; the most basic attribute, one that every
data object has, is type (and kind). The other attributes are optional and the two illustrate
above are the array (dimension ) attribute and the initial value (data) attribute. There are 11
more attributes, the specification of which requires either the attribute form of the type
declaration statement (R501, R503) or a separate “attribute-oriented” statement for eac
such attribute (R519-539). The attribute form of the type declaration statement is 

type-spec  , attribute-list  ::   object-list

The attribute-list can contain any of the attributes listed in R503, in any order, separated by
commas; but any given attribute can appear at most once in the list, and over half of them
are mutually exclusive (see the following table). 

Attributes public  and pri vate control the visibility of module objects and are described
Chapter 8. Attributes external  and intrinsic  specify objects that are either external or intrin-
sic functions, respectively. Attributes intent  and optional  apply only to procedure dummy
arguments (see chapter 9). Attributes allocatable  and dimension  apply to arrays and are
discussed in chapter 4. Attributes pointer  and target are used for dynamic structures
including dynamic arrays, and are discussed in chapters 3 and 4. 

initialization

public

pri vate

external

intrinsic

intent

optional

allocatable

dimension

pointer

target

save

parameter

 initia
lization

 pub lic

 priv
ate

 external

 dimension allocatab le optional intent
 intrin

sic

 save
 target pointer

Shaded attribute combinations 
are compatible; the others are 

mutually exclusive.



Intrinsic Data Types 13

ope”
 return
reallo-
 is next

 when
tically

active
its

 be
us it is
les,
type,
e than
 named
 in only
save

The save  attribute is used to retain an object’s value when the object “goes out of sc
and then comes back in. One example of this is local variables in a procedure; upon
from the procedure, its local variables normally cease to exist, the space may be 
cated for another purpose, and the variables are reinstantiated when the procedure
executed. However, any such variable with the save  attribute remains intact with its value
unchanged between executions of the procedure, ready to “take up where it left off”
the procedure is next executed. Initialized variables (and named constants) automa
have the save  attribute. A module variable goes “out of scope” and, without the save
attribute, becomes undefined whenever all program units using that module are in
(i.e., not executing). Similarly the save  attribute is used to retain a common block and 
variable values when all program units using that common block are inactive. 

parameter

A data object with the parameter  attribute must also be initialized, and that value cannot
changed - the object is a constant; it has a name and “looks” like a variable, and th
called a named constant. Named constants are declared identically to initialized variab
but with the parameter  attribute. Named constants may be scalars or arrays, of any 
and are extremely important to reliable programming. A constant that appears mor
once in a program, such as an array bound value or a kind parameter, should be a
constant, and then when a change is needed in that value the change can be made
one place.

Examples of declarations with specified attributes are:

integer, parameter :: DOUBLE=kind(1D0)

real(DOUBLE), parameter :: PI=3.141592653589793

integer, private :: maxCount

complex, save :: z0=(1.0,-1.0)

real, allocatable, save :: workArray(:,:)

character(40),dimension(100) :: firstName, lastName, address1, address2

real, intent(in) :: length, width

logical, optional :: codeFlag

type(Tree), pointer :: left, right

real(DOUBLE), target, dimension(400,500) :: rho1, rho2, vel_x, vel_y, vel_z

complex, external :: f1, f2

complex, pointer :: temp(:)

logical(BIT), target, intent(out) :: digitalRadar



14 Fortran 90/95 Concise Reference

) and
c-
the

ed. 

r

and
numeric computations

As mentioned in chapter 1, computations are formulated as the results of expressions;
these results can then be assigned to variables, written (to the screen, the printer, or a file),
used as actual arguments in procedure calls, or used for control purposes (a logical expres-
sion as an if  condition, ann array subscript, an integer expression as the final index value in
an indexed loop, etc.). In many respects, numerical expressions are the heart of Fortran
and, in addition to the four numerical types (counting both of the required real kinds
the numerical intrinsic operators, Fortran provides most of the elementary numerical fun
tions and the basic vector and matrix computations as intrinsic functions. In addition, 
facilities for providing user-defined computational libraries is very powerful.

Individual expression operands are defined in R701 and include constants (including
named constants), variables (scalars and array elements), function calls, and subexpres-
sions (expressions in parentheses). R723 defines expression structure in detail, including
operator precedence. Without the operator precedence, R723 boils down to this:

[ unary-operator  ] numeric-operand  [ binary-operator  numeric-operand  ] ...

The binary-operator precedence determines the execution order, but this can be controlled
with parentheses - that is, by making each operand a (parenthesized) subexpression, leav-
ing only one binary-operator at the top level; unparenthesized expressions are evaluated
as if the parentheses needed to represent the operator hierarchy had been addFor
numeric expressions the operators are power-op (R708), mult-op (R709), add-op (R710),
and unary and binary user-defined operators (R704, R724) delivering numeric results.
Note that R705-707 indicates that exponentiation, **, (power-op) has precedence highe
than any other numeric operator and works right-to-left for consecutive (unparenthesized)
power-ops (R705); multiplication and division (*, /), both mult-ops, have the same prece-
dence, which is higher than addition (+), and subtraction (-), both add-ops, and work left-
to-right (R706); additional and subtraction also work left-to-right (R707). 

If a numeric operation has two operands with the same type and kind, it delivers a result of
that type and kind. Otherwise, the operation is “mixed-mode”, and one of the two oper-
ands (xw) will have a type/kind combination that is “wider” than that of the other oper
(xn); in this case the value of xn will be converted to the equivalent value in the xw number
system, the computation will be made at the xw type/kind level, and the result will have the
type and kind of xw; operand value conversion is performed as described below for mixed-
mode assignment. Any operand of type real is wider than any operand of type integer, and
any operand of type complex is wider than any operand of type real. Of two integer kinds,
the one having the greater integer range is the wider; normally this one will have the
greater kind value as well. Of two real (or complex) kinds, the one having the greatest pre-
cision is the wider; normally this one will have the greater kind value as well. By this rule,
double precision real/complex is wider than default (single precision) real/complex. 

In numeric assignment, v=e, the variable v and the expression e can be any combination of
the numeric types (integer, real, complex). The value assigned is cf (e,kind(v))  where cf is
the intrinsic conversion function int , real , or cmplx , depending on whether v is type integer,
real, or complex, respectively.



Intrinsic Data Types 15

since

aracter
renthe-

 char-
aracter

e sub-
qual to

r -
s

haracter
riable.
nd the
re the

expres-
e right
nd then
th, the
ent is
character computations

Character expressions (with intrinsic operators) are all of the form: 

character-operand  [ // character-operand  ] ... 

There are no intrinsic character unary operators, and concatenation (//) is the only intrinsic
character binary operator. Concatenation “works” left-to-right, but it doesn't matter 
concatenation is associative (A//(B//C)  has the same result as (A//B)//C). The length of a con-
catenation result is sum of lengths of the two operands.

Character operands can be character constants, character variables (including ch
array elements), functions delivering character results, character expressions in pa
sis, and substrings (R609-611). The form of a substring is: 

parent-string  ( [ lower ] : [ upper ] )

where a parent-string can be a scalar character variable, a character array element, a
acter component of a structure, or a character constant; it cannot be a general ch
expression, a character functional call, or substring itself. Lower and upper, which may be
arbitrary integer expressions, define the portion of the parent string that comprises th
string; both lower and upper must have values greater than zero and less than or e
the length of the parent string. The length of the substring is upper-lower+1 (actually,
max(0,upper-lower+1)) and comprises the characters from index lower in the parent string
up to and including index upper. If lower==upper, then the substring is just one characte
that at index lower (or upper); if upper is less than lower then the substring is empty (ha
length zero). Examples of substrings are:

s2(2:5)

lastName(k:)

address(i-1:index(address,'-'))

account % name(i:j)

The result of a character expression may, among other uses, be assigned to a c
variable (including an array element) of the same kind or to a substring of such a va
In either event the expression has a length (number of characters it produces) a
receiving variable has a length (number of characters it receives). If these lengths a
same, then the expression result becomes the value of the receiving variable. If the 
sion length is less than the receiving length, the expression result is padded on th
with the requisite number of blank characters so that the two lengths are the same a
the assignment is made; if the expression length is greater than the receiving leng
expression is truncated on the right to the receiving length, and then the assignm
made. Examples of character assignment are:

s1 = s1(1:4) // s2(5:) ! concatenate two substrings, then assign

s2(2:5) = "." ! replace substring with "...."

firstName(k+1) = firstName(n) ! character array elements

firstName(k+1)(i:j) = firstName(n)(m:m+2) ! substrings of array elements



16 Fortran 90/95 Concise Reference

g for

 an
implicit declaration

Unless implicit none  is specified at the beginning of the program-unit (R205, R540), it is
possible to use variables in the program that have not been explicitly typed in type declara-
tion statements. Such variables will have the types specified by the implicit type environ-
ment in effect and are said to be implicitly typed. Such variables may be given other
attributes with “attribute-oriented” statements (R519-539).

The implicit type environment associates a type/kind combination to each letter. A name
not explicitly typed is implicitly typed according to its first letter. The default implicit type
environment is that letter I-N are associated with type default integer and all others are
associated with type default real. implicit  statements (R540-542) may be used to change
these associations for some or all of the letters, and this may include implicitly typin
the nondefault kinds and for user-defined types. implicit none  is a special form of implicit
statement that “turns off” all implicit typing and requires that each data object be explicitly
typed. implicit none  is not the default implicit environment (unfortunately); unless implicit
none  is explicitly specified in the program unit, each letter in that program unit has
associated implicit type/kind combination.1 

1. An exception to the rule that “implicit none  turns off all implicit typing” is in internal and 
module procedures having implicit none  in their hosts; such procedures may have implicit  
statements defining implicit typing for part of the letters, leaving implicit none  (and hence 
explicit typing required) for the other letters - see chapter 9.



User-defined Data Types 17

d the
ically-
tions.
unc-
called
pes);
 for a
alues.
 types

into
amic
ication

ived

e only
an
trees)
han one
exam-
33    User-defined Data Types

The intrinsic types are the numeric types (integer, real, complex), the logical type, an
character type. Each of these may be parameterized (type kinds), have intrins
defined forms for constant values, and have intrinsically-defined operators and opera
A number of intrinsic functions are defined for the intrinsic types, and user-defined f
tions may return values of intrinsic type. Fortran 90 has user-defined types as well, 
derived types because they are derived from the intrinsic types (and other derived ty
all aspects of an intrinsic type, except type kind parameterization, may be provided
derived type - name, constants, operators, and functions returning derived type v
Derived types, once defined, essentially augment the intrinsic types as the data
available for use in a program. Two other uses of derived types are common: record struc-
tures and dynamic structures. Record structures are convenient for organizing data 
logical groups (records) for input and output and corresponding processing. Dyn
structures, such as linked lists and binary trees, are indispensable for certain appl
areas.

derived-type definitions

Unlike intrinsic types, whose definitions are intrinsic (built into the language), a der
type must be defined. This is done by specifying its components, which are objects of
intrinsic or derived type (R422). The simplest form for such a definition is:

type  type-name
   component-definition    ! a derived type has one or
   [ component-definition ] ...   ! more components - see R426
end type  [ type-name ]

Each component definition is an ordinary type declaration statement, except that th
attributes permitted are dimension  and pointer . A component can be either a scalar or 
array, and derived types for recursive dynamic structures (e.g., linked lists, binary 
can have pointer components that have the same type as that being defined. More t
component may be declared in the same component definition statement. Simple 
ples illustrating all of these possibilities:

type Point   ! a type to represent points
   real :: x, y   ! in a two-dimensional
end type   ! cartesian coordinate system

type Student
   character(30) :: ID
   integer :: homework(15)   ! can represent up to 15 homework grades
   integer :: hour_exam(3)   !                 and 3 hour_exam grades
   integer :: final_exam
end type



18 Fortran 90/95 Concise Reference

nd the
 these
on that
n “a
 struc-
ee
 encap-
e
g the

herit”
rough
itance
s not

e same
ny vari-
 to the
nd host

ccessi-

 must
, they
g scope

s the
e
insic
type Tre e   ! the nature of the node data
   type (TreeData) :: node_dat a   !     is defined in another type;
   type (Tree), pointer :: left, righ t   ! two “links”, for left and right subtrees
end type  

type Pixel
   type (Point) :: p    ! the position on the screen;
   integer :: R, G, B   ! primary color values for this point
end type

The first (and last) of these four examples do indeed suggest new data types, a
expectation would be that appropriate operations would be defined on objects of
types. The second example suggests a typical record structure, with an expectati
various computations would be made with individual fields (components) but not o
student as a whole”. The third example clearly is intended to be used as a dynamic
ture, in this case a binary tree with left  and right  links to subtrees. The data for such a tr
can, of course, be of any nature, and in this case the details of that nature have been
sulated in yet another derived type called TreeData .The fourth example also illustrates th
use of a previously-defined derived type as a type component. Though not havin
properties of true object-oriented inheritance, the Point component of Pixel does “in
all of the properties (e.g., operations) defined for type Point. (In this manner, and th
use of type definitions packaged in modules, Fortran 90 provides much of the inher
and data abstraction benefits of object-oriented programming; typical O-O feature
accommodated are polymorphism and object invocation of procedures.)

The name of a derived type must not be the same as any intrinsic type name, nor th
as any other derived type accessible in that scope; it also must not be the same as a
able or procedure name accessible in that scope. Derived-type definitions are local
scope in which they are defined, but may be accessible to other scopes via use a
association.

Component names have a scope of their derived-type definition, though they are a
ble outside the type definition when (and only when) selected with the % component
selection operator (see below). Within a given type definition, each component name
be unique, but otherwise there is no restriction on component names; in particular
can be the same as the names of entities defined in or accessible to the surroundin
of the type definition.

derived-type objects

Derived-type definitions do not create data objects; a type definition only specifie
name of the type (analogous to, say, the type name integer ) and the component structur
for objects of that type. Actual objects must be created, again in analogy with intr
types, in type declaration statements (R501); derived type objects are created with a type-
spec of

type (  type-name  )



User-defined Data Types 19

,

e

func-

gnment

ns and
As with objects of intrinsic type, a derived type object, also called a structure or struc-
tured object, may be: declared as a constant (have the parameter  attribute), an array (have
the dimension  attribute and, optionally, be an allocatable  or pointer  array), a dummy argu-
ment (and, optionally, have the intent  and/or the optional  attributes), a module object (and
optionally, have the private  or public  attribute), a pointer or a pointee (have the pointer  or
target  attribute), a saved local variable (have the save  attribute). Function results may b
declared to be of derived type, in which case either the type  ( type-name ) type specifier
may appear on the function statement or the function may be typed in the 
tion’s specification part. 

Some example declarations of derived-type objects:

type (Point) :: p1, p2

type (Point), allocatable :: property_corner(:)

type (Student), intent(in) :: valedictorian

type (Student), private :: onProbation (100)

type (Tree) :: dictionary

type (Tree), pointer :: root

type (Pixel), save :: screen (480,640)

type (Pixel) function summit (topo_map)

A structure reference may appear in an expression, on the left hand side of an assi
statement, and as an actual argument - as may a component reference. A component of a
structure may be referenced by using the component access operator, %, in the following
manner (R612):

structure-reference % component

Specific examples of component references (using the above example type definitio
structure object declarations) are:

p1 % x  ! the x component of p1, a scalar real object

property_corner(i) % x ! x component of the ith element of property_corner

property_corner % y  ! an array of real objects: all the y components

valedictorian % ID  ! a scalar character object

valedictorian % homework ! an integer array - all valedictorian homework grades

onProbation(n) % hour_exam(m) ! a scalar integer object

dictionary % node_data ! scalar object of type TreeData

dictionary % left ! the left subtree

screen(i,j) % R  ! a scalar object



20 Fortran 90/95 Concise Reference

ctured

m left
e or (if
 of a 

ent or
 refer-
an be at

ch of

lue of

onent
ariable
fined

ues
type:

ructure
r each

. 

except
either
screen % B  ! 2D array of integer objects

screen % p  ! 2D array of Point objects

screen(i,j) % p % x  ! a scalar real object

The last of these examples illustrates that if a structure component is itself a stru
object, then its components may be accessed as well. Such a sequence of % operators may
be of any length, as long the entity on the left of each % is of derived type and the entity on
the right is a component of that derived type; the “parsing” of such a sequence is fro
to right. The very left one must be a structured object, and is either its declared nam
the structure is an array) an element or section of that array. Each entity on the right%
operator must be either a component name or (if the component is an array) an elem
section of that array. Any array name (whole array) or array section in a component
ence makes the result of the reference array valued, with the same shape; there c
most one array-valued entity in a given component reference.

structur e constructors

A structured object may be assigned a value by individually assigning a value to ea
its components. For example:

p2 % x = 112.2 ! these two assignments

p2 % y = 35.7 ! completely define p2

A complete list of component values may be gathered together in a structure constructor
to define a structure value; these may be used in any expression legitimate for a va
that type. A structure constructor has the general form (R430)

type-name ( component-value [ , component-value ] ... )

and a specific example is

p2 = Point ( 112.2, 35.7 )

The effect of this last assignment is the same as the preceding individual comp
assignments; a structure value of a given type may be assigned to a derived-type v
of that type. (But this intrinsically-defined assignment may be overridden by a de
assignment - see chapter 20).

The structure value Point ( 112.2, 35.7 )  is a constant because all of the component val
are constants. Such a value may be used to establish a named constant of derived 

type (Point), parameter :: origin = Point (0.0, 0.0)

In general, however, any expressions may be used for the component values in a st
constructor, so long as the constructor contains an assignment-compatible value fo
component, in the order in which the components are declared in the type definition

An associated structure constructor is available for any defined or accessible type, (
for types with private components - see below). If a type has a pointer component (



User-defined Data Types 21

n in a
owed
pear in

ec-
on-
ons to

ppear
t. In
laced
 for
for the

s with
mpo-

e val-
tured

lows:
scalar or array) an allowable target object must appear in the corresponding positio
constructor for that type. If a component is an explicit-shape array (the only type all
as a component other than a pointer array), an array value with that shape must ap
the corresponding position in a structure constructor.

Additional examples of structure constructors are:

Point (z+1, w-2)

Point ( r*sin(phi), r*cos(phi) )

Point ( 2*p2%y, 0.0)

Student ( “Joe”, hw(i,:), (/e1,e2,e3/), fe )

In the last example hw  must be a two-dimensional integer array with a size of 15 in its s
ond dimension, and e1, e2, e3 and fe must all be scalar integer variables (or named c
stants). The first three of these examples illustrate the use of arbitrary expressi
specify component values in a structure constructor. 

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Structure values may also be obtained from input. A structure variable name may a
in the input list of a read  statement, in which case a value is input for each componen
list directed input the effect is the same as if the individual components had been p
(with the % operator) in the input list instead. For formatted input, a format is specified
each component, in component-declaration order, in exactly the same manner as 
intrinsic type complex .

read *, p1 ! read two real values, one for p1%x and one for p1%y

read “(2F10.2)”, p1  

read *, valedictorian  ! consumes one character and 19 integer values

read “(A30,19I4)”, valedictorian

Similarly, structure values may be placed in the output list of a print  or write  statement,
and the component values are output in component-declaration order. Structure
pointer components can be neither input nor output, though individual nonpointer co
nents of such structures can appear in I/O lists. 

derived-type operators

Since dummy arguments may be of derived type, and functions may return structur
ues, functions may be used to define virtually any operation on and among struc
objects. For example, the midpoint between two Point objects may be defined as fol

type (Point) function midpoint(a,b); type (Point) :: a, b
   midpoint = Point ( (a%x+b%x)/2, (a%y+b%y)/2) )
end function



22 Fortran 90/95 Concise Reference

 mod-
rations,

onents
d in
ule in
 from

cts of

the

e the
n and

efini-

 lines,

rivate to
Note that the midpoint is, of course, a Point  value. An operator, say .mid. , can be associ-
ated with this operation:

interface operator (.mid.)
   module procedure midpoin t ! assuming midpoint  is an accessible module procedure
end interface

Then the midpoint of two points, say p1 and p2, can be computed with the expression

p1.mid.p 2 ! as well as with the function call: midpoint(p1,p2)

Chapter 20 contains more details on defining operators. Chapter 19 illustrates how a
ule can be used to encapsulate a derived-type definition, its constants, and any ope
so that the type could be used almost as naturally as an intrinsic type.

pri vate types

Sometimes it is desirable to hide the internal structure of objects and access comp
only via explicitly provided procedures. This is possible only for derived types define
modules. A derived-type’s components are accessible anywhere inside the mod
which the type is defined, but the internal structure of a private type can be hidden
users of the module. This is accomplished with the derived-type private  statement, an
example of which is:

type Point; private
   real :: x, y
end type

In this case users of the module which contains this type definition can declare obje
type Point , but cannot use the % operator to access either the x component or the y compo-
nent of those objects, nor is the Point  structure constructor accessible to the user of 
module. The module may contain functions to access x and y, but need not if the intended
use of Point  does not involve the user accessing the components. In this latter cas
module presumably includes procedures that provide the intended computations o
with Point  objects. 

The private  statement, if used, immediately follows the type  statement (R422, R423) and
hides all of the components from users of the module containing the derived-type d
tion. Note that 

type type-name; private 

is really two statements, and many programmers prefer to put them on separate
whereas 

type, private :: type-name 

is a single statement that makes the entire type, name as well as the components, p
the module and not accessible to users of the module.



User-defined Data Types 23

dummy
ted
 this
(a) any
lls to
le is if
st pro-

m-
me, the
 can be

 scope
such

re than
tion in
er, is
dule

 allow
racter
ric stor-
gical
ny
d type
sequence types

A derived-type actual argument must be exactly the same type as the associated 
argument or an equivalent type. “Same type” means that both a dummy and its associa
actual argument derive from the same type definition. For all practical purposes
means that the derived type must be defined in a module that is used by, or host to, 
procedure definition with arguments of that type and (b) any program unit making ca
such procedures. (The only way the requisite conditions can be met without a modu
all of the procedures having an argument of this type are internal procedures in a ho
cedure containing the type definition.)

“Equivalent types” are sequenced type definitions with the same type and the same nu
ber of components; corresponding components in each list must have the same na
same or equivalent type, the same attributes (dimension and/or pointer), and neither
private. An example of a sequence type is 

type Student; sequence
   character (30) :: ID
   integer :: homework(15), hour_exam(3), final_exam
end type

This type definition need not be used from a module and can be repeated in any
which has actual or dummy arguments of type Student. The main problem with 
duplication is, of course, the maintenance one of needing to make a change in mo
one place. This problem can be circumvented by putting the sequenced type defini
its own file and including that file wherever the type definition is needed; this, howev
not much different from putting the type definition in a module and using the mo
wherever the type definition is needed.

A derived type is made into a sequenced type by inserting a sequence  statement between
the type  statement and the list of component definitions (R422, 423). There is one use of
sequence types other than for equivalent type argument association. This is to
derived-type objects to be associated (e.g., in common blocks) with numeric or cha
storage sequences. If all of the components of a sequence derived type have nume
age units (i.e., they comprise only intrinsic kinds of integer, real, complex, and lo
components), the type is a numeric sequence type and can be storage associated with a
numeric storage sequence. Similarly, if all of the components of a sequence derive
are of type default character, the derived type is a character sequence type and can be stor-
age associated with any character storage sequence.



24 Fortran 90/95 Concise Reference



Arrays 25

he lan-
; such
.  The
ber of

lowed
 array
nts.  

ele-
ese

ele-
nt

other

 of
be

s

e sca-
valued.

unit
n array-

r con-
owever,
hich
n as:
44   Arrays

The array features of Fortran 90 represent one of the most significant aspects of t
guage.  A computation can be specified on a whole array (or any portion of an array)
a computation is performed on each element of the array, conceptually concurrently
corresponding potential for actual process parallelism is enormous - namely the num
elements in the array.  Roughly speaking, versions of Fortran prior to Fortran 90 al
the programmer to specify computations only on scalar entities, such as individual
elements, with an entire array processed by sequencing (looping) through its eleme

array-valued expressions

Suppose that A, B, and C are two-dimensional real arrays, all dimensioned at 200x300 
ments. Fortran 90 allows the following statement, involving the addition of two of th
arrays and the assignment of the result:

C = A + B

The meaning of this operation is C(i,j) = A(i,j) + B(i,j)  for all 200 values of i and all 300 val-
ues of j, for a total of 60,000 individual (scalar) computations involving the array 
ments. The array computational model is concurrent element-by-corresponding-eleme
computation for all elements of the arrays. 

In addition to extending all of Fortran’s scalar operations to arrays in this manner, 
useful whole array operations are provided. These include reduction operations (e.g.,
product(A)  returns the product of all the elements of array A), construction operations
(e.g., (/ (i, i=1,n) /) constructs the vector [ 1, 2, 3, ..., n ], and inquiry operations (e.g.,
shape(B)  returns the shape of array B - a vector comprising the size of each dimension
array B, or [ 200, 300 ] for the array B in the above example). All such operations can 
combined into more complex expressions; for example, product(shape(B))  has the value
60,000, the total number of elements in B (but Fortran 90’s rich supply of array function
also includes the size  intrinsic function, which gives the same result more directly).

Generally speaking, except in a few contexts in which an expression is restricted to b
lar, any Fortran 90 expression may have array operands and the result is array 
(Scalar expressions are required in control contexts such as if  construct control (scalar log-
ical expressions required), do  loop indexing expressions, and I/O specifiers such as 
number, file names, open statement specifiers, etc.) In most cases the arrays in a
valued expression must have the same shape (must be conformable) and the expression
value is an array of the same shape.

Note that in many cases, such as in the above example (C = A + B), array expressions
appear indistinquishable from scalar expressions and one needs to know from othe
texts (e.g., the specifications) that the variables have been declared as arrays. H
Fortran 90 allows such expressions to be written with explicit dimensionality, w
clearly identifies array operations.  For example, the above assignment can be writte

C(:,:) = A(:,:) + B(:,:) ! makes the “arrayness” explicit



26 Fortran 90/95 Concise Reference

l
nds

 of
ays are
m-
om-

 opera-

eration.
s
r

rrays:
Functions may be defined to return array values (array-valued functions) and calls to such
functions may be operands in array-valued expressions. Array-valued functions, including
both user-defined and intrinsic ones, make array-valued expressions a complete, natura
extension/generalization of scalar expressions, with arrays replacing scalars as opera
and results. 

conformability and element-by-element computation

The principal requirement in forming an array expression is conformability of the oper-
ands. Each operand of an array operation must have the same rank and the same number
elements along each dimension as the other operands - that is, conformable arr
arrays with exactly the same shape. The result of such an operation is, of course, confor
able with the operands, and the value of each element of the array result is the scalar c
putation involving the corresponding elements of the array operands. 

Thus if A and B are the following 2x3 arrays:  A =          B =  

                                 the result of A + B is     and the result of A* B is  

If there is more than one operation in an expression, the (array-valued) result of the first
subexpression is an operand for the second operation, and so on, just as in scalar
tions. For example, for A and B as given above, in the expression A + B * A, A is added to
the result of B * A; thus the result of A + B * A is

Note that, for example, a 3x2 array is not conformable with a 2x3 array - they have the
same rank and total number of elements, but corresponding dimensions don’t have the
same size - and thus two such arrays cannot be the operands in the same array op
The only exception to this basic conformability rule is in the event that one of the operand
is a scalar. In this case the scalar is broadcast into an array conformable with the othe
operand, the value of each element of this broadcast array being that of the scalar. For
example, B + 2 is a valid array operation and (assuming B is as given above)

the result of B+2 is       

Common uses of (broadcast) scalars in array operations are to initialize and scale a

A = 0 ! sets each element of A to zero
B = (B + 1)/2  ! add 1 to each element of B then take half the result

2 3 5

1 7 4

5 4 1

2 2 3

7 7 6

3 9 7

10 12 5

2 14 12

2 3 5

1 7 4
10 12 5

2 14 12

12 15 10

3 21 16

=    +

2 2 2

2 2 2

7 6 3

4 4 5
+ =5 4 1

2 2 3



Arrays 27

y-val-
before
mple)
 Thus
puted
tation

 (see
pera-

lue of
plete,
here-
, as a
ns as
ld be

ist of

 and type
bined

large
pres-
as

tly the

dexing
eros,

dex-
t item
pres-
This last example illustrates a key aspect of the Fortran array operations: in an arra
ued assignment the effect is as if the right-hand side array value is fully evaluated 
any assignment takes place. Otherwise it is possible (though not in this simple exa
for the right-hand-side array value to be affected before its evaluation is complete.
the conceptual model is that all elements of the right-hand-side array value are com
concurrently (or in any order) before any assignment takes place, and any implemen
is allowed that guarantees this behavior. 

An example where this rule is important is in the pivoting step in Gauss elimination
the last example in this chapter). There the pivot row is normalized with the array o
tion

G(P,:) = G(P,:)/G(P,K)

G(P,:) is the Pth row of the two-dimensional array G, and G(P,K) is the pivot element; the
normalization scales the row so that the pivot element value is 1.0. Note that if the va
this element is changed to 1.0 before the evaluation of the right-hand side is com
then the row is not properly normalized (a typical error in sequential scalar code). T
fore, array operations should not be thought of as “loops” over the array elements
loop implies a sequentially of the operations; in general, thinking of array operatio
loops gives incorrect results when assignment is involved. Array operations shou
thought of as integral/parallel computations. 

array constants - array constructors

Array values may be explicitly constructed using the array constructor (R431) and, if the
desired resultant array has dimension higher than one, the reshape  intrinsic function; an
array constructor forms a one-dimensional array. An array constructor is simply a l
the element values of the result, separated by commas and enclosed in (/... /) delimiters.
These values can be any scalar expressions, as long as they all have the same type
parameters. If they are all constants, however, then such a constructor (possibly com
with the reshape  function) is an array constant and may appear in a parameter  declaration. 

Because lists of individual scalar values are not very practical for constructing 
arrays, two forms for array constructor list items are provided in addition to scalar ex
sions. These are implied-do constructs (R433) and array expressions. The first of these h
the form

( expression-list , index-variable = first-value , last-value [ , increment ] )

The index-variable is a scalar integer variable serving as an iterative index in exac
same manner as in a do  loop.  The example above, (/ (i, i=1,n) /) , employs an implied-do
construct in an array constructor.  In general, a list of expressions can precede the in
in an implied-do construct; a simple example: 100 million alternating ones and z
(/1,0,1,0,1,0,1,... /) can be constructed with the array constructor (/ (1,0, j=1,50000000) /).
The implied-do simply replicates the list the specified number of times, and if the in
variable is an operand in an expression in the expression-list, each replication of tha
uses the corresponding value of the index-variable. The items in the implied-do ex



28 Fortran 90/95 Concise Reference

r

s,

of

ne-

t for

n-
oncu

hich

here
sion-list may be any of the three forms allowed in the array constructor itself - scala
expressions, implied-do constructs, and array expressions. The two examples above have
only simple scalar expressions in the implied-do lists.

An array expression of any dimension may appear in an array constructor. For example, if
A is a 1000*1000 array then (/ A+1.3 /) is an array constructor of one million element
each having a value of 1.3 more than the corresponding element value of A. The elements
of  A+1.3 are placed in the array constructor in array element order; array element order is
obtained by varying the first dimension first, the second dimension next, and so on. Thus (/
A+1.3 /) is equivalent to  (/ ((A(j,k)+1.3 , j=1,1000), k=1,1000) /). Implied-do constructs may be
used to specify a different order of the array elements in the constructor. For example, if a
row by row vector of the elements of A+1.3 is desired, rather than the column by column 
array element order, (/ ((A(j,k)+1.3 , k=1,1000), j=1,1000) /) would do the job.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Finally, a simple form of the reshape  intrinsic function can be used to reshape the (o
dimensional) result of an array constructor into the desired array shape:

reshape (  array-constructor , shape-vector )

where the shape-vector (which may itself be an array constructor) has one elemen
each dimension of the desired array shape; the value of each shape-vector element is the
number of elements in that dimension in the target array. For example, a 1000*1000 iden-
tity matrix of can be created as the array constant named ident  by the declaration

real, parameter :: ident(1000,1000) = &
 reshape ( (/ (1.0, (0.0, k=1,1000), j=1,999), 1.0 /), (/ 1000,1000 /) )

Thus the array constructor, coupled with the reshape  intrinsic, is an extremely powerful
tool for constructing array values, including array constants. 

masked array assignment

A mask is an array of type logical. A masked array operation is one in which a mask co
formable to the result of the operation is used to specify that only a subset of the cr-
rent element operations are to be performed. This functionality is available in some of the
intrinsic functions, those with a mask argument, and for array assignment. An array
assignment is placed under mask control in a where  statement (R738):

where (  mask ) array-assignment-statement

The where  mask must be conformable with the array on the left of the assignment, w
must be conformable with the expression on the right of the assignment. For mask ele-
ments that have the value true the corresponding element assignments take place; w
the mask is false the assignment is not made. A example of masked array assignment is 

where (C.gt.0)  A = B/C

in which the assignment is made only for those elements of C that have a positive value.



Arrays 29

sion

picture
aracter
 1:

laced

n the

here

re

ns.
Arrays A, B, and C must all be conformable and the (array-valued) logical expres
C.gt.0  is therefore a mask conformable with these arrays. 

Another simple example of the use of masked array assignment can be found in the 
refinement program near the end of this chapter.  In this case the elements of a ch
array are set to # where all corresponding elements in another (conformable) array are

where (picData.eq.1)  picDisplay = "#"

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Any number of array assignments that are conformable with the mask, can be p
under the control of a single mask; in this case the where  takes a block form (R739):

where (  mask )
    array-assignment-1
    array-assignment-2
        ...
end where

The forms of where  described above leave unassigned some elements of the array o
left hand side of the assignment statement. An extension of the block form of where , the
elsewhere  option, specifies a value to be given to the left-hand-side array elements w
the mask is false. This takes the form (R739):

where (  mask )
    array-assignment-1
    array-assignment-2
        ...
elsewhere
    array-assignment-n+1
        ...
end where

The picture refinement example uses this last form of where :

where (picData.eq.1)
     picDisplay = "#"
elsewhere
     picDisplay = " "
end where

In this case those elements of picDisplay  for which picData  has a value other than one a
assigned a blank rather than the # character. This is an important form of where , because it
results in a fully defined array picDisplay  that can be used in subsequent array operatio
Without the elsewhere  option the array picDisplay  might end up not being fully defined, in
which case it cannot be used in other array expressions.



30 Fortran 90/95 Concise Reference

o

or
s,

-

:

 

 in

block

ot

e

assumed-shape dummy arguments

Fortran has always allowed array arguments, but before array-valued expressions were
possible, array actual arguments were limited to array variable names; now such actual
arguments may be array expressions as well. No new mechanism would be required t
handle array exprssions as actual arguments, except for the fact an array expression may
be an array section and hence not a contiguous array object. In such cases either stride
information (how the actual array is distributed in memory) must be supplied in the call 
the actual argument must be “repacked” so that the old argument association mechanism
which assume “compacted” arrays, will still work; generally it is more efficient to pass the
extra information. Assumed-shape dummy arguments are used for this purpose and accom
modate the passing of complete array descriptor information.

An assumed-shape dummy argument (R516) is declared with a colon for each dimension

subroutine calc3(T,U,V)
  real :: T, U(:,:), V(:)  ! U is a two-dimensional assumed-shape array
    ... ! V is a one-dimensional assumed-shape array
end subroutine

In a call to calc3 , any two-dimensional array expression (of type real) may be passed toU
and any one-dimensional array expression may be passed to V; conversely, a two-dimen-
sional real array must be passed to U and a one-dimensional real array must be passed to V.
In effect the colons in the declarations for U and V instruct calc3  to accept the descriptor
information supplied by the calling program. U and V then exactly represent the corre-
sponding array objects in the actual argument list and may be used in array operations
the body of calc3 . 

Assumed-shape dummy arguments require explicit interfaces (see chapter 9). This
requirement is automatically met for internal and module procedures; an interface 
must be supplied for an external procedure, however. When the procedure’s interface is
explicit, the calling program knows when an assumed-shape dummy argument is the
receiver and can then pass an efficient descriptor; otherwise the calling program cann
assume the dummy arguments are assumed-shape and must therefore provide a contiguous
actual argument, packing and unpacking the actual argument array(s) as necessary.

array elements and sections

A portion of an array containing more than one element is called an array section. Often
an operation is needed on an array section, not on the entire array. The earlier example of
normalizing the pivot row of a matrix is a case in point. In this example exactly one row of
the matrix was of interest in the computation, not the whole array, and the array section
was one row of a two-dimensional array. In general virtually any subset of an array can b
an array section. Array sections have array values and may be used in array-valued expres-
sions; they may be assigned array values. 

An array element is specified by the array name and a subscript value for each dimension: 

array-name ( scalar-subscript-1 , scalar-subscript-2 , scalar-subscript-3 , ... )



Arrays 31

ar inte-
ne
l

ructed
script
placed
on has

wn in
d cor-
en-

com-
t non-

lled a

r than
 nota-

ummy.)
where the number of subscripts is the rank of the array and each subscript is a scal
ger expression (scalar subscript). An array section is specified by replacing at least o
scalar subscript by a vector subscript (R618). A vector subscript is a one-dimensiona
array of scalar subscript values for that dimension; a vector subscript may be const
with an array constructor. If (only) one scalar subscript is replaced by a vector sub
the resulting array section is a one-dimensional array; if two scalar subscripts are re
by vector subscripts the result is a two-dimensional array, and so on. An array secti
a rank equal to the number of vector subscripts used to specify it.

As an example, consider the following 5x6 array, Q. Three sections of Q are sho
bold: the entire second column (a one-dimensional section), the 2x2 upper right han
ner of Q (a two-dimensional section), and the last half of the fifth row of Q (a one-dim
sional section).

Q( :, 2 ) == (/11,3,45,20,56/) ! the second column
Q( (/1,2/), (/5,6/) ) == reshape( (/1,52,9,27/), (/2,2/) ) ! upper right corner
Q( 5, (/4,5,6/) ) == (/66,77,90/) ! last part of 5th row

Note that all of these vector subscripts could be written with implied-do constructs:

Q( (/(k, k=1,5)/), 2 ) ! the second column
Q( (/(k, k=1,2)/), (/(k, k=5,6)/) ) ! the upper right corner
Q( 5, (/(k, k=4,6)/) ) ! last part of 5th row

The implied-do form is more extensible and, for large sections, considerably more 
pact than explicit lists. Implied-do constructs are also useful for regularly-spaced bu
contiguous vector subscripts. For example,

Q( (/(k, k=1,5,2)/), 2) == Q( (/1,3,5/), 2 ) == (/11,45,56/)

The implied-do form is common enough that a more readable shorthand notation, ca
triplet subscript (R619), is also provided for the indexed-do control triplet.

A triplet subscript is just the indexed-do control values, separated by colons rathe
commas, with the last one (the increment or stride value) optional. Thus using triplet
tion the above four examples may be written (much more clearly!) as:

Q( 1:5, 2 ) or Q( :, 2 ) ! the second column
Q( 1:2, 5:6 ) or Q( :2, 5: ) ! the upper right corner
Q( 5, 4:6 ) or Q( 5, 4: ) ! last part of 5th row
Q( 1:5:2, 2 ) or Q( : :2, 2 ) ! every other element of 2nd col.

(The form Q(:,:)  is a section that comprises the entire array Q. This form in a dummy argu-
ment declaration, rather than in an array expression, specifies an assumed shape d

Q

13 11 25 2 1 9
9 3 31 14 52 27
16 45 54 36 15 20

7 20 18 19 8 19

37 56 54 66 77 90

=



32 Fortran 90/95 Concise Reference

,1) ele-

on. In
-

 sub-

nd

y
ments
Though the above examples employ array constructors, any one-dimensional integer array
expression is permitted as a vector subscript. The only requirement is that the value of
each element of the vector subscript be a valid subscript value for that dimension of the
array. A common form for vector subscripts is a one-dimensional integer array name (or
section), whose element values have been previously established. This form is useful for
indirect access, such as indexing into a table; e.g., table elements may be retrieved (or set)
by subscripting the table array with an array containing the desired table index values.

For the array Q defined above, for example, consider  Q( (/2,5,3/), (/6,4/) )

This represents the array section

This section can be used in any array expression in which a 3x2 array object is valid. It
may also appear on the left hand side of an array assignment, in which case the (1
ment of the right hand side expression value gets assigned to Q2,6, the (3,2) value of the
right hand side gets assigned to Q3,4, and so on.

A vector subscript may contain more elements than the size of that array dimensi
this case there are duplicate values, since all of the values must be within the array dimen
sion range. Indeed, subscript values may be duplicated in a vector subscript even if the
size of the vector is less than the array dimension (the only requirement is that the
script values must be within range). Both of these cases are illustrated in the following
example, which specifies a 7x4 section from the elements of Q.

Note that rows one and five of this section are identical, as are rows three and six and col-
umns two and three. Many elements of Q therefore appear twice in this array section a
two elements, Q2,4 and Q4,4, each appear four times. Array sections with multiple appear-
ances of a given parent array element are perfectly legitimate array operands in arra
expressions, but such sections must not appear on the left hand side of array assign
(or be actual arguments associated with intent(out)  dummy arguments - see chapter 9).

Q2 6, Q2 4,
Q5 6, Q5 4,
Q3 6, Q3 4,

27 14

90 66

20 36

=

Q /4,1,2,3,4,2,5/( ) /1,4,4,3( ),( )

Q4 1, Q4 4, Q4 4, Q4 3,
Q1 1, Q1 4, Q1 4, Q1 3,
Q2 1, Q2 4, Q2 4, Q2 3,
Q3 1, Q3 4, Q3 4, Q3 3,
Q4 1, Q4 4, Q4 4, Q4 3,
Q2 1, Q2 4, Q2 4, Q2 3,
Q5 1, Q5 4, Q5 4, Q5 3,

=



Arrays 33

 time

 asso-
ated)
edure.
ure.

clara-
d with

lues are
nces to
dules,

ely be
with

the
xecu-

 may
e (or
clara-
 be
dynamic arrays

Fortran 90 has three varieties of dynamic arrays. All three allow array creation at run
with sizes determined by computed (or input) values. The three varieties are: automatic
arrays, allocatable arrays, and pointer arrays.

automatic arrays: Automatic arrays are local arrays whose sizes depend upon values
ciated with dummy arguments. Automatic arrays are automatically created (alloc
upon entry to the procedure and automatically deallocated upon exit from the proc
The size of an automatic array typically is different in different calls to the proced
Examples of automatic arrays are:

function F18(A,N)
  integer   N                  ! a scalar
  real  A(:,:)                 ! an assumed shape array
  real  F18(size(A,1))         ! the function result itself is an automatic array

  complex   Local_1(N,2*N+3)   ! Local_1 is an automatic array whose size 
!                              is based on N

  real  Local_2(size(A,1),size(A,2)) ! Local_2 is an automatic array
                                         !                   exactly the same size as A
  real  Local_3(4*size(A,2)) ! Local_3 is a one-dimensional array 4 times
     ...                                    !         the size of the second dimension of A
end function

Note the importance of the intrinsic inquiry functions, such as size  in declaring automatic
arrays; a number of inquiry functions are provided that are allowed to appear in de
tions. Array bounds and sizes, character lengths, and type kinds may all be specifie
expressions involving these inquiry functions. Roughly, a specification expression, as such
expressions are called, is a scalar integer expression that has operands whose va
determinable upon entry to the procedure. Such operands include constants, refere
certain intrinsic procedures, and variables accessible through dummy arguments, mo
common, and (in the case of module and internal procedures) the host procedure.

allocatable arrays: Allocatable arrays are those explicitly declared allocatable . An allocat-
able array may be local to a procedure or may be placed in a module and effectiv
global to all procedures of the application. An allocatable array is explicitly allocated 
the allocate  statement, and deallocated either explicitly with the deallocate  statement or, if
it is a local array for which save  has not been specified, automatically upon exit from 
procedure. (If save  has been specified, local allocatable arrays can persist from one e
tion of the procedure to the next - they must be explicitly deallocated with a deallocate
statement.) A global allocatable array persists until it is explicitly deallocated, which
occur in a procedure different from the one in which it was allocated. An allocatabl
pointer) array is indicated if its size depends on a value to be computed after its de
tion. The allocation status (allocated or not yet allocated) of an allocatable array may
tested with the allocated  intrinsic function. Examples of allocatable arrays are:



34 Fortran 90/95 Concise Reference

g that
-

se

 of

is the
hould
l of the

-
inter

ted

rrays,

ation.
subroutine Peach
  use Recip e                    ! accesses global allocatable array, Jam
  real, allocable :: Pie(:,: )   ! Pie is a 2-dimensional allocatable array
     ...

  allocate ( Pie(N,2*N) )       ! allocate a local allocatable array
  if (.not.allocated(Jam))  allocate ( Jam(4*M) )  ! allocate a global allocable array
     ...                                  !    if it is not already allocated
  deallocate ( Pie )
     ...

end subroutine Peach

module Recip e                      ! Jam is a global allocatable array, 
  real, allocable :: Jam(: )        !          and can be allocated and deallocated in
     ... !             any procedure(s) using this module
end module Recipe               

Note that the declared bounds for allocatable arrays are simply colons, indicatin
these will be provided later, at the time of allocation. This makes allocatable array declara
tion appear similar to assumed-shape dummy argument declaration, appropriate becau
the “deferred” nature of the sizes of the dimensions is conceptually similar.

pointer arrays: Pointer arrays are similar to allocatable arrays in that they are explicitly
allocated with the allocate  statement to have computed sizes and are explicitly deallocated
with the deallocate  statement. Simple examples of pointer arrays result by replacing allo-
catable  with pointer  in the preceding examples of allocatable arrays.

In addition, pointer arrays can be used as aliases for (may point to) other arrays and array
sections; the pointer assignment statement is used to establish such aliases. The target for
pointer associations (as such aliasing is called) may be other explicitly allocated arrays, or
static or automatic arrays that have been explicitly identified as allowable targets for point-
ers. The association status of a pointer array may be tested with the associated  intrinsic
function. Pointer arrays may be dummy arguments and structure components, neither
which are allowed for allocatable arrays.

Given this apparent similarity between allocatable arrays and pointer arrays, what 
fundamental distinction between these two forms of dynamic arrays, and when s
allocatable arrays be used rather than pointer arrays? Pointer arrays subsume al
functionality of allocatable arrays, and in this sense allocatable arrays are never needed -
pointer arrays could always suffice. The problem with pointer arrays is efficiency. Though
pointer arrays must always point to explicit targets, which makes some optimization prac
tical that would otherwise be infeasible, pointer assignment makes optimization of po
arrays much more difficult than for allocatable arrays. Because of their more limi
nature and functionality, allocatable arrays are just “simpler” and can be expected to be
more efficient than pointer arrays.

Therefore, when all that is needed is simple dynamic allocation and deallocation of a
and automatic arrays are not sufficient, use allocatable arrays. A common example of this
is if a “work array” is needed of a size dependent upon the results of a local comput
If, on the other hand, the algorithm calls for a dynamic alias, of for example a “moving”
section of a host array, then a pointer array is probably indicated.



Arrays 35

, most
tions

current

nite

ed

 and
al
tions.
deter-

 with
ndeed
seful
hape

 array
aller
s that
e the

ession
array-valued functions

As noted above, functions can be defined that return array-valued results. In addition
intrinsic functions can return array values (and some always do). Array-valued func
may be used as operands in array-valued expressions, allowing more forms of con
computation expression. 

An example using an array-valued intrinsic function is common in applications of fi
difference modeling. Here each element of a large two-dimensional array g is to be added
to the “next” element in the same row of a conformable array u, and subtracted from this is
the “previous” row element of  u;  this is to be done with all of the elements of g, resulting
in a conformable array r. The computation, for each element, is sketched as follows:

Using the cshift  intrinsic function, which returns a given array “shifted” a specifi
amount, this computation is nicely expressed as follows:

r = g + cshift(u,1, 2) - cshift(u,-1, 2)

This illustrates the power of array-valued functions, especially if g were replaced with an
array-valued function reference rather than an array variable reference.

The array-valued intrinsic functions are all summarized at the end of chapter 9
described in detail in chapter 10. Function F18 in the previous section and the function
form of g in the preceding example are examples of user-defined array-valued func
The shape of the result returned by user-defined array-valued functions normally is 
mined (dynamically) from arguments, as illustrated in the F18 example (and see the Refine
and Solve  examples below). Note that function results are declared to be array-valued
ordinary declaration statements, as if the function name is an ordinary variable (as i
it is within the body of the function). Though automatic arrays may be the most u
form for user-defined array-valued functions, any other form is also valid: explicit-s
array, allocatable array, pointer array. 

The main additional requirement for user-defined array-valued functions is that the
value must be fully defined before completeion of execution of the function. On the c
side, the interface of an array-valued function must be explicit so that the caller know
it is dealing with a function that is array-valued; otherwise the caller has to assum
function returns a scalar value, which is then broadcast in the array-valued expr
from which the function is called.

g

 α+β−γ
β

r

α

γu



36 Fortran 90/95 Concise Reference

s
.
ata.
e-
example - pictur e refinement

This simple example illustrates a number of the Fortran 90 array features. A two dimen-
sional array of ones and zeros is received, perhaps from space. This data represents the bit
of a black and white “picture”, but some of the bits have been “corrupted” in transmission
Program Refine  applies a simple algorithm to this picture to “correct” the corrupted d
This simple algorithm, which is similar to finite-difference algorithms, replaces each el
ment of the array with the average (in this case truncated to an integer) of the values of the
3x3 neighborhood of which that element is the center.

program Refine
  integer :: picData(60,24 )           ! the two-dimensional picture array
  integer :: picFile=11                   
  open (picFile,file="refine.data" )   ! open and read the picture data file,
  read(picFile,"(60I1)") picDat a      ! then display the raw and refined data

  print "(A/(60A1))", "raw picture data", display(picData) 
  print "(/A/(60A1))", "refined picture", display(refined(picData) )

contains                             
!--------------------------------------------------------
function display(pic); integer :: pic(:,: )        ! assumed shape argument
  character :: display(size(pic,1),size(pic,2) )   ! returned value same size
  
  where (pic==1);  display = "# "                  ! turn all ones and zeros
  elsewhere;          display = " "                  ! into display characters
  end where
end function
!--------------------------------------------------------
function refined(pic); integer :: pic(:,: )        ! assumed-shape argument
  integer :: refined(size(pic,1),size(pic,2) )     ! returned value same size
  integer :: r, c 
  r = size(pic,1); c = size(pic,2 )                ! use of array intrinsics
  refined = 0
  refined(2:r-1,2:c-1) = ( pic(1:r-2,1:c-2) +   &! entire array refined
                          pic(1:r-2,2:c-1) +   &! in one array operation
                          pic(1:r-2,3:c   ) +   & 
                          pic(2:r-1,1:c-2) +   &! the sum of the 3x3
                          pic(2:r-1,2:c-1) +   &! neighborhood is divided
                          pic(2:r-1,3:c   ) +   &! by 5 to give the refined
                          pic(3:r   ,1:c-2) +   &! one or zero for each
                          pic(3:r   ,2:c-1) +   &! element in the interior
                          pic(3:r   ,3:c   ))/ 5       ! of the array
end function
!--------------------------------------------------------
end program  



Arrays 37

my

ic
 to an
rable

sys-

veral
  typi-
 func-
pivot
ions.
    raw picture data                                                refined picture
                                                                    
         ##               #                                #        
     #                            #                                 
             ############## ############# #############                      #########################################          
            ######################### ############### ##     ##             ############################################        
     ###    #####                                  #####                    #####                                  #####        
            ###        #        #                   ####                    ####                                    ####        
            ####       ####      #       ####       ####   #                ###        ###               ###        ####        
        #   ## #      # ## #      #     ### ##      #####                   ####       ####              #####      ####        
           #####       ####              ######     ## #                    ####        ###              #####      ####        
       #    ####         #   #                     #####                    ####                                    ####        
            #### ##          #  ##    #             ####  #                 ####                                    ####        
     #      # ##             #        #             ####                    ####                                    ####        
            ####      ###                  ###      ####     #              ####       #                    #       ####        
     #      ####      ###     #   #        # #       ###                    ####      ####                ###       ####        
    #      ####       ##### ########### ####       ####      #              ####       #### ################        ####        
            ####         # ###### #########         ## #    ##              ####          # ###############         ####        
            ####                                    ####                    ####                                    ####        
            ### #                #                 #####     #              #####                                  #####        
       ##   ########### ##################### ##########                    ############################################        
            ##################### #################### #                     ##########################################         
                                  #                        #                                                   ##               
      #                                        ##                   
                                                                

Program Refine  defines two array-valued functions, both with assumed-shape dum
arguments whose size determines the returned array size. Function display  illustrates the
use of the where  construct. Function refined  illustrates (a) the use of an array intrins
(size) in the execution part as well as in the specification part, (b) assigning a value
array section, and (c) a nontrivial array-valued expression which exhibits conside
conceptual concurrent computations.

example - Gaussian elimination

The classic Gauss elimination algorithm, with maximum pivot strategy, for solving 
tems of linear equations illustrates additional array features.  Function Gauss  is an array-
valued function that returns the solution vector for the supplied matrix; it employs se
automatic arrays; it has just one loop (to sequence through the pivot elements). The
cal nonarray sequential version of this algorithm has loops nested up to four deep; in
tion Gauss , on the other hand, searching for the next pivot element, normalizing the 
row, and using the pivot row in the next elimination step are all done as array operat

program Solve
   print *,  Gauss( reshape( (/1.,1.,3.,2.,2.,2.,3.,1.,1.,5.,1.,3./), shape=(/3,4/) ) )
   print *,  Gauss( reshape( (/2.,1.,3.,4.,8.,-1./), shape=(/2,3/) ) )
contains
function Gauss(Grid);  real :: Grid(:,:)
   real  ::   Gauss(size(Grid,1)    )  ! returns the solution vector
   real  ::   G(size(Grid,1),size(Grid,2))      ! a local work array (copy of Grid)
   integer  ::   p(size(Grid,1),2)     ! array for the pivot rows and columns
   logical  ::  not_pivot_row(size(Grid,1),size(Grid,2))        ! mask current pivot row
   logical  ::  not_pivot_rows_or_cols(size(Grid,1),size(Grid,1)) ! mask out all pivots
   integer :: n, pn

   if (size(Grid,2).ne.size(Grid,1)+1) stop 'bad Grid shape' ! check for valid shape
   n = size(Grid,1)        
   G = Grid             ! work on G, not Grid



38 Fortran 90/95 Concise Reference

)

umber
e
 of

act,
e least

to

rray
y
st

ra-

es
  do pn=1, n              ! pn is next pivot number
     not_pivot_rows_or_cols = .true.        
     not_pivot_rows_or_cols(p(1:pn-1,1),:) = .false .      ! mask all pivot rows
     not_pivot_rows_or_cols(:,p(1:pn-1,2)) = .false .       ! mask all pivot columns
     P(pn,:) = maxloc(abs(G(:,1:n)),mask=not_pivot_rows_or_cols)  ! find next pivot
     if (abs(G(p(pn,1),p(pn,2))).lt.1E-4)  stop 'ill-conditioned matrix'  ! check stability

     G(p(pn,1),:) = G(p(pn,1),:)/G(p(pn,1),p(pn,2))  ! normalize pivot row

     not_pivot_row = .true.; Not_pivot_row(p(pn,1),:) = .false.  ! mask pivot row
     where ( not_pivot_row )  &! reduce matrix 
            G = G - G(:,spread(p(pn,2),1,n+1))*G(spread(p(pn,1),1,n),:)            
  end do             

! repeat for all pivots, then
  Gauss(p(:,2)) = G(p(:,1),n+1)  ! unscramble the solution vector

end function 
end p rogram

When executed with the simple data sets shown above, this program returns (1.0, -1.0, 2.0
and (7.0, -2.0) for the respective solution vectors, demonstrating that function Gauss  will
correctly solve any size linear system. The entire matrix is reduced for each pivot, rather
than just those columns needing reduction, so that about twice as many (scalar element)
operations are performed as are really necessary; further tailoring of the not_pi vot_row
mask could decrease the number of (scalar) operations. Note that, in terms of the n
of array operations, more attention is devoted in Gauss  to  preparing the masks than to th
numerical computations themselves - in array algorithms logical masks take the place
conditional statements in sequential scalar algorithms.

The Gauss  code is pretty straightforward (though reading and writing such comp
highly concurrent array operations code takes some getting used to); perhaps th
obvious aspect of Gauss  is its use if the spread  intrinsic function. spread  replicates
(spreads) a scalar into a one-dimensional array, or replicates an n-dimensional array in
an n+1-dimensional array.  The scalar-to-one-dimensional array form is used in Gauss  to
convert the scalar operation G(i,j)=G(i,k)*G(k,j), where k is a constant, into a whole-a
operation (over all i and j) on G. spread  has three arguments: the first is the scalar or arra
value to be spread, the second is the dimension over which the spreading occurs (and mu
be one for spreading a scalar), and the third is the number of replications.

Function Gauss  has, for any given system size n, of the order of: 7n array masking ope
tions and 7n array numerical computations, corresponding to about n4 scalar logical oper-
ations and 7n3 scalar numerical operations. As the “cost” (execution time) of an array
operation, continues its inexorable march toward that of a scalar operation, array cod
such as Gauss  become increasingly attractive in terms of performance.



Redundancy 39

 prac-
ter is to

res”:
etter
e these
(out of

at are

-
ran
ks are
n stor-
k and
Such
ro-

ame.
with the
mix of
gu-
mmon
ot be

o (or
 of stor-
ssoci-
ify the

 of
55    Redundancy

Some of the newer features of Fortran, motivated by modern common programming
tices, have made some of the earlier features redundant. The purpose of this chap
identify and summarize these redundancies.

The current Fortran standard officially identifies “two categories of outmoded featu
(1) those for which “better methods existed in Fortran 77” and (2) those for which “b
methods exist in Fortran 90”. The standard goes on to say “programmers should us
better methods ...”. In this reference these two categories are called “deprecated” 
favor) features.

In addition to those officially deprecated, there are several features of Fortran 90 th
redundant and for which many believe that “better methods exist”: common , equivalence ,
and attribute specification statements.

common blocks

Before Fortran 90, the only practical way to provide for global objects (variables and con
stants) was via common blocks; because global objects are important to many Fort
application areas, much practical pre-Fortran-90 code uses common. Common bloc
contiguous blocks of storage, and an object may be associated with (occupy) certai
age units in a common block. Any program unit can access a given common bloc
thereby access an object by virtue of its known location in the common block. 
objects are said to be storage associated, and common blocks share objects among p
gram units through storage association.

Common blocks are distinguished by (programmer-specified) names, and the common
statement (R548) allows the programmer to declare a common block having a given n
The common statement also specifies a sequence of objects that are associated 
successive storage units of that common block; the common block can contain any 
scalar and array variables (R549), but cannot contain an allocatable array, a dummy ar
ment, a nonsequence structure, or a function result name; arrays dimensioned in co
block arrays must have constant bounds. In a given program unit, a object cann
assigned to two (or more) common blocks.

The common block names are themselves global, known to all program units. Tw
more) program units accessing the same common block access the same sequence
age units; the object names and mix may be different in the two program units - the a
ation is by storage sequence. For example, suppose that two program units spec
same common block as follows (where all the variables are of type default real):

common / Omega / x(100), y, z(200)

common / Omega / a(200), b(100), c

The common block name is Omega  and it contains 301 storage numeric units. In one
the program units the first 100 storage units of Omega  are known as the array x, the 101st



40 Fortran 90/95 Concise Reference

ge

ric
of type

e e

nclude
k,
k.
le

l

same

-

 pro-
e

if-

ad
 not
is the scalar y, and the last 200 are the array z; in the second program the first 200 stora
units are known as the array a, the next 100 storage units are known as the array b, and the
last storage unit is know as the scalar variable c; y and a(101), for example, represent the
same storage location and hence are the same “thing”.

Objects of type default integer, default real, and default logical have numeric storage
units; objects of type default complex and double precision real each require two nume
storage units and double precision real requires four numeric storage units. Objects 
default character have character storage units. Every other type/kind combination (or
type/kind/rank combination for pointers) has a different, unique (but unspecified) storage
unit. Objects with different storage units maybe be placed in a given common block, but
each program unit in a program using that common block must specify exactly the same
sequence of storage units. If a sequenced structure appears in a common block, thffect
is as if the individual components, in order, had been placed in the common block.

Because of the strict requirement of the preceding paragraph, a popular use of i
lines (before the advent of modules in Fortran) was to make one copy of a common bloc
place it in a file, and include that file in every program unit that used that common bloc
With modules, the same effect can be achieved by placing the common block in a modu
and using that module. Even better (and simpler), place the variable definitions directly in
the module, without putting them in common blocks; those variables are then global to al
programs units using that module (see chapter 8).

Two or more common  statements naming the same common block can appear in the 
program unit; the effect of the second (and subsequent) statements is to extend the com-
mon block defined in the first such statement. A named common block must have the same
size in all program units. A common block name may appear in a save statement, in which
case the entire block is saved; individual variables in a common block must not have the
save attribute. Variables in a named common block may be initialized in a blo ck data  pro-
gram unit.

The common block name may be omitted in a common  statement, in which case the com
mon block is known as blank common. There may be any number of named common
blocks, but there is only one blank common; multiple blank common statements in a
gram unit simply extend the one blank common. The rules for blank common are the sam
as for named common, except that blank common is always saved, blank common vari-
ables cannot be initialized, and different program units can specify blank commons of d
ferent sizes (but storage units must still be associated with like storage units).

equivalence

To save space, two or more variables may share the same storage; the equi valence  state-
ment is how such sharing is specified. This was important when computing systems h
quite limited storage, but equivalence is largely redundant these days because there is
normally now the overpowering need to “save space”.

Two (or more) variables are equivalence objects (share the same space) if they appear in
an equivalence-set of an equi valence  statement (R545-547). An equivalence object may be



Redundancy 41

named
unction
 must

ts in an
t is:

ent
he first

s; thus
nt may
ust be

imen-

nts or
 or sub-
equiva-
of the

 object
 com-
ont of a

ment

gh the
ndant,
jects.

ct list.
a variable name (scalar or array), an array element, or a substring; it may not be a 
constant, an allocatable array, a dummy argument, a nonsequence structure, a f
result name, a pointer (or structure containing a pointer), or any part thereof. There
be at least two equivalence objects in an equivalence set and all equivalence objec
equivalence set must be of like storage unit. An example of an equivalence statemen

equivalence  ( x, b(10,20) ), ( first, name )

In this case the variable x is the same as the array element a(10,20), assuming that x is a
scalar real and b is and array of reals, and changing one changes the other; if first  is a sin-
gle-character variable and name  is a longer character string, this equivalence statem
causes first  to be the same character (share the same character storage unit) as t
character of name .

Equivalence superimposes (makes the same) two or more storage unit sequence
unlike storage units cannot be equivalenced. Moreover since arrays and array eleme
be equivalence objects, and (whole) arrays occupy contiguous storage units, care m
taken to not specify inconsistent pairings. For example, if x and y are both one-d
sional real arrays

equivalence  ( x(10), y(20) )

assigns x and y overlapping storage units, offset by 10, but 

equivalence  ( x(10), y(20) )  ( x(20), y(10) )

specifies inconsistent offsetting and hence is illegal. As illustrated, any array eleme
substrings specified as equivalence objects must use constants as the subscripts
string ranges. An unsubscripted array name (or a character variable name) as an 
lence object, storage associates the first element of the array (or first character 
string) to the other equivalence objects in that equivalence set.

The objects in an equivalence set must be local to that program unit. An equivalence
may be a variable in a common block, but equivalence must not cause two different
mon blocks to become storage associated, nor add storage units that precede the fr
common block.

attrib ute statements

Prior to Fortran 90 Fortran did not have the attribute form of the type declaration state
(see chapter 2); separate statements, now called attribute statements, were used to convey
attributes to objects; each such statement conveys exactly one such attribute. Thou
attribute form of the type declaration makes the attribute statements essentially redu
attribute statements are the only way attributes can be given to implicitly typed ob
Constraints pertaining to attributes are summarized in chapter 2.

 The typical (but not only) form for attribute statements is

attribute-name  [ ::  ] object-list

The effect is that the named attribute is given to each of the object listed in the obje



42 Fortran 90/95 Concise Reference

n
d in

t not
i-

d

 (
Some examples are:

parameter ( MAX=100 )  ! with type declaration: integer, parameter :: MAX=100

real :: x, y  ! using type declarations:
dimension :: x(100), y(200,200)  ! real :: x(100)
save :: y  ! real, save :: y(200,200)

In the first of these, which is not of the general form given above, MAX may be implicitly
typed; in the second, the (two) variables are explicitly typed, but the other attributes are
conveyed with separate attribute statements. The attribute statements having precisely the
form shown above are: the optional  statement (R520), the dimension  statement (R525), the
allocatable  statement (R526), the pointer  statement (R527), the target  statement (R528),
the external  statement (R1207), and the intrinsic  statement (R1208).

The attribute statements having almost the form shown above are: the intent  statement
(R519), the public  and pri vate statements (R521), and the save statement (R523). In the
intent  statement, an intent-spec (R511) must follow the intent  keyword. In the public , pri-
vate, and save statements, the object-list is optional; if it is missing then the attribute
applies to all of the local objects with which it is compatible. Note that the save attribute
statement is the only mechanism for saving a named common block.

The form of the parameter  statement is given in R538-539; such a statement can contai
any number of named constant value definitions, separated by commas and enclose
parentheses. Another example of a parameter statement is:

parameter ( MAX=100, DOUBLE=kind(1D0) ) )  ! assuming DOUBLE is of type integer

The data  statement (R529-537), which initializes variables, not constants, is the attribute
statement that differs the most from the general form; it also is the one that is almos
redundant, as it can be used to initialize part of an array, a structure, or a substring (the in
tialization provision of the type declaration, when applied to an array, structured object, or
a character string, must initialize the entire array, structure, or string). 

The simplest form of the data  statement is:

 data   variable-list   /  value-list   / 

The variables in the variable list are “paired”, left to right, with the values in the value list;
each value has to be assignment-compatible with its associated variable. Any substring or
array section ranges, or array element subscripts, in the variable list must be constants, an
all values in the value list must be constants and any repeat factors must be positive integer
constants. An example of a data statement is:

data  count, n, name(1:3), (x(i), i=4,19,3)  /  0, 0, "Dru", 6*3.5  / 

After the data  keyword comes the list of variables to be initialized; between the slashes/)
are the initial values. In this case the variables are scalar integers count and n, both initial-
ized to zero, a substring (first three characters) of character variable name,  initialized to
"Dru", and six elements (4,7,10,13,16,19) of real array x all initialized to the value 3.5.
The 6 in 6*3.5 is a repeat factor and 6*3.5 is equivalent to 3.5,3.5,3.5,3.5,3.5,3.5.



Redundancy 43

lly
amed
m unit)
ucture

d no
n
 spec-
ents

s, and

of use
an be

o data
 block
 state-

nly a
com-
irely
lock

 block

ent ver-
ns are
 so.

ods in
Recall that an object with the data  attribute (i.e., has been initialized) also automatica
has the save  attribute. The following objects must not appear in a data statement: a n
constant, an object in common (unless the data statement is in a block data progra
an allocatable array, a dummy argument, a function result name, a pointer (or str
containing a pointer), or any variable imported by host or use association.

block data program unit

The sole purpose of the block data  program unit (R1110) is to initialize objects in named
common blocks. A block data program unit has only a (limited) specification part an
execution part or internal procedure part. It has common  statements to specify the commo
blocks it initializes, and any declaration and specification statements needed to fully
ify the attributes of the common block variables to be initialized. Thus the only statem
that block data program units can have are: derived-type definitions, type declaration
use , common , equivalence , dimension , pointer , target , intrinsic , save , parameter , and data
statements; common statements must specify named common blocks. The role 
statements in block data program units is quite limited; only named constants c
imported in this manner.

Common block variables cannot be initialized in type declaration statements, and s
statements must be used for this purpose; therefore, unlike in other program units, in
data program units common block variables may appear in the variable lists of data
ments. 

A block data program unit can initialize more than one named common block, and o
part of a common block need be initialized - it is not necessary to initialize the entire 
mon block. Though a common block may be only partially initialized, it must be ent
specified in that block data program unit. A program may contain any number of b
data program units (at most one of which can be unnamed), but a given common
may be initialized in at most one of the block data program units.

deprecated features

The Fortran standard says that deprecated features may be removed from subsequ
sions of the standard. Even should this happen, standard-conforming implementatio
still allowed to support these features (as “extensions” to the language); many will do

The five deprecated features for which the standard proclaims there are “better meth
Fortran 77” are:

1.1 real  (and double precision) do  control variables (R822)
This tends to be error-prone because of accumulated round-off error
associated with repeated arithmetical operations. The better method is to
use an integer control variable and to convert it to the requisite real value
prior to using it in the computations of the loop.

1.2 branching to an end if  statement (from outside that if  construct)
Better method - branch to the statement following the end if .



44 Fortran 90/95 Concise Reference

hods in
1.3 the pause  statement (R844)
Execution of this statement requires subsequent “operator intervention”
to resume execution. Operator intervention is an archaic notion in most
modern computing; a better method is to use a read  statement (R909)
without an input list (e.g., read *) to pause execution; the user can resume
execution by pressing the “return” key.

1.4 assign  and assigned goto  statements (R838-839) and assigned format  specifiers
These statements involve using statement labels as integer values for
controlling selective execution; a major use was to simulate internal pro-
cedures. Better methods are either internal procedures or equivalent if
constructs. A better method for assigned format specifiers is to use char-
acter formats (R913, first alternative).

1.5 H edit descriptor (R1016, second alternative)
These were used to provide character output before the advent of the
character type. Better methods are to use character constant edit descrip-
tors (R1016, first alternative) or, better yet, to place character constants
in the output list, associated with A edit descriptors.

The ten deprecated features for which the standard proclaims there are “better met
Fortran 90” are:

2.1 arithmetic if statement (R840)
Redundant ever since the introduction of the logical if  statement. Better
methods are the logical if  statement (R807) and the if  construct (R802).

2.2 shared do  termination (R826)
This allowed nested do loops to share the same terminal statement,
which is now considered to be poor software engineering practice. A bet-
ter method is to have a separate end do  statement for every do  statement
(R817).

2.3 alternate return (R1214, R1221, second alternative)
This feature introduces labels into argument lists; upon return from the
procedure a branch may be made to such a specified label. A better
method is to return an integer or character code, which can then be used
as the controlling case expression in a case construct (R809) to achieve
the desired processing.

2.4 computed goto  statement (R837)
This is another instance in which the case construct (R809) is a better
method.

2.5 statement functions (R1226)
Statement functions look like assignment statements and have a number
of error-prone non-intuitive restrictions. Statement functions are com-
pletely superseded by internal procedures.



Redundancy 45
2.6 data  statements in the execution part
Data statement initialization is done at compile time, not execution time,
so this capability is at best misleading. A better method is to place all
data statements before the execution part; within the execution part if the
value of a variable is to be changed that must be done with an assign-
ment statement - it can’t be done with a data statement.

2.7 fixed source form
Fixed source form requires close attention to columns 6, 7 and 72 on a
line and does not use blanks as delimiters. This is error-prone for several
reasons, but especially on modern screen equipment using proportional
fonts. Free-form source is a better method.

In fixed-form source, columns 1-6 are reserved for comment initiators,
labels, and statement continuation; a C or # in column 1, or a ! in any col-
umn (except column 6), makes that line into a comment line; (optional)
statement labels must be put in coulmns 1-5, and any nonblank nonzero
character in column 6 makes (columns 7-72 of) that line a continuation
of the preceding (noncomment) line. Statement text must go in columns
7-72.

2.8 assumed-size arrays (R518)
Assumed-size arrays are “open ended” and not consistent with the con-
formability requirements of the Fortran 90 array operations and
assumed-shape arguments. Better methods are to use automatic arrays,
assumed-shape arrays, and deferred shape arrays, as appropriate in spe-
cific contexts.

2.9 character(*)  function results
A character function may be defined with an asterisk (*) length. There is
no way the function can determine the value of the length for a given
invocation of the function, however, say from argument values; rather
the calling program must declare this function with a specified length.
This is not very useful functionality and is inconsistent with other func-
tion result concepts (e.g., deferred shapes for array-valued functions). In
most cases a better method for the (likely) intended functionality is to
use a subroutine with an extra character argument that can be used to
return the desired character value to the calling program.

2.10 character*  type specifier (R507, second alternative)
This original form of character length declaration, introduced in Fortran
77, is clearly redundant with the comprehensive and consistent type
parameter declaration model in Fortran 90. A better method is to use the
character(*)  form (R507, first alternative).



46 Fortran 90/95 Concise Reference



Input/Output 47

 so too

board
 a copy
lacing
s-
ut pro-
xternal

g data
ation.

g a
aracter
n dis-
sumes”
 state-
 the

guage
as well
pter

tions
g sec-
s.

aren-

ired,
 a

general
66    Input/Output

Just as Fortran has an entire “sublanguage” for array processing (see chapter 4),
does it have a comprehensive sublanguage for performing data input and data output. 

The read  statement performs data input. The sources for data input are the user’s key
and/or one or more data files on the computing system; the input process transfers
of the data from the external source(s) into specified variables of the program, rep
the previous values of those variables. The write  statement performs data output. The de
tinations for data output are the user’s screen and/or one or more data files; the outp
cess transfers a copy of the values of specified variables and expressions to the e
destinations, either appending the data to previously written data or replacing existin
on the external destination(s), depending on the nature of that particular output oper

Fortran I/O is record oriented. A data file is a sequence of records, each record bein
sequence of values terminated by a special end-of-record (EOR) character (or ch
combination). EOR is system-dependent but often is equivalent to end-of-line - whe
played on a screen, each line represents a record. A read statement normally “con
an entire record (line), regardless of how much data is then actually used; a write
ment normally produces an entire record (including the EOR). When reading from
keyboard each typed line, ending with the return key, is an input record; when writing to
the screen each write operation produces one line of output. Fortran 90 introduced nonad-
vancing I/O, providing Fortran, for the first time, with partial-record I/O capability.

The basic read and write statements are quite simple. The bulk of the I/O sublan
involves the many data formats that the input/output processes must accommodate, 
as tools for effectively utilizing the data file system. The first two sections of this cha
illustrate basic reading and writing of data; though relatively simple, these illustra
include a great many practical uses of the read and write statements. The remainin
tions are devoted to the more specialized, or more subtle, aspects of formats and file

inputting data (read)

A simplified general form of the read  statement (R909) is:

read (  [ unit=  ] unit  [ , [ fmt=  ] format  ] [ , [ iostat= ios-variable  ] )  [ input-list  ]

The input-list specifies the variables into which the data is to be read; the items in p
theses specify the data source (unit), the data format, and a status variable (to detect input
errors, end of file, etc.) - these are called the input control specifiers (R912). Note that the
only control specifier required is the unit and that the only specifier keyword requ
when that specifier is used, is iostat= . If the input list is omitted, no values are input, but
record is consumed nonetheless.

Actual uses of the read statement tend to appear quite a bit simpler than the above 
form:

read (dataFile, fmt=* )  x, y, z ! read 3 values from a data file, with "free form" input



48 Fortran 90/95 Concise Reference

/
ctory

e

-

a

-

if the
d=
read (*, fmt="(I4,A)", iostat=k2)  number, name  ! read two values from the keyboard

read (expenses, fmt=*)  balance, amounts  ! read 2 values from a file; "free form" input

read (*,*, iostat=ios)  next  ! read one value from the keyboard

read (labData, "(A,I4,5F10.3)")  specimen, n, weight(1:5)  ! formatted read from a file

An asterisk (*) for the unit specifies keyboard input rather from a file. An asterisk for the
format specifies default formatting (also called list-directed formatting); list-directed input
formatting assumes the individual values requested (by the input-list) are separated by
(any combination of) spaces, commas, and end-of-lines. The iostat option is used if and
only if the programmer wants to detect input errors or the end of the file.

If the input unit is to be a data file rather than the keyboard, the unit is an integer value
(this is a good place to use a named constant); this value must have been connected to a
specific file, with the open  statement, prior to executing the read statement. For example:

open(inputData , file="lab/test-16.data")  !  inputData is a previously defined integer

After execution of this open statement the appearance of inputData  as the unit in a read
statement will cause the input to be taken from the next record in the file identified as “lab
test-16.data”, which on most systems is the file named “test-16.data” in the dire
named “lab”. The simplest form of the open statement is

open (  [ unit=  ] unit  ,  file=  file-name  ) 

where unit is as defined above for the read statement and file-name is any character expres-
sion; of course if the file specified by file-name does not exist, an I/O error occurs. See th
section below on opening files for other features of the open statement and how to prevent,
detect, and recover from I/O errors encountered while opening files.

The format specifier in the read statement may be: omitted (in which case this is a unfor-
matted read), an asterisk (listed-directed formatting, see above and the relevant section
below), a character expression (whose value must be a valid format specification, R1002),
or a label (which must be the label of a format  statement, R1001). (See chapter 5 for a dep
recated option not listed here.) The format specifies how the input data is converted and
assigned as the values of the variables in the input list. An unformatted read must specify 
unit that is connected to a file previously created with unformatted write statements.

If an iostat variable is specified in a read statement, it must be an integer variable, and after
execution of the read statement it is defined as follows: with a negative value if end-of-file
is detected (in which case no data input occurs, and the variables in the input list are unde
fined), with a positive integer value if an I/O error occurs (also in which case the variables
are undefined), or zero (in which case no error or end-of-file occurred and the variables are
defined with the input values). The non-zero values for the iostat variable are implementa-
tion-dependent, but in principle can be used to determine the exact nature of the error.

Alternatives to the iostat=  specifier are the end=  specifier and the err=  specifier (R912).
end=  applies only to input and specifies the label to which the program branches 
end-of-file is encountered during execution of the read statement in which the en



Input/Output 49

 pro-
ent in
xts in
ogether

 left-
ariable
ddition,

iffer-
pecify
includ-
e out-
line.

e read
put, or
 if the
tement,
ing a

mitted
ust be
used),
 list are
user’s

nding
 state-

ined
appears. err=  can be used with both input and output and specifies a label to which the
gram branches if any I/O error occurs during execution of the read or write statem
which the err= appears. In addition, the err= option is available in the other I/O conte
which iostat= can appear: the open and inquire statements. end=/err= can be used t
with iostat=, in the same statement, or they can be used separately.

The input list (R914) can contain any variables, in any order, that can appear on the
hand side of an assignment statement, including scalar variable names, array v
names, array elements, array sections, substrings, and structure components; in a
the input list can include io-implied-do constructs (R916). 

outputting data (write )

A simplified general form of the write  statement (R910) is similar to the read statement:

write (  [ unit=  ] unit  [ , [ fmt=  ] format  ] [ , [ iostat= ios-variable  ] )  [ output-list  ]

The output-list specifies the values to be copied to the output destination; the only d
ence between the input list and the output list is that, whereas the input list must s
assignment-capable variables, the output list can comprise any set of expressions (
ing stand-alone variables and expressions formed in io-implied do constructs). If th
put list is omitted, an empty record is written; on the screen this appears as a blank 

The unit, format, and iostat specifiers in the write statement are the same as in th
statement. The unit is an integer value that identifies the file that is to receive the out
it is an asterisk; if the latter, the output is displayed on the user’s screen. As for input,
output is to a file, the unit (integer value) must have been connected, by an open sta
to the desired file before execution of the write statement. The simplest form of open
file for output appears exactly like that for input.

Also as in the read statement, the format specifier in the write statement may be: o
(in which case this is a unformatted write, and any subsequent reads on this file m
unformatted), an asterisk (listed-directed, system-defined default output formats are 
a character expression, or a label. The format specifies how the values of the output
to appear in the destination record. Unformatted output should not be sent to the 
screen.

The only role of the iostat variable in a write statement is to detect, and take correspo
action, if an error occurs during the execution of the write statement. As in the read
ment, if an error occurs the iostat variable is defined with an implementation-determ
positive value; if no error occurs the iostat value is zero. 

Examples of the write statement are:

write (dataFile, fmt=* )  x, y, z ! write 3 values to a data file, with default formatting

write (*, *, iostat=ios) number, name ! write two values to the screen

write (*, fmt="(T20,I5)", iostat=ios)  next ! write one value to the screen

write (labData, "(A,I4,5F10.3)") specimen, n, weight(1:5) ! formatted write to a file



50 Fortran 90/95 Concise Reference

it
e
 state-

rred -
,

ble

im-

-

inte
ted
ip-

ifica-

me
A redundant form of write(* , format ) ... is provided as the print  statement (R911):

print  format   [ , output-list  ]

Similarly, a redundant form of read(* , format ) ... is provided (R909, second alternative):

read  format   [ , input-list  ]

where format, input-list, and output-list are exactly as described above.

data formats

Data read from the keyboard or written to the screen is always formatted; data read from
or written to a file may be either formatted or unformatted. Unformatted I/O is specified,
as outlined above, by omitting the format specifier from the io-control-list. The purpose of
unformatted I/O is to provide efficient data transfer, without conversion between the file
and the internal representation in the programs variables; in an unformatted write the b
patterns of the data as represented in the program variables is written, unchanged to th
file. Such data is subsequently readable only by the corresponding unformatted read
ment (“corresponding” meaning the same type/kind pattern of variables in the input list as
values in the written by the output list), and again the bit patterns are simply transfe
in this case from the file to the variables - without conversion. To be readable by humans
data must be converted from internal form to appropriate character strings, and vice versa
- that is, formatted.

Default numeric types, for example, are typically groups of 32 binary bits; to be reada
by humans this the value of an real variable must be converted to the familiar decimal digit
representation of numerical values (complete with decimal points, minus signs, etc.). S
ilarly, when one types a -14 as keyboard input, this must be converted to the internal (usu-
ally binary) representation used by the variable receiving this value. Formatted I/O first
specifies that such conversion is to take place and second allows the programmer to spec
ify the exact form of the output (number of decimal places, for example) and, for input, the
exact form in which the data exists (and from which conversion must be made).

Such conversion is specified by format data edit descriptors (R1005). A format-specifica-
tion (R1002) is a sequence of such edit descriptors, delimited by commas, possibly r-
spersed with control edit descriptors (R1010), and enclosed in parentheses. In a format
I/O statement each value in the input-list or output-list is “paired with” a data edit descr
tor that specifies how that value appears in the source (input) or how that value is to appear
in the destination (output). The association is positional, with each value in the input/out-
put list associated with the data edit descriptor in the same position (ignoring any control
edit descriptor) in the format specification - thus, in left-to-right fashion, the first value in
the input/output list is associated with the first data edit descriptor in the format spec
tion, the second with the second, etc. The descriptor list may be longer (have more data
edit descriptors) than the input/output list (has values), in which case the extra descriptors
are unused; if the descriptor list is shorter, then it is “reused” as often as needed. So
examples appear above - others are:

(A8, E16.6, I10) ! a character, real, and integer, in 34 spaces



Input/Output 51

ta edit
are for
criptors
gical
 value
ate one
 as a
a edit

d s

16

2.2

E

G

(I5, I5, 2F10.2, A42) ! five values in record, in 72 spaces

(I5, 3(4F5.1, Z5), E20.4) ! 14 values in record, in 100 spaces

(A10, 2L5, A20, A30, F10.4) !        ( note that these five examples are

(A, A, G10.2E4, EN8.4) !           not complete Fortran statements )

Each intrinsic data type has a set of data edit descriptors. The I, B, O, and Z da
descriptors are for integer values. The F, D, G E, EN, and ES data edit descriptors 
real values (and complex values - each complex values takes two real data edit des
- one for the real part and one for the imaginary part). The L edit descriptor is for lo
values, and the A edit descriptor is for character values. A derived type (structure)
requires a set of data edit descriptors corresponding to its components, an appropri
for each of its (intrinsic) components, similar to complex (thinking of a complex value
structure with two real components). The following table summarizes these 12 dat
descriptors:

data edit
escriptor

data type effect
more 

example

Iw [.m] integer
optional ± followed by decimal digits; on output write a minimum of m digits and right-
justify value in field width w; on input value must be an integer constant (not necessarily 
right-justified in the field); m has no effect on input; m≤w; default value of m is 1

I8
I4

I9.5

Bw [.m] integer same as I format, except binary digits (0,1) instead of decimal digits and no sign B

Ow [.m] integer same as B format, except octal digits (0-7) instead of binary digits O3

Zw [.m] integer same as B format, except hexadecimal digits (0-9,A,B,C,D,E,F) instead of binary digits Z

Fw.d real,
complex

output has optional ± followed by decimal digits with d digits to right of decimal point, 
right-justified in field width w; input may be integer, decimal digits with decimal point 
anywhere, or either followed by ± followed by an integer exponent; d+1<w; 
need two for complex values (and for the E, D, G, EN, and ES data edit descriptors)

F7.2
F12.8
F5.1
F6.0

w.d [Ee]
Dw.d

real,
complex

Ew.d output has optional ± and 0 preceding decimal point, d digits after decimal point, 
followed by a base-10 exponent of the form E±uu or ±uuu (u being a decimal digit); 
Ew.dEe is the same but with e u’s in the exponent part; Dw.d is the same as Ew.d but with 
a D instead of E in the exponent; d+6<w; same as Fw.d on input, except input value may 
have an E or D exponent

E9.2
D9.2

E14.4E4
E30.6

w.d [Ee] real,
complex

same as Fw.d on input; a generalized edit descriptor that for output value v acts approxi-
mately as Fw.d for 0.1<v<10**d and approximately as Ew.d [Ee] otherwise

G10.3
G10.3E3

ENw.d 
[Ee]

real,
complex

output is in “engineering notation“, which is like Ew.d [Ee] but with an exponent divisible 
by 3 and 1-3 digits preceding the decimal point; same as Fw.d on input 

EN15.5

ESw.d 
[Ee]

real,
complex

output is in “scientific notation”, which is Ew.d [Ee] with the exponent one smaller so that 
there is a single nonzero digit preceding the decimal point; same as Fw.d on input

ES15.5

Lw logical output consists of w-1 blanks followed by a T or an F; on input, in field width w, any num-
ber of blanks followed by an optional period followed by a T or F, followed by anything

L2
L14

A [w] character
if w is omitted the field width is the length, n, of the character value/variable; on input, if 
w>n then the n rightmost characters in the field are read and if w<n then the w characters 
are character-assigned to the variable; on output, if w>n then the characters are left-justi-
fied in the field and if w<n then the leftmost w character of the value are output

A
A10
A40



52 Fortran 90/95 Concise Reference

ors as

ntrol

on-
-

-

In these data edit descriptors w, d, e, and m all must be unsigned integer constants (but not
named constants); in addition all may be optionally preceded by an unsigned integer con-
stant (but not named constant) repeat factor; the letters I, B, O, Z, F, E, D, G EN, ES, L
and A must all be capital (cannot be lowercase). All i nvolve a field width, w, which is the
total number of characters “reserved” for this value.

The control edit descriptors, which can be inserted among the data edit descript
desired, and also comma delimited, are summarized in the following table:

In these control edit descriptors k and n must be unsigned integer constants (but not named
constants); the letters P, T, L, R, X, S, N, and Z must all be capital (cannot be lowercase).
Some examples of format-specifications containing both data edit descriptors and co
edit descriptors are:

(T5, I5, I5, 2F10.2, A42) ! tab to column 5 first

(I5, /, 3(4F5.1, Z5, /), E20.4) ! a total of five records involved

(A10, 2L5, TR10, A20, A30, 2PF10.4)  ! tab right after logicals, and scale the real

(A, BZ, G10.2E4, EN8.4)  ! treat blanks as zeros in the two numeric fields

The discussion, tables, and examples in this section summarize most of the important c
cepts and techniques of I/O formatting. But there are many other combinations and subt
lies: treatment of formatting takes an entire chapter and 21 large pages in the Fortran
standard, and 53 (smaller) pages in the exhaustive Fortran 90 Handbook. Consult the ref
erences listed in the preface for additional details regarding formatted I/O.

control edit
descriptor

effect examples

/ at this point complete the current record and start a new one; need not be comma delimited /,/

T n tab to the character column n of the record (tabbing may be either forward or backward) T40

TL n tab left (backward) n character columns in the record TL2

TR n tab right (forward) n character columns in the record TR12

n X same as TR n 12X

S processor choice as to whether or not to output the optional plus sign (this is the default) S

SP from this point, the optional plus sign must be output; no effect on input SP

SS from this point, the optional plus sign must not be output; no effect on input SS

BN from this point, nonleading blanks in numeric input fields treated as nulls; no effect on output BN

BZ from this point, nonleading blanks in numeric input fields treated as zeros; no effect on output BZ

k P
“scales” subsequent numerical values; on input, no effect if the input field has an exponent, and 
otherwise divides the input value by 10**k during conversion; on output, no effect for the F, (F 
part of) G, EN, and ES edit descriptors, and for the E and D (and E part of G) descriptors 
reduces the exponent value by k and multiplies the nonexponent part by 10**k

3P
8P

ch-ed a character constant (but not a named constant) that is written to output; no effect on input "x= "

: stops output format processing if the output list has been finished (suppresses subsequent ch-ed) :



Input/Output 53

ith an

opened
rol file

uired
s that
e 
ave
 an
i-
er an

 follow-
rder.

fault

)

opening and closing files

A file read or write statement specifies the file via a file unit number, which is an integer
value; prior to executing the read or write statement, this unit must be associated w
actual file on the computing system. Making this association is called connecting the file
to the unit or opening the file; breaking this connection is called closing the file. During
program execution a file may be opened on a unit, subsequently closed, and then re
again or a different file opened on that unit. The open and close statements cont
connection.

The simplest form of the open statement was illustrated above, with the two req
“connect specifications” (unit and file). There are many more connection propertie
can be specified when making a file connection, however, and the general form of thopen
statement (R904-905) has 11 additional connect specifications, all optional; all h
required keywords (e.g., access= ). Only the specifier in the open statement that has
optional keyword is the unit specifier, and unit=  may be omitted only when the unit spec
fier is the first in any open statement specifier list - the specifiers may be in any ord
none may appear more than once. Open statement specifiers are summarized in the
ing table, with the unit and file specifiers first followed by the others in alphabetical o

specifier value meaning

unit=  integer expr. the unit number to be connected by this open statement

file= character expr. the name of the file to be connected to this unit

access= "direct" file to be connected for direct, or “random”, access to its records

"sequential" file to be connected for sequential access to its records; the default

action= "read" file to be connected for reading (input) only

"write" file to be connected for writing (output) only   

"readwrite" file to be connected for both reading and writing

blank= "null" ignore blanks in numeric input fields (can be overridden by BZ); the de

"zero" treat blanks as zeros in numeric input fields (can be overridden by BN

delim= "apostrophe"         this specifies the delimiter to be used in writing character data

"quote"         by list-directed or name-directed (namelist) output statements;

"none"         “none” is the default

err= label branch point if an error occurs in executing this statement

form= "formatted" the records in the file are formatted; the default for sequential access

"unformatted" the records in the file are unformatted; the default for direct access

iostat= integer variable same as in read/write statements; gets positive value if error occurs

pad= "yes" use blank padding for character input, when needed; the default



54 Fortran 90/95 Concise Reference

ompati-

ec-
a

ed

rmi-
t of

e
he
ystem;

ters

s

ed
For those open specifiers for which character values are listed in the above table (e.g.,
action= "read" ), the value can be specified as a character expression, but such expressions
must evaluate to one of the listed options, either in uppercase or lowercase (all lowercase
shown above). For those specifiers having a specific default value, the default is identified;
in the other cases the default is processor dependent. Note the one case that is inc
ble with the file=  specifier: when status="scratch"  is specified.

Some of the options in the above table involve concepts to be discussed in subsequent s
tions of this chapter; for example, access= "direct"  specifies a “random” file rather than 
sequential file, and random files are described in section below entitled “sequential and
random files”.

The close statement (R907-908) disconnects the file currently connected to the specifi
unit, allowing the unit to be reconnected later to another (or even the same) file. Any con-
nections not explicitly terminated by close statements are automatically close at the te
nation of the program. As with the open statement, the close statement has a lis
specifiers, only one of which is required (the unit specifier, which is the same as in the
open statement). The close err=  and iostat=  specifiers play the same error-handling role in
the close statement as they do in the open statement. The only other close specifier is th
status=  option, which has two possible values: "keep" specifies that the file remain on t
system after being closed, and "delete" specifies that the file be deleted from the s
"delete" is the default for scratch files and "keep" is the default for all other files.

"no" don’t pad - require that input data has the requested number of charac

position= "asis" do not change file position upon connection; the default

"rewind" upon connection, insure that file is positioned at its first record

"append" upon connection, insure that file is positioned after its last record

recl= integer expr. record length for direct files; number of characters for formatted files;
processor-dependent units for unformatted files, typically bytes or word

status= "old" the file must exist prior to making the connection

"new" the file must not exist prior to the connection - created by connection

"unknown" processor-dependent status; this is the default

"replace" creates or replaces file; in either case, the exist= inquiry returns .true.

"scratch" a temporary file is created, for the duration of the connection;
this is the one case in which the file= specification is not (must not be) us

specifier value meaning



Input/Output 55

infor-
n sub-

s; each

itted
cifier

ke the
 the

f the
tion

fier. In
 file
rious
file inquiry

The Fortran I/O sublanguage has an extensive file inquiry mechanism, which allows 
mation to be obtained about a file before opening it; such information can be used i
sequent connection specifiers. The form of the inquire  statement (R923-924) is similar to
that of the open statement in that in has a statement name and a list of specifier
specifier specifies a variable to hold the returned information (except err= , which specifies
a label). As in the open statement, the only specifier for which the keyword can be om
is the unit specifier, and then only if this is the first specifier in the list; any given spe
can appear at most once in a given inquire statement.

Each inquire statement must have either a unit specifier or a file= specifier but, unli
open statement, not both. If it has a unit specifier then the inquiry is “by unit”, and
information returned pertains to the unit and the file connected thereto (if any). I
inquire statement has a file= specifier then the inquiry is “by file” and the informa
returned pertains to the file on the system with the name specified in the file= speci
inquiry by unit the specified unit may or may not be connected; in inquiry by file the
may or may not exist and, if it exists, may or may not be connected to a unit. the va
inquiry specifiers are summarized in the following table.

specifier
returned value for

file inquiry
returned value for

unit inquiry

unit= not allowed the unit number about which to inquire

file= name of the file about which to inquire not allowed

number= the unit number, if currently connected; otherwise the integer value -1 

named= .true. .true. iff connected to a named file

name= file name file name if connected to a named filea

exist= .true. if file exists, .false. otherwise .true. if unit exists, .false. otherwise

opened= .true. if file is currently connected .true. if unit is currently connected

access= "sequential" or "direct", if connected; otherwise undefined

sequential= "yes", "no", or "unknown", if connected; otherwise  "unknown"

direct= "yes", "no", or "unknown", if connected; otherwise  "unknown"

action= "read", "write", or "readwrite", if connected; otherwise undefined

read= "yes", "no", or "unknown", if connected; otherwise  "unknown"

write= "yes", "no", or "unknown", if connected; otherwise  "unknown"

readwrite= "yes", "no", or "unknown", if connected; otherwise  "unknown"

form= "formatted" or "unformated", if connected; otherwise undefined

formatted= "yes", "no", or "unknown", if connected; otherwise "unknown" 

unformatted= "yes", "no", or "unknown", if connected; otherwise "unknown" 



56 Fortran 90/95 Concise Reference

-

ed,

l

 for
ed

e first

ing

to
s an
Three of the inquire specifiers (unit= , file= , and err=) serve as input to the inquire state
ment; the others all return values to the program. Three of these specifiers (named= , exist= ,
and opened= ) return logical values, five (number= , iostat= , recl=, nextrec= , and iolength= )
return (default) integer values, and the rest return (default) character values. Note that in a
great many cases the value return is undefined if the file or unit in not currently connect
which means that normally an opened=  inquiry should be made first.

sequential and random files

Fortran data files come in two flavors, sequential and direct. The records of a sequentia
file are processed in sequence, starting from the first record of the file. The read and write
statements illustrated above are sequential reads and writes. (Note that the keyboard is a
sequential input “file” and the screen is a sequential output “file”.) Opening a file
sequential access positions the file at its first record; a sequential file may be reposition
at its first record by closing the file and reopening it; it may also be repositioned at th
record, without closing and reopening, by executing a rewind  statement (R921-922) on the
unit connected to that file. A sequential file may also be “backed up” one record by issu
a backspace  (R919) on the unit; this is handy if there is a need to reread (or rewrite) the
previous record. The endfile  statement (R920) causes an end-of-file marker to be written 
a sequential file opened for write or readwrite action; closing such a file also write
end-of-file marker.

A direct file is so called because a one can “go directly” to any record number in the file;
direct files are also called ‘random” files, because one can specify processing any record at
“random”. If there are n records in the file, they are numbered, 1, 2, 3, ..., n, and the read or
write statement can specify, with the rec=  specifier, which record is to be involved:

blank= "null", "zero", or undefined, if connected; otherwise undefined

delim= "apostrophe", "quote", "none", or undefined, if connected; otherwise undefined

err= label of statement to which to branch if an error occurs

iostat= 0 for no error; a positive integer value if an error occurs

pad= "yes" or "no", if connected; "yes" if not connected

position= "asis", "rewind", "append", or undefined, if connected; otherwise undefined

recl= record length, if connected; otherwise undefinedb

nextrec= next record number, if connected for direct access; otherwise undefined

iolength= recl= value for the output-item-list  (a special form of the inquiry statement)

a. The value is undefined if the unit is not connected, or is connected to a scratch file.

b. If the connection is for direct access, all records have the same length;
if the connection is for sequential access, the maximum record length is returned.

specifier
returned value for

file inquiry
returned value for

unit inquiry



Input/Output 57

les
ession,

se for
g

uire
 the
ith a

ifica-
rd. In

ord.
tum

reading
tate-

e gen-

ces

ter
yes”
nded
read (  [ unit= ] unit  [ , [ fmt= ] format  ] , rec=  record-number  [ , iostat=  ios-variable ] )   input-list

write (  [ unit= ] unit  [ , [ fmt= ] format  ] , rec=  record-number  [ , iostat=  ios-variable ] )   output-list

Other than the addition of the rec=  specifier, the read and write statements for direct fi
are the same as for sequential files. The record-number is any (default) integer expr
the value of which specifies the record to be processed.

All of the records of a direct file are the same length (this does not have to be the ca
sequential files). access="direct"  and the recl=  specifier must be included when openin
direct files; note that the default formatting for direct files is "unformatted" , and thus
form="formatted"  must also be specified if the direct file is to be formatted. The inq
statement with the recl=  and nextrec=  specifiers can be used to, respectively, determine
record length of a direct file and the record following the last record processed w
direct file read or write statement.

partial-r ecord (nonadvancing) I/O

As mentioned above, Fortran I/O is fundamentally record oriented, and explicit spec
tion is needed for a read (write) statement to consume (produce) only part of a reco
(the default) whole-record I/O, the position of the file is said to advance to the next record
after a read or a write statement. Thus partial-record I/O is called nonadvancing I/O, as the
file position is “left where it is” rather than advancing to the beginning of the next rec
In nonadvancing input the position of the file is left at the beginning of the next da
within the record that has not yet been read, and the next read statement continues 
from that point; in nonadvancing output an end-of-record is not written by the write s
ment, and the next write statement continues the same output record.

Nonadvancing I/O is specified with the advance="no"  specifier (R912) in the read or write
statement; nonadvancing can be specified only for sequential, formatted I/O, so th
eral forms of the read and write statements for partial-record I/O are:

read (  [ unit= ] unit   , [ fmt= ] format  , advance="no"  [ , iostat=  ios-variable ] )   input-list

write (  [ unit= ] unit  , [ fmt= ] format  , advance="no"  [ , iostat=  ios-variable ] )   output-list

Note the (syntactic) similarity of nonadvancing I/O with direct I/O, the only differen
being that the format is not optional, and may not be an asterisk, and there is an advance=
specifier rather than a recl=  specifier. The "no" can be any scalar (default) charac
expression which evaluates to either “no” or “yes” (upper/lower case immaterial); “
represents (the default) ordinary whole-record sequential formatted I/O. An exte
example of nonadvancing read and write statements is:

! read from a file the day-month-year, such as "24 September 1987"; year position unknown;
! write the results in a (slightly) different form to the screen, interleaving the writes with the reads
read (f, fmt="(I2)”, advance="no") day ! assume that i, j, day, year are integer
write (*, fmt="(I3,TR1)”, advance="no") day ! print day to screen, blanks on both sides
do i=1,10
   read (f, fmt="(A1)”, advance="no") month(i:i) ! assume that month, m are character
   if (i>1.and.month(i:i)==' ') exit ! read characters through second blank 
end do !     (first character of month is a blank)



58 Fortran 90/95 Concise Reference

rt of

ut as

-
s

en-

e

 cha

of the

d an
an
m = "*** January  February  March  April  May  June  July "       / / &
            “ August  September  October  November  December "
j = index(m, month(1:i) )
write(*, fmt="(A3)”, advance="no") m(j+1:j+3)  ! now write first three characters of the month
read(f, fmt="(I4)”) year  !      (or three asterisks if month "error"  in file)
write(*, fmt="(I5)”) year  ! finish with advancing read and write for year
! for the above example data the output to the screen is “ 22 Sep 1987”, and no more, on one line

This example illustrates the advance="no" option, of course, but also illustrates that non-
advancing can be used with both file I/O and screen/keyboard I/O. If the interleaving of
the read and write statements had been important then, because of the unknown length of
the Month data, the partial-record I/O is exactly the tool needed. If the interleaving is not
important (which it probably isn’t in the example as shown) then whole-record read and
writes could have been used, together with and internal read (see the next section). Gener-
ally speaking, nonadvancing I/O is indicated when some action must be taken after pa
a record (line) has been input or output and before it is completed.

In nonadvancing I/O the iostat= specifier can be used to detect end-of-record on inp
well as end-of-file. At end-of-file the iostat variable has a negative value and a different
negative value at end-of-record. Unfortunately, these values are implementation depen
dent, although some implementations provide a module with named constant definition
that include the end-of-file (typically named EOF) and end-of-record (EOR) values. If the
implementation does not provide such definitions, at least the documentation should id
tify what these values are for that implementation; then the programmer can provide the
appropriate named constant definitions. If these values are not readily available then resort
must be made to the end=  and eor=  specifiers, which specify the branch point label if th
input encounters end-of-file or end-of-record, respectively. The eor=  specifier is available
for use only with nonadvancing input.

internal data conversion (internal files)

The file unit in a whole-record formatted sequential read or write statement may be ar-
acter variable, rather than an integer expression or an asterisk. If the variable is an array
then the effect is as if the array represents a formatted sequential file, each element 
array being one record of the file; if the variable is a scalar (a scalar character variable, a
substring, or an array element), the “file” is a one-record file. Such a “file” is calle
internal file, as the file (character variable), as well as the input or output list entities, is 
internal entity of the program. A read statement specifying an internal file is an internal
read and a write statement specifying and internal file is an internal write. The general
form of internal reads and writes are:

read (   [ unit= ] unit   , [ fmt= ] format   [ , iostat=  ios-variable ] )   input-list

write (  [ unit= ] unit   , [ fmt= ] format   [ , iostat=  ios-variable ] )   output-list

in which the unit in the read statement is a (default) character expression and the unit in
the write statement is a (default) character variable (R901, R903).

The purpose of an internal write is to convert a set of expression values (the output list) to
a (sequence of) character string(s), just as a formatted write to an external file; the purpose



Input/Output 59

record
s (the
s and
re inter-

 by the
 there-
iable.
cters,
rnal
ble, or
at (if

r string
nown
 inter-
exam-
, can

 ordi-
on
 

for an
ed val-
 I/O

direct,
nquiry
d with
of an internal read is to convert a (sequence of) formatted record(s) - any formatted 
is simply a string of characters - to the proper internal values for a set of variable
input list), exactly the role of a formatted read of an external file. Thus internal read
writes are exactly the same as external reads and writes, except that the records a
nal character objects rather the same kind of thing in an external file.

An external read “reads from” the record, converts the character values as specified
format, and defines the variables in the input list; the record itself is not changed and
fore the internal file may in fact be any character expression - it is not limited to a var
On the other hand, an external write converts the values in the output list to chara
according to the format, and “writes” the record; hence the internal file for an inte
write must be a character variable that can be assigned a value. Any character varia
element, section, or substring thereof, in an internal file must not appear in the form
specified as a character expression) or the input or output list.

Internal files are most often used to convert between numerical values and characte
(and vice versa). A common instance of this is when the format of an record is not k
until after it has been read (into a character string); after determining the format, an
nal read can convert the values to the “target” variables. For example, consider the 
ple of the preceding section. A whole-record read, coupled with internal reads
accomplish the same thing as the nonadvancing reads:

! read from a file the day-month-year, such as "24 September 1987"; year position unknown;
read (f, fmt="(A)”) iFile ! assume that iFile isa  character variable
i = index(iFile, ' '); i = index(iFile(i+1:), ' ') ! assume i, j , day, year are integer

! i is location of the second blank in IFile
read (iFile(:2)), fmt’"(I2)) day ! internal read to convert
month = iFile(3:j) ! assume month, m are character
read (iFile(i:i+4)), fmt’"(I5)) year ! internal read

m = "*** January  February  March  April  May  June  July "       // &
            “ August  September  October  November  December "
j = index(m, trim(month)//' ')
write (*, fmt="(I3,TR1,A3,I5)”) day, m(j+1:j+3), year ! ordinary advancing write to the screen
! output is the same as in preceding section, but all with whole-record and internal I/O

Note in this example that the contents of the entire external record are read into an
nary character variable (iFile ). The index  function is then used to identify the substrings 
which internal reads are used to convert the numeric data into the desired variables.

If the internal file cannot be an unallocated array or unassociated pointer; the file 
internal read must be a valid character expression (that is, all parts must have defin
ues). Data transfer in internal file I/O is the same as in external file I/O. Internal file
may be list directed (see next section), but may not be name directed (namelist), 
unformatted, or nonadvancing. The file connection (open and close statements), i
(inquire statement), and positioning (backspace, rewind, and endfile) cannot be use
internal files; the blank="null" , delimit="none" , and pad="yes"  connection specifications are
assumed. 



60 Fortran 90/95 Concise Reference

p-

he

t
 is

a

re

tible

(blank,

 co
e of
 a

ith an
list-dir ected and name-directed I/O

All of the formatted I/O described above involve a programmer-supplied format that spec-
ifies the exact columns in which output values are to be written and from which input val-
ues are to be read. Fortran provides two forms of sequential advancing formatted I/O in
which the formatting is system-supplied rather than programmer-supplied. For output, the
system supplies (typically) blank-delimited values written according to some system-su
plied data edit descriptors; input values are “free form”, delimited by value separators
(usually blanks or commas). 

List-directed I/O syntax is:

read (   [ unit= ] unit   , [ fmt= ] *   [ , iostat=  ios-variable ] )   input-list

write (  [ unit= ] unit   , [ fmt= ] *   [ , iostat=  ios-variable ] )   output-list

The format is an asterisk to indicate system-supplied formatting. The unit may be either an
internal or external file, or an asterisk (keyboard/screen); when the unit is an asterisk t
“short form” may be used: read * ...  and print * ...  .

In list-directed input, the first value is extracted from the record and converted for assign-
ment to the first variable in the input list, the second value extracted, converted, and
assigned to the second variable, and so on until values have been read for all of the inpu
list variables, or until a slash (/)or end-of-file is encountered. If a slash (or end-of-file)
encountered and some of the variables have not been assigned new values, those input list
variables retain their current values. 

A value in the input file is separated from the next value by a blank or a comma; a comm
may optionally be preceded and/or followed by a blank. (Multiple consecutive blanks in
the input, but not in a character value, are equivalent to a single blank, and blanks a
never zeros.) Consecutive commas (possibly with intervening blanks) represent null input
values, and the corresponding input list variable values are not changed. The end of a
record is treated as a blank. 

A numeric input value must be in the form of a numeric constant, assignment compa
with the input list variable to which it is to be assigned, but binary, octal, and hexadecimal
constants must not be used in list-directed input and the separator characters 
comma, and slash) cannot be part of a logical value (they would be treated as value separa-
tors). A character value may be a character constant, assignment compatible with ther-
responding input list variable, or not delimited at all; in the last case the first appearanc
a separator character terminates the character value; a separator character appearing in
character constant is part of the constant, however, and not treated as a separator. 

A value may be repeated, much as in the data statement (R532), by preceding it w
unsigned (default) integer constant followed by an asterisk; for example: 4*1.0 is equiva-
lent to 1.0, 1.0, 1.0, 1.0. Such a repeated construct must contain no blanks (any blank
would serve as a value separator). The repeat without a constant specifies that many con-
secutive nulls; for example 6*, specifies six nulls and is equivalent to  , , , , , , , .



Input/Output 61

at it
uence.
 parts
al value
 speci-
lue is
rs in
ts. The
racter
 list-

d input.
racter

alues
yntax
alues.
s I/O

put);
ons.

ntax

names;
name-

arts of
me list
ame of

le with
y other

me
nt of a
f those
The format for list-directed output is entirely implementation dependent, except th
must be (almost) suitable for list-directed input of the same values in the same seq
An integer value is in I format, a real value is in F or E format, the real and imaginary
of a complex value are enclosed in parentheses and separated by a comma, a logic
is T or F, and a character value is delimited by the character specified by the delim=
fier in the open statement (note that the delim= default is “none”); if a character va
written with single (or double) quote delimiters, any single (or double) quote characte
the character values are repeated once, as per the rules for character constan
“almost” in the first sentence of this paragraph refers to the situation where a cha
value containing separator characters is written with delim="none"; in this case the
directed output does not represent the same set of values for subsequent list-directe
A list-directed write statement may output any number of records, and the first cha
of each such record is a blank.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Name-directed I/O is similar in many respects with list-directed I/O, except that the v
in the input or output list can be in any order. This is accomplished by making two s
changes in the read and write statements and keywording the input (and output) v
The value keywords are modeled after the specifiers (e.g., iostat=...) of the variou
statements - the value is preceded by a variable= construct, where variable is the identifica-
tion of the variable to receive that value (input) or whose value is to be written (out
note that name-directed output works only with variables, not with arbitrary expressi

The following forms for the name-list read and write statements illustrate the two sy
changes:

read (   [ unit= ] unit   , [ nml= ] group-name   [ , iostat=  ios-variable ] )  

write (  [ unit= ] unit   , [ nml= ] group-name   [ , iostat=  ios-variable ] )  

The two changes are: (1) the fmt=*  has been replaced by nml= group-name, and (2) there is
no input list or output list, which are also replaced by group-name. The group name is
defined by the namelist  specification statement (R543-544), the simplest form of which is:

namelist /  group-name / variable-name-list

The namelist statement associates a name (the group name) with a list of variable 
some or all of these variables, or parts of them, are assigned input values by a 
directed read statement; similarly the values of some or all of these variables, or p
them, are output by a name-directed write statement. Each name in the variable na
of a namelist statement must be a scalar or array variable name, but cannot be the n
an array dummy argument with a nonconstant bound, an allocatable array, a variab
a nonconstant character length, a pointer or an structure containing a pointer, or an
nondummy argument local variable without the save attribute.

The variable part of a variable=value pair may specify one of the names in the variable na
list, or an element or section of an array having one of those names, a compone
structure with one of those names, or a substring of a character variable with one o



62 Fortran 90/95 Concise Reference

,

 the 
d

r
d input

enta-
t for
if
sent

 the

s #1
nd the
e #1

efe
names. The value part of a variable=value pair may be empty (null value), a single scalar
value (if the variable is a scalar), or if the variable is an array (or array section) the value is
either a sequence of comma or blank separated scalar values or of the repeated “*” form
(as in list-directed I/O); as in list-directed I/O, if there is no value following the “*” then
that many null values are specified.

Name-directed input starts with an ampersand followed (immediately) by the group name
followed by a set of variable=value pairs (in any order), and ending with a slash. Each vari-
able=value must be preceded by a comma or a blank; there may be a blank between=
and the value. If the variable and value are scalar, that value is assigned to the specifie
variable; if the variable is array valued then the specified sequence of scalar values are
assigned to the corresponding elements of the array. Unlike list-directed input, a characte
value in name-directed input must be a character constant; otherwise name-directe
is pretty much the same as list-directed input. Name-directed output has an implem
tion-dependent form, but must be (almost) suitable for subsequent name-directed inpu
the same variable values; the “almost” is the same as for list-directed I/O - 
delim="none" then character output is not delimited and thus likely would not repre
the same values for namelist input.

Examples of list-directed and name-directed I/O are:

read (labData, fmt=*) name, weight(1:4)  ! #1 ! weight is an array
"white rats"     4.3, 5.1, 4.6, 4.3  (input for #1)

print *, name, weight (3)  ! #2 ! output the values read in #1
 white rats 4.319683  (output for #2)

namelist / labVars /  name, weight  ! namelist for #3 and #4, specification part
read (labData, nml=labVars)  ! #3 ! same data read as in #1
&labVars  weight(1:4)=4.3, 5.1, 4.6, 4.3   name="white-rats" /  (input for #3)

write (*, nml=labVars)  ! #4 ! using the same namelist as defined for #3
&labVars weight(1:4)= 4.3 5.1 4.6 4.3 name= white-rats / (output for #4)

Each of the above input statement reads data from a file (labData), and prints it on
screen. Note that the print *  statement may be used for list-directed screen output, but not
for name-directed output. Also note the subtle change in the input data between case
and #3 - in the first case the name is two words separated by blanks, in the seco
blank is replaced with a hyphen; the output for #2 is not suitable for re-input with th
read statement, but the #4 output is suitable for re-input with the #3 read statement.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

As mentioned in the preface, this is an extremely concise version of Fortran’s considerable
I/O sublanguage. It is intended to be complete, however, with nothing left out and no need
to consult other references. Nevertheless the compactness of this description may have
“glossed over” some subtle details which may be better described in either of the rr-
ences given in the preface or some other sources of Fortran 90 information.



Control Structures 63

d next

ny mix
ts, etc.

ks
e first
uard

+1
):

e exe-
of the 
e one
en-
77  Control Structures

Control structures allow the programmer to (a) select which statements are execute
(if  and select ), (b) specify repetitive execution of a group of statements (do), and (c)
branch to another part of the program (goto ).

if construct

The if  construct has the basic form:

if (  logical-expr  ) then
   executable-constructs ! the block (R215) “guarded” by logical-expr
end if

If the logical-expr is true then the block of executable constructs is executed; if the logical-
expr is false then the block is skipped. Note that the executable constructs can be a
of action statements and other (nested) constructs, such as loops, other if construc
The syntax of the if construct is more fully described in syntax rule R802 and the rules it
references.

Another useful form of the if  construct is:

if (  logical-expr  ) then
   executable-constructs ! the block guarded by logical-expr
else
   executable-constructs ! the alternative block, if logical-expr is false
end if

In this form the first block of executable constructs (between the if  and else), but not the
second (between the else  and end if ) is executed if the logical-expr is true, and just the
reverse if it is false. This form of the if  construct has one logical expression and two bloc
of executable constructs. One can think of the logical expression as “guarding” th
block; if the “guard” is true the first block is executed and the second one isn’t; if the g
is false the block it guards (the first one) is not executed and the second one is.

The most general form of the if  construct involves n guards (logical expressions) and n
blocks of executable constructs (where n can be any integer value greater than zero

if (  logical-expr  ) then ! the first guard, 
    executable-constructs ! and the block it guards
[ else if (  logical-expr  ) then ! any number of additional guards,
     executable-constructs  ] ... ! and the blocks they guard
[ else
    executable-constructs  ] ! the alternative block, if all guards are false
end if

Each guard is associated with (guards) “its own” block of executable constructs. Th
cutable construct associated with the first guard that is true is executed and the rest if
construct is skipped. If none of the guards are true then the unguarded block (th
between else  and end if ) is executed. Note that the optionality brackets in the above g



64 Fortran 90/95 Concise Reference

y

s.
eral form show that the other two forms described above (with just one guard, with and
without an unguarded block) are just special cases of this general form.

An example of an if construct with two guards is:

if ( temperature > BOILING ) then
   . . . ! vapor phase
else if ( temperature > FREEZING ) then
   . . . ! liquid phase
else
   . . . ! solid phase
end if

Finally, Fortran has a single-line if  statement, also called the logical if:

if (  logical-expr  )  action-stmt ! see R216 for definition of action-stmt

In this case the action statement is executed if (and only if) the logical expression is true.
The logical if is especially handy when you want to get out fast:

if ( code == "DONE" )  exit  ! exit loop when processing is finished

if ( n > 20 )  return  ! computation of routine is completed

if ( disaster )  stop "DISASTER!!"  ! anywhere disaster strikes

The guards in an if  construct need not be disjoint - that is any of them can be true at the
same time. But only one block of executable constructs is executed - that one guarded b
the first (top most) guard that is true. In the case (select ) construct, however, at most one
guard can be true at any given time.

case construct

The case  construct also involves n guards and n+1 blocks of executable constructs, only
one (or, more precisely, at most one) of which is executed. The order of the guards in a
case  construct is immaterial (whereas the order of the guards in an if  construct may well
be critical - witness the temperature example above).

The case construct syntax is described in detail in R808 and the syntax rules it reference
The general form is:

select case (  case-expr  ) ! the case expression to be evaluated; 
[ case (  case-value-list  ) ! if the case-expr value matches one of these
   executable-constructs  ] ... ! then this block is executed;
[ case default  ! if no match exists
   executable-constructs  ] ! then this block is executed;
end select

The case expression and case values may be of type integer, type character, or type logical;
all of the case values are constants, and all of the case-value lists are disjoint. The block of
executable constructs corresponding to (guarded by) the case-value list that contains the
value of the case expression (or the default block, if there is one and there is no value



Control Structures 65

ression
g 

es, as

 For-

 want

vors -
match) is the block executed. Since the case-value lists are disjoint, the case exp
value can match at most one, and therefore the order of the case blocks, includincase
default , is immaterial.

The case-value lists are comma-separated lists of constants or constant rang
described by R813. Examples of the case  construct are:

select case ( shape ) ! names in all caps are named constants
case ( CIRCLE ); area = d*d*PI/4
case ( SQUARE ); area = d*d
case ( TRIANGLE ); area = d*d*sqrt(3.)/2
case ( HEXAGON ); area = 6*d*d*sqrt(3.)/8
case default; area = f_area(shape,d)
end select

select case ( age ) 
case ( 0:17 ) . . . ! youth
case ( 18:61 ) . . . ! adult
case ( 62: ) . . . ! senior
end select

do construct

Modern loop constructs do not involve statement labels. For compatibility with older
tran code, which makes extensive use of the original labelled form of the do  construct,
Fortran 90 has three categories of do  construct:

(a) a modern construct (do - end do ) without any labels

(b) the modern construct with labels

(c) the original style

Category (b) is the same as (a) with an optional label, and is provided for those who
the modern structure but prefer to have loops with labels.

The syntax of all forms of the do  construct is described in R816 and the syntax rules it ref-
erences. The modern form, without labels (category (a)), itself comes in three fla
infinite, indexed, and while :

do ! the “infinite” form -
   executable-constructs ! looping stops only by explicit exit 
end do ! from within the loop body

do  int-variable = int-expr, int-expr  [ , int-expr  ] 
   executable-constructs ! the indexed form 
end do

do while (  logical-expr  )
   executable-constructs ! the while form 
end do



66 Fortran 90/95 Concise Reference

:

tate-
th
Execution of the infinite do  construct “loops forever” unless there is an exit  statement
somewhere in the block of executable constructs (loop body).

The semantics of the indexed do  is best described by making the first line more specific

do  i = e1 , e2, e3

Then the semantics of the indexed do  are equivalent to:

i = e1-e3
do; i = i+e3; if ( i > e2 )  exit
   executable-constructs
end do

If e3 is omitted, a value of +1 is assumed; if e3 is negative then the test is i < e2 rather than
i > e2. Of course a value of zero must not be specified for e3. (See R817 and related syntax
rules for additional, but inconsequential, syntax details of the indexed do  construct.)

The semantics of the while  loop are:

do; if ( .not.  logical-expr )  exit ! in the while loop the test is
   executable-constructs ! made at the top of the loop
end do

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The modern form with labels (category (b)) simply replaces do  and end do  with labelled
versions of these statements (same label on both); the label is described in R313; the unla-
beled and labelled versions of these two statements are summarized as follows:

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The original style DO-loop (category (c)) required labels and did not have end do . Though
it allowed terminating a loop on a labelled continue  statement, it did not require it; the
(labelled) last statement could be the final action statement of the loop body (R827). (Note
that such an action statement could not, however, be a goto , return , or other branching
statement.) Moreover, two (or more) nested loops could share the same termination s
ment (and label) - see R830. For example, a two-dimensional array can be initialized wi
the nested loops:

do 101,  i=1,m
   do 101,  j=1,n
101 x(i,j) = 0

whereas the modern version of these nested loops would be:

unlabeled labelled

do do  label

end do label  end do
label  continue



Control Structures 67

 

 upon
rocess

st be

con-
r-
lace
do  i=1,m
   do  i=1,m
       x(i,j) = 0
   end do
end do

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The execution of any loop may be explicitly and immediately terminated (with anexit
statement, R835) or advanced to the next iteration (with a cycle  statement, R834) any-
where within the loop body. The most common use of these features is to exit a loop
the occurrence of some condition. A common pattern, for example, is the read-test-p
nature of processing file data:

do 
   . . . ! read the next record
   if ( end-of-file )  exit ! test to see if at end of file
   . . . ! process the data just read
end do

If only part of the records are to be processed, then the loop could be:

do 
   . . . ! read the next record
   if ( end-of-file )  exit ! test to see if at end of file
   if ( not-of-interest ) cycle ! record not of interest, so go on to next
   . . . ! process the data just read
end do

In the nested loop case these simple forms of exit  and cycle  apply only to the inner-most
loop in which they appear. To make them apply to an outer loop, that outer loop mu
named with a construct name (R818, R825) and the exit  (or cycle ) statement must specify
this name. For example:

outer_loop: do 
    . . .
    do
        . . .
        if ( . . . ) cycle outer_loop
        . . .
    end do
    . . .
end do outer_loop

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

goto statements

The if , case , and do  constructs provide the disciplined, readable, and reliable way to 
trol the execution sequence. The goto  statement, and variations, are primitive, but powe
ful, branching statements that allow execution to be switched to (almost) any other p
in the current scope. The basic goto  (which can also be spelled go to ) has the form:

goto  label ! see R836



68 Fortran 90/95 Concise Reference

the

ram-

s and

, to the

pon a

ird

ndant,

can
tion.
Execution of a goto  statement causes execution to resume with the statement having the
label specified in the goto  statement. Any action statement may be labelled, as well as 
if , select , or do  statement (that is, first statement) of a control construct. 

A goto  statement must not cause a branch into the body of an if , select , or do  construct
from outside that construct, but the reverse (branch out from inside) is allowed.

Though a label may be placed on any action statement, plus a few others, many prog
mers prefer to use only the continue  statement to identify a branch point:

label  continue  ! see R840; execution of continue “does nothing”

The computed-goto statement (deprecated - see chapter 5) specifies a list of label
causes a branch to one of them, depending on the value of an integer expression:

goto (  label-list  ) int-expr ! see R837

For example:

goto ( 222 , 333, 222 )  K/5  ! assume K is an integer variable

causes a branch to the statement labelled 222 if K is in the 5-9 range or 15-19 range
statement labelled 333 if K is in the10-14 range, and has no effect otherwise.

The assigned-goto statement (also deprecated) uses an integer variable as a label:

goto  int-variable  [ ( label-list  ) ] ! see R839

Prior to executing an assigned-goto statement, the integer variable must have been
assigned a label value with the assign-statement (also deprecated):

assign   label  to  int-variable ! see R838

If the optional label-list is included in the assigned-goto statement, the label value of the
integer variable must match one in the list.

The arithmetic-if (also deprecated) causes a branch to a specified label, based u
numeric value:

if (  numeric-expr  )  label , label , label ! see R840

If the numeric value is less than zero the branch is to the first label, if the value is zero the
branch is to the second label, and if the value is greater than zero the branch is to the th
label.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The stop  statement (R842-843) is a special kind of a branch - it terminates execution of
the program; it can be placed in any execution sequence and, as an above example indi-
cates, can be used to “get out quick” when disaster strikes. In normal use it is redu
however, as the end statement of the main program serves to terminate execution of the
program. Note that in those exceptional cases where it is useful, the stop statement 
issue a relevant message, which on most systems is printed on the screen at termina

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊



Modules 69

ther
t pro-

 these
elf is

m. A
nits
defi-
-

roce-
es of
strac-

e

ay use
88    Modules

The module is a new program unit in Fortran 90 that provides definitions for use in o
program units; modules may be placed in separate files and re-used with differen
grams.

A module is not executable; it contains definitions to be used by other program units;
definitions include procedures, which are individually executable, but the module its
not executable.

Module entities are made available to other program units by the use statement:

program Seismic_Processing
  use Seismic_Trace_Definitions
  ...
end program

Available modules entities are said to be “use associated” within the using progra
module may contain private entities; such entities are not available to using program u
(private entities are available only within the module itself, including any procedure 
nitions within the module). In addition, the only form of the use statement limits the mod
ule entities that are available in the using program unit.

The principal contents of a module include: type definitions, interface definitions, p
dure definitions, and shared data objects (including global constants). Typical us
modules include: procedure libraries (with explicit interfaces), encapsulated data ab
tions, and shared-data units (alternative to COMMON).

module structur e

The general structure of a module (R1104-1106) is as follows; additional syntax rules ar
listed for specific items in the following description:

module   module-name
    use-statements ! modules can (optionally) use (import) other modules
    constant-definitions  ! global constants - see R538 and the parameter attribute
    variable-declarations ! shared variables - see R501
    interface-blocks ! explicit interfaces, defined operators, overloading - see R1201
    type-definitions ! user-defined data types - see R422
contains
    module-subprograms ! see R213
end module  

module use

Other program units (main programs, functions, subroutines, and other modules) m
the definitions provided in a module by including a use  statement (R1107-1109) immedi-
ately after the program unit heading, as in the Seismic_Processing example above:



70 Fortran 90/95 Concise Reference

entity
use module-name  [ rename-list  ] ! imports all public entities of the module

use module-name, only:  only-list ! imports only the specified public entities

Module entities are imported into the using program with the same name as they have in
the module, unless they are renamed in the use statement; this may be necessary to avoid
name conflicts, as an imported (“use associated”) name does not “mask” a local 
with the same name. A rename (R1108) has the form:

local-name  => use-name

where local-name is the new name (in the using program) and use-name is the name of the
entity in the module (the new name “points to” the module entity). An only (R1109) can be
either the name of the module entity being imported, or a rename:

[ local-name  => ] use-name ! renaming is optional in an only-list

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

A module for the above Seismic_Processing program might take the form:

module Seismic_Trace_Definitions
  real, parameter :: PI=3.1415926  ! a global constant
  real, allocatable :: seismicWorkArray(:,:)  ! a shared data work-space

  interface FFT  ! overloading the procedure name FFT
    subroutine FFT_C (...)
        ...
    end subroutine
  end interface

  type SeismicTrace  ! defining a “Seismic_trace” data type
    real :: trace(1000)
  end type

contains
!-----------------------------------------
  function FFT (...)  ! definition of function FFT
      ...
  end function FFT
!-----------------------------------------
  subroutine FFT_C (...)  ! subroutine FFT_C can also be called
      ... ! with the name FFT, because of the
  end subroutine  ! overload defined above
!-----------------------------------------
  subroutine timeDomain (...)  ! another procedure definition in this module
      ...
  end subroutine
!-----------------------------------------
end module

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊



Modules 71

ogram
(over-
module applications

A module might contain just shared (global) constants and variables:

module Shared_Data
   real, parameter :: PI=3.1415926 ! a shared (global) constant
   integer :: n_rho, n_vel ! two shared variables
   real, allocatable :: workArray(:,:) ! a shared array
end module

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

A module might comprise a procedure library:

module Procedure_Library
contains
!-----------------------------------------
 function FFT (...)
     ...
 end function FFT
!-----------------------------------------
 subroutine timeDomain (...)
     ...
 end subroutine
!-----------------------------------------
 ...
!-----------------------------------------
end module

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

A module might be used to collect a set of procedure interfaces, for use by other pr
units; these can include (1) explicit interfaces for external procedures, (2) generic 
loaded) names for specific procedures, and (3) operator symbol definitions:

module Procedure_Interfaces
!-----------------------------------------
 interface ! providing an explicit interface
   subroutine T_time (A) ! for external procedure T_time
     real :: A(200,300)
   end subroutine T_time
 end interface
!-----------------------------------------
 interface FFT ! overloading FFT for use with FFT_C and FTT_R
   subroutine FFT_C (...)
       ... ! FTT_C is defined external to this module
   end subroutine
   module procedure FFT_R ! and FTT_R is defined in this module
 end interface
!-----------------------------------------



72 Fortran 90/95 Concise Reference
 interface operator(.inverse.)  ! defining the operator “.inverse.”; 
   module procedure inverse  ! the procedure itself (inverse) is defined 
 end interface  ! in the procedure part of the module 
!-----------------------------------------
 interface operator(+)  ! extending the use of the operator “+”
   function or(a, b)  ! to use with logical operands;
     logical :: or  ! function “or” is defined external to this module
     logical, intent(in) :: a, b
   end function
   module procedure addCharDigits  ! extending “+” to character digits as well
 end interface
!-----------------------------------------
contains
!-----------------------------------------
 function inverse (matrix)  ! the definition of function “inverse”
     ...
 end function
!-----------------------------------------
 function addCharDigits (d1, d2)  ! definition of adding character digits
     integer :: addCharDigits
     character :: d1, d2
         ...
 end function
!-----------------------------------------
end module

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

A module might contain definitions of user-defined types (or record structures):

module Derived_types
!-----------------------------------------
 type Point  ! a type to similate a 3D point in two ways
   real :: x_r
   real :: y_rho
   real :: z_theta
   logical :: cartesian
 end type
!-----------------------------------------
 type List  ! a typical linked list structure node
   type (Point) :: data
   type (List), pointer :: next
   type (List), pointer :: prev
 end type
!-----------------------------------------
 type Seismic_trace; private  ! a new type with “hidden” internal structure 
   character(20) :: trace_ID
   real, pointer :: traceData(:)
 end type
!-----------------------------------------
end module



Modules 73
◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

A module might encapsulate a complete data abstraction:

module Interval_Arithmetic ! a data abstraction for interval arithmetic
!-----------------------------------------
 type Interval; private ! the basic data structure is private; an interval
   real :: lower,  upper ! is represented by its upper and lower bounds 
 end type
!-----------------------------------------
 interface operator(+) ! use “+” for adding intervals
    module procedure interval_plus_interval, & 
  interval_plus_real, &
   real_plus_interval
 end interface
!-----------------------------------------
 interface operator (*) ! use “*” for multiplying intervals
    module procedure interval_times_interval, & 
     interval_times_real, &
       real_times_interval

 end interface
!-----------------------------------------
 interface sqrt ! extend “sqrt” to interval arguments
    module procedure interval_sqrt
 end interface
!-----------------------------------------
     . . . ! other interfaces ....
!-----------------------------------------
contains
!-----------------------------------------
 function interval_plus_interval (a, b) ! one of the addition functions
    type (Interval) :: interval_plus_interval
    type (Interval), intent(in) :: a, b
        ...
 end function
!-----------------------------------------
 function interval_plus_real (a, b) ! another addition function
    type (Interval) :: interval_plus_real
    type (Interval), intent(in) :: a
    real, intent(in) :: b
        ...
 end function interval_plus_real
!-----------------------------------------
 function real_times_interval (a. b) ! etc....
    type (Interval) :: real_times_interval
    real, intent(in) :: a
    type (Interval), intent(in) :: b
        ...
 end function
!-----------------------------------------



74 Fortran 90/95 Concise Reference
 function interval_sqrt (X)  ! definition of interval square root
    type (Interval) :: interval_sqrt
    type (Interval), intent(in) :: X
        ...
 end function interval_sqrt
!-----------------------------------------
 function interval_mid (x)  ! to return the mid-point of an interval
    real :: interval_mid
    type (Interval), intent(in) :: x
        ...
 end function
!-----------------------------------------
     . . . ! other procedure definitions....
!-----------------------------------------
end module

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊



Procedures 75

pear

am
-

ns are
hem is
e
e 
nts) in

y
-
e),

l nor-
tation

al

se it
99    Procedures

Subroutines and functions are the two forms for Fortran 90 procedures; each may ap
in the following contexts: external (stand-alone, separately compiled), module (packaged
within a module definition), internal (packaged within another procedure or main progr
definition). Fortran 90 has a large number of built-in intrinsic procedures; these are sum
marized here and described in detail in chapter 10. Both subroutines and functio
used to encapsulate particular computations, and the principal difference between t
the manner in which they are used (called, invoked). A subroutine does not return a valu
(except possibly through its argument list) and is invoked by a separate subroutincall
statement; a function returns a value and is invoked by using its name (and argume
an expression in which its returned value is used.

Procedures interact with each other (primarily) through argument lists, and these inter-
faces are either explicit (known) or implicit (unknown) to the calling procedure; onl
external procedures have implicit interfaces; interface blocks can make even these inter
faces explicit. Procedures can be generic (multiple procedures called by the same nam
and procedures may be used to define new operators.

subroutines

A subroutine is defined by a subroutine subprogram (R1219), which has the form

subroutine  subroutine-name ( dummy-arg-list )! see R1221 for dummy arguments
   specification-part ! see R204 for specification-part
   execution-part ! see R208 for execution-part
   internal-subprogram-part ! see R210 for internal-subprogram-part
end subroutine  

Any of the three parts in a subroutine definition may be empty, but a subroutine wil
mally have a specification part (e.g., argument declarations) and do some compu
(execution part). If the subroutine is recursive, it definition starts with the keywords recur-
sive subroutine  rather than just the keyword subroutine . See R1219 for some minor syntax
options (such as allowing the subroutine name to be repeated on the end subroutine  state-
ment).

A subroutine definition may be placed in:

(1) the internal-subprogram-part of a module (R1104), in which case it is a module sub-
routine,

(2) the internal-subprogram-part (R210) of an external subroutine definition, an extern
function definition, a main-program (R1101), or a module procedure definition, in
which case it is an internal subroutine,

(3) its own file, or a file with other stand-alone procedure definitions, in which ca
is an external subroutine.



76 Fortran 90/95 Concise Reference

sup-

r

-

t

ee

e
.

c-
lt is

and
rm
An external subroutine has an implicit procedure interface (if no interface block is 
plied for it) and, as it has no host, does not access a host data environment. (An external
subroutine is also the only kind of subroutine in which end  is an acceptable abbreviation
of the end sub routine  statement.)

A module subroutine has an explicit interface and accesses the data environment of its
host module; an internal subroutine has an explicit interface and accesses the data environ-
ment of its host procedure.

In all cases, a subroutine is invoked with a call  statement (R1210):

call  subroutine-name ( actual-arg-list ) ! see R1213 for actual arguments

If the subroutine’s interface is explicit the compiler can enforce consistency between the
actual-arg-list in the call statement and the dummy-arg-list in the subroutine definition;
otherwise interface consistency is not enforceable. (Interface inconsistency is the source of
difficult-to-find errors in programs with implicit interfaces.)

(Note: subroutine argument lists may include alternate returns (deprecated - see chapte
5), and this is the only way that subroutine argument lists differ from function argument
lists. An alternate return is an asterisk (*) in a dummy-arg-list; the corresponding actual argu
ment must be a *label (e.g., *220) specifying the alternate return point.)

functions

A function is defined by a function subprogram (R1215), which has a form similar to tha
of subroutines:

[ type-spec  ] function  function-name  ( dummy-arg-name-list  )  [ result (  result-name ) ]
   specification-part ! same
   execution-part !    as in
   internal-subprogram-part !       subroutines
end function

As with a subroutine, recu rsive  must be added to a recursive function (R1217), and the
result clause is required for recursive functions (and optional for all other functions). S
R1215 for other (minor) syntax options. Functions may be internal, module, or external in
exactly the same way as subroutines, with the same implications in each case.

Each function returns a result value and therefore must have a result type; that type may b
specified on the function statement (type-spec) or in the specification part of the function
Function results may be of any type, including derived type, and may be array valued; if
the function is array valued, the array (dimension) attributes must be specified in the spe
ification part. The result clause, if present, specifies the name to which the resu
assigned in the execution part; otherwise the function name is also the result name.

A function is invoked as an operand in an expression, not as a stand-alone statement, 
its result value becomes the value of that operand; such a function call has the fo
(R1209):



Procedures 77

xcept
se is

ll
nal
t of

e such

f
ed” by
via use
fers to
 data

st. The
 inter-
ntity

ed pro-
n-

e refers
 entity
xam-
function-name ( actual-arg-list )

Explicit interfaces and arguments work the same for functions as for subroutines, e
that alternate returns are not allowed in function arguments lists. The result clau
required for recursive functions for the following reason. Consider:

recursive function rf(a,b) result(rf_result)
  integer :: a, b
  real :: rf_result(2,3)
    ...
    ... = rf(2,1)
    ...
end function rf

If the result clause had not been present, then rf  would be used for the result value as we
as for recursive calls. Because rf  has two integer arguments and returns a two-dimensio
array, the reference rf(2,1)  could be either a recursive call or a reference to an elemen
the result. Though only very few combinations of argument lists and arrayness caus
ambiguity, nevertheless the Fortran 90 rule is “recursive implies result”.

host association

All procedures have the following four data access mechanisms: (1) local entities, (2)
argument association, (3) use association, and (4) common association. The second o
these (argument association) allows a procedure to access entities explicitly “pass
the procedure’s caller; the third (use association) refers to module entities accessed 
statements in the procedure’s specification part; the fourth (common association) re
entities in the common blocks listed in the specification part. These are the only
access mechanisms for external procedures.

Module procedure and internal procedures have a fifth mechanism - host association. Host
association refers to a procedure’s access to entities declared in the procedure’s ho
host of a module procedure is the module that contains its definition; the host of an
nal procedure is the procedure (or main program) that contains its definition. Any e
declared in the host is automatically accessible by that declared name in the contain
cedure - even private module entities (private  affects only use association) - unless the co
tained procedure has an explicit declaration of that name. In the latter case the nam
to an entity local to the procedure and not to the host entity with this name; the host
is then available to the procedure only through argument association. The following e
ple illustrates these concepts:

program P
  integer :: x
  real :: y
    ... 
    call s1(x) ! x is passed to the procedure s1
    ...
contains



78 Fortran 90/95 Concise Reference

;
 as
re

its

us is
s

l

-

 is
  subroutine s1(z); integer z
    real :: x  ! x is local; y is host associated
    ... ! execution part of subroutine s1
  end subroutine
end program

In the execution part of subroutine s1, x is (always) the local real variable (not the host’s
integer x), y is (always) the host’s real variable, and z is the argument-associated entity; in
the shown call to s1, z becomes associated with the host’s x, and thus for this call z in the
procedure’s execution part refers to the host’s x.

In the preceding example the host-association rules are simple and “obvious” because all
entities are explicitly declared. Fortran 90 allows implicit declaration of variables, how-
ever, which can make host association less obvious. The above rules, as stated, still apply
the one missing piece is this: a variable implicitly declared in the host is host associated
if it were explicitly declared and a variable implicitly declared in a contained procedu
(possible only if it has not been explicitly or implicitly declared in the host) is local to the
procedure. Recall that a variable is implicitly declared if there is no type declaration for 
name in the specification part, but its name is referenced in the execution part. The follow-
ing example illustrates the host-association rules involving implicit declarations:

program P  ! no type declarations in the host
    ... 
    call s2(x)  ! x implicitly declared in the host
    ...
contains
  subroutine s2(z)  ! no type declarations in s2
    ... 
    print *, x, y, z  ! x is host associated
    ... ! y is local to s2
  end subroutine  ! z is argument associated (with x in this case)
end program

In this example subroutine s2 accesses three variables, x, y, and z, all implicitly declared. x
is implicitly declared in the host, by virtue of its reference in the call statement, and th
host associated in s2. y is not (explicitly or implicitly) declared in the host and so i
implicitly declared in s2, by virtue of its reference in s2, and is therefore local to s2. z is
argument associated.

The default implicit typing rules in a main program, module, or external procedure are: al
default real except variables starting with letters I-N, which are implicitly default integer.
Implicit typing can be turned off (with implicit none , which then requires that all variables
to be explicitly typed) or modified by implicit  statements (R540) in the specification part of
the host. Whatever implicit typing is in effect in the host becomes the default implicit typ
ing in the contained procedure. This can in turn be turned off (implicit none) or modified
by implicit statements in the specification part of the contained procedure. These are
straightforward, consistent rules, but by far the simplest host association scenario
explicit declaration of all entities in both the host and the contained procedures.



Procedures 79

 via an
cifies
perties

ure. At
 (in a

in the
elow),
g posi-
right)
pe and
ciated
ssoci-

. Simi-
d
l argu-
length
re illus-

mmy
med-

d way,
-shape
edates
allows
ro-
er an

n aster-
 big as

omati-

 each as
nce
with the
’s 
procedure arguments and argument association

Argument association is the mechanism by which a procedure has access to entities
argument list. The procedure definition includes a dummy argument list, which spe
the properties of the passed entities in the context of the procedure body. These pro
must be consistent with the actual argument entities specified in a call to the proced
the beginning of execution of each call, the dummy arguments are associated with
sense, become aliases for) the corresponding actual arguments.

This association requires that there be exactly the same number of arguments 
dummy and actual arguments lists (except for optional dummy arguments - see b
and that (in the absence of keyworded actual arguments - see below) correspondin
tional arguments become associated; that is, the nth dummy argument (left to 
becomes associated with the nth actual argument. Consistency requires that the ty
kind of each actual argument exactly match the type and kind specified for its asso
dummy argument. In addition, if a dummy argument has the pointer attribute, the a
ated actual argument must also be a pointer.

In most cases, dummy arguments of type character should be assumed length (R508-509),
meaning they should assume (inherit) the length of the associated actual argument
larly, dummy arrays can be assumed shape (R516), which means that they have declare
rank (and all associated actual arguments must have this rank) but inherit the actua
ment extent in each dimension. Assumed length is specified by an asterisk for the 
parameter, and assumed shape is specified by a colon for each dimension; both a
trated by this declaration of r, a two-dimensional character dummy array:

character(*) :: r(:,:)

Note that actual arguments that are substrings work well with assumed-length du
arguments. Similarly, actual arguments that are array sections work well with assu
shape dummy arguments.

This simple set of argument association rules is all that is needed, and is the preferre
to develop new Fortran code and to update existing code. However, assumed
dummy arguments require explicit procedure interfaces, and much existing code pr
Fortran 90, explicit interfaces, and assumed-shape dummy arguments. Fortran 90 
the array element sequence association mechanism for array arguments that Fortran p
vided prior to Fortran 90. In this case the dummy argument is declared as eith
explicit-shape array (R513) or an assumed-size array (R518); the principal difference
between the two is that the last dimension of an assumed-size array is declared as a
isk. An actual argument array must have a size (total number of elements) at least as
an associated explicit-shape or assumed-size dummy array (a condition that will aut
cally be satisfied by an assumed-size array).

Array element sequence association treats the associated actual and dummy arrays
a linear sequence of array elements, with the corresponding elements of each seque
being associated; thus the nth element of the actual array sequence is associated 
nth element of the dummy array sequence. The order of such a sequence is Fortranarray



80 Fortran 90/95 Concise Reference

d
in this
y

equence

ummy

ddi-
lement

.
 can be

-
In

n and
 associ-

 -

c-

ompo-

t if

a
e

ata
element order, which varies the first subscript first, the second subscript next, and so on.
Thus, for a two-dimensional array, array element order is the first column followed by the
second column, and so on; for the array declared as real : : x(3,2), array element order is
x(1,1), x(2,1), x(3,1), x(1,2), x(2,2), x(3,2).

Array element sequence association means, essentially, that the ranks of the actual an
dummy arguments are immaterial, and therefore the ranks are not required to match 
form of argument association. If the actual argument is an array section (and the dumm
argument is not assumed shape) the processor must generate an array element s
for array element sequence association with the dummy argument; this may involve copy-
ing the array section into a contiguous area of memory before association with the d
array, and then refreshing the original array section from this copy after execution of the
procedure call is completed (copy-in, copy-out).

If character arrays are involved in array element sequence association there is one a
tional wrinkle - the sequences generated are character sequences, not array e
sequences, and the association is character by corresponding character. If the character
length of the actual and dummy array elements are the same (as they would be with
assumed length) then this character association is equivalent to array element association
With array element sequence association both the array rank and character length
“changed” across procedure boundaries, with the indicated consequences for argument
association.

Array element sequence association is permitted in any procedure, by declaring the
dummy array as an explicit-shape or assumed-size array, and is the only option for proce
dures with implicit interfaces - that is external procedures without interface blocks. 
those cases where the interface is explicit (all module and internal procedures, and exter-
nal procedures with interface blocks) both array element sequence associatio
assumed-shape array association are permitted (and normally assumed-shape array
ation is preferred).

Structure (derived type) argument association follows the same rules as for other types
namely, the actual and dummy arguments must be the same type. This means they must be
derived from the same type definition. Another form of structure association, called stru
ture sequence association, involves sequence structures (R422-423). In this case the “same
type” rule for the actual and dummy arguments is relaxed in favor of equivalent types.
Equivalent structure types are sequence types with the same type name and with c
nents that are all public and agree in order, name, and type (or equivalent type).

A caveat about procedure arguments, regardless of the association mechanism, is tha
the same entity becomes associated with two (or more) dummy arguments then, in order to
prevent nondeterminism in results, the procedure must treat both dummy arguments as
intent(in). There are two common instances of this situation. One is when an actual rgu-
ment is an array section with at least one vector subscript; in this case two or more of th
actual array elements may be the same element of the section’s parent array and will be
associated with different dummy array elements. The second case is when the same d
entity is used two (or more) times in an actual argument list: e.g., call s3(x, y,x).



Procedures 81

rded
n to
n any

ts, but

solved

 pro-
ote that

quire

ts. One
 actual
ed”

he
may be
proce-
t must
t must

e, so an
fined.
nd the

ust be

ay be
n inter-
rence).
pecific
ared or
ction; if
nt must
ctions,
pecific
For procedures with explicit interfaces, the actual argument list may be keywo
(R1211-1212). When the interface is explicit, the dummy argument names are know
the procedure’s caller. This information allows the actual arguments to be placed i
order, if the dummy argument names are used as argument keywords in the call. For exam-
ple, in this call to subroutine s4 (which has dummy arguments d1, d2, and d3, in that order)

call s4(d2=x, d3=y, d1=z)

the actual arguments are not in the order of their associated dummy argumen
because the interface is explicit the processor can create the intended associations.

A dummy argument may be declared as optional (R503, R520). This effectively creates
overloaded (generic) versions of the procedure, and calls to such procedures are re
in accordance with the generic reference resolution rules (see below). The present  intrinsic
function is available for use within the procedure to determine if in a given call to the
cedure the optional dummy argument has an associated actual argument or not. N
either optional arguments must be the last ones in the dummy argument list or calls that
omit actual arguments must be keyworded. In any event, optional arguments re
explicit interfaces.

Dummy arguments are references to (aliases for) their associated actual argumen
consequence of this is that any change to a dummy argument is reflected in the
argument. The intent may be specified for a dummy argument to control such “unbridl
access in some respects. The intent attribute (R503, R511, R519) may limit the use of the
dummy argument to in , out , or inout . Intent(in) arguments are intended for input to t
procedure; the actual argument must be defined upon entrance to the procedure - it 
a variable or an expression - and the dummy argument must not be defined in the 
dure. Intent(out) arguments are intended for procedure output - the dummy argumen
be defined at some point during execution of the procedure (thus the actual argumen
be a variable); the associated actual argument need not be defined upon entranc
intent(out) dummy argument must not be referenced in the procedure before it is de
Intent(inout) specifies that the actual argument must be defined upon entrance a
dummy argument may be defined in the procedure; the associated actual argument m
a variable.

Procedures may be passed through argument lists. That is, a dummy argument m
declared as a procedure name (in an external statement, intrinsic statement, or in a
face block) or used as a procedure name (in a call statement or in a function refe
The associated actual argument must be the name (without an argument list) of a s
procedure (generic procedures cannot be passed). If the dummy argument is decl
used as a function name, the associated actual argument must be the name of a fun
the dummy argument is declared or used as a subroutine name, the actual argume
be the name of a subroutine. Except for internal procedures and statement fun
which cannot be used as actual arguments, any specific procedure, including any s
intrinsic function, may be used as an actual argument.



82 Fortran 90/95 Concise Reference

rectly;

define
-

le.

 a

the

c-

e-

ne
ce-
interface blocks

A procedure interface comprises the information needed to use that procedure cor
explicit interfaces make this information available to the calling environment. Interface
blocks are used to provide various explicit interfaces. Explicit interfaces include dummy
argument list characteristics, alternate names for a procedure (primarily used to 
procedure overloads - that is, generic procedures), and new operator and assignment defi
nitions.

Interface blocks are not needed to make module and internal procedure interfaces explicit,
as these interfaces are automatically explicit wherever such procedures are accessib
However, external procedure interfaces are not automatically explicit; interface blocks
(R1201) with one or more interface bodies (R1204) may be used to make them explicit:

interface
  interface-body
  [ interface-body  ] ...
end interface

Each interface body specifies an external (or dummy) procedure name, its type (if it is
function), and the order names, and types (and kinds) of all dummy arguments.

If a function has certain properties it may be given an operator interface, thereby creating
a defined operator, and called using operator notation; it must have one (unary operator) or
two (binary operator) intent(in) arguments. Such a function may be called with either 
normal function syntax or infix operation format; in the latter form the first actual argu-
ment appears as the first operation operand and the second actual argument is the second
operand (for unary operators the operand follows the operator). The operator form of the
interface block is used to define a new operator and associate it with one (or more) fun
tions:

interface operator (  defined-operator  ) ! suppose this defines an overload of “+”; then
 [ interface-body  ] ... ! sum_char_int(c,i)    the function form
 [ module-procedure-stmt  ] ... ! c + i               the operator form 
end interface

An example of using an operator interface to define an overload of the + operator is:

interface operator ( + )
   integer function sum_char_int(c, i)  ! if code is a character variable and n is integer
      character :: c  ! sum_char_int can be called in two ways: 
      integer :: i  !     sum_char_int(code,n)  function form
   end function  !    code +  n                operator form
end interface

A defined operator can be either a user-defined dot operator or (an overload of) an intrinsic
operator (R311), as in the preceding example. If it is an intrinsic operator it must not red
fine an intrinsic operation - for example, the + operator must not be given an operator
interface for a function with two integer arguments, as that would be an attempt to redefi
addition of two integer values. All operator definitions are considered to be generic pro



Procedures 83

s (see
 func-
 in the
ins the

 sec-

t to an
lue to
uch an
his
rator

nsistent
efined
t). As
es or

 proce-

odule
 or the
generic
rdance
h pro-
” (type
dure definitions and must be consistent with the generic reference resolution rule
below). The function(s) associated with a defined operator may be either external
tions (in which case the interface contains the corresponding interface bodies, as
above example) or accessible module functions (in which case the interface conta
corresponding module procedure statements).

If a subroutine has two arguments, the first being intent(out) or intent(inout) and the
ond being intent(in), then it may be given an assignment overload:

interface assignment ( = )
 [ interface-body ]...
 [ module-procedure-stmt ]...
end interface

An example is:

interface assignment ( = )
   subroutine to_char_from_int(c, i) ! if code is a character variable and n is integer
      character :: c ! to_char_from_int can be called in two ways: 
      integer :: i !   call to_char_from_int(code,n) subroutine form
   end subroutine !   code =  n              assignment form
end interface

The purpose of such a subroutine is to convert the value of the second argumen
appropriate value for the type of the first argument, and to assign this converted va
the first actual argument; the subroutine defines the conversion that takes place in s
assignment. The assignment interface makes it possible to use assignment syntax for t
operation, as an alternative to using normal subroutine calls. In analogy with ope
interfaces, assignment interfaces define assignment overloads and thus must be co
with the generic reference resolution rules. Intrinsic assignments cannot be red
except for intrinsic assignment of structures (that is, derived type intrinsic assignmen
with operator functions, assignment subroutines may be either external subroutin
module subroutines.

Interface blocks may be used to define overloaded (generic) procedure names. Any
dure name may be (further) overloaded, including an intrinsic procedure name:

interface  generic-name
 [ interface-body  ] ...
 [ module-procedure-stmt  ] ...  
end interface

A generic name may be associated with any number of external procedures and m
procedures. Such a procedure may be called using either its original (specific) name
generic name. A call to a procedure using the generic name is considered to be a 
reference; any generic reference must be resolvable to a specific procedure, in acco
with the generic reference resolution rules. Generally speaking, this means that eac
cedure sharing the same generic name must have a different argument “signature
pattern). External and module procedures may be given generic interfaces.



84 Fortran 90/95 Concise Reference

nction
ne call
 is

nt syn-

i-

t
/rank

s are

a
l

 actual

dure,

.

tions

-
-

generic procedures

A generic procedure is one that can be called in more than one way. These include proce-
dures with generic as well as specific names, functions with operator interfaces (fu
reference and operator form), and subroutines with assignment interfaces (subrouti
and assignment syntax). The only restriction on the proliferation of generic procedures
that each reference be resolvable to the appropriate underlying specific procedure.

There are two rules which allow generic procedure references to be resolved to a unique
specific procedure. the first of these rules (rule (a) below) derives from the positional sig-
nificance of an argument when keyworded calls are not involved; the second (rule (b))
imposes a further restriction in order to disambiguate keyworded calls. If two procedures
may be called with the same generic name (or with the same operator or assignme
tax), one of the argument lists must have a nonoptional dummy argument that (a) has a
type/kind/rank pattern different from that of the dummy argument (if one) in the same pos
tion in the other argument list and (b) has a name/type/kind/rank pattern different from
that of all the dummy arguments in the other argument list. That is, there must be at leas
one argument that disambiguates two generic references on the basis of it type/kind
signature (and dummy argument name also, in the case of keyworded calls).

Most of Fortran’s intrinsic procedures are generic, and references to these intrinsic
resolved in the same manner as described above. Intrinsic functions have an additional
generic form: many of them are elemental. An elemental function is one defined with 
scalar dummy argument and a scalar result. It may, however, be called with an array actua
argument, and in this case delivers an array result with the same shape; the value of each
result element is the same as if the function had been called with the corresponding
argument array element.

return statement

The return statement (R1224) is a separate statement that causes return from a proce
in the same way as the procedure’s end  statement. return  can be used anywhere in the exe-
cution part, but is needed only in exceptional cases. See chapter 5 for alternate returns

statement functions

A statement function is a “one-liner” function (R207, R1226), with scalar arguments and a
scalar result, for use only in the program unit in which it is defined. Statement func
are not internal procedures, their interfaces are always implicit, they may not be used as
actual arguments, and they employ only intrinsic operations. Statement function calls have
the normal function call syntax and argument association rules. (See also chapter 5.)

entry statements

The entry statement (R1223) can be used to provide alternate entry points into a proce
dure; the entry statement has a name and an argument list, similar to the function or sub
routine statement, and can be placed anywhere in a function or subroutine definition. The
original purpose of the entry statement was for data -sharing among different procedures,
a functionality now better provided by internal and module procedures.



Procedures 85

s 113
mary
 with a
Each
 

 

ent
intrinsic pr ocedures

The rest of this chapter is devoted to summarizing and categorizing Fortran 90’
intrinsic procedures (108 intrinsic functions and 5 intrinsic subroutines). This sum
has nine categories of procedure, each with certain similar characteristics, and ends
concise alphabetical listing of all 113 intrinsic procedures and their arguments. 
intrinsic procedure is described more fully, in alphabetical order, in the next chapter.

numeric inquiry functions
digits significant digits (e.g., bits) for a given integer or real kind
epsilon a small value (small compared to 1) for a given real kind
exponent the exponent value for a given real value 
fraction the fractional part of a given real value 
huge the largest value representable for a given real or integer kind
minexponent the minimum exponent value for a given real kind
maxexponent the maximum exponent value for a given real kind 
nearest the processor value nearest to a given real value, in a given direction
precision the decimal precision of a given real or complex kind 
radix numeric base (typically binary) for a given real or integer kind
rrspacing reciprocal of the relative spacing near a given real value 
range the decimal exponent range of a given numeric kind 
scale change the exponent of a given real value by a specified amount 
set_exponent set the exponent of a given real value to the specified amount 
spacing the absolute spacing near a given real value
tiny the smallest positive value representable for a given real kind 

array inquiry functions
allocated true if the given array is currently allocated (false otherwise)
lbound lower bound(s) of a given array or a given dimension of an array 
shape the number of elements in each dimension of a given array 
size  the size (total number of elements) of a given array 
ubound upper bound(s) of a given array or a given dimension of an array 

miscellaneous inquiry functions
associated true if the given pointer is currently allocated (false otherwise)
bit_size the number of bits (for bit computations) in a given integer kind
kind the value of the kind type parameter of a given data entity
len the number of characters in a given string value 
present true if there is an actual argument for a given optional dummy argum
selected_int_kind the integer kind for a given integer decimal range
selected_real_kind the real kind for a given decimal precision and range

conversion functions
achar the character in the specified position of the ASCII character set
aimag the imaginary part of a given complex value 
aint  a given real value truncated to an integer (result is still real)



86 Fortran 90/95 Concise Reference
anint  a given real value rounded to the nearest integer (result is still real)
char  the character in the specified position of the processor character set 
cmplx  the complex value of a given single or pair of integer or real values 
conjg  the complex conjugate of a given complex value 
dble  the double precision value of a given numeric value of any type
iachar  position of the specified character in the ASCII character set
ibits  the specified substring of bits of a given integer value 
ichar  position of the specified character in the processor character set
int  the (truncated) integer value of a given numeric value of any type
logical  the logical value of specified kind for a given logical value
nint  the (rounded) integer value of a given real value 
real  the real value of a given numeric value of any type and kind
transfer  conversion to a specified type without change in the “bit pattern”

numeric computation functions
abs  the absolute value of a given numeric value of any type
acos  the arc cosine (radians) of a given real value
asin  the arc sine (radians) of a given real value
atan the arc tangent (radians) of a given real value
atan2 the angle (radians) of given real and imaginary components 
ceiling  the smallest integer not less than a given real value 
cos  the cosine of a given real or complex value (given value in radians) 
cosh  the hyperbolic cosine of a given real value 
dim  maximum of: zero and the difference of two real or integer values
dot_product  the dot product of two given vectors of numeric or logical type
dprod  the double precision product of two single precision real values 
exp  the natural exponential function (real or complex)
floor  the greatest integer not greater than a given real value 
log  the natural logarithm function (real or complex)
log10  the logarithm to the base 10 of a given real value greater than zero
matmul  matrix multiplication of two given numeric or logical matrices
max  the maximum of a set of given integer or real values 
min  the minimum of a set of given integer or real values 
mod  the remainder function, having the sign of the first given value 
modulo  the remainder function, having the sign of the second given value 
sign  apply a given sign to a given integer or real value 
sin  the sine of a given real or complex value (given value in radians) 
sinh  the hyperbolic sine of a given real value
sqrt  the square root of a given real or complex value greater than zero
tan  the tangent of a given real value (given value in radians) 
tanh  the hyperbolic tangent of a given real value

character computation functions 
adjustl  left-justify a given string value in the same-width field
adjustr  right-justify a given string value in the same-width field
index  find the location of a given substring in a given string value 



Procedures 87
len_trim length of a given string after trailing blanks have been removed 
lge  greater than or equal to ASCII comparison of two given strings
lgt  greater than ASCII comparison of two given string values
lle  less than or equal to ASCII comparison of two given string values 
llt  less than ASCII comparison of two given string values 
repeat concatenate several copies of a given string value
scan search a given string value for any of a given set of characters 
trim  remove trailing blank characters from a given string value
verify position of a character in a string that is not one of a given set

bit computation functions 
btest the bit value of a specified position in a given integer value
iand  bit-by-bit AND of two given integer values 
ibclr set to zero the bit in a specified position in a given integer value 
ibset set the bit in a specified position to the specified (0 or 1) value
ieor  bit-by-bit exclusive-OR of two given integer values
ior  bit-by-bit OR of two given integer values
ishft end-off shift of the bits in a specified integer value 
ishftc circular shift of the bits in a specified integer value 
not  bit-by-bit complement of a given integer value

array computation functions 
all true if all of the elements of a given logical array are true 
any true if any of the elements of a given logical array are true 
count the number of true elements in a given logical array 
cshift circular shift the elements of a given array of any type
eoshift end-off shift the elements of a given array of any type
maxloc a rank-one array locating the maximum element of a given array
maxval the maximum element value of a given integer or real array
merge combines (merges) two arrays under control of a mask 
minloc a rank-one array locating the minimum element of a given array
minval the minimum element value of a given integer or real array
pack packs elements of an array into a vector, under control of a mask
product the product of all elements of a given numeric array of any type 
reshape reshapes a given rank-one array into the specified array shape
spread replicates an array along a new dimension 
sum the sum of all elements of a given numeric array of any type 
transpose the matrix transpose of a given rank-two array of any type 
unpack unpacks a vector into elements of an array, under control of a mask 

intrinsic subroutines 
date_and_time returns date and time information in several formats
mvbits copies a sequence of bits between given integer values
random_number returns one or more pseudorandom numbers
random_seed allows setting of the random number generator seed value
system_clock returns various data from the processor’s real-time clock



88 Fortran 90/95 Concise Reference
alphabetical listing of intrinsic procedures 

generic procedure names, with 
argument (keyword) names

optional
arguments 

specific names, 
arguments

specific 
argument types

abs (a)  abs (a)
cabs (a)
dabs (a)
iabs (a)

default real 
default complex 
double precision real 
default integer 

achar (i) 

acos (x ) acos (x)
dacos (x)

default real 
double precision real 

adjustl (string) 

adjustr (string) 

aimag (z ) aimag (z) default complex 

aint (a, kind)  kind aint (a)
dint (a)

default real
double precision real

all (mask, dim)  dim 

allocated (array) 

anint (a, kind)  kind anint (a)
dnint (a)

default real 
double precision real 

any (mask, dim)  dim 

asin (x ) asin (x)
dsin (x)

default real 
double precision real 

associated (pointer, target)  target 

atan (x ) atan (a)
dtan (a)

default real 
double precision real 

atan2 (y, x ) atan2 (a)
dtan2 (a)

default real 
double precision real 

bit_size (i) 

btest (i, pos) 

ceiling (a, kind ) kind

char (i, kind)  kind 

cmplx (x, y, kind)  y, kind 

conjg (z ) conjg (x) default complex 

cos (x ) cos (x)
ccos (x)
dcos (x)

default real 
default complex 
double precision real 

cosh (x ) cosh (x)
dcosh (x)

default real 
double precision real 

count (mask, dim)  dim 

cshift (array, shift, dim)  dim 

date_and_time (date, time, zone, 
values)

date, time, 
zone, values 

dble (a) 

digits (x) 

dim (x, y ) dim (x,y)
idim (x,y)

default real 
default integer 

dot_product (vector_a, vector_b) 

dprod (x, y) 

eoshift (array, shift, boundary, dim)  boundary, 
dim 

epsilon (x) 

exp (x) 



Procedures 89
exponent (x) 

floor (a, kind) kind

fraction (x) 

huge (x) 

iachar (c) 

iand (i, j) 

ibclr (i, pos) 

ibits (i, pos, len) 

ibset (i, pos) 

ichar (c) 

ieor (i, j) 

index (string, substring, back) back index (string,
      substring)

default character 

int (a, kind) kind 

ior (i, j) 

ishft (i, shift) 

ishftc (i, shift, size) size 

kind (x) 

lbound (array, dim) dim 

len (string) len (string) default character 

len_trim (string) 

lge (string_a, string_b) 

lgt (string_a, string_b) 

lle (string_a, string_b) 

llt (string_a, string_b) 

log (x) alog (x)
clog (x)
dlog (x)

default real 
default complex 
double precision real 

log10 (x) alog10 (x)
dlog10 (x)

default real 
double precision real 

logical (l, kind) kind 

matmul (matrix_a, matrix_b) 

max (a1, a2, a3, ...) a3, ... 

maxexponent (x) 

maxloc (array, dim, mask) dim, mask 

maxval (array, dim, mask) dim, mask 

merge (tsource, fsource, mask) 

min (a1, a2, a3, ...) a3, ... 

minexponent (x) 

minloc (array, dim, mask) dim, mask 

minval (array, dim, mask) dim, mask 

mod (a, p) mod (a, p)
amod (a, p)
dmod (a, p)

default integer 
default real 
double precision real 

modulo (a, p) 

mvbits (from, frompos, len, to, topos) 

nearest (x, s) 

nint (a, kind) kind nint (a)
idnint (a)

default real 
double precision real 

generic procedure names, with 
argument (keyword) names

optional
arguments 

specific names, 
arguments

specific 
argument types



90 Fortran 90/95 Concise Reference
not (i) 

pack (array, mask, vector)  vector 

precision (x) 

present (a) 

product (array, dim, mask)  dim, mask 

radix (x) 

random_number (harvest) 

random_seed (size, put, get)  size, put, get 

range (x) 

real (x, kind)  kind 

repeat (string, ncopies) 

reshape (source, shape, pad, order)  pad, order 

rrspacing (x) 

scale (x, i) 

scan (string, set, back)  back 

selected_int_kind (r) 

selected_real_kind (p, r)  p, r 

set_exponent (x, i) 

shape (source) 

sign (a, b ) sign (a, b)
dsign (a, b)
isign (a, b)

default real 
double precision real 
default integer 

sin (x ) sin (x)
csin (x)
dsin (x)

default real 
default complex 
double precision real 

sinh (x ) sinh (x)
dsinh (x)

default real 
double precision real 

size (array, dim)  dim 

spacing (x) 

spread (source, dim, ncopies) 

sqrt (x ) sqrt (x)
csqrt (x)
dsqrt (x)

default real 
default complex 
double precision real 

sum (array, dim, mask)  dim, mask 

system_clock 
     (count, count_rate , count_max)

count,
count_rate,
count_max 

tan (x ) tan (x)
dtanh (x)

default real 
double precision real 

tanh (x ) tanh (x)
dtanh (x)

default real 
double precision real 

tiny (x) 

transfer (source, mold, size)  size 

transpose (matrix) 

trim (string) 

ubound (array, dim)  dim 

unpack (vector, mask, field) 

verify (string, set, back)  back 

generic procedure names, with 
argument (keyword) names

optional
arguments 

specific names, 
arguments

specific 
argument types



Intrinsic Procedures 91

each is

in com-
r rele-

exam-
ds the
ntrin-
nt kind.
,

ental or
 starts
ntal
 that a
quiry

itly
of the

own as
 be

ssor. 

ssed in
11 00    Intrinsic Procedures

The 113 intrinsic procedures are introduced and organized in the previous chapter, and 
described in detail in this chapter.  A “pseudo” interface block, without the interface ... end interface
bracketing keywords, describes the interface of each procedure; the semantics is described 
ments in the interface, often augmented by text following the interface.  Constraints and othe
vant information are also included, either in the interface comments or in the following text.

Most of the intrinsic procedures are generic over the various kinds of the argument type - for 
ple, sqrt  is generic for both single and double precision real arguments, and any other real kin
implementation might supply.  Unless explicitly mentioned otherwise, each single-argument i
sic procedure is generic in this sense, with the result kind being the same as the argume
Similarly, each intrinsic function with one argument plus a kind  argument is generic in this sense
but with the result kind as specified by the kind  argument.

As described in the previous chapter, intrinsic procedures may be classified as either elem
transformational (most are elemental).  If an intrinsic procedure is elemental the interface
with the keyword elemental ; otherwise that procedure is tranformational.  (In a call to an eleme
function with two or more arguments, the actual arguments must be conformable; but note
scalar is conformable with any array.) Similarly, some intrinsic functions are identified as in
functions with the keyword inquiry ; actual arguments to inquiry functions need not be defined.

All intrinsic function arguments are intent(in)  and so the intent for these arguments is not explic
given in the interface; however, the argument intent is explicitly specified for each argument 
five intrinsic subroutines. The argument names can be used as actual argument keywords.

Many of the intrinsic procedures take array arguments of any rank.  These arguments are sh
rank one (:) in the following interfaces, and the descriptions identify which arguments may
generic over rank and the resulting meaning of the different ranks.

abs (a) 
elemental function abs(a)        ! the |a|
   real :: abs                    ! or integer if a is of type integer
   real :: a                      ! or type integer or type complex
end function

If a is complex with value (x,y), abs  returns an approximation to .

achar (i)
elemental function achar(i)      ! the ith ascii character
   character :: achar             ! the result kind is kind ('a')
   integer :: i            
end function

Note that achar(iachar(x)) is x for any character x of default kind represented by the proce

acos (x) 
elemental function acos(x)       ! the arccosine (inverse cosine)
   real :: acos                      
   real :: x                      ! |x| ≤ 1  
end function

The result has a value equal to a processor-dependent approximation to arccos(x), expre
radians. It lies in the range 0≤acos(x)≤π. 

x2 y2+



92 Fortran 90/95 Concise Reference

nk
adjustl (string) 
elemental function adjustl(string )      ! remove leading blanks
   character(len(string)) :: adjust l     !     (the same number of trailing blanks added)
   character(*) :: strin g                
end function 

adjustr (string) 
elemental function adjustr(string )      ! remove trailing blanks
   character(len(string)) :: adjust r     !     (the same number of leading blanks added)
   character(*) :: strin g                
end function 

aimag (z) 
elemental function aimag(z )            ! imaginary part of z 
   real :: aima g                         ! if z = (x, y), aimag  is y 
   complex :: z                          
end function 

aint (a, kind) 
elemental function aint(a,kind )         ! truncate a
   real(kind) :: ain t              ! if kind  is absent the result kind is kind(a )
   real :: a                             ! may be any kind
   integer, optional :: kin d             ! if present, must be a scalar initialization expression
end function                       

If |a|<1, aint (a)  has the value 0; if a≥1, aint (a)  has the sign of a and a value equal to the integer
whose magnitude is the largest integer that does not exceed the magnitude of a. 

all (mask, dim) 
function all(mask,dim )         ! returns true if all of mask  (along dim ) is true
   logical :: al l               ! all  is an array if dim  is present and mask  rank > 1
   logical :: mask(: )           ! may be any kind, any rank
   integer, optional :: di m     ! if present, 1≤dim ≤n, where n is rank of mask

The result is scalar if dim  is absent or mask  has rank one; otherwise, the result is an array of ra
n-1 and of shape (d1,d2,...,ddim-1,ddim+1,...,dn) where (d1,d2,...,dn) is the shape of mask . 

allocated (array) 
inquiry function allocated(array )       ! check allocation status of argument
  logical :: allocate d                  ! true if array  is currently allocated; false otherwise
  real :: array(: )                      ! array  can be any type and any rank
end function                

The actual argument for array  must be an allocatable array with defined allocation status. 

anint (a, kind) 
elemental function anint(a,kind )        ! integer value nearest a
  real(kind) :: anin t             ! if kind  is absent the result kind is kind(a)
  real :: a                             
  integer, optional :: kin d             ! if present, must be a scalar initialization expression
end function                

If a>0 anint (a)  is aint (a + 0.5) ; if a≤0 anint (a)  is aint (a – 0.5) . 

any (mask, dim) 
function any(mask,dim )         ! returns true  if any of mask  (along dim ) is true
  logical :: an y               ! any  is an array if dim  is present and mask  rank > 1
  logical :: mask(: )           ! may be any kind, any rank
  integer, optional :: di m     ! if present, 1≤dim ≤n, where n is rank of mask
end function 



Intrinsic Procedures 93

nk

ssed in

The
nter

is
ise. 

ssed in

n(y/x),

 of
The result is scalar if dim  is absent or mask  has rank one; otherwise, the result is an array of ra
n-1 and of shape (d1,d2,...,ddim-1,ddim+1,...,dn) where (d1,d2,...,dn) is the shape of mask . 

asin (x) 
elemental function asin(x)       ! the arcsine (inverse sine)
  real :: asin                      
  real :: x                      ! x ≤ 1  
end function 

The result has a value equal to a processor-dependent approximation to arcsin(x), expre
radians. It lies in the range -π/2≤asin(x)≤π/2. 

associated (pointer, target) 
inquiry function associated(pointer,target) ! check association status of argument
  logical :: associated                        ! true if pointer  is currently associated, else false
  real, pointer :: pointer(:)                  ! pointer  can be any type, any rank
  real, optional :: target(:)                  ! target  can be any type, any rank
end function  

The actual argument for pointer  must be a pointer with defined pointer association status.  
actual argument for target , if present, must be either a target or a pointer with defined poi
association status.  If target  is absent, the result is true if pointer  is currently associated with a
target and false otherwise.  If target  is present and is a target, the result is true if pointer  is cur-
rently associated with target  and false if it is not.  If target  is present and is a pointer, the result 
true if both pointer  and target  are currently associated with the same target, and  false otherw

atan (x) 
elemental function atan(x)       ! the arctangent (inverse tangent)
  real :: atan                      
  real :: x                      
end function 

The result has a value equal to a processor-dependent approximation to arctan(x), expre
radians, that lies in the range -π/2≤atan(x)≤π/2. 

atan2 (y, x) 
elemental function atan2(x)      ! the arctangent (inverse tangent)
  real :: atan2                  !       of the nonzero complex number (x, y)
  real :: y
  real :: x                      
end function 

The result has a value equal to a processor-dependent approximation to the arcta
expressed in radians that lies in the range -π≤atan2(y,x)≤π.  If y>0, the result is positive. If y=0,
the result is zero if x>0 and π if x<0.  If y<0, the result is negative.  If x=0, the absolute value
the result is π/2. 

bit_size (i) 
inquiry function bit_size(i)     ! number of bits in argument i
  integer :: bit_size           
  integer :: i                   ! i may be an array of any rank
end function               ! (but note extension in chapter 12)

btest (i, pos) 
elemental function btest(i,pos)  ! returns true if the bit in position pos  of i is1
  logical :: btest              
  integer :: i
  integer :: pos                 ! 0≤pos <bit_size(i)
end function



94 Fortran 90/95 Concise Reference

 the
ceiling (a) 
elemental function ceiling(a )    ! least integer greater than or equal to a
  integer :: ceiling             
  real :: a
end function 

char (i, kind) 
elemental function char(i,kind )    ! character in the ith position of the character set
  character(kind) :: cha r     ! default character kind if kind  is absent
  integer :: I                     ! in range 0 ≤ i ≤ n-1 where n is # of characters
  integer, optional :: kin d        ! if present, must be a scalar initialization expression
end function

Note that ichar(char(y,kind(x))) = y  and char(ichar(x),kind(x)) = x.

cmplx (x, y, kind) 
elemental function cmplx(x,y,kind ) ! complex number with real part x, imaginary part y
  complex(kind) :: cmpl x           ! or default kind if kind  is absent
  real :: x                        ! or integer or complex
  real, optional :: y              ! or integer, or absent if x is complex
  integer, optional :: kin d        ! if present, must be a scalar initialization expression
end function 

If y is absent and x is not complex, then the imaginary part of the result is zero.

conjg (z) 
elemental function conjg(z )        ! the conjugate of a complex number
  complex :: conjg                 
  complex :: z                     
end function 

cos (x) 
elemental function cos(x )          ! the cosine of x
  real :: co s                      ! same type and kind as x
  real :: x                        ! may be complex
end function 

If x is of type real, it is regarded as a value in radians; if x is of type complex, its real part is
regarded as a value in radians. 

cosh (x) 
elemental function cosh(x )         ! the hyperbolic cosine of x
  real :: cosh                     
  real :: x                     
end function 

count (mask, dim) 
function count(mask,dim )           ! count the number of true elements of mask
  integer :: coun t                 ! count  is an array if dim  is present and mask  rank > 1
  logical :: mask(: )               ! may be any kind, any rank
  integer, optional :: di m         ! if present, 1≤dim ≤n, where n is rank of mask
end function 

If dim  is present and n is greater than 1 then the result is an array of rank n-1.  For example, if
mask  is a 3x2 array and dim  is 2, then the result is a one-dimensional array of size 3, with
count taking place along each row of mask .



Intrinsic Procedures 95

ht”;
.
imen-

c-
 
is case
l be

 is the
ur of
cshift (array, shift, dim) 
function cshift(array,shift,dim)     ! circularly shift array
  real :: cshift(:)                  ! same type, kind, and shape as array
  real :: array(:)                   ! or any type, kind, and rank (not scalar)
  integer :: shift                   ! amount to be shifted, positive for left shifts
  integer, optional :: dim           ! if present, 1≤dim ≤n, where n is rank of array
end function 

Positive shift  amounts are “left” shifts (e.g., cshift(i)=array(i+1)) and negative shifts are “rig
values shifted “off” one end are routed into the other end.  If dim  is absent it is assumed to be 1
If array  has rank greater than 1 then n-1 “one-dimensional shifts” take place along the d
sion specified by dim .  For example, if array  is a 3x2 array and dim =1, each of the two columns
of array  are shifted an amount specified by shift .  shift  is allowed to be an array of rank n-1, spe
ifying a different shift amount for each “one-dimensional shift”. In the preceding example,shift
could be a one-dimensional array of two elements, having values, say, of 2 and -1; in th
the first column of the array will be circularly shifted “up” two and the second column wil
shifted “down” one.

date_and_time (date, time, zone, values) 
subroutine date_and_time(date,time,zone,values) ! returns date and time information
  character(*), optional, intent(out)) :: date  ! date in CCYYMODD format
  character(*), optional, intent(out)) :: time  ! time in HHMMSS.SSS format
  character(*), optional, intent(out)) :: zone  ! zone in ±HHMM format
  integer, optional, intent(out)) :: values(:)  ! date, time, and zone in integer form
end subroutine 

Returned results are compatible with the representations defined in ISO 8601:1988. CC
century, YY the year of the century, MO the month, DD the day of the month, HH the ho
the day, MM the minutes of the hour , and SS.SSS the seconds/milliseconds. For zone , the result
is the hours and minutes from Coordinated Universal Time. For values , values(1)  is the integer
form of CCYY - e.g., the year, values(2)  is MO, values(3)  is DD, values (4)  is the zone, values(5)
is HH (range 0:23), values(6)  is MM (range 0:59), values(7)  is the seconds (range 0:60), and val-
ues(8)  is the milliseconds.

dble (a) 
elemental function dble(a)          ! converts a to a double precision real value
  real(DOUBLE) :: dble              ! where DOUBLE is the double-precision kind value
  real :: a                         ! or integer or complex, of any kind
end function 

If a is complex, then dble  returns the real part of a in double precision form.

digits (x) 
inquiry function digits(x) ! returns the model value of n  if x is integer,
   integer :: digits !                                       or q  if x is real (see chapter 2)
   integer :: x ! may also be real and/or an array
end function

dim (x, y) 
elemental function dim(x,y) ! returns max(0,x-y)
   integer :: din ! same type and kind as x (and y)
   integer :: x, y ! may also be real; y must have same type and kind as x
end function



96 Fortran 90/95 Concise Reference

ther
dot_product (vector_a, vector_b) 
function dot_product(vector_a,vector_b)  ! the dot-product multiplication of numeric or logical vectors
   real :: dot_product  ! may also be logical or integer - see discussion
   real :: vector_a(:), vector_b(:)  ! one-dimensional arrays of the same size and both either 
end function  !       of type logical or of any numeric type

If the vectors are size zero, the result value is either zero or false; otherwise, if the vectors are of
type logical the result is type logical with value and kind of any(vector_a.and.vector_b) , if
vector_a  is of type integer or real the result value and kind are those of sum(vector_a*vector_b) ,
and else the result value and kind are are those of sum(conjg(vector_a)*vector_b) .

dprod (x, y) 
elemental function dprod(x,y)  ! returns double-precision product of two default real values
   real(DOUBLE) :: dprod  ! where DOUBLE is the double-precision kind value
   real :: x, y
end function

eoshift (array, shift, boundary, dim) 
function eoshift(array,shift,boundary,dim ) ! end-off shift off array
  real :: eoshift(: )                  ! same type, kind, and shape as array
  real :: array(: )                   ! or any type, kind, and rank (not scalar)
  integer :: shif t                   ! amount to be shifted, positive for left shifts
  integer, optional :: boundary  ! same type and kind as array  - value for vacated positions
  integer, optional :: di m           ! if present, 1≤dim ≤n, where n is rank of array
end function 

eoshift  is exactly the same as cshift , except that values shifted “off” one end are not routed into
the vacated positions on the other end; the boundary  value is placed in the vacated positions.  If
boundary  is omitted, the default value is 0, 0.0, (0.0,0.0), false, or blanks, depending on whe
array  is type integer, real, complex, logical, or character, respectively. boundary  is allowed to be
an array of rank n-1, specifying a different fill value amount for each vacated position. For

example, if m is the character array  , then eoshift(m,shift=1,boundary='*',dim=2)  is ,

and eoshift(m,shift=(/–1,1,0/),boundary=(/'*','/','!'/),dim=2)  is .

epsilon (x) 
inquiry function epsilon(x)  ! a positive value almost negligible compared to unity
   real :: epsilon  ! same type and kind as x
   real :: x  ! may be any kind; may be an array of any rank
end function

exp (x) 
elemental function exp(x)  ! an approximation to ex

   real :: exp  ! type and kind of x
   real :: x  ! may be complex, in which case its imaginary part
end function  !       is regarded as a value in radians

exponent (x) 
elemental function exponent(x)  ! the real model exponent part of x - see chapter 2
   integer :: exponent
   real :: x
end function

A B C

D E F

G H I

∗ A B

∗ D E

∗ G H

∗ A B

E F /

G H I



Intrinsic Procedures 97

he

t

floor (a) 
elemental function floor(a) ! greatest integer less than or equal to a
   integer :: floor
   real :: a
end function

fraction (x) 
elemental function fraction(x) ! the real model fractional part of x - see chapter 2
   real :: fraction
   real :: x
end function

huge (x)
inquiry function huge(x) ! the largest value for the type and kind of x
   real :: huge ! same type and kind as x
   real :: x ! may be any kind; may be integer; may be an array
end function

iachar (c) 
elemental function iachar(c) ! same as ichar , except the ascii collating sequence 
   integer :: iachar !       (ISO 646:1983) is used instead of the processor’s
   character :: c
end function

iand (i, j) 
elemental function iand(i,j) ! perform logical and on bits of i and j
   integer :: iand ! same kind as i (and j)
   integer :: i, j ! any kind, but both must be the same kind
end function

The result is the bit-by-corresponding-bit and of the arguments; if both argument bits are 1 t
corresponding result bit is 1, otherwise the result bit is 0. 

ibclr (i, pos) 
elemental function ibclr(i,pos)
   integer :: ibclr ! same as i, but with the specified bit set to 0
   integer :: i ! may be any kind
   integer :: pos ! position of bit in i to set to zero; 0≤pos <bit_size(i)
end function

ibits (i, pos, len) 
elemental function ibits(i,pos,len) ! "extract" a string of bits from i
   integer :: ibits ! same type and kind as i
   integer :: i ! may be any kind
   integer :: pos ! position of first bit to extract; pos ≥0
   integer :: len ! number of bits to extract; len≥0 and pos+len  < bit_size(i)
end function

The result has the sequence of len  bits from i, beginning at bit pos ; these bits are in the rightmos
bit positions of the result, with all other bits zero.  

ibset (i, pos) 
elemental function ibset(i,pos) ! same as ibclr , except the specified bit is set to 1 instead of 0
   integer :: ibset
   integer :: i
   integer :: pos
end function



98 Fortran 90/95 Concise Reference

,

ichar (c) 
elemental function ichar(c)  ! position of a character in the processor collating sequence 
   integer :: ichar
   character :: c
end functio n ! same as iachar  if the processor collating sequence is ascii

ieor (i, j) 
elemental function ieor(i,j)  ! perform logical exclusive-or on bits of i and j
   integer :: ieor  ! same kind as i (and j)
   integer :: i, j  ! any kind, but both must be the same kind
end function

The result is the bit-by-corresponding-bit exclusive-or of the arguments; if one of the argument
bits is 1 and the other is 0, the corresponding result bit is 1, otherwise the result bit is 0. 

index (string, substring, back) 
elemental function index(string,substring,back)  ! search string  for an substring of substring
   integer :: index  ! beginning position of substring  in string  (or zero)
   character(*) :: string  ! may be any kind
   character(*) :: substring  ! same kind as string
   logical, optional :: back  ! if present and true, search is from back of string
end function

If back  is absent or present with the value false, the result is the minimum positive value of i
such that string(i:i+len(substring)–1) == substring  or zero if there is no such value; if back  is
present with the value true, the result is the maximum value of i less than or equal to len(string)–
len(substring)+1  such that string(i:i+len(substring)–1)==substring  or zero if there is no such value.
Zero is returned if len(string)<len(substring)  and one is returned if len(substring)==0 .

int (a, kind) 
elemental function int(a,kind)  ! convert a to an integer value (of specified kind)
   integer(kind) :: int  ! the converted integer value
   real :: a  ! may be any numeric type
   integer, optional :: kind  ! if present, must be a scalar initialization expression
end function  ! if kind  is absent, the result kind is default integer

If a is of type integer, the result is this same value, but possibly of a different kind. If a is of type
real, the real value is truncated toward zero (e.g., int(3.7)  is 3 and int(-3.7)  is -3). If a is of type
complex, the result is int(real(a)) .

ior (i, j) 
elemental function ior(i,j)  ! perform logical inclusive-or on bits of i and j
   integer :: ior  ! same kind as i (and j)
   integer :: i, j  ! any kind, but both must be the same kind
end function

The result is the bit-by-corresponding-bit inclusive-or of the arguments; if either one, or both
of the argument bits is 1, the corresponding result bit is 1, otherwise the result bit is 0. 

ishft (i, shift) 
elemental function ishift(i,shift)  ! logically end-off shift the bits of i the amount shift
   integer :: ishft  ! same kind as i
   integer :: i  ! may be any kind
   integer :: shift  ! amount to shift the bit pattern of i; shift  must have a
end function  !       magnitude less than or equal to bit_size(i)

The result is the value obtained by shifting the bits of i by shift  positions. If shift  is positive, the
shift is to the left. Bits shifted out are lost; zeros are shifted in at the opposite end.



Intrinsic Procedures 99

ension
ishftc (i, shift, size) 
elemental function ishift(i,shift, size) ! same as ishft , but the shift is circular rather than end-off
   integer :: ishft ! same kind as i
   integer :: i ! may be any kind
   integer :: shift ! amount to shift the bit pattern of i; shift  ≤ size  
   integer, optional :: size ! 0 ≤ size  < bit_size(i)
end function !       if size  is omitted, bit_size(i)  is assumed

The result has the value obtained by shifting the bits of i by shift  positions. If shift  is positive, the
shift is to the left. Bits shifted out are shifted into at vacated positions at the opposite end.

kind (x)
inquiry function kind(x) ! the kind type parameter value of any object
   integer :: kind ! the kind value of x
   real :: x ! may be any intrinsic type and any kind; may be an array
end function

lbound (array, dim) 
inquiry function lbound(array,dim) ! the lower bound(s) of array
   integer :: lbound ! scalar if dim  is present; a rank one array otherwise
   real :: array(:) ! may have any type, kind, and rank
   integer, optional :: dim ! if present, 1 ≤ dim  ≤ n, where n is the rank of array
end function

If dim  is present the result is a scalar and is the lower bound of array  along the dimension dim . If
dim  is absent the result is a one-dimensional array whose size is the rank of array , and the value
of each element of the result is the lower bound of that dimension of array . If array  is an array
expression other than an array name (e.g., an array section), the lower bound for each dim
is 1.

len (string) 
inquiry function len(string) ! the length (numbers of characters) of a string
   integer :: len ! the length of string
   character(*) :: string ! may be any kind; may be an array
end function ! if string  is an array, len  is the length of each element

len_trim (string) 
elemental function len_trim(string) ! same as len(trim(string))  
   integer :: len_trim ! the length of string  with all trailing blanks removed
   character(*) :: string
end function

lge (string_a, string_b) 
elemental function lge(string_a,string_b) ! string comparison, based on ascii
   logical :: lge ! true if string_a >= string_b  in the ascii collating sequence,
   character(*) :: string_a, string_b !                                               false otherwise
end function

lgt (string_a, string_b) 
elemental function lgt(string_a,string_b) ! string comparison, based on ascii
   logical :: lgt ! true if string_a > string_b  in the ascii collating sequence,
   character(*) :: string_a, string_b !                                               false otherwise
end function



100 Fortran 90/95 Concise Reference

n-
shape
_b has
atrix_b
lt
d
he
d
 the
d

lle (string_a, string_b) 
elemental function lle(string_a,string_b)  ! string comparison, based on ascii
   logical :: lle  ! true if string_a <= string_b  in the ascii collating sequence,
   character(*) :: string_a, string_b  !                                               false otherwise
end function

llt (string_a, string_b) 
elemental function llt(string_a,string_b)  ! string comparison, based on ascii
   logical :: llt  ! true if string_a < string_b  in the ascii collating sequence,
   character(*) :: string_a, string_b  !                                               false otherwise
end function

log (x) 
elemental function log(x)  ! the natural logarithm, logex
   real :: log  ! same type and kind as x
   real :: x  ! may be complex; if real, x > 0
end function  !                             if complex, x must not be zero

log10 (x) 
elemental function log10(x)  ! base-10 logarithm, log10x
   real :: log10  ! same kind as x
   real :: x  ! x > 0
end function

logical (l, kind) 
elemental function logical(l,kind)  ! convert between logical kinds
   logical(kind) :: logical  ! the value of l, but with kind kind
   logical :: l  ! may be any kind
   integer, optional :: kind  ! if present, must be a scalar initialization expression
end function  ! if kind  is absent, the result kind is default logical

matmul (matrix_a, matrix_b) 
function matmul(matrix_a,matrix_b)  ! matrix multiplication of two numeric or logical matrices
   real :: matmul(:,:)  ! type and kind determined by the arguments - see below
   real :: matrix_a(:,:), matrix_b(:,:)  ! may be any kind; may be integer, complex or logical;
end function  ! one of the argument matrices (but not both) may be rank one

The two arguments must be both of type logical or of numeric (integer, real, complex) type. The
size of the first (or only) dimension of matrix_b  must equal the size of the last (or only) dime
sion of matrix_a . There are three cases: (1) matrix_a has shape (n,k) and matrix_b has 
(k,m), in which case the result has shape (n,m); (2) matrix_a has shape (k) and matrix
shape (k,m), in which case the result has shape (m); (3) matrix_a has shape (n,k) and m
has shape (k), in which case the result has shape (n). For case (1) the (i,j) element of the resu
has the value and kind of sum(matrix_a(i,:)*matrix_b(:,j))  if the arguments are of numeric type an
any(matrix_a(i,:).and.matrix_b(:,j))  otherwise. For case (2) the (i) element of the result has t
value and kind of sum(matrix_a(:)*matrix_b(:,i))  if the arguments are of numeric type an
any(matrix_a(:).and.matrix_b(:,j))  otherwise, and for case (3) the (i) element of the result has
value and kind of sum(matrix_a(i,:)*matrix_b(:))  if the arguments are of numeric type an
any(matrix_a(i,:).and.matrix_b(:))  otherwise.

max (a1, a2, a3, ...) 
elemental function max(a1,a2,a3,...)  ! return the maximum of the argument values
   real :: max  ! same type and kind as the arguments
   real :: a1,  a2  ! may be integer, 
   real, optional :: a3, ...  !       but all arguments must have the same type and kind
end function



Intrinsic Procedures 101

han
r, is

n

h
1
ax-

i-

 (con-
maxexponent (x) 
inquiry function maxexponent(x) ! maximum model exponent that this kind of real can have
   integer :: maxexponent
   real :: x ! may be any kind; may be an array
end function

maxloc (array, mask) 
function maxloc(array,mask) ! location in array  of element with the maximum value
   integer :: maxloc(:) ! result element values are the subscripts of the location
   real :: array(:) ! any kind, any rank; can be type integer
   logical, optional :: mask(size(array)) ! must be same shape as array
end function

The size of the result is equal to the rank of array . The value of the kth element of the result is the
value of the kth subscript of the location of the element with the maximum value. If more t
one element of array  has this maximum value, the location of the first, in array element orde
returned. If mask  is present, only those locations in array  corresponding to the true values i
mask  are searched for the maximum value.

maxval (array, dim, mask) 
function maxval(array,dim,mask) ! the maximum value in array, or along one of its diimensions
   real :: maxval ! same kind and type as array
   real :: array(:) ! any kind, any rank; can be type integer
   integer, optional :: dim ! dimension along which to determine maximum values
   logical, optional :: mask(size(array)) ! must be same shape as array
end function

The result is scalar if dim  is omitted or array  has rank 1 (as illustrated in the interface), in whic
case the value returned is the maximum element value in array . If array has rank n greater than 
and dim  is present, 1≤dim≤n and dim  specifies the dimension along which to determine the m
imum values; in this case the result is an array of rank n-1 and shape (d1,d2,...,ddim-1,
ddim+1,...,dn) where (d1,d2,...,dn) is the shape of array  and each value of the result is the max
mum value along the dim  dimension of array . If mask  is present only those elements of array  cor-
responding to the true values in mask  are searched for the maximum value. 

merge (tsource, fsource, mask) 
elemental function merge(tsource,fsource,mask) ! select one of two arguments, based on a mask
   real :: merge ! same type and kind as tsource
   real :: tsource ! may be of any type and kind
   real :: fsource ! same type and kind as tsource
   logical :: mask ! return tsource if mask is true,
end function !           fsource if mask is false

merge  is an elemental function and is most often used to merge two arrays, based on the
formable) mask .

min (a1, a2, a3, ...) 
elemental function min(a1,a2,a3,...) ! return the minimum of the argument values
   real :: min ! same type and kind as the arguments
   real :: a1,  a2 ! may be integer, 
   real, optional :: a3, ... !       but all arguments must have the same type and kind
end function

minexponent (x) 
inquiry function minexponent(x) ! minimum model exponent that this kind of real can have
   integer :: minexponent
   real :: x ! may be any kind; may be an array
end function



102 Fortran 90/95 Concise Reference
minloc (array, mask) 
function minloc(array,mask)  ! same as maxloc , 
   integer :: minloc(:)  !             but with minimum value rather than maximum value
   real :: array(:)
   logical, optional :: mask(size(array))
end function

minval (array, dim, mask) 
function minval(array,dim,mask)  ! same as maxval , 
   real :: minval  !             but with minimum value rather than maximum value
   real :: array(:)
   integer, optional :: dim
   logical, optional :: mask(size(array))
end function

mod (a, p) 
elemental function mod(a,p)  ! the remainder function (has sign of a)
   integer :: mod  ! same type and kind as a; value is a-int(a/p)*p
   integer :: a  ! any kind; may be real
   integer :: p  ! same type and kind as a; the value of p must not be zero
end function  ! mod  and modulo  are the same for positive values of a and p

modulo (a, p) 
elemental function modulo(a,p)  ! the modulo function (has sign of p)
   integer :: modulo  ! same type and kind as a; value is a-floor(a/p)*p
   integer :: a  ! any kind; may be real
   integer :: p  ! same type and kind as a; the value of p must not be zero
end function  ! mod  and modulo  are the same for positive values of a and p

mvbits (from, frompos, len, to, topos) 
elemental subroutine mvbits(from,frompos,len,to,topos)  ! move bits from from  to to
   integer, intent(in) :: from  ! may be any kind
   integer, intent(in) :: frompos  ! 0 ≤ frompos  < bit_size(from)
   integer, intent(in) :: len  ! 0 ≤ len
   integer, intent(inout) :: to  ! same kind as from  (and may be the same object)
   integer, intent(in) :: topos  ! 0 ≤ topos ; (topos+len)  < bitsize(to)
end subroutine

Copies len  bits from object from , starting at bit position frompos  in from , to object to , starting at
bit position topos  in to .

nearest (x, s) 
elemental function nearest(x,s)  ! the nearest value in the specified direction
   real :: nearest  ! same kind as x; value is that nearest x, but not x
   real :: x  ! may be any kind
   real :: s  ! must not be zero; s > 0 means nearest > x
end function  !                              s < 0 means nearest < x

nint (a, kind) 
elemental function nint(a,kind)  ! integer nearest to a
   integer(kind) :: nint  ! value is int(a-sign(0.5,a))
   real :: a
   integer, optional :: kind  ! if present, must be a scalar initialization expression
end function  ! if kind  is absent, the result kind is default integer



Intrinsic Procedures 103

the

rray of
not (i) 
elemental function not(i) ! logical bit-wise complement
   integer :: not ! the bit complement of i
   integer :: i
end function ! 1 bits in i become 0 in not ; 0 bits in i become 1 in not

pack (array, mask, vector) 
function pack(array,mask,vector) ! pack an array of any shape into an array of rank 1
   real :: pack(:) ! same type and kind as array
   real :: array(:) ! maybe any type, kind, and shape
   logical :: mask(size(array)) ! same shape as array
   real, optional :: vector(:) ! if present, must have at least count(mask) elements
end function

If vector  is present the size of pack  is the size of vector ; otherwise the size of pack  is
count(mask) . The elements of array  that correspond to true values in mask  are placed in pack ,
starting with the first element of pack  and in array element order from array .

precision (x) 
inquiry function precision(x) ! the decimal precision of x 
   integer :: precision
   real :: x ! may be any kind, may be complex, may be an array
end function

present (a) 
inquiry function present(a) ! determine whether an optional argument is present
   logical :: present ! true if a is present, false otherwise
   real :: a !  may be any type and kind; a must be an optional argument
end function !                 of the procedure referencing the present  function

product (array, dim, mask) 
function product(array,dim,mask) ! product of the elements of array
   real :: product ! same type and kind as array
   real :: array(:) ! may be any kind, any numeric type, and any rank
   integer, optional :: dim ! if present, 1 ≤ dim  ≤ n, where n is rank of array
   logical, optional :: mask ! if present, mask  must have same shape as array
end function

The result is scalar if dim  is omitted or array  has rank 1, in which case the value returned is 
product of the elements of array . If array has rank n greater than 1 and dim  is present, dim  speci-
fies the dimension along which to compute the products; in this case the result is an a
rank n-1 and shape (d1,d2,...,ddim-1, ddim+1,...,dn) where (d1,d2,...,dn) is the shape of array  and
each value of the result is the product of the elements along the dim  dimension of array . If mask
is present only those elements of array  corresponding to the true values in mask  are used in com-
puting the product(s). 

radix (x) 
inquiry function radix(x) ! radix (base) of the number model for x
   integer :: radix
   real :: x ! may be any kind, any numeric type; may be an array
end function

random_number (harvest) 
subroutine randon_number(harvet) ! generates one or more pseudorandom numbers
   real, intent(out) :: harvest ! may be any kind, may be an array
end subroutine



104 Fortran 90/95 Concise Reference

n-
If harvest  is a scalar, a single pseudorandom number from the uniform distribution between 0
and 1 is generated and assigned to harvest ; if harvest  is an array, size(harvest)  such numbers are
generated and assigned to harvest .

random_seed (size, put, get) 
subroutine random_seed(size,put,get)  ! set or retrieve the random_number  seed
   integer, optional, intent(out) :: size  ! number of integers (n) used for the value of the seed
   integer, optional, intent(in) :: put(:)  ! size(put) must be equal to n; set the seed to put
   integer, optional, intent(out) :: get(:)  ! size(get) must be equal to n; retrieve the seed into get
end subroutine  ! a given call to random_seed  has at most one argument

If a call to random_seed  is made without any arguments, the seed is set to an implementatio
determined value. When the argument is put , the seed is reinitialized to this value; when the
argument is get , the current value of the seed is retrieved.

range (x) 
inquiry function range(x)  ! decimal exponent range for x
   integer :: range  ! value is int(log10(huge(x)))  - but see comment below
   real :: x  ! may be any kind, any numeric type; may be an array
end function

If x is of type integer, huge(x)  returns an integer, which is not legal for log10 ; the effect for range
is, however, as if the equivalent real value had been returned for huge. If x is of type real the
value actually returned by range  is min(int(log10(huge(x))),-int(log10(tiny(x)))).

real (a, kind) 
elemental function real(a,kind)  ! convert a to the equivalent real value of specified kind
   real(kind) :: real  ! the converted real value
   real :: a  ! may be any kind and any numeric type
   integer, optional :: kind  ! if present, must be a scalar initialization expression
end function  ! if kind  is absent, the result kind is default real

If a is of type real, the result is this same value, but possibly of a different kind. If a is an integer,
the equivalent real value is returned. If a is complex, the result is the real part of a.

repeat (string, ncopies) 
function repeat(string,ncopies)  ! concatenate several copies of a string
   character(len(string)*ncopies) :: repeat  ! ncopies  of string  concatenated ; same kind as string
   character(*) :: string  ! may be any kind
   integer :: ncopies  ! 0 ≤ ncopies
end function

reshape (source, shape, pad, order) 
function reshape(source,shape,pad,order ) ! reshape source  into the array shape specified shape
   real :: reshape(:)  ! same type and kind as source , with shape shape
   real :: source(:)  ! may be any type, kind, and rank
   integer :: shape(:)  ! all element values must be positive
   real, optional :: pad(:)  ! same type and kind as source ; may be any rank
   integer, optional :: order(size(shape))  ! a permutation of (1, 2, 3, ..., size(shape) )
end function

Values are copied from source  (and then, if needed, from pad) to reshape , in array element
order. If size(source)  > product(shape) , the extra values of source  are ignored. If size(source)  <
product(shape) , pad  must be supplied, with size(pad)  ≥ product(shape)-size(source) . If order  is
present it specifies the the array element order of the reshape  subscripts. For example,

reshape((/1,2,3,4, 5,6/),(/2,3/))  is , and reshape((/1,2,3,4,5,6/),(/2,4/),(/0,0/),(/2,1/))  is .1 3 5

2 4 6

1 2 3 4

5 6 0 0



Intrinsic Procedures 105

st dec-
lues. 

ed by

reci-
ble. If
ecimal
rrspacing (x) 
elemental function rrspacing(x) ! recipocal of the relative spacing of values near x
   real :: rrspacing ! value is x/(nearest(x,1.)-x) for x > 0
   real :: x
end function

scale (x, i) 
elemental function scale(x,i) ! scales x by a specified amount
   real :: scale ! same kind as x; value is x*radix(x)**i
   real :: x ! may be any kind
   integer :: i ! scaling may be up (i > 0) or down (i < 0) (or i may be zero)
end function

scan (string, set, back) 
elemental function scan(string,set,back) ! search string  for an occurrence of any character in set
   integer :: scan ! value is first such position in string 
   character(*) :: string ! may be any kind
   character(*) :: set ! same kind as string
   logical, optional :: back ! if present and true, search is from back of string  instead
end function ! if no match, zero is returned

selected_int_kind (r) 
function selected_int_kind(r) ! determines kind value for specifed integer range
   integer :: selected_int_kind ! the kind value, or -1 if there is no such integer type
   integer :: r ! specifies an integer range of at least -10**r to +10**r
end function

If more than one integer type meets the criteria, the kind value for the one with the smalle
imal exponent range is returned or, if there are several such, the smallest of these kind va

selected_real_kind (p, r) 
function selected_real_kind(p,r) ! determines kind value for real type with specified properties
   integer :: selected_real_kind ! the kind value, or a negative value if there is no such real type 
   integer, optional :: p ! specifies a real type with at least p decimal digits of precision
   integer, optional :: r ! specifies an exponent range of at least 10**-r to 10**r
end function ! at least one argument must be present

The result is the kind type parameter of a real data type with decimal precision, as return
the precision  function, of at least p digits and a decimal exponent range, as returned by the range
function, of at least r; if no such type is available on the processor, the result is –1 if the p
sion is not available, –2 if the exponent range is not available, and –3 if neither is availa
more than one real type meets the criteria, the kind value for the one with the smallest d
precision is returned or, if there are several such, the smallest of these kind values. 

set_exponent (x, i) 
elemental function set_exponent(x,i) ! a value with the fractional part of x and exponent i
   real :: set_exponent ! same kind as x; value is x*radix(x)**(i-exponent(x))
   real :: x ! may be any kind
   integer :: i ! i may be positive, negative, or zero
end function

shape (source) 
inquiry function shape(source) ! determine the shape of an array
   integer :: shape(:) ! element values are the extents of source 
   real :: source(:) ! may be any type, kind, and rank; may be scalar
end function



106 Fortran 90/95 Concise Reference

d

ok
The value of the kth element of shape  is the size of the kth dimension of source . size(shape)  is n,
where n is the rank of source ; if source  is a scalar, n is zero. source  must not be a dissassociate
pointer array, an unallocated allocatable array, or an assumed-size array.

sign (a, b) 
elemental function sign(a,b)  ! set the sign of a value
   real :: sign  ! value is |a| if b ≥ 0, -|a| if b < 0; type and kind of a
   real :: a  ! may be any kind; may be integer
   real :: b  ! same type and kind as a
end function

sin (x) 
elemental function sin(x)  ! the sine of x
   real :: sin  ! same type and kind as x
   real :: x  ! may be complex
end function

If x is of type real, it is regarded as a value in radians; if x is of type complex, its real part is
regarded as a value in radians. 

sinh (x) 
elemental function sinh(x )         ! the hyperbolic sine of x;
  real :: sinh                     
  real :: x                     
end function 

size (array, dim) 
inquiry function size(array,dim)  ! determine number of elements in (a dimension of) an array
   integer :: size  ! value is product(shape(array)) if dim  is absent
   real :: array(:)  ! may be any type, kind, and rank
   integer, optional :: dim  ! if present, 1 ≤ dim  ≤ n, where n is the rank of array , and
end function  !            the returned value is the extent of the dim  dimension

spacing (x) 
elemental function spacing(x)  ! absolute spacing near x
   real :: spacing  ! value is nearest(x,1.)-x for x > 0
   real :: x
end function

spread (source, dim, ncopies) 
function spread(source,dim,ncopies)  ! makes ncopies of source  along a new dimension
   real :: spread(:,:)  ! same type and kind as source ; rank 1 greater than source
   real :: source(:)  ! may be any  type, kind, and rank; may be scalar
   integer :: dim  ! 1 ≤ dim  ≤ n+1, where n is the rank of source
   integer :: ncopies  ! number of copies to spread is max(0,ncopies )
end function

spread  broadcasts several copies of source  along a specified dimension (as in forming a bo
from copies of a single page) and thus forms an array of rank one greater than source . If source
is a scalar then spread  is an array of rank one and size max(0,ncopies ) and all element have the
value of source . If source  is an array with shape (d1,d2,...,dn), spread  has shape (d1,d2,...,ddim-1,

max(0,ncopies ),ddim,ddim+1,...,dn). An example: spread((/2,3,4/),1,3)  is  . 
2 3 4

2 3 4

2 3 4



Intrinsic Procedures 107

inary

the

n array
sqrt (x) 
elemental function sqrt(x) ! the square root of x
   real :: sqrt ! same type and kind as x; value is 
   real :: x ! may be complex
end function ! if x is of type real, x > 0

If x is complex, the real part of the result is nonnegative; if the real part is zero, the imag
part is nonnegative.

sum (array, dim, mask) 
function sum(array,dim,mask) ! sum of the elements of array
   real :: sum ! same type and kind as array
   real :: array(:) ! may be any kind, any numeric type, and any rank
   integer, optional :: dim ! if present, 1 ≤ dim  ≤ n, where n is rank of array
   logical, optional :: mask ! if present, mask  must have same shape as array
end function

The result is scalar if dim  is omitted or array  has rank 1, in which case the value returned is 
sum of the elements of array . If array has rank n greater than 1 and dim  is present, 1≤dim≤n and
dim  specifies the dimension along which to compute the sums; in this case the result is a
of rank n-1 and shape (d1,d2,...,ddim-1, ddim+1,...,dn) where (d1,d2,...,dn) is the shape of array  and
each value of the result is the sum of the elements along the dim  dimension of array . If mask  is
present only those elements of array  corresponding to the true values in mask  are used in com-
puting the sum(s). 

system_clock (count, count_rate, count_max) 
subroutine system_clock(count,count_rate,count_max) ! integer data from a real-time clock
   integer, intent(out), optional :: count ! 0 ≤ count  ≤ count_max
   integer, intent(out), optional :: count_rate ! clock counts per second
   integer, intent(out), optional :: count_max ! the maximum count  can have
end subroutine

All values are processor dependent; count_rate  indicates how many times count  is incremented
each second; when it reaches count_max , it resets to zero. If there is no processor clock count
always returns -huge(0), count_rate  returns zero, and count_max  returns zero.

tan (x) 
elemental function tan(x) ! the tangent of x
   real :: tan
   real :: x ! value is assumed to be radians
end function

tanh (x) 
elemental function tanh(x) ! the hyperbolic tangent of x
   real :: tanh
   real :: x
end function

tiny (x) 
inquiry function tiny(x) ! the smallest positive value for the type and kind of x
   real :: tiny ! same kind as x
   real :: x ! may be any kind; may be an array
end function

x



108 Fortran 90/95 Concise Reference

ce, the
transfer (source, mold, size) 
function transfer(source,mold,size)  ! same bit pattern, but different type/kind
   real :: transfer  ! bit pattern of source ; type/kind of mold ; may be an array
   real :: source  ! may be any type and kind; may be scalar or array
   real :: mold  ! may be any type and kind; may be scalar or array
   integer, optional :: size  ! specifies the shape of the result; the value must be positive
end function

If mold  is scalar and size  is absent the result is scalar. If mold  is an array and size  is absent the
result is a rank 1 array; its size is the smallest possible to hold all of the bits of source . If size  is
present,  the result is a rank 1 array of this size; if this makes transfer longer than sour
extra part of transfer is undefined and if it makes transfer shorter than source the extra bits of
source are not transferred.

transpose (matrix) 
function transpose(matrix)  ! transpose matrix
   real :: transpose(size(matrix,2),size(matrix,1))  ! element (i,j)  is matrix(j,i)
   real :: matrix(:,:)  ! may be any type and kind
end function

trim (string) 
function trim(string)  ! removes trailing blanks from a string
   character(*) :: trim  ! same as string , except all trailing blanks removed
   character(*) :: string  ! may be any kind
end function

ubound (array, dim) 
inquiry function ubound(array,dim)  ! the upper bound(s) of array
   integer :: ubound  ! scalar if dim  is present; a rank one array otherwise
   real :: array(:)  ! may have any type, kind, and rank
   integer, optional :: dim  ! if present, 1 ≤ dim  ≤ n, where n is the rank of array
end function

If dim  is present the result is a scalar and is the upper bound of array  along the dimension dim . If
dim  is absent the result is a one-dimensional array whose size is the rank of array , and the value
of each element of the result is the upper bound of that dimension of array . If array  is an array
expression other than an array name (e.g., an array section), the upper bound value is based on
the lower bound value being 1.

unpack (vector, mask, field) 
function unpack(vector,mask,field)  ! unpack a vector into an array, under control of a mask
   real :: unpack(:)  ! same type and kind as vector ; same shape as mask
   real :: vector(:)  ! may be any type and kind
   logical :: mask(:)  ! may be any rank
   real :: field(size(mask))  ! same type and kind as vector ; same shape as mask  -
end function  !              field  may be a scalar, in which case it is broadcast 

The element of the result that corresponds to the kth true element of mask , in array element
order, is vector(k), for all the true values in mask . Each other element of the result is the value of
the corresponding element of field . 

verify (string, set, back) 
elemental function verify(string,set,back)  ! check that set  contains all the characters in string
   integer :: verify  ! value is first position in string that is not a set  character
   character(*) :: string  ! may be any kind
   character(*) :: set  ! same kind as string
   logical, optional :: back  ! if present and true, check is from back of string  instead
end function  ! if all characters in string  are in set , zero is returned



Syntax Rules 109

x rules
-

-

ecifies
eparate
w

11 11    Syntax Rules

This chapter contains the complete syntax of Fortran 90. For reference purposes the synta
are the same as in the Fortran 90 standard, with the same “R” (rule) numbers; however, the con
straints are not included here.  

Each syntax rule defines a term with the symbol is, optionally followed by alternative definitions
introduced by the symbol or.  Optional parts of a definition are in closed in square brackets ( [  ] ),
and repeated parts are enclosed in square brackets followed by three dots ( [  ] ... ).  Abbreviations
are used liberally (e.g., -stmt for statement) and any term ending with -list represents a comma-sepa
rated list (e.g., xyz-list is an abbreviation for xyz [ , xyz ] ...); a term ending with -name is a name
(R304).  Syntactic classes (nonterminals) are in italicized-font and literals are in bold . Literal words,
such as function  are lower case, but upper-case letters are allowed.  Where a syntax rule sp
more than one line (statement) of actual code syntax, the rule for each code line is on a s
syntax rule line (e.g., the if-construct, R802, involves multiple lines of actual code).  In those fe
cases where a syntax rule is too long to fit on one line, the “#” is used to indicate its continuation on
the next line (e.g., the syntax rule for the function statement, R1216, is too long to fit on one line).

general structure (R201-216)

R201 executable-program is program-unit 
[ program-unit ] ... 

R202 program-unit is main-program 
or external-subprogram 
or module 
or block-data 

R1101main-program is [ program-stmt ] 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-program-stmt 

R203 external-subprogram is function-subprogram 
or subroutine-subprogram 

R1215function-subprogram is function-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-function-stmt 

R1219subroutine-subprogram is subroutine-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-subroutine-stmt 

R1104module is module-stmt 
[ specification-part ] 
[ module-subprogram-part ] 
end-module-stmt 



110 Fortran 90/95 Concise Reference
R1110block-data is block-data-stmt 
[ specification-part ] 
end-block-data-stmt 

R204 specification-part is [ use-stmt ] ... 
[ implicit-part ] 
[ declaration-construct ] ... 

R205 implicit-part is [ implicit-part-stmt ] ... 
implicit-stmt 

R206 implicit-part-stmt is implicit-stmt 
or parameter-stmt 
or format-stmt 
or entry-stmt 

R207 declaration-construct is derived-type-def 
or interface-block 
or type-declaration-stmt 
or specification-stmt 
or parameter-stmt 
or format-stmt 
or entry-stmt 
or stmt-function-stmt 

R208 execution-part is executable-construct 
[ execution-part-construct ] ... 

R209 execution-part-construct is executable-construct 
or format-stmt 
or data-stmt 
or entry-stmt 

R210 internal-subprogram-part is contains-stmt 
internal-subprogram 
[ internal-subprogram ] ... 

R211 internal-subprogram is function-subprogram 
or subroutine-subprogram 

R212 module-subprogram-part is contains-stmt 
module-subprogram 
[ module-subprogram ] ... 

R213 module-subprogram is function-subprogram 
or subroutine-subprogram 

R214 specification-stmt is access-stmt 
or allocatable-stmt 
or common-stmt 
or data-stmt 
or dimension-stmt 



Syntax Rules 111
or equivalence-stmt 
or external-stmt 
or intent-stmt 
or intrinsic-stmt 
or namelist-stmt 
or optional-stmt 
or pointer-stmt 
or save-stmt 
or target-stmt 

R215 executable-construct is action-stmt 
or case-construct 
or do-construct 
or if-construct 
or where-construct 

R216 action-stmt is allocate-stmt 
or assignment-stmt 
or backspace-stmt 
or call-stmt 
or close-stmt 
or computed-goto-stmt 
or continue-stmt 
or cycle-stmt 
or deallocate-stmt 
or endfile-stmt 
or end-function-stmt 
or end-program-stmt 
or end-subroutine-stmt 
or exit-stmt 
or goto-stmt 
or if-stmt 
or inquire-stmt 
or nullify-stmt 
or open-stmt 
or pointer-assignment-stmt 
or print-stmt 
or read-stmt 
or return-stmt 
or rewind-stmt 
or stop-stmt 
or where-stmt 
or write-stmt 
or arithmetic-if-stmt 
or assign-stmt 
or assigned-goto-stmt 
or pause-stmt 



112 Fortran 90/95 Concise Reference
tokens (names, operators ...) R301-313

R301 character is alphanumeric-character 
or special-character 

R302 alphanumeric-character is letter 
or digit 
or underscore 

R303 underscore is _ 

R304 name is letter [ alphanumeric-character ] ... 

R305 constant is literal-constant 
or named-constant 

R306 literal-constant is int-literal-constant 
or real-literal-constant 
or complex-literal-constant 
or logical-literal-constant 
or char-literal-constant 
or boz-literal-constant 

R307 named-constant is name 

R308 int-constant is constant 

R309 char-constant is constant 

R310 intrinsic-operator is power-op 
or mult-op 
or add-op 
or concat-op 
or rel-op 
or not-op 
or and-op 
or or-op 
or equiv-op 

R708 power-op is ** 

R709 mult-op is * 
or / 

R710 add-op is + 
or – 

R712 concat-op is // 

R714 rel-op is .eq. 
or .ne. 
or .lt. 



Syntax Rules 113
or .le. 
or .gt. 
or .ge. 
or == 
or /= 
or < 
or <= 
or > 
or >= 

R719 not-op is .not. 

R720 and-op is .and. 

R721 or-op is .or. 

R722 equiv-op is .eqv. 
or .neqv. 

R311 defined-operator is defined-unary-op 
or defined-binary-op 
or extended-intrinsic-op 

R704 defined-unary-op is . letter [ letter ] ... . 

R724 defined-binary-op is . letter [ letter ] ... . 

R312 extended-intrinsic-op is intrinsic-operator 

R313 label is digit [ digit [ digit [ digit [ digit ] ] ] ] 

data types (R401-435)

R401 signed-digit-string is [ sign ] digit-string 

R402 digit-string is digit [ digit ] ... 

R403 signed-int-literal-constant is [ sign ] int-literal-constant 

R404 int-literal-constant is digit-string [ _ kind-param ] 

R405 kind-param is digit-string 
or scalar-int-constant-name 

R406 sign is + 
or – 

R407 boz-literal-constant is binary-constant 
or octal-constant 
or hex-constant 



114 Fortran 90/95 Concise Reference
R408 binary-constant is B ' digit [ digit ] ... ' 
or B "  digit [ digit ] ... " 

R409 octal-constant is O ' digit [ digit ] ... ' 
or O "  digit [ digit ] ... " 

R410 hex-constant is Z ' hex-digit [ hex-digit ] ... ' 
or Z "  hex-digit [ hex-digit ] ... " 

R411 hex-digit is digit 
or A 
or B 
or C 
or D 
or E 
or F 

R412 signed-real-literal-constant is [ sign ] real-literal-constant 

R413 real-literal-constant is significand [ exponent-letter exponent ] [ _ kind-param ] 
or digit-string exponent-letter exponent [ _ kind-param ] 

R414 significand is digit-string . [ digit-string ] 
or . digit-string 

R415 exponent-letter is E 
or D 

R416 exponent is signed-digit-string 

R417 complex-literal-constant is ( real-part , imag-part ) 

R418 real-part is signed-int-literal-constant 
or signed-real-literal-constant 

R419 imag-part is signed-int-literal-constant 
or signed-real-literal-constant 

R420 char-literal-constant is [ kind-param _ ] '' [ rep-char ] ... ' 
or [ kind-param _ ] "  [ rep-char ] ... "

R421 logical-literal-constant is .true.  [ _ kind-param ] 
or .false.  [ _ kind-param ] 

R422 derived-type-def is derived-type-stmt 
[ private-sequence-stmt ] ... 
component-def-stmt 
[ component-def-stmt ] ... 
end-type-stmt 

R423 private-sequence-stmt is private 
or sequence 



Syntax Rules 115
R424 derived-type-stmt is type [ [ , access-spec ] :: ] type-name 

R425 end-type-stmt is end type [ type-name ] 

R426 component-def-stmt is type-spec [ [ , component-attr-spec-list ] :: ]  component-decl-list 

R427 component-attr-spec is pointer 
or dimension  ( component-array-spec ) 

R428 component-array-spec is explicit-shape-spec-list 
or deferred-shape-spec-list 

R429 component-decl is component-name [ ( component-array-spec ) ]  [ * char-length ] 

R430 structure-constructor is type-name ( expr-list ) 

R431 array-constructor is (/ ac-value-list /) 

R432 ac-value is expr 
or ac-implied-do 

R433 ac-implied-do is ( ac-value-list , ac-implied-do-control ) 

R434 ac-implied-do-control is ac-do-variable = scalar-int-expr ,  scalar-int-expr [ , scalar-int-expr ] 

R435 ac-do-variable is scalar-int-variable 

declarations and attributes (R501-549)

R501 type-declaration-stmt is type-spec [ [ , attr-spec ] ... :: ] entity-decl-list 

R502 type-spec is integer  [ kind-selector ] 
or real  [ kind-selector ] 
or double  precision  
or complex  [ kind-selector ] 
or character  [ char-selector ] 
or logical  [ kind-selector ] 
or type ( type-name ) 

R503 attr-spec is parameter  
or access-spec 
or allocatable  
or dimension ( array-spec ) 
or external  
or intent (  intent-spec ) 
or intrinsic  
or optional  
or pointer  
or save  
or target  



116 Fortran 90/95 Concise Reference
R504 entity-decl is object-name [ ( array-spec ) ]  [ * char-length ] [ = initialization-expr ] 
or function-name [ ( array-spec ) ] [ * char-length ] 

R505 kind-selector is ( [ kind = ] scalar-int-initialization-expr ) 

R506 char-selector is length-selector 
or ( len =  type-param-value ,  kind =  scalar-int-initialization-expr ) 
or ( type-param-value ,  [ kind =  ] scalar-int-initialization-expr ) 
or ( kind =  scalar-int-initialization-expr  [ , len =   type-param-value ] ) 

R507 length-selector is ( [ len = ] type-param-value ) 
or * char-length [ , ] 

R508 char-length is ( type-param-value ) 
or scalar-int-literal-constant 

R509 type-param-value is specification-expr 
or * 

R510 access-spec is public  
or private  

R511 intent-spec is in  
or out  
or inout  

R512 array-spec is explicit-shape-spec-list 
or assumed-shape-spec-list 
or deferred-shape-spec-list 
or assumed-size-spec 

R513 explicit-shape-spec is [ lower-bound : ] upper-bound 

R514 lower-bound is specification-expr 

R515 upper-bound is specification-expr 

R516 assumed-shape-spec is [ lower-bound ] : 

R517 deferred-shape-spec is : 

R518 assumed-size-spec is [ explicit-shape-spec-list , ] [ lower-bound : ] * 

R519 intent-stmt is intent ( intent-spec ) [ :: ] dummy-arg-name-list 

R520 optional-stmt is optional  [ :: ] dummy-arg-name-list 

R521 access-stmt is access-spec [ [ :: ] access-id-list ] 

R522 access-id is use-name 
or generic-spec 



Syntax Rules 117
R523 save-stmt is save  [ [ :: ] saved-entity-list ] 

R524 saved-entity is object-name 
or / common-block-name / 

R525 dimension-stmt is dimension  [ :: ] array-name ( array-spec )  #
[ , array-name ( array-spec ) ] ... 

R526 allocatable-stmt is allocatable  [ :: ] array-name  [ ( deferred-shape-spec-list ) ] # 
 [ , array-name  [ ( deferred-shape-spec-list ) ] ] ... 

R527 pointer-stmt is pointer  [ :: ] object-name  [ ( deferred-shape-spec-list ) ] # 
 [ , object-name  [ ( deferred-shape-spec-list ) ] ] ... 

R528 target-stmt is target  [ :: ] object-name [ ( array-spec ) ]  #
[ , object-name [ ( array-spec ) ] ] ... 

R529 data-stmt is data  data-stmt-set [ [ , ] data-stmt-set ] ... 

R530 data-stmt-set is data-stmt-object-list / data-stmt-value-list / 

R531 data-stmt-object is variable 
or data-implied-do 

R532 data-stmt-value is [ data-stmt-repeat * ] data-stmt-constant 

R533 data-stmt-constant is scalar-constant 
or signed-int-literal-constant 
or signed-real-literal-constant 
or structure-constructor 
or boz-literal-constant 

R534 data-stmt-repeat is scalar-int-constant 

R535 data-implied-do is ( data-i-do-object-list , data-i-do-variable = # 
 scalar-int-expr , scalar-int-expr  [ , scalar-int-expr ] ) 

R536 data-i-do-object is array-element 
or scalar-structure-component 
or data-implied-do 

R537 data-i-do-variable is scalar-int-variable 

R538 parameter-stmt is parameter ( named-constant-def-list ) 

R539 named-constant-def is named-constant = initialization-expr 

R540 implicit-stmt is implicit  implicit-spec-list 
or implicit none 

R541 implicit-spec is type-spec ( letter-spec-list ) 

R542 letter-spec is letter [ – letter ] 



118 Fortran 90/95 Concise Reference
R543 namelist-stmt is namelist / namelist-group-name  /  namelist-group-object-list #
 [ [ , ] / namelist-group-name  /  namelist-group-object-list  ] ... 

R544 namelist-group-object is variable-name 

R545 equivalence-stmt is equivalence  equivalence-set-list 

R546 equivalence-set is ( equivalence-object , equivalence-object-list ) 

R547 equivalence-object is variable-name 
or array-element 
or substring 

R548 common-stmt is common  [ / [ common-block-name ] / ] common-block-object-list #
 [ [ , ] / [ common-block-name ] /   common-block-object-list ] ... 

R549 common-block-object is variable-name [ ( explicit-shape-spec-list ) ] 

variables (R601-631)

R601 variable is scalar-variable-name 
or array-variable-name 
or subobject 

R602 subobject is array-element 
or array-section 
or structure-component 
or substring 

R603 logical-variable is variable 

R604 default-logical-variable is variable 

R605 char-variable is variable 

R606 default-char-variable is variable 

R607 int-variable is variable 

R608 default-int-variable is variable 

R609 substring is parent-string ( substring-range ) 

R610 parent-string is scalar-variable-name 
or array-element 
or scalar-structure-component 
or scalar-constant 

R611 substring-range is [ scalar-int-expr ] : [ scalar-int-expr ] 

R612 data-ref is part-ref  [ % part-ref ] ... 



Syntax Rules 119
R613 part-ref is part-name [ ( section-subscript-list ) ] 

R614 structure-component is data-ref 

R615 array-element is data-ref 

R616 array-section is data-ref  [ ( substring-range ) ] 

R617 subscript is scalar-int-expr 

R618 section-subscript is subscript 
or subscript-triplet 
or vector-subscript 

R619 subscript-triplet is [ subscript ] : [ subscript ] [ : stride ] 

R620 stride is scalar-int-expr 

R621 vector-subscript is int-expr 

R622 allocate-stmt is allocate ( allocation-list  [ , stat = stat-variable ] ) 

R623 stat-variable is scalar-int-variable 

R624 allocation is allocate-object  [ ( allocate-shape-spec-list ) ] 

R625 allocate-object is variable-name 
or structure-component 

R626 allocate-shape-spec is [ allocate-lower-bound : ] allocate-upper-bound 

R627 allocate-lower-bound is scalar-int-expr 

R628 allocate-upper-bound is scalar-int-expr 

R629 nullify-stmt is nullify ( pointer-object-list ) 

R630 pointer-object is variable-name 
or structure-component 

R631 deallocate-stmt is deallocate ( allocate-object-list  [ , stat = stat-variable ] ) 

expressions (R701-743)

R701 primary is constant 
or constant-subobject 
or variable 
or array-constructor 
or structure-constructor 
or function-reference 
or ( expr ) 



120 Fortran 90/95 Concise Reference
R702 constant-subobject is subobject 

R703 level-1-expr is [ defined-unary-op ] primary 

R704 defined-unary-op is . letter [ letter ] ... . 

R705 mult-operand is level-1-expr  [ power-op mult-operand ] 

R706 add-operand is [ add-operand mult-op ] mult-operand 

R707 level-2-expr is [ [ level-2-expr ] add-op ] add-operand 

R708 power-op is ** 

R709 mult-op is * 
or / 

R710 add-op is + 
or – 

R711 level-3-expr is [ level-3-expr concat-op ] level-2-expr 

R712 concat-op is // 

R713 level-4-expr is [ level-3-expr rel-op ] level-3-expr 

R714 rel-op is .eq. 
or .ne. 
or .lt. 
or .le. 
or .gt. 
or .ge. 
or == 
or /= 
or < 
or <= 
or > 
or >= 

R715 and-operand is [ not-op ] level-4-expr 

R716 or-operand is [ or-operand and-op ] and-operand 

R717 equiv-operand is [ equiv-operand or-op ] or-operand 

R718 level-5-expr is [ level-5-expr equiv-op ] equiv-operand 

R719 not-op is .not. 

R720 and-op is .and. 

R721 or-op is .or. 



Syntax Rules 121
R722 equiv-op is .eqv. 
or .neqv. 

R723 expr is [ expr defined-binary-op ] level-5-expr 

R724 defined-binary-op is . letter [ letter ] ... . 

R725 logical-expr is expr 

R726 char-expr is expr 

R727 default-char-expr is expr 

R728 int-expr is expr 

R729 numeric-expr is expr 

R730 initialization-expr is expr 

R731 char-initialization-expr is char-expr 

R732 int-initialization-expr is int-expr 

R733 logical-initialization-expr is logical-expr 

R734 specification-expr is scalar-int-expr 

R735 assignment-stmt is variable = expr 

R736 pointer-assignment-stmt is pointer-object => target 

R737 target is variable 
or expr 

R738 where-stmt is where (  mask-expr ) assignment-stmt 

R739 where-construct is where-construct-stmt 
[ assignment-stmt ] ... 

[ elsewhere-stmt 
[ assignment-stmt ] ... ] 

end-where-stmt 

R740 where-construct-stmt is where (  mask-expr ) 

R741 mask-expr is logical-expr 

R742 elsewhere-stmt is elsewhere 

R743 end-where-stmt is end where 



122 Fortran 90/95 Concise Reference
control structures (R801-844)

R801 block is [ execution-part-construct ] ... 

R802 if-construct is if-then-stmt 
block 

[ else-if-stmt 
block ] ... 

[ else-stmt 
block ] 

end-if-stmt 

R803 if-then-stmt is [ if-construct-name : ] if ( scalar-logical-expr ) then 

R804 else-if-stmt is else if ( scalar-logical-expr ) then  [ if-construct-name ] 

R805 else-stmt is else  [ if-construct-name ] 

R806 end-if-stmt is end if [ if-construct-name ] 

R807 if-stmt is if ( scalar-logical-expr ) action-stmt 

R808 case-construct is select-case-stmt 
[ case-stmt 

block ] ... 
end-select-stmt 

R809 select-case-stmt is [ case-construct-name : ]  select case ( case-expr ) 

R810 case-stmt is case case-selector  [ case-construct-name] 

R811 end-select-stmt is end select  [ case-construct-name ] 

R812 case-expr is scalar-int-expr 
or scalar-char-expr 
or scalar-logical-expr 

R813 case-selector is ( case-value-range-list ) 
or default  

R814 case-value-range is case-value 
or case-value : 
or : case-value 
or case-value : case-value 

R815 case-value is scalar-int-initialization-expr 
or scalar-char-initialization-expr 
or scalar-logical-initialization-expr 

R816 do-construct is block-do-construct 
or nonblock-do-construct 



Syntax Rules 123
R817 block-do-construct is do-stmt 
do-block 

end-do 

R818 do-stmt is label-do-stmt 
or nonlabel-do-stmt 

R819 label-do-stmt is [ do-construct-name : ] do  label  [ loop-control ] 

R820 nonlabel-do-stmt is [ do-construct-name : ] do  [ loop-control ] 

R821 loop-control is [ , ] do-variable = scalar-numeric-expr , scalar-numeric-expr #
 [ , scalar-numeric-expr ] 

or [ , ] while ( scalar-logical-expr ) 

R822 do-variable is scalar-variable 

R823 do-block is block 

R824 end-do is end-do-stmt 
or continue-stmt 

R825 end-do-stmt is end do [ do-construct-name ] 

R826 nonblock-do-construct is action-term-do-construct 
or outer-shared-do-construct 

R827 action-term-do-construct is label-do-stmt 
do-body 

do-term-action-stmt 

R828 do-body is [ execution-part-construct ] ... 

R829 do-term-action-stmt is action-stmt 

R830 outer-shared-do-construct is label-do-stmt 
do-body 

shared-term-do-construct 

R831 shared-term-do-construct is outer-shared-do-construct 
or inner-shared-do-construct 

R832 inner-shared-do-construct is label-do-stmt 
do-body 

do-term-shared-stmt 

R833 do-term-shared-stmt is action-stmt 

R834 cycle-stmt is cycle  [ do-construct-name ] 

R835 exit-stmt is exit [ do-construct-name ] 

R836 goto-stmt is go to  label 



124 Fortran 90/95 Concise Reference
R837 computed-goto-stmt is go to (  label-list ) [ , ] scalar-int-expr 

R838 assign-stmt is assign  label  to  scalar-int-variable 

R839 assigned-goto-stmt is go to  scalar-int-variable [ [ , ] ( label-list ) ] 

R840 arithmetic-if-stmt is if ( scalar-numeric-expr ) label , label , label 

R841 continue-stmt is continue 

R842 stop-stmt is stop  [ stop-code ] 

R843 stop-code is scalar-char-constant 
or digit [ digit [ digit [ digit [ digit ] ] ] ] 

R844 pause-stmt is pause  [ stop-code ]  

input, output (R901-924)

R901 io-unit is external-file-unit 
or * 
or internal-file-unit 

R902 external-file-unit is scalar-int-expr 

R903 internal-file-unit is default-char-variable 

R904 open-stmt is open (  connect-spec-list ) 

R905 connect-spec is [ unit =  ] external-file-unit 
or iostat = scalar-default-int-variable 
or err =  label 
or file = file-name-expr 
or status = scalar-default-char-expr 
or access = scalar-default-char-expr 
or form =  scalar-default-char-expr 
or recl = scalar-int-expr 
or blank =  scalar-default-char-expr 
or position =  scalar-default-char-expr 
or action =  scalar-default-char-expr 
or delim =  scalar-default-char-expr 
or pad =  scalar-default-char-expr 

R906 file-name-expr is scalar-default-char-expr 

R907 close-stmt is close ( close-spec-list ) 

R908 close-spec is [ unit =  ] external-file-unit 
or iostat = scalar-default-int-variable 
or err = label 
or status = scalar-default-char-expr 



Syntax Rules 125
R909 read-stmt is read ( io-control-spec-list ) [ input-item-list ] 
or read  format [ , input-item-list ] 

R910 write-stmt is write (  io-control-spec-list ) [ output-item-list ] 

R911 print-stmt is print  format [ , output-item-list ] 

R912 io-control-spec is [ unit =  ] io-unit 
or [ fmt = ] format 
or [ nml = ] namelist-group-name 
or rec = scalar-int-expr 
or iostat =  scalar-default-int-variable 
or err = label 
or end =  label 
or advance = scalar-default-char-expr 
or size = scalar-default-int-variable 
or eor =  label 

R913 format is default-char-expr 
or label 
or * 
or scalar-default-int-variable 

R914 input-item is variable 
or io-implied-do 

R915 output-item is expr 
or io-implied-do 

R916 io-implied-do is ( io-implied-do-object-list , io-implied-do-control ) 

R917 io-implied-do-object is input-item 
or output-item 

R918 io-implied-do-control is do-variable = scalar-numeric-expr ,  scalar-numeric-expr #
[ , scalar-numeric-expr ] 

R919 backspace-stmt is backspace  external-file-unit 
or backspace ( position-spec-list ) 

R920 endfile-stmt is endfile external-file-unit 
or endfile ( position-spec-list ) 

R921 rewind-stmt is rewind external-file-unit 
or rewind ( position-spec-list ) 

R922 position-spec is [ unit = ] external-file-unit 
or iostat = scalar-default-int-variable 
or err = label 

R923 inquire-stmt is inquire (  inquire-spec-list ) 
or inquire ( iolength = scalar-default-int-variable )  output-item-list 



126 Fortran 90/95 Concise Reference
R924 inquire-spec is [ unit =  ] external-file-unit 
or file = file-name-expr 
or iostat = scalar-default-int-variable 
or err =  label 
or exist = scalar-default-logical-variable 
or opened = scalar-default-logical-variable 
or number = scalar-default-int-variable 
or named = scalar-default-logical-variable 
or name =  scalar-default-char-variable 
or access = scalar-default-char-variable 
or sequential = scalar-default-char-variable 
or direct = scalar-default-char-variable 
or form = scalar-default-char-variable 
or formatted = scalar-default-char-variable 
or unformatted = scalar-default-char-variable 
or recl = scalar-default-int-variable 
or nextrec = scalar-default-int-variable 
or blank = scalar-default-char-variable 
or position = scalar-default-char-variable 
or action = scalar-default-char-variable 
or read = scalar-default-char-variable 
or write = scalar-default-char-variable 
or readwrite =  scalar-default-char-variable 
or delim = scalar-default-char-variable 
or pad = scalar-default-char-variable 

I/O formatting (R1001-1017)

R1001format-stmt is format  format-specification 

R1002format-specification is ( [ format-item-list ] ) 

R1003format-item is [ r ] data-edit-desc 
or control-edit-desc 
or char-string-edit-desc 
or [ r ] ( format-item-list ) 

R1004r is int-literal-constant 

R1005data-edit-desc is I w [ . m ] 
or B w [ . m ] 
or O w [ . m ] 
or Z w [ . m ] 
or F w . d 
or E w . d [ E e ] 
or EN w . d [ E e ] 
or ES w . d [ E e ] 
or G w . d [ E e ] 
or L w 
or A [ w ] 
or D w . d 



Syntax Rules 127
R1006w is int-literal-constant 

R1007m is int-literal-constant 

R1008d is int-literal-constant 

R1009e is int-literal-constant 

R1010control-edit-desc is position-edit-desc 
or [ r ] / 
or : 
or sign-edit-desc 
or k P 
or blank-interp-edit-desc 

R1011k is signed-int-literal-constant 

R1012position-edit-desc is T n 
or TL n 
or TR n 
or n X 

R1013n is int-literal-constant 

R1014sign-edit-desc is S 
or SP 
or SS 

R1015blank-interp-edit-desc is BN 
or BZ 

R1016char-string-edit-desc is char-literal-constant 
or c H rep-char [ rep-char ] ... 

R1017c is int-literal-constant

program units (R1101-1112)

R1101main-program is [ program-stmt ] 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-program-stmt 

R1102program-stmt is program program-name 

R1103end-program-stmt is end [ program  [ program-name ] ] 

R1104module is module-stmt 
[ specification-part ] 
[ module-subprogram-part ] 
end-module-stmt 



128 Fortran 90/95 Concise Reference
R1105module-stmt is module  module-name 

R1106end-module-stmt is end [ module [ module-name ] ] 

R1107use-stmt is use  module-name [ , rename-list ] 
or use  module-name , only : [ only-list ] 

R1108rename is local-name => use-name 

R1109only is access-id 
or [ local-name => ] use-name 

R1110block-data is block-data-stmt 
[ specification-part ] 
end-block-data-stmt 

R1111block-data-stmt is block data [ block-data-name ] 

R1112end-block-data-stmt is end [ block data  [ block-data-name ] ] 

procedures (R1201-1226)

R1201interface-block is interface-stmt 
[ interface-body ] ... 
[ module-procedure-stmt ] ... 
end-interface-stmt 

R1202interface-stmt is interface [ generic-spec ] 

R1203end-interface-stmt is end interface 

R1204interface-body is function-stmt 
[ specification-part ] 
end-function-stmt 

or subroutine-stmt 
[ specification-part ] 
end-subroutine-stmt 

R1205module-procedure-stmt is module procedure procedure-name-list 

R1206generic-spec is generic-name 
or operator ( defined-operator ) 
or assignment ( = ) 

R1207external-stmt is external [ ::  ] external-name-list 

R1208intrinsic-stmt is intrinsic [ ::  ] intrinsic-procedure-name-list 

R1209function-reference is function-name ( [ actual-arg-spec-list ] )

R1210call-stmt is call subroutine-name [ ( [ actual-arg-spec-list ] ) ] 

R1211actual-arg-spec is [ keyword = ] actual-arg 



Syntax Rules 129
R1212keyword is dummy-arg-name 

R1213actual-arg is expr 
or variable 
or procedure-name 
or alt-return-spec 

R1214alt-return-spec is * label 

R1215function-subprogram is function-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-function-stmt 

R1216function-stmt is [ prefix ] function  function-name  ( [ dummy-arg-name-list ] ) #
[ result ( result-name ) ] 

R1217prefix is type-spec [ recursive  ] 
or recursive  [ type-spec ] 

R1218end-function-stmt is end  [ function  [ function-name ] ] 

R1219subroutine-subprogram is subroutine-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-subroutine-stmt 

R1220subroutine-stmt is [ recursive  ] subroutine  subroutine-name  [ ( [ dummy-arg-list ] ) ] 

R1221dummy-arg is dummy-arg-name 
or * 

R1222end-subroutine-stmt is end  [ subroutine  [ subroutine-name ] ] 

R1223entry-stmt is entry  entry-name [ ( [ dummy-arg-list ] )  [ result ( result-name ) ] ] 

R1224return-stmt is return  [ scalar-int-expr ] 

R1225contains-stmt is contains  

R1226stmt-function-stmt is function-name ( [ dummy-arg-name-list ] ) = scalar-expr 

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊



130 Fortran 90/95 Concise Reference



A Fortran 90 Implementation 131

enta-
r val-
tions.
tives,

ndfile
11 22    A Fortran 90 Implementation

This chapter describes vendor-specific features of the Absoft Pro Fortran™ implem
tion of Fortran 90, including implementation-dependent values (kind values, I/O erro
ues, etc.), language extensions, compiler directives, and command-line compiler op
The implementation-dependent values will vary, but many of these extensions, direc
and command-line options are typical of many commercial implementations.

implementation-dependent values

kind values for all intrinsic data types

iostat= variable values for EOF and EOR

iostat= variable values for various i/o error conditions (trigger err=, if present)

kind type parameters for value example kind constant declarationsa

a. Only four of these constants are really needed, one for each kind value.

default integer 4 integer, parameter :: DEFAULT=kind(1)

short (2-byte) integer 2 integer, parameter :: SHORT=2

shorter (1-byte) integer 1 integer, parameter :: ONE_BYTE=1

default real (and complex) 4 integer, parameter :: SINGLE=kind(1E1)

double real (and complex) 8 integer, parameter :: DOUBLE=kind(1D1)

default logical 4 integer, parameter :: LOG_KIND=kind(.true.)

2-byte logical 2 integer, parameter :: TWO_BYTE=2

1-byte logical 1 integer, parameter :: BYTE=1

default character 1 integer, parameter :: CHAR_KIND=kind(' ')

iostat value I/O condition

-1 end of file (triggers end=, if present)

-2 end of record, in nonadvancing read (triggers eor=)

value error condition value error condition

2 no such file or directory 10026 block= valid only for unformatted sequential files

3 resource not found 10027 unable to truncate after rewind, backspace, or e

5 physical I/O error 10028 formatted I/O attempted on entire structure

6 no such device or address 10029 negative unit specifiers are not permitted



132 Fortran 90/95 Concise Reference

ect

y

ay

th

th

ted
7 insufficient space for return argument 10030 open specifiers do not match currently open file

9 bad file number 10031 cannot implicitly open for direct access

12 not enough space 10032 status “new” specified for existing file

13 permission denied 10033 command not allowed for unit type

17 file exists 10034 MRWE is required for that feature

19 no such device 10035 bad specification for window

20 not a directory 10036 endian specifier not “big-endian” or “little_endian”

21 is a directory 10037 cannot endian-convert entire structures

22 invalid parameter 10038 attempt to read past end of record

23 file table overflow; too many files open 10039 attempt to read past end of record in nonadvancing I/O

24 too many files open 10040 ill egal specifier for advance=

28 no space left on device; volume full 10041 ill egal specifier for delim=

29 ill egal seek 10042 ill egal specifier for pad=

30 read-only file system access 10043 size= specified with advance="yes"

31 too many links; can’t delete an open file 10044 eor= specified with advance="yes"

10000 file not open for read 10045 cannot deallocate disassociated or unallocated obj

10001 file not open for write 10046 cannot deallocate a portion of an original allocation

10002 file not found 10047 an allocatable array has already been allocated

10003 record length negative or zero 10048 internal or unknown runtime library error

10004 buffer allocation failed 10049 unknown data type passed to runtime library

10005 bad io-list specifier 10050 ill egal dim argument to an array intrinsic

10006 error in format string 10051 source argument to reshape smaller than shape arra

10007 ill egal repeat count 10052 shape array for reshape contains a negative value

10008 Hollerith count exceeds remaining format string 10053 cannot inquire about unallocated/disassociated arr

10009 format string missing opening ( 10054 the ncopies to repeat is negative

10010 format string has unmatched parentheses 10055 the s argument to nearest is negative

10011 format string has unmatched quotes 10056 the order argument to reshape is illegal

10012 nonrepeatable format descriptor 10057 result of transfer with no size is smaller than source

10013 attempt to read past end of file 10058 shape array for reshape is zero size

10014 bad file specification 10059 vector argument to unpack contains insufficient values

10015 format group table overflow 10060 attempt to write a record longer than specified leng

10016 ill egal character in numeric input 10061 advance= specified for direct or unformatted file

10017 no record specified for direct access 10062 namelist name is longer than specified record leng

10018 maximum record number exceeded 10063 namelist variable name exceeds maximum length

10019 ill egal file type for namelist I/O 10064 pad= specified for unformatted file

10020 ill egal input for namelist I/O 10065 namelist input contains multiple strided arrays

10021 variable not present in current namelist 10066 expected & or $ as first character in namelist input

10022 variable type or size does not match edit descriptor 10067 namelist group does not match current input group

10023 ill egal direct access record number 10068 pointer or allocatable array not associated or alloca

10024 ill egal use of internal file 10069 namelist input contains negative array stride

10025 recl= valid only for direct access files

value error condition value error condition



A Fortran 90 Implementation 133

nce
sically
fer to
 be
fer to

efini-
on if
struc-
 

ecified
ple,

ay, it
 vari-
ment,
language extensions

dec-style structures. A structure type is a data type extension that is similar to a seque
derived type, but components of objects of structure types are guaranteed to be phy
stored in the order defined. Note that the terms “structure” and “structured object” re
an object of derived-type; the terms “structure type” and “structure definition” will
used to refer to this extended type, and the terms “record” and “record object” will re
objects of this extended type. A structure definition has the form:

structure  [/ structure-name / ] [record-list ] 
abx-component-def 
[ abx-component-def  ]...
end structure

An abx-component-def is an Fortran 90 component-def-stmt (R426), a structure definition
(structure definitions can contain structure definitions), a record statement, a union d
tion, or a %fill  component. The structure name can be omitted in a structure definiti
and only if that structure definition is an abx-component-def and has a record list. A 
ture-type name can be used in any context legal for a sequence derived-type name.

A %fill  component is a component-def-stmt with a component name of %fill ; such a com-
ponent, which cannot be referenced, serves to “pad” the storage sequence the sp
amount in order to achieve the desired alignment of the other components. For exam

structure /my_struct/
   integer(1) :: first_byte
   integer(1) :: %fill
   integer(2) :: align_second_16
end structure

explicitly puts a padding byte between first_byte  and align_second_16 .

A record is a scalar or array variable having the specified structure type; if it is an arr
may be dimensioned either in the record list or in a dimension statement. A record
able may be declared in the structure definition itself or in a separate record state
specifying the structured-type name (or a sequence derived-type name):

record / structure-name / record-list  [ , / structure-name / record-list ]...

A union defines a data area which is shared by two or more groups of fields and has form

union
map-definition
map-definition ! note that a union must contain at least two map definitions 
[ map-definition ]...
end union

where a map-definition is

map
field-declaration
[ field-declaration ]...
end map



134 Fortran 90/95 Concise Reference

cord
initions
 size of
re def-
quence
, and
tructure

ection
 used
ompo-
y user-

ility
.

 is
s are
ered to
inter

When
ointer

the

cking
A field-declaration is a derived-type component declaration, a structure definition, a re
statement, or a union. A map definition defines a storage sequence and the map def
in a given union definition are storage associated. The storage size of a union is the
its largest map definition. The principal uses of unions are as components in structu
initions and as map fields, but unions may also be used as components in se
derived-type definitions. An object containing a union must not appear in an I/O list
the name of a derived type containing a union must not be used as the name of a s
constructor.

Individual structure type components may be referenced with the % component sel
operator, just as in derived type objects; in addition the dot (decimal point) may be
instead of the % (for both structure types and derived types), but in this case the c
nent names must not be the same as the names of the intrinsic dot operators or an
defined dot operators. For example, given the declarations

type h; sequence; integer t; end type
structure /x/ g; type(h) :: gt; end structure
g%gt%t  ! is a legal reference
g.gt.t  ! is not a legal reference, but would be if "gt" were spelled, say, "tg" instead

A principal rationale for structures and unions is to improve Fortran’s interoperab
with C - structures are equivalent to C structs and unions are equivalent to C unions

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

cray-style pointers. Another important, and widely-implemented, aid to interoperability
a pointer data type, having address values. Note that standard Fortran 90 pointer
attributes, not data types; objects may have the pointer attribute but are not consid
be pointer objects - the term “pointer object” applies to objects of this extended po
type. Declarations of such pointer objects have the form:

pointer ( pointer-name , target )  [ ,  ( pointer-name , target ) ]...

where pointer-name is the name of the pointer variable being declared and target may be
any Fortran object, including a structure component, or an external function name. 
such a pointer is used as a dummy argument, the intent attribute applies to the p
value, not the value of the pointed-to object (if any).

The intrinsic functions loc  and pointer  are added (see below), each of which returns 
address (pointer value) of its argument.

An example serves to illustrate the use of this pointer type; note that strict type-che
of pointer arguments may be relaxed in “unambiguous” cases:



A Fortran 90 Implementation 135

inter-
module  Mytypes  
   type  Rect; sequence  
      integer(2) :: top  
   end type  
   type  Picture; sequence  
      integer(2) :: picSize  
   end type 
end module

module  Mod  
   interface  
   subroutine  drawPicture(h_myPicture, dstRect) 
      use mytypes 
      type(Picture) :: myPicture 
      pointer(p_myPicture, myPicture) ! pointer to a derived-type object
      pointer(h_myPicture, p_myPicture) ! pointer to a pointer
      value :: h_myPicture ! pass the pointer by value
      type(Rect) :: dstRect 
   end subroutine 
   end interface 
end module

subroutine foobar 
   use Mod 
   type(Rect) :: dstRect 
   pointer (p,i) 
   call drawPicture(p,dstRect) ! legal - “p” is a pointer 
   call drawPicture(loc(j),dstRect) ! legal - type of ”loc” is pointer 
   call drawPicture(708089,dstRect) ! error - an integer constant is not a pointer 
end !      (but may compile with a warning) 

Pointer type matching is utilized, however, when resolving references to generic 
faces; for example: 

interface bogus 
   subroutine point_bogus(p) 
      pointer (p,i) 
   end subroutine
   subroutine real_bogus(z) 
      real z 
   end subroutine
   subroutine int_bogus(i)
      integer i
   end subroutine
end interface 
call bogus(0) ! reference to int_bogus 
call bogus(loc(z)) ! reference to point_bogus
call bogus(1.0) ! reference to real_bogus
end



136 Fortran 90/95 Concise Reference

ucture

 being
 refer-
Record statements in a structure definition may specify targets of the type of the str
being defined. For example, the following is legal:

structure /outer / ! but this is illegal:
   record /outer/ pointe e !       structure /outer/ 
   pointer (next, pointee ) !       structure /outer/ pointee
     . . . !          . . .
end structure  !       end structure

All of the records of such record statements (that specify the name of the structure
defined) must appear as targets in pointer declarations in that structure, and forward
ences to subsequent structure definitions are illegal. For example:

structure /outer/ 
  structure /inone/ 
    structure /intwo/ 
      record /outer/ junk  ! legal reference because of... 
      pointer (p_outer, junk)  ! ...this pointer declaration 
    end structure
    record /spaced/ nogood  ! illegal forward reference 
  end structure 
  record /outer/ circle  ! illegal - “circle” is not a pointer target
end structure 
structure /spaced/ 
  integer out 
end structure

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Attribute Extensions. Several attributes are added to the standard set of attributes:

attri bute effect

automatic  variable s are allocated on the stack; incompatible with static, save, and common

static  equivalent to save, but statement form must have an object list

value  applies to dummy arguments - specifies pass-by-value 

volatile  assignments and references occur, even if optimizations have eliminated these objects

stdcall standard calling sequence specified for procedures with this attributea

a. The stdcall attribute keyword can, alternatively, be specified on the function or subroutine
statement, in the same manner as the recursive keyword; stdcall and recursive are mutually
exclusive - either one or the other, or neither, appears. If stdcall appears on a subroutine statement,
the parentheses for the optional dummy argument list must also appear (otherwise the statement
looks like, and is interpreted as, a stdcall attribute statement rather than a subroutine statement). 

dll_import  tags a procedure name as coming from a DLL

dll_export  tags a procedure name as an entry to be exported to a DLL



A Fortran 90 Implementation 137

al way,

t

e

e with-

rnal,
inter-
l argu-

ram-
len=*),
func-

ock.
a-

ation
ith

L, -
es.
These attributes can be specified either in type declarations statements, in the norm
or in attribute statements, with syntax similar to that for the standard attributes:

automatic  [ [ :: ] sym-name-list ] 

static  [ ::  ] sym-name-list 

value  [ :: ] sym-name-list 

volatile  [ [ ::  ] sym-common-name-list ] 

stdcall  [ ::  ] procedure-name-list 

dll_import  [ ::  ] procedure-name-list 

dll_export  [ ::  ] procedure-name-list 

The name list is not required for the automatic  and volatile  statements, and if omitted tha
attribute is applied to all of the local objects in the scope. A sym-name is an object name
and an sym-common-name in the volatile  statement can be either an object name or / com-
mon-name /. The stdcall  attribute can be specified only for external procedure names.

Module objects are inherently static/save, and automatic  (or the stack directive) cannot b
specified within the scope of a module. Otherwise automatic  and static  take precedence
over save without a sym-name-list, the stack directive, and the -ev command-line option.
(Automatic is the same as the stack directive, and the -ev option is the same as sav
out a sym-name-list.) 

The value  attribute is incompatible (must not be used) with these other attributes: exte
intent, intrinsic, optional, parameter, pointer, private, public, save and stdcall. If the 
face of a procedure having a value dummy argument is explicit, all associated actua
ments will be passed by value.

The stdcall  attribute is incompatible with these other attributes: allocatable, intent, pa
eter, pointer, target, save, and value. Stdcall functions cannot be: assumed-length (
variable length (len=n) character functions, array-valued functions, derived-type 
tions, or storage associated in any way. The stdcall  attribute can be applied only to exter-
nal procedure names, but not to: a function name specified in a result  clause, a procedure
name specified by an entry  statement, or a generic name specified in an interface bl
Because stdcall  applies only to external functions, it is incompatible with: data initializ
tion, namelist, statement functions, labels, block data, dll_import, and dll_export.

Stdcall is a platform-dependent extension specifically provided for direct communic
with the Windows Win32™ API; dll_import and dll_export are intended to interface w
DLLs that are not part of the Windows API. See also the compiler options -YI
YDLL_STDCALL, and -YDDL_NAMES for compiler settings regarding these attribut

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊



138 Fortran 90/95 Concise Reference

a

a

a

a

b

b

c

c

c

c

c

c

d

e

fl

i2

i2

i2

i2

i2

i2

ib x

ii

ii

ii

ii

ii

ii

ii

ii
Intrinsic procedure Extensions. 

function purpose Pa Eb

cosd , dacosd c x x

sind , dasind c x x

tand , datand c x x

tand , datan2d c x x

it_size( ref) returns the number of bits in the argument - see below

itest , bjtest specifics for generic btestd x x

arg(expr) same as %val except for character argumentse; actual argument only

dabs , i2abs , iiabs , jiabs  specifics for generic abs x x

lock equivalent to date_and_time

osd , dcosd c x x

otan , dcotan c x x

pu_time( [time= ] real-variable) subroutine; returns the processor time in seconds, as the argument value

ate , jdate  equivalent to date_and_time

of( [unit= ] int-expr) returns .true. if unit is connected atf end of file; .false. otherwise

oati , floatj , dfloti , dflotj  specifics for generic float x x

dim , iidim , jidim  specifics for generic dim x x

max0 , imax0 , jmax0 , imax1 , jmax1 , aimax0 , ajmax0 ;             purpose: specifics for generic max x

min0 , imin0 , jmin0 , imin1 , jmin1 , aimin0 , ajmin0 ;                   purpose: specifics for generic max x

mod , imod , jmod  specifics for generic mod x x

nint , inint , jnint , iidnnt , jidnnt  specifics for generic nint x x

sign,iisign , jisign  specifics for generic sign x x

chng( [inta= ] int-expr, [intb= ] int-expr) returns value of inta with bit intb reversed

and , jiand specifics for generic iandd x x

b clr, jib clr specifics for generic ibcld x x

bits , jibits specifics for generic ibitsd x x

bset , jibset specifics for generic ibsetd x x

eo r, jieor specifics for generic ieord x x

o r, jior specifics for generic iord x x

shft , jishft specifics for generic ishftd x x

shftc , jishftc specifics for generic ishftcd x x



A Fortran 90 Implementation 139

ger
re-type
cture-

im x

in

in x

ir

is x

is x

is x

iz x

lo

ls

p

rs x

s

s

ta

z x

%

%

The bit_size  function is extended from the standard version, which allows only inte
objects as actual arguments; the extended version allows derived-type and structu
names (not objects) as actual arguments as well. In the case of derived-type and stru
type names, the result is the number of bits any object of that type will occupy in memory
at runtime. For example:

type point
   integer(kind=2) :: x, y, z
   integer(kind=1) :: alpha, r, g, b
end type
      . . .
print *, bit_size(Point) ! will output 80 on a Macintosh

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

ag( [z=] complex-expr) same as aimag; may be passed for default kind argument x

ot, jnot specifics for generic notd x x

t2, int4, iifix,  iint, jint, iidint, jidint, iifix, jifix                         purpose: specifics for generic int

tc, rtc equivalent to system_clock

ha( [inta= ] int-expr, [intb= ] int-expr) shift inta the amount specified by intb (positive intb shifts left)

hc( [inta= ] int-expr, [intb= ] int-expr) same as isha, but circular shift

hl( [inta= ] int-expr, [intb= ] int-expr) same as isha, but logical shift

ext, izext2, jzext, jzext2, jzext4 specifics for generic zext x

c, log10 extended so that can be passedd x x

hift( [i=] int-expr, [shift= ] int-expr) same as ishft(i,shift), assuming shift is positive

ointer( ref ) returns address of ref as a default integer value; otherwise same as loc

hift( [inta= ] int-expr, [intb= ] int-expr) same as ishft(i,-shift), assuming shift is positive

ecnds( [x=] real-variable) subroutine; returns the seconds since midnight, as the argument value

ind, dsind c x x

nd, dtand c

ext( int-expr) returns the integer argument with no sign extension

loc( expr) the address of ref is passed; applies only to actual arguments

val(expr) expr is passed by-values; applies only to actual arguments

a. can be used as an actual argument - i.e., can be passed
b. function is elemental
c. for these functions the angle is in degrees rather than radians
d. the generic function may be passed
e. %val(%loc(char-expr // 0)) for character arguments (i.e., address of null-terminated string)
f. error if the unit is not currently connected

function purpose Pa Eb



140 Fortran 90/95 Concise Reference

ubse-

e indi-
oved).

 used

ll;
l in
ts,
Miscellaneous Extensions. 

new open statement specifiers (last two are for the inquire statement)

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

If a character constant is appended with a C, as in "now is the time"C , then (a) a backslash
character (\) in the string is interpreted as an “escape character” that converts the s
quent character(s) in accordance with the following table and (b) appends a null character
(ascii 0) to the end of the string. The intent is to simulate C-style strings.

Any such escape sequence, including the backslash character, is replaced with th
cated character. If a backslash precedes any other character it is ignored (and rem
The -YCSLASH  command-line compiler option allows these escape sequences to be
in any character constant (i.e., not just C-strings).

Subsequent use of the len  intrinsic with a C-string value reflects the addition of the nu
for example, len("now\tis\nthe\ttime"C)  has the value 16. Octal and hex values must fal
the 0-255 (decimal) range, '\'C is illegal, C-strings may not appear in format statemen
and the character constant must be default kind.

specifier effect

form="binary"  can be used only with sequential unformatted files - for stream I/O

action= { "publish" |"subscribe" } for MacOS/MRWE™

access="window [,* ]" for MacOS/MRWE™, the asterisk may be any string, checked at runtime

access="transparent"  same as form="binary", blocksize= default-integer-expr 

blocksize= default-integer-expr in bytes

carriagecontrol= { "Fortran" |"list" }

filetype= character-expr

creator= character-expr

convert= { "big_endian" |"little_endian" }

access= character-variable "transparent"  is a valid return value in the inquire  statement

flen= default-integer-variable returns file length, in bytes, or zero if file is empty or nonexistent

\a audible alarm (BEL, ascii 07) \t horizontal tab (HT, ascii 09)

\b backspace (BS, ascii 08) \v vertical tab (VT, ascii 11)

\f form feed (FF, ascii 12) \xh[h] hexadecimal digit(s), up to 2

\n newline (LF, ascii 10) \oo[o[o]] octal digit(s), up to 3 

\r carriage return (CR, ascii 13) \\ backslash



A Fortran 90 Implementation 141

ments

,

n.

 may

 for
es of
◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Expressions of type integer or pointer may be used as logical expressions in if state
and constructs. The form if ( expr ) in such a context has the meaning if ( (  expr)/=0 ), where
expr is the integer or pointer expression.

Such expressions also can be used in logical assignment statements: logical-variable = expr,
with the (same) effect: logical-variable = (expr)/=0.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The keyword recursive  may be omitted from a directly recursive procedure definition.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The = initialization-expr in a declaration statement may be replaced by / data-stmt-value / if
(and only if) that declaration statement does not contain the ::  separator.

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

The byte  type specifier is added and can be used anywhere the integer  type specifier can be
used; it cannot have a kind value, and is equivalent to integer(1).

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Tabs in columns 1-5 in fixed-form source are interpreted as follows:
- if the next character is a !, the line is a comment line,
- else if the next character is a nonzero digit (1-9) it is a continuation character
- else the next character is the start of a statement.

If the -f alt_fixed  compiler option is in effect, the interpretation is a bit different:
- if the next character is a letter (a-z or A-Z) it is the start of a statement,
- else the next character is in column 6, with the normal fixed-form interpretatio

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

For Absoft compilers running on systems other than Apple MacOS™, symbol names
start with a leading dollar sign ($); for example: subroutine $foo(); end

Implicit typing of $ is default real, and in the implicit statement, $ is ordered after z; e.g.:
implicit integer (a-$)  makes everything in the program type default integer, including,
example, $foobar . (But note that names with leading dollar signs may not be the nam
variables associated with a namelist group.)

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊



142 Fortran 90/95 Concise Reference

rovide
tive
ar

tive,

e), or
ive is
ctive

n the
nions,
e most
 union

align-
ss on

01.

es

,

compiler directives

Compiler directives are placed on (separate) lines in the Fortran source code and p
the compiler with additional information over that in the Fortran code itself. Direc
lines are identified by an initial token, !dir$ , not shown in the following table, and appe
as comment lines. In fixed-form source Cdir$  also identifies a directive line, if the C is in
column 1. All directives, including the directive-identifying token, are case insensi
and ms$  and dec$  are acceptable alternatives to dir$  in all cases; in addition, if (and only
if) the -YMS7D compiler option is specified, the initial token may be simply $ in the first
column for the free [form ], fixed [formlinesize ], nofreeform , and pack  directives, but this
form ($ in column 1) should be considered deprecated.

The packing directives affect the current program unit being compiled (if there is on
the next program unit (when there is no current program unit). The packing direct
reset to the default (packoff) after the end of each program unit. A packing dire
affects only derived-types found below the directive in the source code.

The alignment of any derived-type object (i.e. not its components) is dependent o
highest alignment bound of any component. This holds true for packed structs, u
and maps. A union embedded in a derived type will start on a boundary based on th
restrictive member of the union (i.e. padding may be inserted before the base of a
and all maps will start at the padded boundary).

A component with the pointer attribute has an alignment which is the same as the 
ment the most restrictive of either a natural-word-sized integer or a machine addre
the target machine, regardless of the object type. For example, in type foo; character,
pointer :: p_c; end type  foo has a 32-bit alignment on Pentium™ Pro and PowerPC™ 6

directive effect

attributes attr-list :: sym-list the possible attr values are:

               alias,  C,  reference, stdcall, value, varying,

free [form ] from this point on, source is free-form

nofreeform  from this point on, source is fixed-form

fixed  same as nofreeform

fixedformlinesize : {72|80|132} line length for fixed-form source

name (name="external-name") mapping between internal (Fortran) names and external (e.g., C) namesa

a. The name directive can be applied to external procedure definitions as well as to external procedure nam
(to put Fortran procedures into other language namespaces)..

pack [on ] [ = {1|2|4|mac68K } ] pack[on] and packoff specify that sequenced structure fields be aligned on byte

packoff          even byte, or word (four-byte) boundariesb ; default value is 1 (byte)

b. The mac68k packing is for 68K-Pascal structures, which is character, integer(1), and logical(1) aligned on
byte boundaries; all other objects aligned on even-byte boundaries.

stack  local scalar objects are allocated on the processor stack



A Fortran 90 Implementation 143

UCS

es

es

 

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

command-line compiler options

Compiler options are placed on the command line, following the command name (f90).

option effect

-c [<name>] compile to relocatable object code

-d {a|j|n|p|q|v|B|R} disable options (multiple options can be specified at once)a

-e {a|j|n|p|q|v|B|R} enable options (multiple options can be specified at once); same note as for -d

-f <form> source code format; <form> can be either free , fixed ,  or alt_fixed

-g  produce debugging information for use with the debugger

-I <search-path> identify search path for include files; multiple search paths require multiple -I options

-o <name> specify compiler output file name

-O optimize the program for faster execution speed

-p <file> specify module files and/or directories

-s allocate user declared local variables with save (static) attribute

-v verbose compilation - echo all process commands used to create the output file(s)

-V output version number; can be used without file(s) or other options, for example: f90 -V

-w suppress all warnings

-W <line-length> line length for fixed form source; must be from the set {72,80,132}

-x <directive> disable specified source code directive; possible values are free , fixed , integer , name , stack

-YCHARV=ICHAR %val(char-entity) is passed as: %val(ichar(char-entity(1:1))); 
default is to pass it as %val(%loc(char-entity))

-YCOM_NAMES= {UCS|LCS}          specifies uppercase or lowercase for external common-block names; default is 

-YCOM_PFX [=prefix-string]             specifies prefix (including null) for external common-block names; default is _C 

-YCOM_SFX [=suffix-string]              specifies suffix (including null) for external common-block names; default is null

-YCSLASH= {0|1} if 1, any character constant can contain C-string backslash escapes sequences; default is 0

-YEXT_NAMES={ASIS|UCS|LCS}          specifies the case of external procedure names; default is UCS

-YEXT_PFX [=prefix-string]                      specifies prefix (including null) for external representation of procedure nam

-YEXT_SFX [=suffix-string]                      specifies suffix (including null) for external representation of procedure nam

-YMS7D recognize Microsoft form of source code directive, which is $<directive> with the $ in column 1

-YNDFP=1 disallow use of period for component selection; default is that period can be used in place of%

-YPEI={0|1} 1 (the default) makes the pointer type equivalent to integer; 0 turns this off



144 Fortran 90/95 Concise Reference

ed
\/---------------- MacOS/MPW™-specific options ----------------\/

-launch  launch application after successful compilation

-link <arg> pass <arg> directly to linker 

-mrwe  make an MRWE™ application (the default)

-N9 forces generated code to make very frequent checks for command period

-plainappl  make a plain application (i.e. don’t link MRWE™)

-ppc  target the PowerPC™ architecture (the default)

-share  use shared versions of intrinsic libraries and I/O libraries; default is to use static linkage

-tool  make an MPW™ tool

-z <msg-level> suppress output message by level control (errors, warnings, cautions, notes, comments)b

-Z <msg-number-list> suppress the output of the specified messages (useful for turning off long warning lists)

\/---------------- Wind ows™/PC-specific options ----------------\/

-YDLL_NAMES= {ASIS|UCS|LCS}             default treatment of dll_import/dll_export names (see also -YIL=)

-YDLL_STDCALL= {0|1}                             0 means callee does not pop the argument frame; 1 means the frame is popp

-YIL={AC90,ACC,AC77,MSVC,MSVB,BC,B D,WINAPI}                           for dll_import/dll_export; see below

\/---------------- Unix™-specific options ----------------\/

-l <library> specify library names to linker

-L <path> search path for library names

-m <msg-level> same as -z <msg-level> in the Mac-specific options

-M<msg-number-list> same as -Z <msg-number-list> in the Mac-specific options

-r leave relocation information in file

-S produce an assembly source listing 

-u <sym> force load of specified library name

-YCFRL={0|1} location of character length in argument list; 0 (default) at end of list, 1 after character value

a. The meanings of the -e and -d options are:
a - if enabled compilation will halt after one error is encountered
j - if enabled causes do  loops to execute at least once
n - ANSI warnings generated for nonstandard code
p - if disabled then all double precision  is internally treated as real with default kind
q - if disabled the compiler will continue parsing code after 100 errors

(the default is to stop compilation when the error count reaches 100)
v - specify save  for all local objects in all program units
R - give all functions and subroutines the recursive  attribute
B - disable to run front end only, to check for errors (no object code written)

b. The possible values in the -m<msg-level> and -z<msg-level> options are:
 0 - compiler issues errors, warnings, cautions, notes, and comments

1 - compiler issues errors, warnings, cautions, and notes
2 - compiler issues errors, warnings, and cautions
3 - compiler issues errors and warnings
4 - compiler issues errors

The default value is 3.

option effect



A Fortran 90 Implementation 145

d in
s the
The -YIL= Windows option controls the calling mechanism and name mangling use
the machine code when creating LIB and DLL files. The following table summarize
effect of the various -YIL= option values:
 

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

Trademark acknowledgments: 

Pro Fortran™ is a trademark of Absoft Corporation

MacOS™, MRWE™, and MPW™ are trademarks of Apple Computer

CF90™ is a trademark of Cray Research

VAX/VMS™ are trademarks of Digital Equipment

PowerPC™ is a trademark of IBM Corp used under license

Pentium™ is a trademark of Intel Corporation

Windows™ and Win32™ are trademarks of Microsoft Corporation 

Unix™ is a trademark of Santa Cruz Organization 

◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊    ◊

value call mechanism name manglea

a.  !dir$ name  directive takes precedence

AC90b

b.  AC90 is the default, if the -YIL= option not present

default uppercase

ACC default asis

AC77 default asis

MSVC stdcall (callee pop) asis & @argsize

MSVB stdcall asis

BC stdcall asis

BD stdcall asis

WINAPI stdcall asis & @argsize



146 Fortran 90/95 Concise Reference



A-1

Appendix A

Fortran 95 Features

The Fortran 95 language features of Absoft ProFortran are described in this appendix.
Fortran 95 extends the Fortran 90 language with extensions to existing language features
and the addition of certain new features. These extensions and additions include the WHERE
statement and construct; the FORALL statement and construct; and a number of intrinsic
functions including NULL, CPU_TIME, CEILING, FLOOR, MAXLOC, and MINLOC.

WHERE

The WHERE keyword can be used both as a statement and a construct, similar to the IF
keyword. WHERE is used to perform masked array assignments, applying a logical test to
each element of an array. The syntax of the WHERE statement is:

WHERE ( mask_expr )assign_stmt

where: mask_expr  is a logical array expression

assign_stmt is an array assignment statement. The shape of the
array must be the same as the shape of the array used in the
mask_expr

In the following example, the arcsine function will only be evaluated if the absolute value
of the element of the array a is less than or equal to 1.0.

REAL a(100), b(100)
.
.
.
WHERE (ABS(a) <= 1.0) b = ASIN(a)

The syntax of the WHERE construct is:

[name:] WHERE ( mask_expr )
[where_body_construct]

[ELSEWHERE ( mask_expr ) [name]
where_body_construct]

[ELSEWHERE [name]
where_body_construct]

END WHERE [name]

where: mask_expr  is a logical array expression



A-2 Fortran 95 Features

where_body_construct is an array assignment statement or a
WHERE statement or construct. The shape of all arrays must be the
same as the shape of the array used in the mask_expr

FORALL

The FORALL keyword can be used both as a statement and a structure. It is similar to the
masked array assignment WHERE, but is more general, allowing more array shapes to be
assigned. It is used to perform array assignments, possibly masked, on an element by
element basis. The syntax of the FORALL statement is:

FORALL (triplet_spec [,triplet_spec]É [,mask_expr] )assign_stmt

where: triplet_spec is a triplet specification of an index variable normally
used as an array element index. It has the following form:

index = subscript : subscript [: stride]

where: index is a scalar integer variable. It is valid only with the
scope of the FORALL statement

subscript is a scalar integer expression and may not
contain a reference to any index in the triplet_spec in
which it appears

stride is a scalar integer expression and may not be zero.
If omitted, a default value of 1 is supplied. It. may not
contain a reference to any index in the triplet_spec in
which it appears

mask_expr  is any logical scalar expression, including one which
references an index of a triplet_spec.

assign_stmt is an assignment statement or a pointer assignment
statement.

In the following example, every element of the array a is assigned the value 1.0.

REAL a(100, 100)
.
.
.
FORALL (i=1:100, j=1,100) a(i,j) = 1.0



Fortran 95 Features A-3

The syntax of the FORALL construct is:

[name:] FORALL (triplet_spec [,triplet_spec]É [,mask_expr] )assign_stmt
forall_body_construct

END FORALL [name]

where: triplet_spec is a triplet specification of an index variable normally
used as an array element index. It has the following form:

index = subscript : subscript [: stride]

where: index is a scalar integer variable. It is valid only with the
scope of the FORALL statement

subscript is a scalar integer expression and may not
contain a reference to any index in the triplet_spec in
which it appears

stride is a scalar integer expression and may not be zero.
If omitted, a default value of 1 is supplied. It. may not
contain a reference to any index in the triplet_spec in
which it appears

mask_expr  is any logical scalar expression, including one which
references an index of a triplet_spec.

forall_body_construct is an assignment statement, pointer
assignment statement, WHERE statement or construct, or FORALL
statement or construct.

CPU_TIME

CPU_TIME is subroutine that returns the processor time. The calling sequence is:

CALL CPU_TIME(time)

where: time is a scalar real variable. It an INTENT(OUT) argument that is
assigned a processor-dependent approximation of the processor
time in seconds



A-4 Fortran 95 Features

NULL

Null is a transformational intrinsic function that returns a disassociated pointer. The
referencing sequence is:

NULL ([mold])

where: mold is a pointer of any type. Its association status can be
undefined, disassociated, or associated. If its status is associated, the
target does not have to be defined. If mold is present the result
type is the same as mold; otherwise the result type is determined
by the context

CEILING

CEILING is an elemental intrinsic function that returns the smallest integer greater than or
equal to its argument. The referencing sequence is:

CEILING (a [,kind])

where: a is of type real

kind is a scalar integer initialization expression

FLOOR

FLOOR is an elemental intrinsic function that returns the greatest integer less than or equal
to its argument. The referencing sequence is:

FLOOR (a [,kind])

where: a is of type real

kind is a scalar integer initialization expression

MAXLOC

MAXLOC is a transformational intrinsic function that returns the maximum value of the
elements in an array, a set of the array elements, or along a specified array dimension. The
referencing sequence is:

MAXLOC (array [,dim] [,mask])



Fortran 95 Features A-5

where: array is an array of type integer or real

dim is a scalar integer that must be less than or equal to the rank of
the array

mask is a logical array and must be conformable with array

MINLOC

MINLOC is a transformational intrinsic function that returns the value of the elements in an
array, a set of the array elements, or along a specified array dimension. The referencing
sequence is:

MAXLOC (array [,dim] [,mask])

where: array is an array of type integer or real

dim is a scalar integer that must be less than or equal to the rank of
the array

mask is a logical array and must be conformable with array



Index 147

Index
A
Absoft, miscellaneous extensions 140
allocatable array 33
argument association 77, 79

actual argument 79
argument intent 81
argument keyword 79, 81
array element order 80
array element sequence association 79
assumed-length dummy argument 79
assumed-shape dummy argument 79
assumed-size dummy argument 79
dummy argument 79
dummy procedure 81
explicit-shape dummy argument 79
for derived types 80
for equivalent types 80
preventing nondeterminism 80
type/kind match 79

array 25
allocatable arrays 33
allocation status 33
array-valued expressions 25
array-valued functions 26, 35
assignment 25, 27
assumed size (deprecated) 45
assumed-shape dummy arguments 30
automatic arrays 33
broadcast, of scalars 26
computation functions 87
conformable, conformability 25, 26
constant 27
constructor 25
constructors 27
dimensions 11
element 30
element order 80
element-by-element operations 25, 26
example, Gauss elimination 37
example, picture refinement 36
implied-do, in constructors 27
inquiry functions 25, 85
lower bound 11
mask 28
masked array assignment (where) 28
pointer arrays 33, 34
rank 26

reduction operations 25
reshape, of a constructor 28
scalar subscript 31
section 30
shape 25
subscript 31
triplet subscript 31
upper bound 11
vector subscript 31, 32
whole array operations 25

assignment
array 27
character 15
masked array 28
numeric 14

assignment statement 4
assumed-shape dummy arguments 30
attribute extensions 136
attribute statements 3, 41
attributes

allocatable 12, 33
compatiblity between 12
dimension 12
external 12
intent 12
intrinsic 12
of data objects 12
optional 12
parameter 12, 13, 27
pointer 12, 34
private 12
public 12
save 12, 13, 33
target 12, 34

B
bit

computation functions 87
intrinsic functions 6
pseudo data type 6
role of logical 9

block data 2, 40, 43
BNF, syntax rules 1

C
character data type 9



148 Fortran 90 Concise Reference
assignment 15
computation functions 86
computations 15
concatenation 15
constant 9
expression 15
intrinsic functions 10
kind 9
length 9
operator 9
strings 9
substring 15

character storage unit 23, 40
comment initiation 4, 45
common blocks 39
common, blank 40
common, named 40
compilation unit 2
compiler directives, Absoft 142
compiler options, Absoft 143
complex data type 8

comparison of values 8
constant 8
imaginary part 8
kind 8
numeric computation functions 86
operators 8
real part 8

components, of derived data types 17
computation

character 15
complex 8
integer 6
logical 9
real 7

concatenation, character 15
constant

array 27
character 9
complex 8
double precision 8
integer 5
logical 8
named 13
real 7

constraints, on syntax 1
constructs

case (select) 63, 64
case default 65
do - end do, with labels 65
do - end do, without labels 65

do construct, original (no end do) 65
if (and else if, else, end if) 63
indexed loops 65
logical expressions in 63
loop cycling 67
loop exits 67
loops with exit 65
select (case) 63, 64
where 29
while loops 65

control edit descriptors 52

D
data edit descriptors 51
data type

character 9
complex 8
double precision 8
integer 5
logical 8
real 7

declaration 10
data type 10
implicit 16

defined assignment 83
defined operator 22, 75, 82
delimiters, of syntax elements 4
deprecated features 43

alternate return 44
arithmetic if 44
assign and assigned goto 44
assumed-size arrays 45
branch to end if (from outside) 43
character(*) function results 45
character* type specifier 45
computed goto 44
data statements in the execution part 45
do control variables of type real 43
double precision type 10
fixed source form 45
H edit descriptor 44
shared do termination 44
statement functions 44
the pause statement 44

derived data type
sequenced structure 40

derived data types 17
component 17
component definition 17
component selection 18, 19
constant 19
data abstraction, used for 18



Index 149
defined operators for 22
definition 17
equivalent types 23
input, output 21
object-oriented programming, aspects of 18
operators, expressions 21
pointer component 17
private types 22
record structure 18
sequence type 23

character 23
numeric 23

structure constructor 20
structured objects 18
type specifier 18

do construct (see constructs) 65
double precision data type 8

constant 8
kind 8
numeric computation functions 86
type deprecated 10

dynamic arrays 33
dynamic structures 17

E
elemental procedure (see procedures) 84
end-of-line comments 2
environmental intrinsic functions 7
equivalence 40
example style 1
execution part, of a program unit 4
explicit procedure interface 30, 75
expression 4

character 15
evaluation order 6
logical 63

external procedure (see procedures) 75
external subprogram 2, 3

F
file, for data (see input/output) 56
file, for program compilation 2
fixed-form source 45
free-form source 2
function (see procedures) 75

G
generic procedure (see procedures) 83
global entities 3, 39

H
host association 77

I
IEEE floating point 7
imaginary part, of a complex value 8
implicit

declaration 16
none 16
statement 16
type environment 3, 16
typing 16

implicit procedure interface 75
include line 3
initial value specification 11
initialization expression 11
input/output

control edit descriptors 50, 52
data edit descriptors 50, 51
data input 47
data output 47
direct (random) files 54, 56
end of file (EOF) 48
end of record (EOR) 47
end= and eor= 58
end= and err= 48
end-of-record (EOR) 58
file (unit) connection - open 48, 53
file (unit) disconnection - close 54
file (unit) reconnection 54
file close 53
file connection properties 53
file inquiry 55
file inquiry options 55
file open 53
file position 56
format 47, 50
format specification 50
input control specifiers 47
input list 47
internal files (data conversion) 58
io-control-list 50
keyboard input 48
list-directed 48
list-directed I/O 60
name-directed (namelist) 61
namelist 61
namelist group name 61
nonadvancing 47
partial-record (nonadvancing) 47
partial-record (nonadvancing) I/O 57
random (direct) files 54, 56



150 Fortran 90 Concise Reference
records 47
repeat factor, for edit descriptors 52
repeat factor, for input values 60
scratch files 54
sequential files 54, 56
status variable (iostat=) 47
unformatted 48, 50
unit 47, 53
value separators 60

int 8
integer

operators 6
integer data type 5

constant 5
expressions 6
kind 5
numeric computation functions 86

integer division 6
intent specifier 42
interface block 75, 82
interfaces, procedure 75
internal procedure (see procedures) 75
intrinsic data types 5
intrinsic functions

abs 91
achar 91
acos 91
adjustl 92
adjustr 92
aimag 92
aint 92
all 92
allocated 33, 92
alphabetical listing 88
anint 92
any 92
array inquiry functions 85
asin 93
associated 34, 93
atan 93
atan2 93
bit computation functions 6, 87
bit_size 93, 139
btest 93
ceiling 94
char 94
character computation functions 10, 86
cmplx 8, 14, 94
conjg 8, 94
conversion functions 85
cos 94
cosh 94

count 94
cshift 35, 95
date_and_time subroutine 95
dble 95
digits 7, 95
dim 95
dot_product 96
dprod 96
eoshift 96
epsilon 96
exp 96
exponent 96
extensions 138
floor 97
fraction 97
huge 5, 97
iachar 97
iand 97
ibclr 97
ibits 97
ibset 97
ichar 98
ieor 98
index 98
int 8, 14, 98
ior 98
ishft 98
ishftc 99
kind 5, 7, 8, 11, 14, 99
lbound 99
len 99
len_trim 99
lge 99
lgt 99
lle 100
llt 100
log 100
log10 100
logical 100
matmul 100
max 100
maxexponent 101
maxloc 101
maxval 101
merge 101
min 101
minexponent 101
minloc 102
minval 102
miscellaneous inquiry functions 85
mod 102
modulo 102
mvbits subroutine 102
nearest 102



Index 151
nint 102
not 103
numeric computation functions 86
numeric environmental 7
numeric inquiry functions 85
pack 103
precision 103
present 81, 103
product 25, 103
radix 7, 103
random_number subroutine 103
random_seed subroutine 104
range 5, 104
real 8, 14, 104
repeat 104
reshape 11, 27, 28, 104
rrspacing 105
scale 105
scan 105
selected_int_kind 105
selected_real_kind 105
selected-int-kind 5
selected-real-kind 7
set_exponent 105
shape 25, 105
sign 106
sin 106
sinh 106
size 25, 33, 106
spacing 106
spread 38, 106
sqrt 107
sum 107
system_clock subroutine 107
tan 107
tanh 107
tiny 5, 107
transfer 11, 108
transpose 108
trim 108
ubound 108
unpack 108
verify 108

intrinsic procedure 75
intrinsic procedure extensions 138
intrinsic subroutine 85
iostat values for EOF and EOR 131
iostat values for error conditions 131

K
kind 8, 11

specification 10

type parameter 5
kind values (for Absoft implementation) 131

L
length specification, character 10
logical data type 8

constant 8
default kind 8
expressions 9
operators 9

loop construct (see constructs) 65

M
main program 2, 3, 75
mixed-mode numeric computations 14
module 2, 3, 69

alternative to common blocks 40
applications, data abstraction 73
applications, global entities 71
applications, procedure interfaces 71
applications, procedure libraries 71
applications, user-defined types 72
general structure of 69
module procedures 75
rename of entities 70
use association 77
using a module 69
using selective parts of (use...only) 69

module procedure (see procedures) 75

N
named constants, parameter attribute 13
name-directed I/O (namelist) 60
numeric storage unit 8, 23, 40

O
operator precedence 6
output (see input/output) 47

P
parameter attribute, named constants 13
parent string 15
pass by value 137
pointer array 33
pointer data type (Absoft extension) 134
procedures 75

argument association 77, 79
arguments (see argument association) 79
array computation functions 87
array inquiry functions 85



152 Fortran 90 Concise Reference
assignment interface 83
bit computation functions 87
call, call statement 75
character computation functions 86
common association in 77
conversion functions 85
defined assignment 83
defined operator 82
dummy procedure 81
elemental 84
entry statement 84
explicit interface 75
external 75
function 75, 76
function result value 76
generic procedure 83, 84
generic resolution rules 84
host association 77
host association, implicit typing in 78
implicit interface 75
interface 75
interface block 75, 82
internal 75
internal subprogram part 75
intrinsic (see intrinsic functions) 75
intrinsic procedures (listing) 88
intrinsic subroutines 87
invocation 75
miscellaneous inquiry functions 85
module 75
new operators defined by 75
numeric computation functions 86
numeric inquiry functions 85
optional argument 81
recursive 75, 76
statement function 84
subroutine 75
subroutine call 76
use association in 77

program units 2

R
real 8
real data type 7

constant 7
expressions 7
kind 7
numeric computation functions 86
numeric inquiry functions 85
operators 7

real part, of a complex value 8
record structure 17

recursive dynamic structures 17
recursive procedure 75
relational operation 6
repeat factor, in data statements 42
return statement 84

S
specification expression, in declaring arrays 33
specification part, of a program unit 3
statement

computed goto 44
entry 84
equivalence 40
implicit 16

statement continuation 2, 4, 45
statement function 4
statement label 45
statement separation 2, 4
statements 2

allocatable 42
allocate 33, 34
assign and assigned goto 68
assignment 4
attribute statement extensions 136
backspace 56
call 75, 76
common 39, 40, 43
computed goto 68
continue 68
cycle 67
data 42, 43, 45
deallocate 33
dimension 42, 43
endfile 56
equivalence 43
exit 67
external 42
format 48
go to 63
goto 67
if

arithmetic 44, 68
logical 64

implicit 78
implicit none 78
inquire 55
intent 42
intrinsic 42, 43
namelist 61
open 48, 53
optional 42



Index 153
parameter 42, 43
pointer 42, 43
private 42
public 42
read 44, 47
return 84
rewind 56
save 40, 42, 43
statement function 84
stop 68
target 42, 43
use 43, 69
write 47, 49

statements (see also constructs) 4
storage association 39
storage unit

character 23, 40
numeric 8, 23, 40
unspecified 40

structure constructor 20
structure type (Absoft extension) 133
style, in examples 1
subroutine (see procedures) 75
subscript (see array) 31
substring (see character data type) 15
syntax rules 1, 109

control structures (R801-844) 122
data types (R401-435) 113
declarations and attributes (R501-549) 115
expressions (R701-743) 119
general structure (R201-216) 109
I/O formatting (R1001-1017) 126
input and output (R901-924) 124
procedures (R1201-1226) 128
program units (R1101-1112) 127
tokens (names, operators, etc.) R301-313

112
variables (R601-631) 118

T
type declaration 10
type specifier 10

U
use association 77
user-defined

operators 75
operators for derived types 22
types 17

V
value, pass by 137
variable 4



154 Fortran 90 Concise Reference
syntax terms
access-id 116
access-spec 116
access-stmt 116
ac-do-variable 115
ac-implied-do 115
ac-implied-do-control 115
action-stmt 111
action-term-do-construct 123
actual-arg 129
actual-arg-spec 128
ac-value 115
add-op 112, 120
add-operand 120
allocatable-stmt 117
allocate-lower-bound 119
allocate-object 119
allocate-shape-spec 119
allocate-stmt 119
allocate-upper-bound 119
allocation 119
alphanumeric-character 112
alt-return-spec 129
and-op 113, 120
and-operand 120
arithmetic-if-stmt 124
array-constructor 115
array-element 119
array-section 119
array-spec 116
assigned-goto-stmt 124
assignment-stmt 121
assign-stmt 124
assumed-shape-spec 116
assumed-size-spec 116
attr-spec 115
backspace-stmt 125
binary-constant 114
blank-interp-edit-desc 127
block 122
block-data 110, 128
block-data-stmt 128
block-do-construct 123
boz-literal-constant 113
c 127
call-stmt 128
case-construct 122
case-expr 122
case-selector 122
case-stmt 122
case-value 122
case-value-range 122
character 112

char-constant 112
char-expr 121
char-initialization-expr 121
char-length 116
char-literal-constant 114
char-selector 116
char-string-edit-desc 127
char-variable 118
close-spec 124
close-stmt 124
common-block-object 118
common-stmt 118
complex-literal-constant 114
component-array-spec 115
component-attr-spec 115
component-decl 115
component-def-stmt 115
computed-goto-stmt 124
concat-op 112, 120
connect-spec 124
constant 112
constant-subobject 120
contains-stmt 129
continue-stmt 124
control-edit-desc 127
cycle-stmt 123
d 127
data-edit-desc 126
data-i-do-object 117
data-i-do-variable 117
data-implied-do 117
data-ref 118
data-stmt 117
data-stmt-constant 117
data-stmt-object 117
data-stmt-repeat 117
data-stmt-set 117
data-stmt-value 117
deallocate-stmt 119
declaration-construct 110
default-char-expr 121
default-char-variable 118
default-int-variable 118
default-logical-variable 118
deferred-shape-spec 116
defined-binary-op 113, 121
defined-operator 113
defined-unary-op 113, 120
derived-type-def 114
derived-type-stmt 115
digit-string 113
dimension-stmt 117
do-block 123
do-body 123

do-construct 122
do-stmt 123
do-term-action-stmt 123
do-term-shared-stmt 123
do-variable 123
dummy-arg 129
e 127
else-if-stmt 122
else-stmt 122
elsewhere-stmt 121
end-block-data-stmt 128
end-do 123
end-do-stmt 123
endfile-stmt 125
end-function-stmt 129
end-if-stmt 122
end-interface-stmt 128
end-module-stmt 128
end-program-stmt 127
end-select-stmt 122
end-subroutine-stmt 129
end-type-stmt 115
end-where-stmt 121
entity-decl 116
entry-stmt 129
equivalence-object 118
equivalence-set 118
equivalence-stmt 118
equiv-op 113, 121
equiv-operand 120
executable-construct 111
executable-program 109
execution-part 110
execution-part-construct 110
exit-stmt 123
explicit-shape-spec 116
exponent 114
exponent-letter 114
expr 121
extended-intrinsic-op 113
external-file-unit 124
external-stmt 128
external-subprogram 109
file-name-expr 124
format 125
format-item 126
format-specification 126
format-stmt 126
function-reference 128
function-stmt 129
function-subprogram 109, 129
generic-spec 128
goto-stmt 123
hex-constant 114



Index 155
hex-digit 114
if-construct 122
if-stmt 122
if-then-stmt 122
imag-part 114
implicit-part 110
implicit-part-stmt 110
implicit-spec 117
implicit-stmt 117
initialization-expr 121
inner-shared-do-construct 123
input-item 125
inquire-spec 126
inquire-stmt 125
int-constant 112
intent-spec 116
intent-stmt 116
interface-block 128
interface-body 128
interface-stmt 128
internal-file-unit 124
internal-subprogram 110
internal-subprogram-part 110
int-expr 121
int-initialization-expr 121
int-literal-constant 113
intrinsic-operator 112
intrinsic-stmt 128
int-variable 118
io-control-spec 125
io-implied-do 125
io-implied-do-control 125
io-implied-do-object 125
io-unit 124
k 127
keyword 129
kind-param 113
kind-selector 116
label 113
label-do-stmt 123
length-selector 116
letter-spec 117
level-1-expr 120
level-2-expr 120
level-3-expr 120
level-4-expr 120
level-5-expr 120
literal-constant 112
logical-expr 121
logical-initialization-expr 121
logical-literal-constant 114
logical-variable 118
loop-control 123
lower-bound 116

m 127
main-program 109, 127
mask-expr 121
module 109, 127
module-procedure-stmt 128
module-stmt 128
module-subprogram 110
module-subprogram-part 110
mult-op 112, 120
mult-operand 120
n 127
name 112
named-constant 112
named-constant-def 117
namelist-group-object 118
namelist-stmt 118
nonblock-do-construct 123
nonlabel-do-stmt 123
not-op 113, 120
nullify-stmt 119
numeric-expr 121
octal-constant 114
only 128
open-stmt 124
optional-stmt 116
or-op 113, 120
or-operand 120
outer-shared-do-construct 123
output-item 125
parameter-stmt 117
parent-string 118
part-ref 119
pause-stmt 124
pointer-assignment-stmt 121
pointer-object 119
pointer-stmt 117
position-edit-desc 127
position-spec 125
power-op 112, 120
prefix 129
primary 119
print-stmt 125
private-sequence-stmt 114
program-stmt 127
program-unit 109
r 126
read-stmt 125
real-literal-constant 114
real-part 114
rel-op 112, 120
rename 128
return-stmt 129
rewind-stmt 125
saved-entity 117

save-stmt 117
section-subscript 119
select-case-stmt 122
shared-term-do-construct 123
sign 113
signed-digit-string 113
signed-int-literal-constant 113
sign-edit-desc 127
signed-real-literal-constant 114
significand 114
specification-expr 121
specification-part 110
specification-stmt 110
stat-variable 119
stmt-function-stmt 129
stop-code 124
stop-stmt 124
stride 119
structure-component 119
structure-constructor 115
subobject 118
subroutine-stmt 129
subroutine-subprogram 109, 129
subscript 119
subscript-triplet 119
substring 118
substring-range 118
target 121
target-stmt 117
type-declaration-stmt 115
type-param-value 116
type-spec 115
underscore 112
upper-bound 116
use-stmt 128
variable 118
vector-subscript 119
w 127
where-construct 121
where-construct-stmt 121
where-stmt 121
write-stmt 125



156 Fortran 90 Concise Reference


	Contents
	Preface
	1 Program Structure
	syntax
	program units
	statements

	2 Intrinsic Data Types
	integer data type
	real data type
	complex data type
	logical data type
	character data type
	declarations
	attributes
	save
	parameter
	numeric computations
	character computations
	implicit declaration

	3 User-defined Data Types
	derived-type definitions
	derived-type objects
	structure constructors
	derived-type operators
	private types
	sequence types

	4 Arrays
	array-valued expressions
	conformability and element-by-element computation
	array constants - array constructors
	masked array assignment
	assumed-shape dummy arguments
	array elements and sections
	dynamic arrays
	array-valued functions
	example - picture refinement
	example - Gaussian elimination

	5 Redundancy
	common blocks
	equivalence
	attribute statements
	block data program unit
	deprecated features

	6 Input/Output
	inputting data (read)
	outputting data (write)
	data formats
	opening and closing files
	file inquiry
	sequential and random files
	partial-record (nonadvancing) I/O
	list-directed and name-directed I/O

	7 Control Structures
	if construct
	case construct
	do construct
	goto statements

	8 Modules
	module structure
	module use
	module applications

	9 Procedures
	subroutines
	functions
	host association
	procedure arguments and argument association
	interface blocks
	generic procedures
	return statement
	statement functions
	entry statements
	intrinsic procedures
	numeric inquiry functions
	array inquiry functions
	miscellaneous inquiry functions
	conversion functions
	numeric computation functions
	character computation functions
	bit computation functions
	array computation functions
	intrinsic subroutines
	alphabetical listing of intrinsic procedures


	10 Intrinsic Procedures
	11 Syntax Rules
	general structure (R201-216)
	tokens (names, operators ...) R301-313
	data types (R401-435)
	declarations and attributes (R501-549)
	variables (R601-631)
	expressions (R701-743)
	control structures (R801-844)
	input, output (R901-924)
	I/O formatting (R1001-1017)
	program units (R1101-1112)
	procedures (R1201-1226)

	12 A Fortran 90 Implementation
	implementation-dependent values
	language extensions
	compiler directives
	command-line compiler options

	Appendix A: Fortran 95 Features
	WHERE
	FORALL
	CPU_TIME
	NULL
	CEILING
	FLOOR
	MAXLOC
	MINLOC

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	syntax terms


