

Absoft Fx3 Debugger

Fx3 User Guide

Absoft Fx3 Debugger
Fx3 User Guide

 2781 Bond Street
 Rochester Hills, MI 48309
 U.S.A.
 Tel (248) 853-0095
 Fax (248) 853-0108
 support@absoft.com

All rights reserved. No part of this publication may be reproduced or used in any form by any means, without the prior written
permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE AND RELIABLE.
HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF WARRANTIES WITH RESPECT TO
THE PROGRAM MATERIAL DESCRIBED HEREIN AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, ABSOFT
RESERVES THE RIGHT TO REVISE THE PROGRAM MATERIAL AND MAKE CHANGES THEREIN FROM
TIME TO TIME WITHOUT OBLIGATION TO NOTIFY THE PURCHASER OF THE REVISION OR CHANGES. IN
NO EVENT SHALL ABSOFT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE PURCHASER'S USE OF THE PROGRAM MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with RESTRICTED
RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at 252.227-7013. The contractor is Absoft Corporation,
2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. ABSOFT AND ITS LICENSOR(S) DO NOT
WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF
THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY,
CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY
SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE LIABLE TO YOU FOR
ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE
USE OR INABILITY TO USE THE SOFTWARE EVEN IF ABSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY
FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Absoft
and its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of the form of the action (whether
in contract, tort, (including negligence), product liability or otherwise), will be limited to $50.

Absoft, the Absoft logo, Fx, Fx3, Pro Fortran, and MacFortran are trademarks of Absoft Corporation
Apple, the Apple logo, Velocity Engine, OS 9, and OS X are registered trademarks of Apple Computer, Inc.
AMD64 and Opteron are trademarks of AMD Corporation
CF90 is a trademark of Cray Research, Inc.
IBM, MVS, RS/6000, XL Fortran, and XL C/C++ are trademarks of IBM Corp.
Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MS-DOS is a trademark of Microsoft Corp.
Pentium, Pentium Pro, and Pentium II are trademarks of Intel Corp.
PowerPC is a trademark of IBM Corp., used under license.
Sun and SPARC are trademarks of Sun Microsystems Computer Corp.
UNIX is a trademark of the Santa Cruz Operation, Inc.
Windows 95/98/NT/ME/2000 and XP are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 1991-2006 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America. 1.0110906

The Fx3 Debugger..1
Introduction To Fx3 ... 1

How To Use This Manual.. 1
Preparing For Debugging... 2

Compiler Options... 2
Starting a Debugging Session .. 2

Debugging Concepts.. 5
Getting Started ... 5
Single Stepping .. 6
Using Breakpoints.. 6
Displaying Variables.. 8
Changing Variables.. 9
Debugging Hints .. 10

Fx3 Menus and Windows .. 11
File Menu... 11

Open… (Ctrl+O) ... 11
Close (Ctrl+W) .. 11
Quit .. 11

View Menu.. 11
Find… (Ctrl+F) ... 11
Find Next (Ctrl+6)... 12
Go to Line… (Ctrl+L)... 12
Up (Ctrl+U) ... 12
Down (Ctrl+D)... 12
Current Line (Ctrl+P) .. 12

Debug Menu... 13
Continue (Ctrl+J) .. 13
Restart (F8) .. 13
Stop .. 13
Kill (Ctrl+K) .. 13
Unload.. 13
Step Into (Ctrl+I) ... 13
Step Over (Ctrl+S) .. 14
Return (Ctrl+R) ... 14
Run To Selection (Ctrl+T)... 14
Instruction Step Into (Ctrl+Shift+I) .. 14
Instruction Step Over (Ctrl+Shift+S) ... 14
Enable/Disable Breakpoint .. 14
Clear All Breakpoints .. 14

Executing Fx3 Commands During Initialization ... 15
About .Fx3init .. 15
About Startup Scripts... 15
A sample startup script... 15

Debugging in the command window ... 16
Examining Program Source Code.. 16

Using the view command... 16

Examining the Stack .. 16
Executing Your Program ... 17

Resuming Program Execution ... 17
Executing Single Statements.. 18
Returning From Procedures ... 18
Restarting Program Execution ... 19

Using Breakpoints to Stop Program Execution ... 19
Setting Breakpoints.. 19
Executing Commands When A Breakpoint Occurs... 20
Using Breakpoint Conditions... 21
Using Breakpoint Ignore Counts ... 21
Disabling and Enabling Breakpoints ... 22
Removing Breakpoints... 22

Displaying the Values of Variables ... 23
Displaying Simple Variables ... 23
Displaying Arrays .. 23
Displaying User Defined Types... 24
Using the Expression Analyzer.. 24
Watching The Values of Variables .. 25
Changing the Values of Variables ... 25

Command Arguments .. 26
Identifier Scoping... 26

Implicit Scoping... 26
Specifying Symbols ... 27

Symbol Names ... 27
FORTRAN Symbols.. 27

FORTRAN Data Types.. 27
FORTRAN Subroutines and Functions ... 28
FORTRAN Common Blocks... 28
FORTRAN Local Variables and Procedure Arguments.. 28
FORTRAN Array Indexing ... 28
FORTRAN Character Substrings .. 28

C Symbols.. 29
C Data Types.. 29
C Functions .. 29
C Extern Variables... 29
C Static Variables .. 29
C Automatic Variables... 30
C Array Indexing and Pointer Dereferencing .. 30
C Structure and Union Members ... 30

Specifying Constants ... 31
Integer Constants ... 31
Decimal Constants ... 31
Octal Constants .. 31
Hexadecimal Constants.. 31
Floating Point Constants .. 31

Complex Constants .. 32
Character String and C Character Constants ... 32

Specifying Registers .. 32
Expression Interpretation ... 33

Current Expression Language.. 33
Default Expression Language .. 33
Supported Language Operators.. 33
FORTRAN Operators .. 33
C Operators .. 34
Value Expressions.. 34
Address Expressions .. 34
Operand Interpretation ... 34

Command Reference ...1
addpath Specifying source file search paths... 2
addressof Displaying the address of a symbol ... 3
alias Specifying command abbreviations ... 4
attach Attaching to currently running processes .. 5
break Setting breakpoints on code locations ... 6
catch Stopping execution on C++ exceptions ... 7
clear Removing breakpoints by address ... 8
codebreak Setting breakpoints on code locations ... 9
commands Adding commands to a breakpoint .. 10
condition Adding a condition to a breakpoint ... 11
continue Resuming program execution .. 12
core Debugging using a core file ... 13
cycle Skipping commands in a loop .. 14
databreak Stopping execution when data value changes.. 15
delete Removing breakpoints by breakpoint id .. 17
deletepath Removing source file search paths .. 18
detach Stopping a debug session on an attached process ... 19
disable Deactivating program breakpoints or auto-display expressions................................... 20
disasm Displaying disassembled machine instructions ... 21
display Creating an auto-display expression ... 22
down Specifying the active stack frame ... 23
dump Displaying program memory ... 24
enable Activating program breakpoints or auto-display expressions 25
exit Terminating execution of a command loop.. 26
filestatus Displaying FORTRAN I/O unit information .. 27
frame Specifying current stack frame... 28
handle Controlling signal actions.. 29
if Conditionally executing debugger commands ... 30
info Displaying information about the current debugging session ... 31
istepinto Executing single instructions ... 32
istepover Executing single instructions ... 33
jump Resuming execution at a different address .. 34
kill Terminating process execution .. 35

list args Displaying procedure arguments... 36
list breakpoints Displaying program breakpoints.. 37
list canbreak Displaying executable source lines .. 38
list classes Displaying C++ class names... 39
list entries Displaying entry point information.. 40
list frame Displaying the active stack frame .. 41
list functions Displaying program functions and procedures ... 42
list globals Displaying global symbol information... 43
list locals Displaying local variable information... 44
list members Displaying C++ class member information.. 45
list objects Displaying process object information .. 46
list processes Displaying processes under debugger control .. 47
list signals Displaying current signal status .. 48
list source Displaying source file information .. 49
list statics Displaying static variable information .. 50
list symbols Display process data symbol information ... 51
list threads Displaying process thread information ... 52
list types Displaying symbol types .. 53
load Loading a program into the debugger ... 54
print Displaying program variables ... 55
printarray Displaying the contents of arrays .. 56
quit Ending a debugging session... 57
read Reading commands from a file .. 58
registers Displaying hardware registers .. 59
return Returning from the current subroutine .. 60
run Restarting program execution.. 61
set Changing variable values .. 62
signal Resuming execution with a specific signal... 63
stacktrace Displaying a stack trace... 64
stepinto Executing single source statements ... 65
stepover Stepping over procedure calls ... 66
stop Stopping process execution.. 67
tbreak Setting a temporary breakpoint ... 68
thread Specifying the active thread ... 69
typeof Displaying the type of a symbol ... 70
until Resuming execution until a specified location... 71
up Specifying the active stack frame ... 72
use Specifying the active process ... 73
view Displaying program source code... 74
while Executing debugger commands in a loop .. 75
x Displaying program memory ... 76

Appendix A Debugging On Windows..77

Appendix B Debugging On Macintosh ...79

Appendix C Debugging On Linux ..81

Appendix D Fx3 Control Variables...83

1

The Fx3 Debugger

INTRODUCTION TO FX3
Fx3 is a multi-language, source-level symbolic debugger designed to meet the needs of
both the casual and the professional programmer alike. It provides standard debugging
capabilities such as breakpoints, stack trace, and variable display. Fx3 fully supports
Fortran 90/95, FORTRAN 77, C, and C++.

A debugger is a fundamental programming tool that is used to achieve a specific end. Fx3
is extremely easy to use and operates like any other program for your computer. There
are no special graphical conventions to learn or Control and Alt key sequences to
remember. Fx3 commands do exactly what you expect them to do. The depth of detail
presented in the debugger is completely within your control.

How To Use This Manual

This manual has been designed to allow you to obtain the specific information you will
need for effective debugging as quickly as possible. The following descriptions of the
remaining sections will direct you to the sections necessary for your particular needs.

• Preparing For Debugging

This section begins by describing how to compile and link your program with
symbolic debugging information and start a debugging session.

• Basic Debugging Concepts

This section presents basic debugging concepts such as viewing source code,
executing your program in the debugger, using breakpoints and displaying variables
and other program information.

• Using Fx3

This section presents the graphical interface elements of Fx3.

• Command Arguments

This section provides details on specifying Fx3 command arguments. It discusses
scooping issues, allowed constant formats, and symbol names.

• Command Reference

This section describes all available Fx3 commands.

• Appendices

The appendices discuss system operating system specific debugging information..

PREPARING FOR DEBUGGING
This section describes how to prepare your program for debugging with Fx3 and how to
begin a debugging session. It also introduces the use of breakpoints, single stepping, and
examining variables.

Source level debugging with Fx3 (or any debugger) requires that the symbolic
information contained in the original source file be available to the debugger. Normally,
this information is used only by the compiler during the early stages of parsing and
lexical analysis and is then discarded after the object file has been created. Preparing a
program for debugging consists primarily of setting the required compiler and linker
options to create a file that preserves the symbol and line number information.

Compiler Options

Use the -g option with any Absoft compiler to direct the compiler to add symbol and line
number information to the object file. This option must be enabled for each source file
that you will want to have the source code displayed for while debugging. It is not
required for files that you are not interested in. See the Appendices for specific
information on your operating system.

It is recommended that all optimization options be disabled while debugging. This is
because the optimizers can greatly distort the appearance and order of execution of the
individual statements in your program. Code can be removed or added (for loop
unrolling), variables may be removed or allocated to registers (making it impossible to
examine or modify them), and statements may be executed out of order.

Starting a Debugging Session

The Fx3 debugger is launched just like any other application on your system. You can
double click on the Fx3 icon or type Fx3 in a shell command prompt.

When you invoke the Fx3 debugger, you can specify options will control the actions that
will occur during Fx3 initialization as well as the name of the program you wish to debug
and any arguments you wish to pass to this program when it is executed.

The syntax for invoking the Fx3 command line debugger is as follows:

Fx3 {Fx3 options} {program name} {“program argument list”}

where Fx3 options are used to control the initial state of your debugging session.
These options all begin with a ‘-‘ character and must precede the name of the
program you wish to debug. Valid Fx3 options are:

-noFx3init suppresses reading and executing any .Fx3init files.

-nodefaultaliases suppresses processing of Fx3’s built-in command aliases.

-noFx3aliases suppresses reading and processing of any .Fx3alias files.

-s startup_script causes Fx3 to read and process a file of user specified
commands during initialization.

Program name is the name of the program to start debugging. The specified
program must exist in the current working directory or include a full or partial
path to the directory where the program is located.

Program argument list is a quoted list of arguments to be passed to the program
when it is executed under debugger control. If you wish to specify input or output
redirection for the program you are debugging, include the redirection arguments
inside the quoted argument list to prevent interpretation by the command shell.

If you launched Fx3 by double-clicking on its icon or did not specify an executable
filename as the command line argument, then from the Fx3 File menu, choose Open…
and the name of the application that you wish to debug.

The initial window that appears is the Load Program window and is used to establish
and/or change command line arguments.

After Fx3 reads the symbol table and loads your application, it will execute its
initialization code, and leave it ready for debugging at the first executable statement of
the main program.

The Fx3 window is divided into two sections. The upper section displays source files,
each in a separate pane, selected by tabs labeled with the file name. The lower section is
used to maintain user variables, breakpoints, stack information, and the console window.
These elements are also divided into panes, labeled with their function.

The console pane is used to issue commands to Fx3 that are not part included in the
menus and to receive status results of all commands. The Fx3 command set is described
in the last two sections of this manual: Command Arguments and Command
Reference.

You can execute statements one-at-a-time by selecting the Step Into or Step Over
commands from the Debug menu. Step Into will follow subroutine calls and function
references, while Step Over will treat them as a single statement. The Return command,
also in the Debug menu, will execute all of the remaining statements in a procedure as
though they were a single statement and return you to the point of the call. There are
buttons on the tool bar that you can use as short-cuts for all of these commands.

Breakpoints are set by moving the arrow pointer to the far left of the source window
where the source statement line numbers are shown. Move the arrow pointer into this
area and click the left mouse button to set a breakpoint on that source statement line. A
red indicator will be shown, indicating a breakpoint has been set at that line number.
Clearing a breakpoint is accomplished by clicking the left mouse button on any line
number where a breakpoint has been set.

The variables in your program can be examined and/or modified in the Watches window
which is normally displayed at the bottom of the Fx3 window. Three types of variables
are displayed in their own panes: Locals, Arguments, or User.

Watches window

You can change the format of the value in the Watches window by clicking on it to select
it and then clicking the right mouse button to show the variable format menu.

DEBUGGING CONCEPTS
This section is intended for the less experienced programmer and presents basic
debugging concepts such as single stepping through programs and using breakpoints. It
also describes how to isolate problems in your program and get the most out of a
debugging session

Getting Started

Before beginning this section, you should be familiar with the information presented in
the previous section, Preparing For Debugging. It describes how to compile and link
your program and how to start a debugging session. After Fx3 has been launched and you
have opened the application for debugging, a source code window is displayed similar to
the one shown on the next page:

Source code window

The section to the left side of the window shows the line number of every line in the
source file — comment, declaration, and executable. The current line, the line where the
program is stopped, is marked with a green pointer.

Breakpoints are set or cleared by clicking the left mouse button in the line number area of
the window. This is described later in this section in Using Breakpoints.

Single Stepping

Single stepping means to execute one line of a program and then stop at the beginning of
the next line. If the line contains more than one executable program statement, they are
all executed as one. If a statement is continued across multiple lines, they are all treated
as one and execution stops on the line after the last continuation line.

When a line contains a subroutine call or a function reference, you can decide whether to
follow the procedure reference or to treat it as a single statement. If you are certain that
the procedure is correct, you can Step Over the reference and allow all of the statements
in it to execute as one. If, on the other hand, you are suspicious of the routine in question,
you can choose to Step Into it, following the flow of execution. If you change your mind,
the Return command in the Debug menu will execute all of the remaining statements in
the procedure automatically and return you to the calling procedure.

Using Breakpoints

Single stepping through a long program can be very tedious, especially if the program
contains many loops or loops that iterate many times. It is far more efficient to allow the
program to execute normally until it reaches a point where you want to take a closer look
at exactly what it is doing. Breakpoints are the solution. A breakpoint is a location in a
program, determined by you, where execution stops. You set a breakpoint at the location
in your program that you are concerned with and let the program run normally. When it
reaches the breakpoint, it will stop and leave you in full control with the debugger.

Setting a breakpoint with Fx3 is extremely easy — you point to the line number of the
executable statement with the mouse and click the left mouse button.

Setting a breakpoint

To clear a breakpoint, you do exactly the same thing — point to a line number with a
breakpoint set on it, click the mouse button, and the breakpoint indicator will be
removed.

The location of all of the breakpoints in your program can be examined in the
Breakpoints window:

The first field, Number, shows the id number of the breakpoint. The id is used to set
breakpoint conditions and is described next. The fields Line Number and File show the
line number and file name where the breakpoint is set. The Enabled field indicates
whether the breakpoint is enabled or not. If you double click on any of the breakpoint
fields, the source statement where the breakpoint is set will be displayed in the source
code window.

To give you further control over execution, you can set more conditions than reaching the
line where the breakpoint is set before stopping execution. This is very important if your
program must execute the same statement many times before you are interested in
stopping it. Additional conditions are placed on breakpoints from the Console window
using the list breakpoints and the condition commands as follows:

1. Select the Console pane and enter the command list breakpoints. This will list
information about the program breakpoints including their ids. You can also
obtain the id in the breakpoint window described above.

2. Using the id for the desired breakpoint obtained in step 1, use the condition
command to set a condition. For example:

condition 3 ((yag(1) .LT. 150) .OR. (yag(10) .GR. 1000))

See the Command Reference section later in the manual for more information on
breakpoints and conditions.

Displaying Variables

Fx3 displays information about program variables in the Watches pane. All of the
variables in a subroutine or function can be displayed at once in the Locals pane

The Watches pane shows the symbol’s name, type and current value. If a symbol is an
aggregate data type such as a Fortran 90 derived type or structure, clicking on the + sign
next to the name will expand the display, showing the structure members. If the symbol is
an array, double clicking on its name will display the array elements.

By default, values are displayed in a format consistent with the data type of the variable.
The format of the variable’s value can be changed by clicking on it to select it and then
clicking the right mouse button to show the format menu.

The width of these panes can be adjusted as necessary by moving the mouse pointer to
the title row, placing it over one of the vertical lines (where the cursor will change shape),
and then dragging the line to a new position.

Changing Variables

The value of any program variable may be modified or changed by double-clicking the
left mouse button on the value field in a Watches window. This action will cause the
value to be displayed in a dark blue edit field. You can edit the existing value or type in a
new value directly. You can also enter an expression and Fx3 will evaluate it.

The standard text editing commands may be used in the value field to facilitate variable
modification, including Undo (Ctrl+Z).

Debugging Hints

Fx3 cannot debug your program for you, but it can provide you with the information
necessary to track down programming errors and logic faults. The key to gaining that
information is asking the right questions. This section highlights some general guidelines
and tips for getting the most out of a debugging session.

• If a program gives different results each time it is run, look for uninitialized
variables and local variables that are being overwritten. Remember that local
variables must declared in a SAVE statement in FORTRAN and with a static
specifier in the C programming language in order to retain their definition status
across procedure references.

• You can display the values of the local variables in a previous referencing
procedure by changing the current frame in the Stack window as described under
Program in the Fx3 Menus And Windows section.

• If you find yourself in a procedure that you are not interested in, use the Return
command in the Debug menu to return immediately to referencing procedure.
This command will execute all of the remaining statements in the function or
subroutine and return you to point where it was referenced.

• If the value returned by a function is completely wrong, yet single stepping
through the function itself seems to calculate the result correctly, check the
function declarations and definitions. Absoft FORTRAN 77, like the C
programming language is case sensitive by default. Also, incorrectly typing the
precision of a floating point function produces incorrect results due to the
different internal representations of single and double precision numbers.

• If you are experiencing difficulty with operating system API functions, pay
particular attention to the data types and method of passing parameter lists to the
routines. The VAL function must be used when passing a parameter by value in
FORTRAN.

• Finding an obscure problem in a large program can be tedious and time
consuming, especially if the program crashes. Try single stepping over calls to
large subroutines and functions until the program fails. It is much easier to
examine a problem more closely once you have isolated the problem to an
individual procedure.

• Pointers are a powerful programming feature in any computer language, but they
can also cause a tremendous amount of havoc when they are not initialized
correctly or when they unexpectedly lose their definition status. In both cases,
using null or dangling pointer usually leads to disaster. Incorporating pointers in
your routines requires a defensive programming style.

FX3 MENUS AND WINDOWS
This section describes the menu selections that are used to perform Fx3 commands and
the windows that they control. The name of the command is given, followed by its Ctrl-
key equivalent (if any) and a description of its function.

File Menu

The File menu contains commands for opening executable and source
files; adding paths for source directories; closing individual windows
and quitting Fx3.

Open… (Ctrl+O)

This command is used to select an application for debugging and opening files for
examining. A standard open file dialog box is displayed to choose the name of the file.

Close (Ctrl+W)

This command closes the front-most tab of the source code window.

Quit

The Quit command exits Fx3. If necessary, Fx3 will automatically stop and kill the
application (see Stop and Kill in the Debug menu below) before exiting.

View Menu

The View menu is also used for finding elements in source files,
jumping to source code lines, moving up and down the stack frame,
and locating the current execution address – the program counter.

Find… (Ctrl+F)

The Find… command opens a dialog for entering a string that is then searched for in
current source or assembly code window. The Find… command is case sensitive.

Find Next (Ctrl+6)

Use this command to find the next occurrence of the string specified with the Find…
command.

Go to Line… (Ctrl+L)

To go directly to a specific line in a source file listing without scrolling, use the Go to
Line… command.

Up (Ctrl+U)

The Up command is used to move up the stack frame. The source code and Watch
displays are updated to reflect the cuurent frame.

Down (Ctrl+D)

The Down command is used to move down the stack frame. The source code and Watch
displays are updated to reflect the cuurent frame.

Current Line (Ctrl+P)

Use the current Line command to return the source code display to the current location in
the application. The current location is the statement in the program where execution
stopped.

Debug Menu

The Debug menu is used to control the execution of the
application being debugged with the Continue, Restart,
Stop, Kill, Step Into, Step Over, Return, Run To Selection,
Instruction Step Into, and Instruction Step Over commands.
This menu also contains commands to Enable/Disable
Breakpoint a breakpoint and to Clear All Breakpoints.

These are the most commonly used Fx3 commands and all
but Stop, Unload, Enable/Disable Breakpoint, and Clear All
Breakpoints have command key equivalents.

Continue (Ctrl+J)

Use this command to start or continue execution of the
application. The application will execute until a breakpoint i
suspended in some other manner (such as switching the application with the menu on the
far right side of the menu bar).

s encountered or execution is

Restart (F8)

Use the Restart command to start execution from the beginning of the program to the first
breakpoint. The program will be first stopped and/or killed if it is running under the
control of Fx3.

Stop

The Stop command stops execution of an application and displays the source code and/or
assembly language associated with the current location of the program counter in the
source code window.

Kill (Ctrl+K)

The Kill command stops the application.

Unload

The Unload command stops the application and removes it from memory.

Step Into (Ctrl+I)

The Step Into command is used to execute individual source code statements. If a
subroutine call or a function reference is encountered, the current code display window
changes to that procedure and execution stops there. If symbol information is not
available for the procedure, an assembly language window will be opened for it. When

source line information is available, this command executes source statements in both
source code windows and assembly language windows.

Step Over (Ctrl+S)

Similar to the previous command, the Step Over command is also used to execute
individual source code statements, but it treats subroutine calls and function references as
though they were single statements. When source line information is available, this
command executes source statements in both source code windows and assembly
language windows.

Return (Ctrl+R)

This command is used to automatically execute all of the remaining statements in the
current subroutine or function and return to the statement (source code and/or assembly
language) immediately following the point where it was referenced in the calling
procedure.

Run To Selection (Ctrl+T)

Use this command to execute all of the statements from the current program counter
position to the location of the caret in the code window.

Instruction Step Into (Ctrl+Shift+I)

The Instruction Step Into command is used to execute individual assembly language
instructions. If a subroutine call is encountered, the current code display window changes
to that procedure and execution stops there.

Instruction Step Over (Ctrl+Shift+S)

Similar to the previous command, the Instruction Step Over command is also used to
execute individual assembly language instructions, but it treats subroutine calls as though
they were single statements.

Enable/Disable Breakpoint

This command enables/disables the selected breakpoint in the Breakpoints pane. A
disabled breakpoint is shown in black rather than red.

Clear All Breakpoints

Use this command to clear all of the breakpoints in the application.

EXECUTING FX3 COMMANDS DURING INITIALIZATION
Fx3 provides two methods of executing commands when you startup a debugging
session: the contents of the .Fx3init file and specifying a set of commands with the –s
option.

About .Fx3init

Each time you start a debugging session, Fx3 looks for a file named .Fx3init in the
current working directory and in the directory specified by the environment variable
HOME. If this file is found, Fx3 will execute any debugger commands it contains. If the file
exists in both locations, the file in the HOME directory will be processed first.

About Startup Scripts

In addition to placing commands in a .Fx3init file, you can execute any file of Fx3
commands during debugger initialization using the –s startup_scipt option. This
allows you to create a custom startup script for a particular program that can setup source
code paths, load the program, set initial breakpoints, and start execution.

A sample startup script

Lines which begin with a ‘#’ character are treated as comments

Add two paths to the source file directory search list
addpath ./global_sources
addpath ./sysdep_sources

Load the program, passing it the arguments one two three
load myprogram one two three

Set breakpoints on two suspect subroutines

break calc_subtotal
break calc_final_result

Resume execution of the program
continue

DEBUGGING IN THE COMMAND WINDOW
This section introduces debugging with the Fx3 debugger in the command window. It
covers examining program source code, program execution, using breakpoints, and
displaying variables and other program information.

Examining Program Source Code

The view command is the primary command you will use to examine the source code for
your program. When your program stops at a location for which source code is available,
Fx3 will automatically display the appropriate line of source. At this point, you can use
the view command to see where your program is going next, where it has been, or to
examine the contents of an include file to determine the value of a predefined constant.

Using the view command

While the view command allows you to examine any text file, its primary purpose is to
display your program’s source code. You can specify which file to examine as the name
of a source file either with a line number, or as the name of a procedure that has been
compiled with debugging information. The first time a view command is issued with an
argument after your program stops execution, it will display a window of source code
around the specified line or procedure name. You can display additional lines of code by
entering the view command with no arguments or by simply pressing the return key.

Example:

You can use the following command to display lines from the source file lists.c
centered on the 30th line:

(Fx3) view lists.c:30

To display source code for the function list_traverse, you can enter:

(Fx3) view list_traverse

Examining the Stack

Any time your program has stopped execution, you can use the Fx3 stack commands to
display the current call chain, move up and down call chain, and examine procedure
arguments. The stacktrace command displays the call chain from the point where your
program is currently stopped up to its main routine. The stacktrace command can also be
used to display the arguments through all the routines in the call chain

Example:

To display your program’s current call chain and the arguments to each routine,
enter:

(Fx3) stacktrace -a

You can move up and down the in the call chain using the Fx3 commands up and down.
These commands have the effect of changing the currently active stack frame, allowing
you to view local variables for the routine represented by a given stack frame.

Executing Your Program

One of the major advantages of using a source level debugger is the ability to
interactively control execution of your program. When you begin debugging session by
specifying the name of your program as an argument to Fx3 or load it into Fx3 with the
load command, Fx3 will start execution of the program and allow it to run until its main
procedure is entered. For C and C++ programs this is the procedure named main and for
FORTRAN programs this is the procedure declared with the PROGRAM statement.
When this procedure is entered, Fx3 will stop the program and you will be able to control
further execution using the commands discussed below.

Resuming Program Execution

After your program has stopped at its main procedure, you may wish to resume execution
until an error occurs. Issuing the continue command will cause Fx3 to resume execution
of your program until an error occurs or it runs to completion.

Example:

You can enter the following command to resume execution of your program:

(Fx3) continue

If your program is stopped on a breakpoint when you issue the continue command, Fx3
will temporarily disable the breakpoint once to allow program execution to move past it.
You can specify an integer argument to the continue command to cause the breakpoint to
be ignored an addition number of times.

Example:

The following command resumes execution of your program and disables the
breakpoint on the current line the next 5 times it is encountered:

(Fx3) continue 5

Executing Single Statements

At certain times during a debugging session, you may want to execute your program one
statement at a time. Fx3 provides two commands to accomplish this task. The stepinto
command will execute the next source line of your program.

Example:

You can enter the following command to execute the next statement in your
program:

(Fx3) stepinto

If a source statement to be executed with stepinto command is a call to a subroutine or
function, execution will stop on the first executable source line of the subroutine or
function. Often, you will not be interested in debugging that procedure. You can use the
stepover command to treat any subroutine or function calls as part of the source line,
causing execution to continue until the next source line.

Example:

To execute the next source line without stopping in any subroutine or functions,
you can enter:

(Fx3) stepover

If desired, both the stepinto and stepover commands can be used to execute multiple
statements. To do this, specify the number of statements to execute as an argument to
these commands.

Example:

To execute the next seven source lines without stopping in any subroutine or
functions, you can enter:

(Fx3) stepover 7

Returning From Procedures

When executing your program one statement at a time, you may find that you have
entered a stepinto command when you really meant to enter a stepover command. Fx3
provides a command to get you back to the point of interest as quickly possible. The
return command will resume execution until a procedure returns to its calling point.

Restarting Program Execution

During the course of debugging session, you may wish to start your program over again,
possibly specifying a new set of arguments. The run command allows you to do this.
When you issue the run command, the current instance of your program is terminated,
and a new instance is created. Unlike the initial process created with the load command,
Fx3 does not stop your program in the main program unit when the run command is
issued.

Example:

To restart execution of your program with the arguments one two three and
have its standard input redirected from the file input.dat, you can enter:

(Fx3) run one two three <input.dat

Once arguments have been specified, Fx3 will continue to use those arguments until you
specify different ones.

Using Breakpoints to Stop Program Execution

Although it is possible to use the stepinto and stepover commands to execute your
program until you determine where the problem is, this process is tedious and inefficient
for all but the smallest of programs. Your program may require a complex series of
events to occur, or have to run for a considerable amount of time, before a problem shows
up. Breakpoints allow you to execute your program at full speed until a specific
procedure or source line is encountered.

Setting Breakpoints

You can install breakpoints in your program using the break command. The location of
the breakpoint is specified as a source file and line number, the name of a program
procedure, or as any executable address in the program.

Example:

To set a breakpoint on line 150 of the source file linpak.f, you can enter:

(Fx3) break linpak.f:150

If execution is already stopped on a line in the file linpak.f, Fx3 allows you to
specify only the desired line number:

(Fx3) break 150

After you install a breakpoint, Fx3 assigns it an integer breakpoint id number. You will
use this breakpoint id to refer to the breakpoint when using the other Fx3 breakpoint
commands described below. As a convenience, the id of the last breakpoint is stored in a
debugger variable named %lastbreak. You can see a list of all the breakpoints that you
have set and their breakpoint id numbers by using the list breakpoints command.

Executing Commands When A Breakpoint Occurs

Breakpoints can be used to execute other Fx3 commands by assigning a list of commands
to be executed when a breakpoint stops program execution using the commands
command. You might use this feature to print out the value of a variable each time a
breakpoint is encountered.

Example:

If you have created a breakpoint that has the breakpoint id 1, you can display the
value of the variable I each time this breakpoint is encountered by entering:

(Fx3) commands 1 { print I }

Multiple commands are be specified by separating each command with a semi-colon. By
using multiple commands, you may be able to temporarily fix a problem without having
to edit and recompile your source code. Since you can cause any list of Fx3 commands to
be executed at a breakpoint, it is possible to stop program execution, change the value of
a program variable, and then resume program execution without having to enter the
commands each time the breakpoint is encountered.

Example:

Consider the following FORTRAN function:

REAL FUNCTION sumarray(array,size)
REAL array(size),result
INTEGER I,array_size
array_size = size
DO i =1,array_size
 result = result+array(i)
END DO
sumarray = result
END

Since the local variable result is not initialized to zero, this function will return
unpredictable results. This problem can be temporarily fixed by with the
following Fx3 commands:

 Fx3) break sumarray
(Fx3) commands %lastbreak { set result=0.0; continue; }

Using Breakpoint Conditions

After you have installed a breakpoint in your program, you can arrange to have it stop
execution only when a set of conditions is met. The Fx3 condition command is used to
assign an expression to a breakpoint that will be evaluated each time the breakpoint is
encountered. If the expression evaluates to a non-zero value, program execution will
stop, otherwise it will be resumed automatically.

Example:

If you have created a breakpoint that has the breakpoint id 1, you can cause this
breakpoint to stop program execution only when the value of the variable I is
equal the value 10 by entering:

(Fx3) condition 1 (I .EQ 10)

Using Breakpoint Ignore Counts

After you have installed a breakpoint in your program, you can arrange to have it stop
execution only after it has been encountered a certain number of times. The Fx3 ignore
command is used to assign an ignore count to a breakpoint. Each time the breakpoint is
encountered, the ignore count is decremented by one and when it reaches zero, program
execution stops and the ignore count is reset to its original value.

Example:

If you have created a breakpoint that has the breakpoint id 1, you can cause this
breakpoint to stop program execution only after it has been encountered four
times by entering:

(Fx3) ignore 1 4

Disabling and Enabling Breakpoints

After you have installed one or more breakpoints in your program, you may wish to
temporarily disable them for part of a debugging session. The Fx3 disable command
allows you to disable a breakpoint and any commands that are associated with it until you
re-enable the breakpoint with the Fx3 enable command.

Example:

If you have created a breakpoint that has the breakpoint id 1, you can disable this
breakpoint by entering:

(Fx3) disable 1

To re-enable this breakpoint later, enter:

(Fx3) enable 1

Removing Breakpoints

After you have installed one or more breakpoints in your program, you may wish to
remove them after they have served their purpose. The Fx3 delete and clear commands
allow you to remove a breakpoint and any condition, ignore count and commands that are
associated with it. The delete command accepts a breakpoint id to specify the breakpoint
to be removed; the clear command accepts a source file and line number, procedure
name, or executable address to specify the breakpoint to be removed.

Example:

If you have created a breakpoint on line 150 if the file linpak.f that has the
breakpoint id 1, you can remove this breakpoint by entering either of these two
commands:

(Fx3) delete 1
(Fx3) clear linpak.f:150

Displaying the Values of Variables

Another advantage of source level debugging is the ability to display the values of
program variables without having to insert special debugging statements into your
program. Fx3 allows you to examine the contents of your program’s variables, arrays,
and data structures whenever your program has stopped execution.

Displaying Simple Variables

The Fx3 print command is used to display the contents of your program’s variables. Fx3
will use the symbol information output by compilers to determine the appropriate output
format for a variable, or you can specify an explicit output format.

Example:

If a FORTRAN program defines the following variables:

INTEGER I
REAL X
COMPLEX Z

You can display their values with the following commands:

(Fx3) print I
(Fx3) print X
(Fx3) print Z

In the preceding example, the values of I, X, and Z will be displayed in a format
appropriate for their respective types. You may also specify an explicit output format to
use when displaying a variable. The various formats can be found in the section on the
print later in this manual.

Displaying Arrays

When the name of an array is used with the print command, Fx3 will display every
element of the array or the number of elements indicated by the debugger control variable
%arraycount. Generally, you will not be interested in seeing all the elements of an
array. Fx3 also allows you to specify individual array elements using the array indexing
syntax of the current source language.

There will be occasions where you are interested in examining a range of array elements
Fx3 provides the printarray command to handle this situation.

Example:

Given the following FORTRAN array variables:

INTEGER IARRAY(10)
REAL RARRAY(10,10)

You can display the first five elements of the array IARRAY and the first column
of the array RARRAY by entering:

(Fx3) printarray –d (1:5) IARRAY
(Fx3) printarray –d (1:10,1:1) RARRAY

Displaying User Defined Types

The print command also allows you display the contents of C structures, C++ classes,
and Fortran 95 TYPEs. When the name of a variable having a user defined type is
specified with the print command, Fx3 will display all the members of the derived type.
You can display individual members of a type by using the ->, ., and % operators. C and
C++ pointers to user defined types, as well as other data types, can be dereferenced using
the * operator. Fortran 95 pointers will automatically dereference when they have been
assigned values. If you have declared an array as part of a user defined type, you can use
the printarray command to display a range of the array’s elements by specifying the
variable name followed by the appropriate operator and member name.

Example:

Given the following Fortran 95 declarations:

 TYPE(sometype)

 INTEGER simple
 INTEGER iarray(10)
END TYPE sometype
TYPE(sometype) :: UTYPE

You can the following commands to display the entire data structure, the member
simple, and the first five elements of the member iarray:

(Fx3) print UTYPE
(Fx3) print UTYPE%simple
(Fx3) printarray –d (1:5) UTYPE%iarray

Using the Expression Analyzer

In addition to displaying the values of variables, you can also evaluate expressions that
include variables, numeric constants, and source language operators. These expressions
can be as simple as adding 10 to the contents of a variable or can include multiple
variables, constants and source language operators.

Watching The Values of Variables

At some point during a debugging session, you may want to observe the value of a
variable change as your program executes. The display command allows you to create
auto-display - variables and expressions to be displayed each time your program stops
executing.

Example:

The following command will display the value of the array element a(i,j) each
time program execution stops:

(Fx3) display a(i,j)

Each auto-display expression is assigned an integer id when you create it with the display
command. When you want to remove an auto-display, use the undisplay command with
the value of the auto-display’s id.

Changing the Values of Variables

Fx3 allows you to modify the values of program variables any time execution of your
program is stopped. The set command is used to assign new values to variables as well as
altering the values of Fx3’s control variables. When assigning new values to variables,
Fx3 will perform appropriate type conversions when possible and inform you when you
have specified a value that is inappropriate for the variable you are modifying.

COMMAND ARGUMENTS
In order get first time users started with Fx3 as quickly as possible, the previous sections
have glossed over the details of specifying arguments to Fx3 commands. This section
provides more detail on the items that can be specified as arguments to Fx3 commands.
The section covers the following topics:

• Identifier Scoping

Describes the scoping conventions used for Fx3 command arguments.

• Specifying Constants
Describes the syntax for entering constants as command arguments.

• Specifying Registers
Describes using machine registers as command arguments.

• Expression Interpretation
Discusses the interpretation of variables, entry points and constants when used in
expressions.

Identifier Scoping

Identifier scoping refers to the identifiers that are accessible at the current state of the
program being debugged. Some arguments are not dependent upon the program and are
always available. Program constants, as well as Fx3 Control Variables, internal variables
within the debugger, would be examples of these types of arguments. Control Variables
are listed in the appendices.

Other arguments, such as local variables in the program, are only accessible when the
procedure in which they were declared is active. Fx3 will implicitly determine the
appropriate scope, or an identifier's scope can be explicitly stated when necessary.

Implicit Scoping

When identifiers are program specific items, Fx3 determines the appropriate scope using
two sets of scoping information: the actual scope and the current scope. A program's
actual scope is the source line, procedure name and source file which contain the next
assembly language instruction to be executed, or the last assembly language instruction
executed if a core file is being examined.

By default, the current scope is identical to the actual scope. However, the current scope
may be changed with the down, up, and frame commands listed in Command Reference
section. Fx3 will use the procedure name defined by the current scope for searching the
program's symbol table for local variables, and the file defined by the current scope when
searching the program's symbol table for static variables and static functions.

Specifying Symbols

This section discuses the interpretation of variable and procedure names.

Symbol Names

The first character of a symbol name must be an upper or lower case letter or an under-
score. The remaining characters can be upper or lower case letters, digits, underscores, or
dollar signs. A symbol name is terminated by the first occurrence of a character that is
not one of the above.

The Fx3 control variable %case controls case sensitivity during symbol table searches.
This variable is initially set to “both” causing symbol table searches to be case sensitive.
However, it can be set to “lower” or “upper” by entering the change command. When
%case is set to “lower”, the symbol name extracted from the command line will be folded
to lower case before searching the program's symbol table. When %case is set to “upper”,
the symbol name will be folded to upper case before the search is performed.

FORTRAN Symbols

This section describes the FORTRAN data types and symbols understood by Fx3 and
discusses the scoping conventions for each symbol type, the indexing of FORTRAN
arrays, and the syntax for specifying character substrings.

FORTRAN Data Types

Fx3 supports the following FORTRAN data types:

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
REAL
DOUBLE PRECISION
REAL*16
COMPLEX
DOUBLE PRECISION COMPLEX
COMPLEX*32
CHARACTER
RECORD

The INTEGER*1, INTEGER*2, LOGICAL*1, and LOGICAL*2 data types only apply to
variables. There is no way to specify an INTEGER*2 constant. If a constant is assigned to
an INTEGER*2 variable using the change command, the constant will be converted before
the assignment is performed.

FORTRAN Subroutines and Functions

FORTRAN subroutine and function names are global to the entire program and are
accessible at any time during a debugging session. FORTRAN statement functions are
invisible to Fx3 and cannot be specified as command arguments.

FORTRAN Common Blocks

The names of FORTRAN common blocks are global to the entire program and are
accessible any time there is a process or core file active. When used as arguments to
commands, the contents of common blocks are assumed to be integers.

FORTRAN Local Variables and Procedure Arguments

The names of FORTRAN local variables and procedure arguments are always local to the
procedure or function in which they were declared regardless of their actual location in
program memory. Local variables and arguments are accessible when the procedure in
which they are declared is defined by the current scope. They may also be explicitly
scoped.

FORTRAN Array Indexing

FORTRAN arrays are indexed using the conventions of the FORTRAN language.
Indexing is performed in column major order and array indices are specified using
standard FORTRAN syntax. Individual array indices may be specified as constants or as
expressions involving variables, constants, and operators.

Unsubscripted array names may be specified as arguments to the print command causing
every element of the array to be displayed. Note that assumed size arrays cannot be
displayed in this manner because the size of the last dimension is unknown. The
following examples illustrate FORTRAN array indexing.

array (1)
array (i, 2)
array (i+4, k+3, m)

FORTRAN Character Substrings

Substrings of character variables and character array elements may be specified using
standard FORTRAN syntax. The substring expressions can be simple integer constants or
more complicated expressions involving variables, constants and operators. The
following examples illustrate character substring syntax.

charvar(1:6)
charvar(i:j)
chararray(1,2)(i+1:7)

C Symbols

This section describes the C data types and symbols understood by Fx3, and discusses the
scoping conventions for each type, C array indexing, dereferencing pointer variables, and
referencing members of structures and unions.

C Data Types

Fx3 supports the following C data types:

bool
char
unsigned char
short int
unsigned short int
int
unsigned int
long
unsigned long
long long
unsigned long long
float
double

Note that many C compilers will not make a distinction between int and long when
producing program symbol information.

C Functions

C function names are global to the entire program unless explicitly declared with the
reserved word static. Non-static functions are accessible at any time during a debugging
session. Static functions are only accessible when the file in which they were declared is
defined by the current scope.

C Extern Variables

C variables declared with the reserved word extern are accessible any time there is a
process or core file. If no type information is available for external variables, the type int
will be assumed.

C Static Variables

The scoping of variables declared with the reserved word static follows the conventions
of the C language. If a variable is declared outside of a function, it is only accessible
when the file in which it was declared is defined by the current scope. If is it is declared
inside a function, it is only accessible when that function is defined by the current scope.
Static variables declared inside of functions may also be explicitly scoped.

C Automatic Variables

Automatic variables are only accessible while the function in which they were declared is
defined by the current scope. Note that Fx3 does not distinguish between automatic
variables declared at the beginning of a function and those declared within a block of the
function's statements.

C Array Indexing and Pointer Dereferencing

Array indexing is performed using the conventions of the C language. Indexing is
performed in row major order and indices are specified using standard C syntax.
Individual indices can be specified as integer constants or as expressions involving
variables, constants, and operators.

Unsubscripted array names can be specified as arguments to the print command causing
every element of the array to be displayed. The following examples illustrate C array
indexing

array[l]
array[i][1]
array[i+1][j+1]

Pointer variables may be dereferenced using the “*” operator, or they may be indexed as
if they had been declared as one dimensional arrays. Consider the following C program
fragment:

int array[101];
int *aptr;
aptr = array;

The following sets of commands will produce equivalent output.

print *aptr
print aptr[0]

print *(aptr+8)
print aptr[2]

Note that Fx3 does not multiply the constant 8 by the size of an integer before performing
the addition.

C Structure and Union Members

Structure and union members may be specified as command arguments by using the and
“.” operators. The names of entire structures and unions may be specified as arguments to
the print command causing every member of the structure or union to be displayed.

Specifying Constants

Constant arguments may be specified in one of the following forms: integer, floating
point, complex, or character. The following sections provide details on each of these
constant types.

Integer Constants

Integer constants can be entered in decimal, binary, octal, or hexadecimal form.

Decimal Constants

Decimal constants consist of an optional leading sign followed by a string of decimal
digits [0-9]. Note that if a sign is not specified and the first digit is a zero, the constant
will be interpreted as an octal integer as described below.

The following are valid decimal constants:

10
-22
+100

Octal Constants

Octal constants can be specified using the form familiar to C programmers, where an
octal constant consists of a leading digit zero followed by a string of octal digits [0-7].

The following is an example of a valid octal constant:

0555

Hexadecimal Constants

Hexadecimal constants can be specified using the form familiar to C programmers, where
an hexadecimal constant consists of the leading digit zero followed the letter x or the
letter X and a string of hexadecimal digits [0-9, A-F, or a-f].

The following is an example of a valid hexadecimal constant:

0x3f

Floating Point Constants

A floating point constant consists of an optional sign and string of decimal digits which
contains a decimal point. A floating point constant may have an exponent. An exponent is
specified by the letter 'E' or the letter 'D' followed by an optional sign and a string of
decimal digits. If an exponent character is specified and the fractional portion of the
constant is zero, the decimal point may be omitted.

A floating point constant is converted to double or single precision depending upon the
specified exponent character. Floating point constants specified with a 'D' exponent
character will be converted to double precision. Floating point constants specified with an
'E' exponent character, or without an exponent character, will be converted to single
precision.

The following are valid floating point constants:

12.0
-12.999
12. 999E12
12.9999D-12

Complex Constants

A complex constant consists of a left parenthesis, followed by a pair of floating point
constants separated by a comma, followed by a right parenthesis. Double precision
complex constants are specified including a 'D' exponent character in one or both of the
floating point constants.

The following are valid complex constants:

(12.0,12.0)
(12.9999E-12,-12.9999E10)
(100.0D0,200.0D0)

Character String and C Character Constants

Character string constants are strings of ASCII characters delimited by either apostrophes
or quotation marks. The delimiting character may be included in the string itself by
representing it with two successive delimiting characters.

The following are examples of valid character string constants:

"hello world" 'hello world'
"America's finest" 'America''s finest'

Specifying Registers

Registers are entered using the names accepted by the system assembler. In order to
distinguish them from symbol names, they must be prefixed with the character “%”.
When used in expressions, the data type of registers is assumed to be integer. However, if
dedicated floating point registers are available they will be typed appropriately. The
contents of registers are always retrieved from the actual scope and are available
whenever a process or core file is active.

Expression Interpretation

Many Fx3 commands accept expressions as arguments. Expressions can be simple scalar
values, such as a numeric constant or single variable name, or can consist of multiple
operands combined with the supported operators for the current expression language.

Current Expression Language

The current expression language is determined by the contents of the Fx3 control variable
%explang. By default, this variable is set to “automatic” causing the current expression
language to be determined by examining the extension of the file name defined by the
current scope. When this file name ends in the characters “.c”, the current expression
language is C. When the extension is “.f” or “.for”, the current expression language is
FORTRAN. If desired, the value of this variable may be explicitly set to “C” or
“FORTRAN” with the set command, allowing expression evaluation in either of these
languages regardless of the current scope.

Default Expression Language

When the value of %explang is set to “automatic” and it is impossible to determine the
appropriate language from the current scope, expressions will be evaluated in the
language defined by the Fx3 control variable %deflang. By default, this variable is set to
“C” however it may be set to “FORTRAN” using the change command.

Supported Language Operators

When specifying expressions as arguments to debugger commands, operands may be
combined using the operators of the current expression language. Type conversion
between operands and operator precedence follow the conventions of the expression
language. Note that parentheses may be used to force a specific order of evaluation
regardless of the current expression language.

FORTRAN Operators

The following table lists the supported FORTRAN operators:

FORTRAN operators
Binary .NEQV., .EQV., .OR., .AND., .GT.1, .GE.1, .NE.1,

.EQ.1, .LE. 1, .LT. 1, -,+,*,/,**,=
Unary +,-,.NOT.

1. The operators .GT., .GE., .NE., .EQ., .LE., and .LT. may also be specified by >, >=,

<>, ==, <=, and < respectively.

C Operators

The following table lists the supported C operators:

C operators
Binary &,|,%,*,+,-,^,.,<,=,>,->,<<,>>,==,!=,&&,||,<=,>=

Unary ~,!,-,&,*,+

Value Expressions

Value expressions evaluate to a single numeric value or character string that can be
printed, passed as an argument to an intrinsic function or specified as the value to assign
to a variable using the change command. Character string expressions are limited to
single character string constants, character variables, character array elements, or
character substrings. No operators are supported for combining character operands.

When all operands in a value expression are of the same data type, the type of the
expression is the same as the type of the operands. When an expression involves
operands with different data types, automatic conversion between data types occurs. The
data type of the expression result is the data type of the highest operand as defined by the
current expression language.

Address Expressions

Address expressions are a subset of possible value expressions and are used to refer to
locations in a program's memory space. Since computers are not capable of addressing
memory with floating point numbers or character strings, address expressions should only
involve integer operands. Although it is possible to specify other types of operands, an
error will be reported if the type of an address expression is not integer.

Operand Interpretation

Expression operands are interpreted differently depending upon whether they are used in
value expressions or address expressions. The distinction between operand interpretation
is generally transparent when debugging programs. Fx3 is designed to interpret an
operand in the manner that makes the most sense for a particular command. For example,
when the name of an entry point is used as an argument to the break command, Fx3 will
use the address of the specified procedure as the address of the breakpoint.

The following table lists the basic operands and the ways in which they will be
interpreted in value expressions and address expressions.

Operand In value expressions In address expressions
constant numeric value numeric value
register name register contents register contents1
variable name variable contents variable contents2
procedure name contents procedure's first

location when specified
alone, procedure address
when combined with
operators

procedure address

control variable variable contents variable address3

1. The dump command will use the variable address when specified alone and the

variable contents when used in expressions.
2. Fx3 control variables can only appear in address expressions when used with the set

command.

1

Command Reference

This section describes each debugger command. In order to assist in finding a particular
command, the commands are presented in alphabetical order and the name of each
command is followed by a short description of its purpose.

addpath Specifying source file search paths

Description:

The addpath command augments the list of directories where the debugger will look
for source files. By default, the debugger looks in the current directory and in any
directories specified in the debugged program's debug information.

Usage:

addpath [-p process_list] source path

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

source path is a full or partially qualified directory specification given in the host
operating system's path specification format.

Default alias:

directory

Example:

The following command adds the path /home/user/lib_source to the list of
source file search paths used for all processes:

addpath /home/user/lib_source

The following command adds the relative path ../math/trig_source to the list
of source file search paths used for the process p12:

addpath -p p12 ../math/trig_source

Notes:

Path specifications are given in the syntax of the host operating system. For example,
on Linux and other POSIX based operating systems directories are separated by the '/'
character. Windows directories are separated by the '\' character.

Related commands:

deletepath

addressof Displaying the address of a symbol

Description:

The addressof command displays the address of a symbol (or expression whose
result evaluates to an address) in the active or specified process.

Usage:

addressof [-p process_list] [-x] [-r] [-e] expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

–x specifies that the resulting address is to be displayed in hexadecimal instead of
decimal format.

-r specifies that symbols residing in registers display the system dependent name of
their assigned register.

-e specifies that no further options are present and all following characters are part of
the expression to be evaluated.

expression is a symbol name or expression to be evaluated given in the current source
language’s expression syntax.

Default alias:

none

Example:

The following command displays the address of the variable cmd_cnt in hexadecimal
format:

addressof –x cmd_cnt

The following command displays the address of the fifth element of a FORTRAN
array named result_list:

addressof result_list(5)

Related commands:

dump, print, printarray, typeof

alias Specifying command abbreviations

Description:

The alias command is used to provide shorthand versions for standard debugger
commands. This allows the programmer to customize the list of accepted commands
by giving brief one or two letter names to commonly used commands.

Usage:

alias abbreviation command

where abbreviation is a single word that will be replaced by the given command
when entered at the command prompt.

command is a standard debugger command, with or without arguments, which will
be substituted when the specified abbreviation is entered at the command prompt.

Default alias:

The alias command cannot have an alias.

Example:

The following command creates an abbreviation for the stepinto command:

alias s stepinto

Notes:

Specifying the alias command with no arguments displays a list of the current
command abbreviations.

Specifying the alias command with only an abbreviation removes the current
command (if any) associated with the abbreviation.

Substitution of the command for a given alias is done by simple text replacement and
only occurs when the alias appears as the first word of a command.

attach Attaching to currently running processes

Description:

The attach command is used to initiate a debugging session with a program which
has been launched outside of the debugger.

Usage:

attach [-f] system_process_id

where system_process_id is the host operating system's standard process identifier.
On Linux and other POSIX based systems, this is the PID associated with the process
as displayed by the ps shell command.

-f specifies that the debugger should continue debugging any child processes spawned
by the attached process.

Default alias:

none

Example:

The following command attaches to a program with the process id 12451:

attach 12451

Notes:

The -f option is only implemented on host operating systems which provide a facility
to do so.

Attaching to system processes or to other processes not owned by the current user
may result in unpredictable results on some operating systems.

Attaching the debugger to its own process id is strongly discouraged.

Related commands:

detach, load

break Setting breakpoints on code locations

Description:

The break command is used to place a breakpoint at a given location in the program
being debugged. The location can be any valid address expression. The location may
also be specified as a source file and line number combination.

Usage:

break [-p process_list] filename:line_number | *address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

filename:line_number specifies the source file and line number where the breakpoint
is set.

*address_expression specified an address where the breakpoint is set.

Default alias:

b

Example:

The following command sets a breakpoint on the location specified by the address
expression main+Ox50:

break *main+Ox5O

The following command sets a breakpoint on the seventh line of the file source.f:

break source.f:7

Related commands:

clear, codebreak, commands, condition, databreak, delete, disable, enable, list
breakpoints, tbreak

catch Stopping execution on C++ exceptions

Description:

The catch command is stop program execution when a C++ exception event occurs.
The event can either be

Usage:

catch [-p process_list] [-t] catch | throw

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-t specifies that the event is to be caught only one time.

catch stops program execution when a C++ exception is caught.

throw stops program execution when a C++ exception is thrown.

Default alias:

none

Notes:

The delete command may be used to remove a catch event from a process by
specifying the catch’s breakpoint id.

Related commands:

break, codebreak, commands, condition, databreak, delete, disable, enable, list
breakpoints

clear Removing breakpoints by address

Description:

The clear command is used to remove a breakpoint from the active or specified
process by specifying the address where the breakpoint is installed.

Usage:

clear [-p process_list] filename:line_number | *address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

filename:line_number specifies the source file and line number where the breakpoint
is set.

*address_expression specified an address where the breakpoint is set.

Default alias:

none

Example:

The following command removes a breakpoint that has previously been set on line 12
of the source file radartrack.c

clear radartrack.c:12

Notes:

A breakpoint may be specified by filename and line number or by address but not
both.

The delete command may be used to remove breakpoints from a process by
specifying a breakpoint id.

Related commands:

break, codebreak, commands, condition, databreak, delete, disable, enable, info
breakpoints

codebreak Setting breakpoints on code locations

Description:

The codebreak command is used to place a breakpoint at a given location in the
program being debugged. The location can be any valid address expression. The
location may also be specified as a source file and line number combination.

Usage:

codebreak [-p process_list] [-t] [-c skipcount] -f filename:line_number | address

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-t specifies that the breakpoint is a one time breakpoint that is to be removed the first
time it stops program execution.

-c skipcount indicates the number of times the breakpoint is to be ignored before
program execution is stopped

-f filename:line_number specifies the source file and line number where the
breakpoint to be removed is set.

address specifies address where the breakpoint is to be set.

Default alias:

cb

Example:

The following command sets a breakpoint on the location specified by the address
expression main+Ox50:

codebreak main+Ox5O

The following command sets a breakpoint on the seventh line of the file source.f:

codebreak -f source.f:7

Related commands:

break, clear, commands, condition, databreak, delete, disable, enable, info
breakpoints

commands Adding commands to a breakpoint

Description:

The commands command allows debugger commands to be executed when a
breakpoint stops program execution. When execution stops at the specified
breakpoint, the commands will be executed as if they had been entered from the
command line.

Usage:

commands [-p process_list] breakpoint_id [command_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

breakpoint_id is the integer identifier assigned to a breakpoint when it was created
with the break, codebreak or databreak commands. The info breakpoints can be
used to display the current breakpoints along with their breakpoint ids.

command_list is a list of one or more valid debugger commands enclosed the in
braces ({ }). When specifying multiple commands, each command separated with a
semi-colon.

Default alias:

none

Example:

The following command associates a command list with a breakpoint having id 1:

commands 1 { print “At subone1”; registers }

Notes:

If a breakpoint currently has commands associated with it, the new command list will
replace the command. To clear all commands associated with a breakpoint, enter the
commands command and the breakpoint id without specifying a new command list.

If an error occurs during execution of a command associated with a breakpoint, any
other commands associated that breakpoint will be ignored.

Related commands:

break, clear, codebreak, condition, databreak, delete, disable, enable, info
breakpoints

condition Adding a condition to a breakpoint

Description:

The condition command is used to add a conditional expression to a breakpoint.
When the breakpoint is encountered during program execution, the expression will be
evaluated using the current execution context. If the condition evaluates to a non-zero
value, the breakpoint will be triggered and program execution will be stopped.

Usage:

condition [-p process_list] breakpoint_id condition

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

breakpoint_id is the integer identifier assigned to a breakpoint when it was created
with the break, codebreak or databreak commands. The list breakpoints can be
used to display the current breakpoints along with their breakpoint ids.

condition is a valid expression for the source language that will be in effect when the
break point is triggered. Multiple conditions can be expressed using the logical
operators provided by a given source language.

Example:

The following command adds a condition to a breakpoint with id 1 that will stop
program execution when the value of the variable critical obtains the value 100:

condition 1 (critical == 100)

The following command adds a condition to a breakpoint with id 1 that will stop
program execution when first element of the FORTRAN array payoff obtains the
value 150 or the tenth element of the same array obtains the value 1000:

condition 1 ((payoff(1) .EQ. 150) .OR. (payoff(10) .EQ. 1000))

Notes:

To clear any condition associated with a breakpoint, enter the condition command
and the breakpoint id without specifying a conditional expression.

Related commands:

break, clear, codebreak, commands, databreak, delete, disable, enable, info
breakpoints

continue Resuming program execution

Description:

The continue command resumes execution of the program being debugged.
Execution continues until the temporary breakpoint is encountered, a breakpoint is
encountered, an error occurs, or the program runs to completion.

Usage:

continue [-p process_list] [ignore_count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

ignore_count specifies the number of additional times to ignore a breakpoint on the
line where a program is currently stopped. If the program is not currently stopped on
a breakpoint, this argument to the continue command has no effect

Default alias:

c

Related commands:

 istepinto, istepover, return, stepinto, stepover, until

core Debugging using a core file

Description:

The core command is used to load a program and an associated core file into the
debugger to perform post crash debugging.

Usage:

core program_name [corefile_name]

where program_name is the name of an executable program.

corefile_name is the name of a core file produced from a previous run of the specified
program. If corefile_name is not specified, the debugger looks for a file name “core”
in the current directory and attempts to use it if one is located.

Example:

The following command starts a post crash session on a program named crash.out
using the a core file named crash.core:

core crash.out crash.core

Notes:

Unpredictable results will occur if the specified core file does was not generated by
the specified program.

Generation of core file is an operating system dependent operation, so the core
command may not be available on all implementation of the debugger.

Related commands:

load

cycle Skipping commands in a loop

Description:

The cycle command is used to skip over commands in a command loop and re-
evaluate the loop condition immediately.

Usage:

cycle

Example:

The following command sequence will print out every odd indexed element of the C
array values:

set @loop = 0

while(@loop < 10) { \

set @loop = @loop+1; \

if ((@loop % 2) == 0) cycle; \

print values[@loop]; }

Notes:

In the above example, @loop is a debugger convenience variable.

Related commands:

if, while

databreak Stopping execution when data value changes

Description:

The databreak command is used to install a hardware breakpoint on the address of a
program variable or memory location. After the breakpoint has been installed, the
program will stop the next time the variable’s value is modified or, optionally,
accessed.

Usage:

databreak [-p process_list] [-t] [-r] [-c skipcount] address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-t specifies that the breakpoint is a one time breakpoint that is to be removed the first
time it stops program execution.

-r specifies that the breakpoint is also activated when the contents of the address are
read.

-c skipcount indicates the number of times the breakpoint is to be ignored before
program execution is stopped

address_expression specifies address where the breakpoint is to set. The address
expression is evaluated using current source language and process scope at the time
the breakpoint is set.

Default alias:

db

Example:

The following command sets a breakpoint that will stop program execution when the
value of the variable constant_temp is changed:

databreak constant_temp

Notes:

The databreak command is only available on systems that provide support for
hardware breakpoints. The number of breakpoints that can be set with the databreak
command varies from system to system.

Related commands:

break, clear, codebreak, commands, condition, delete, disable, enable, info
breakpoints

delete Removing breakpoints by breakpoint id

Description:

The delete command is used to remove one or more breakpoints from the active or
specified process.

Usage:

delete [-p process_list] breakpoint_id | all

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

breakpoint_id is the integer identifier assigned to a breakpoint when it was created
with the break, codebreak or databreak commands. The info breakpoints can be
used to display the current breakpoints and their breakpoint_id.

all specifies that all current breakpoints are to be deleted from the specified process.

Default alias:

d

Example:

The following command deletes a breakpoint that was previously assigned the
breakpoint id 10:

delete l0

Notes:

The clear command may be used to a remove breakpoint from a process by
specifying a breakpoint address.

Related commands:

break, clear, commands, condition, codebreak, databreak, disable, enable, info
breakpoints

deletepath Removing source file search paths

Description:

The deletepath command is used to remove a source file search path from the active
or specified process.

Usage:

deletepath [-p process_list] -all | source path

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-all specifies that all source paths should be removed.

source path is a full or partially qualified directory specification given in the host
operating system's path specification format.

Related commands:

addpath

detach Stopping a debug session on an attached process

Description:

The detach command is used to terminate a debugging session on one or more
processes which were loaded with the attach command.

Usage:

detach [-p process_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Example:

The following command detaches from a process with the process identifier p1:

detach –p p1

Notes:

Attaching to and detaching from running processes is an operating system specific
feature and may not be present in all versions of the debugger.

Detaching from a process not loaded with the attach command may have
unpredictable results.

Related commands:

attach

 disable Deactivating program breakpoints or auto-display expressions

Description:

The disable command is used to deactivate a breakpoint or auto-display expression
without removing it from the list of current breakpoints or auto-display expressions.

Usage:

disable [-p process_list] breakpoint_id

disable display [-p process_list] display_id

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

breakpoint_id is the integer identifier assigned to a breakpoint when it was created
with the break, codebreak or databreak commands. The info breakpoints can be
used to display the current breakpoints and their breakpoint_id.

display_id is the integer identifier assigned to an auto-display expression when it was
created with the display command. The info displays command can be used to
display the current auto-display expressions and their display_id.

Example:

The following command disables a breakpoint with the breakpoint id 12 in two
processes with the process identifiers p1 and p7:

disable –p p1,p7 12

Related commands:

break, codebreak, commands, condition, databreak, display, enable, info
breakpoints, info displays

disasm Displaying disassembled machine instructions

Description:

The disasm command is used to examine the disassembled machine instructions for a
program being debugged.

Usage:

disasm [-p process_list] [-c instr_count] [address_expression]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-c instr_count specifies the integer number of instructions to disassemble. If a count is
not specified, one instruction is disassembled.

address_expression evaluates to the address of an instruction in the program.
Examples of useful address expressions for the disasm command include the name of
an entry point, the name of an entry point plus an integer offset, or the contents of a
pointer to a function. If an address is not specified, the address contained in the
specified process’s program counter will be used.

Default alias:

dis

Example:

The following command displays ten instructions starting at the address main+0x50:

disasm –c 10 main+0x50

The following command displays twenty instructions starting at the address of
procedure subone:

dis –c 20 subone

display Creating an auto-display expression

Description:

The display command to create auto-display expressions that will be evaluated and
displayed each time a program stops execution.

Usage:

display [-p process_list] [/fmt] value_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

/fmt specifies the output format to use to when printing the value of the specified
expression. Any if the formats descriped under the print or x command may be used
here.

 value_expression specifies the value to be displayed. Useful value expressions
include variable names, subscripted. and unsubscripted array names, structure and
union names, and references to structure and union members.

Notes:

Entering the display command without any other arguments will show the current
values of all auto-display expressions.

Related commands:

disable , enable, print, undisplay, x

down Specifying the active stack frame

Description:

The down command is used to change the active stack frame.

Usage:

down [-p process_list] [count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

count is the integer specifying the number of frames to move down in the current call
stack. If count is not given, the default value 1 is used.

Notes:

Stack frames are numbered from 0 to n, where 0 is the frame for the current
procedure (i.e. the last routine that was called) and n is the total number of stack
frames.

Related commands:

frame, info frame, stacktrace, up

dump Displaying program memory

Description:

The dump command displays program memory starting at a specified address.

Usage:

dump [-p process_list] [-f fmt] [-s size] [-c count] address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

address_expression evaluates to an integer address specifying a location in program
memory.

-f fmt specifies the output format, and can be one of: b (binary), c (char), s (string), f
(float), e (double), u (unsigned), x (hexadecimal), d (decimal), or o (octal).

-s size specifies the size of each item to display, and can be one of: b (1 byte), s (2
bytes), l (4 bytes),, or q (8 bytes).

 -c count specifies the number of values to display as an integer constant.

Example:

The following command displays the contents of the memory location Ox4O2790:

dump Ox4O2790

The following command displays the contents of the memory location specified by
the contents of the register %r14:

dump %rl

The following command displays the contents of four consecutive memory locations
starting at the address of the variable index1:

dump –c 4 indexl

Related commands:

display, print, printarray, x

enable Activating program breakpoints or auto-display expressions

Description:

The enable command is used to activate a breakpoint or auto-display expression
which as been deactivated with the disable command.

Usage:

enable [-p process_list] breakpoint_id

enable display [-p process_list] display_id

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

breakpoint_id is the integer identifier assigned to a breakpoint when it was created
with the break, codebreak or databreak commands. The info breakpoints can be
used to display the current breakpoints and their breakpoint_ids.

display_id is the integer identifier assigned to an auto-display expression when it was
created with the display command. The info displays command can be used to
display the current auto-display expressions and their display_id.

Example:

The following command disables a breakpoint with the break point id 12 in two
processes with the process ids p1 and p7:

enable –p p1,p7 12

Related commands:

break, clear, codebreak, commands, condition, databreak, delete, disable,
display, list breakpoints, info displays

exit Terminating execution of a command loop

Description:

The exit command is used to terminate execution of a loop of debugger commands.

Usage:

exit

Example:

The following command sequence will print out elements 1 to 5 the C array values:

set @loop = 0

while(1) { \

set @loop = @loop+1; \

if (@loop == 6) exit; \

print values[@loop]; }

Notes:

In the above example, @loop is a debugger convenience variable.

Related commands:

cycle, if, while

filestatus Displaying FORTRAN I/O unit information

Description:

The filestatus command is used to display information about all connected and
preconnected FORTRAN units. For units explicitly connected with a FORTRAN
OPEN statement, this command displays the unit number, file name, the state of the
ACCESS=, FORM=, ACTION=, STATUS= I/O control specifiers used to connect the unit,
and the current record number. For preconnected units, this command displays the
unit number, and the state of the ACCESS=, FORM=, ACTION= I/O control specifiers.

Usage:

filestatus [-p process_list] [-u unit_number]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

–u unit_number is an integer used to limit the information displayed to a particular
FORTRAN unit number. If a unit number is not specified, information is displayed
for all connected units.

Notes:

This command will only work for programs that use the Absoft FORTRAN runtime
library.

frame Specifying current stack frame

Description:

The frame command is used to specify the current stack frame for displaying
variables and arguments.

Usage:

frame [-p process_list] [frame_number]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

frame_number is a positive integer specifying a frame in the current call stack. If a
not specifed, the command will display information about the currently active stack
frame.

Notes:

Stack frames are numbered from 0 to n, where 0 is the frame for the current
procedure (i.e. the last routine that was called) and n is the total number of stack
frames.

Related commands:

down, stacktrace, up

handle Controlling signal actions

Description:

The handle command controls the actions taken when a signal is presented to a
process during a debugging session. It can also be used to send a signal to a process
or list of processes.

Usage:

handle [-p process_list] signal [pass | nopass] [stop | nostop]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

signal is the positive integer that represents the signal you wish to control. Specifying
only a signal number will cause that signal to be presented to your program the next
time execution is resumed. You can remove any pending signal by specifying zero
instead of a signal number.

pass | nopass indicates whether or not a process should be allowed to see a particular
signal. Specify pass if the signal should be passed to the process or nopass to prevent
the process from receiving the signal.

stop | nostop indicates whether or not a signal should stop execution of a process.
Specify stop if execution of the process should stop when the signal occurs and
nostop if the process should be allowed to continue executing.

Examples:

The following command will prevent the process with process id 4 from seeing future
occurrences of the floating point exception signal:

handle –p p4 8 nopass

Related commands:

list signals

if Conditionally executing debugger commands

Description:

The if command is used to conditionally execute debugger commands.

Usage:

if (condition) { command_list; }

where condition is a valid expression for the source language that is currently active.
Multiple conditions can be expressed using the logical operators provided by a given
source language.

command_list is a list of valid debugger commands separated by semi-colons.

Example:

The following command prints the value of the C array values if it’s first element is
not zero:

if (values[0] != 0) { print values; }

Notes:

Related commands:

cycle, exit, while

info Displaying information about the current debugging session

Description:

The info command is used to display information about various aspects of the current
debugging session.

Usage:

info subcommand

where subcommand is one of the arguments described below:
 all-registers - display the contents of all machine registers
 args – display the names and values of the arguments to the current function
 breakpoints – display all breakpoints
 classes – display the names of C++ classes
 display – display all auto-display expressions
 float – display the contents of the floating point machine registers
 frame – display information about the active stack frame
 functions – display the names of all functions
 line- display information about the current source line
 locals – display the names and values of all local variables in the current function
 modules – display the names of all Fortran90 modules
 paths – display a list of all source paths known to the debugger
 proc – display the current process state
 program – display information about the program being debugged
 registers – display the general purpose machine registers
 signals – display the actions associated with for signals
 source – display information about the current source file
 sources – display all the source files known to the debugger
 threads – display a list of threads in the current program
 types – display the names of user defined types
 variables – display the names and values of all global and static variables
 vector – display the contents of the vector machine registers

Notes:

Much of the information available by using the info command can also be displayed
in more detail using various list commands described elsewhere.

istepinto Executing single instructions

Description:

The istepinto command executes one or more assembly language instructions,
starting with the next instruction to be executed. If one of the instructions to be
executed is a call to a procedure, the procedure will be entered.

Usage:

istepinto [-p process_list] [-c count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-c count is an integer expression that specifies the number of instructions to execute.
If count is not specified, one instruction will be executed.

Default Alias:

 i,si,stepi

Examples:

The following command executes the next five instructions of the current procedure:

istepinto 5

Related commands:

istepover, stepinto, stepover

istepover Executing single instructions

Description:

The istepover command executes one or more assembly language instructions,
starting with the next instruction to be executed. If one of the instructions to be
executed is a call to a procedure, execution of the program will continue until the
instruction following the procedure call is encountered or until a breakpoint is
encountered in the procedure that is being treated as a single instruction.

Usage:

istepover [-p process_list] [-c count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-c count is an integer expression that specifies the number of instructions to execute.
If count is not specified, one instruction will be executed.

Default Aliases:

 I, ni, nexti

Examples:

The following command executes the next five instructions of the current procedure,
treating any procedure calls as single instructions:

istepover 5

Related commands:

istepinto, stepinto, stepover

jump Resuming execution at a different address

Description:

The jump command is used to resume execution at a given location in the program
being debugged. The location can be any valid address expression. The location may
also be specified as a source file and line number combination.

Usage:

junp [-p process_list] filename:line_number | *address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

filename:line_number specifies the source file and line number where program
execution resumes.

*address_expression specifies an address where program execution resumes.

Example:

The following command resumes program execution at location specified by the
address expression main+Ox50:

jump *main+Ox5O

The following command resumes program execution on the seventh line of the file
source.f:

jump source.f:7

Notes:

The jump command does not change the current stack frame, stack pointer, or any
other registers besides the program counter. Bizarre and unpredictable results are
likely to occur when a program is resumed at an arbitrary location.

Related commands:

continue, until

kill Terminating process execution

Description:

The kill command kills the specified process being debugged without exiting the
debugger.

Usage:

kill [-p process_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Default alias:

k

Related commands:

core, load

list args Displaying procedure arguments

Description:

The list args command displays the arguments to the currently active procedure in
the active or specified process.

Usage:

list args [-p process_list] [-l] [-t] [-v] [-V]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-l includes the address of the argument in the output.

-t includes the type of the argument in the output.

-v includes the value of the argument in the output.

-V is a short cut for specifying –l, -t, and –v.

Default alias:

la

Notes:

If the stack frame for the current procedure is not completely established, the values
and addresses for the arguments will not be correct.

Related commands:

list globals, list locals, list statics

list breakpoints Displaying program breakpoints

Description:

The list breakpoints command displays all the breakpoints that are set in the active
or specified process.

Usage:

list breakpoints [-p process_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Default alias:

lb

Related commands:

clear, codebreak, condition, commands, databreak, disable, enable

list canbreak Displaying executable source lines

Description:

The list canbreak command displays all of the source lines in the active or specified
source file that the compiler has indicated are valid executable lines.

Usage:

list canbreak [-p process_list] [-s source_file]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-s source_file specifies a source file in the process. If a source file is not specified, the
current source file is used by default.

Default alias:

lcb

Related commands:

clear, codebreak, condition, commands, databreak, disable, enable

list classes Displaying C++ class names

Description:

The list classes command displays the C++ class names defined in the active or
specified process. This command can also be used to display the class definition for a
specific class.

Usage:

list classes [-p process_list] [-s source_file] [-c class]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-s source_file restricts the output to classes present in a particular source file. If a
source file is not specified, all classes defined in the current process are listed.

-c class displays the complete class information for a specific class. If a class name is
not specified, only the names of the classes are displayed.

Default alias:

none

Related commands:

list members, list types

list entries Displaying entry point information

Description:

The list entries command is used to display information about the routines defined in
the active or specified process.

Usage:

list entries [-p process_list] [-o object_name] [-f entry_name] [-l]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-o object_name restricts the output to entry points defined in a particular executable
file or shared object used the specified process. If an object file is not given, all entry
points are listed.

-f entry_name restricts the output to a specific function defined in the specified object
and process.

-l includes the address of each entry point in the command output.

Default alias:

le

Example:

The following command displays the name and address for an entry point named
main in the object named a.out for processes with the process ids 1 and 2:

list entries –p p1,p2 –o a.out –f main –l

Related commands:

list functions, list objects, list symbols

list frame Displaying the active stack frame

Description:

The list frame command displays the active stack frame for the current or specified
process.

Usage:

list frame [-p process_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
control of the debugger. If a process_list is not specified, the current active process is
used by default.

Notes:

Stack frames are numbered from 0 to n, where 0 is the frame for the current
procedure (i.e. the last routine that was called) and n is the total number of stack
frames.

Related commands:

down, frame, stacktrace, up

list functions Displaying program functions and procedures

Description:

The list functions command displays information on the functions and procedures
defined in the current or specified process.

Usage:

list functions [-p process_list] [-o object_file] [-s source_file] [-t] [-l] [-V]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-o object_file specifies an executable file or shared object file that is used in the
current or specified process.

-s source_file restricts the output to functions present in a particular source file.

-l includes the address of the function in the output.

-t includes the return type of the function in the output.

-V is a short cut for specifying –l and –t.

Default alias:

lf

Example:

The following command lists all the functions present in a source file names eigen.f
in the object named libmath.so in the process with the process id p5:

list functions –p p5 –o libmath.so –s eigen.f

Related commands:

list entries, list objects, list source

list globals Displaying global symbol information

Description:

The list globals command is used to display the global symbols for the current or
specified process.

Usage:

list globals [-p process_list] [-l] [-t] [-v] [-V]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-l includes the address of the global in the output.

-t includes the type of the global in the output.

-v includes the value of the global in the output.

-V is a short cut for specifying –l, -t, and –v.

Default alias:

lg

Related commands:

list args, list locals, list statics

list locals Displaying local variable information

Description:

The list locals command displays the local variables for the currently active
procedure in the active or specified process.

Usage:

list locals [-p process_list] [-l] [-t] [-v] [-V]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-l includes the address of the variable in the output.

-t includes the type of the variable in the output.

-v includes the value of the variable in the output.

-V is a short cut for specifying –l, -t, and –v.

Default alias:

ll

Notes:

If the stack frame for the current procedure is not completely established, the values
and addresses for the locals will not be correct.

Related commands:

list args, list globals, list statics

list members Displaying C++ class member information

Description:

The list members command is used to display information about a C++ class in the
current or specified process.

Usage:

list members [-p process_list] [-base] [-data] [-friends] [-function] [-private]
 [-protected] [- public] [-l] class_name

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

class_name is the name of the class for which the information is desired.

-base includes the base classes (if any) for the specified class.

-data includes the specified class’s data members.

-friends includes the specified class’s friends.

-function includes the specified class’s member functions.

-private includes the output to the specified class’s private members.

-protected includes the output to the specified class’s protected members.

-public includes the output to the specified class’s public members.

-l includes the address of the specified class’s member functions in the output.

Notes:

If none of the access specifier options are specified, all public, protected and private
members are displayed. If none of the member filter options are specified, all types of
class are displayed. The amount of information available for a class may vary
depending upon the type and quality of the debug information produced by a given
compiler.

Related commands:

list classes, list types

list objects Displaying process object information

Description:

The list objects command is used to display the executable and shared object files
that are contained in the current or specified process..

Usage:

list objects [-p process_list]

 where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Default alias:

lo

Related commands:

list entries, list source, list symbols

list processes Displaying processes under debugger control

Description:

The list processes command is used to display the processes that are currently being
debugged. The output for each process includes the debugger assigned process id, the
host operating system’s process id, the name of the process’s executable image, and
the process’s current state.

Usage:

list processes

Default alias:

lp

Related commands:

list threads, thread, use

 list signals Displaying current signal status

 Description:

The list signals command displays the action that will be taken when signals are
presented to the current or specified process.

Usage:

list signals [-p process_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Related commands:

signal

list source Displaying source file information

Description:

The list source command is used to display the names of the source files that were
compiled with debug information for the current or specified process.

Usage:

list source [-p process_list] [-o file_name]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-o file_name specifies an executable file or shared object file that is used in the
current or specified process.

Related commands:

list objects

list statics Displaying static variable information

Description:

The list statics command displays the file static variables for the currently active
source file in the active or specified process.

Usage:

list locals [-p process_list] [-l] [-t] [-v] [-V]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-l includes the address of the variable in the output.

-t includes the type of the variable in the output.

-v includes the value of the variable in the output.

-V is a short cut for specifying –l, -t, and –v.

Default alias:

ls

Related commands:

list args, list globals, list locals

list symbols Display process data symbol information

Description:

The list symbols command is used to display the global data symbols for the
specified or active process.

Usage:

list symbols [-p process_list] [-o object_name]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-o object_name restricts the output to symbols defined in a particular executable file
or shared object used the specified process. If an object file is not given, all data
symbols are listed.

Example:

The following command displays the global data symbols in the object named a.out
for processes with the process ids 1 and 2:

list symbols –p p1,p2 –o a.out

Related commands:

list functions, list entries, list objects

list threads Displaying process thread information

Description:

The list thread command is used to display thread information for the specified or
active process.

Usage:

list threads [-p process_list]

 where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Default alias:

lt

Notes:

Thread debugging support is operating system dependent and may not be available in
all debuggers.

Related commands:

list processes, thread, use

list types Displaying symbol types

Description:

The list types command is used to display the known symbol types for the specified
or active process.

Usage:

list types [-p process_list] [-s source_file]

 where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-s source_file restricts the output to types visible in a particular source file.

load Loading a program into the debugger

Description:

The load command is used to load a program into the debugger in order to begin a
debugging session.

Usage:

load [-f] program_name program_arguments

 where program_name is the full or partial path to the executable image for the
program to be debugged. For maximum debugging functionality, the program should
have been compiled with the compiler’s option to generate debugging information.

program_arguments are the arguments to pass to the program as they would be
specified on the command line. Standard input and output redirection can be
established using the < and > operators as part of the argument list.

-f specifies that the debugger should attach to any child processes spawned by the
loaded program.

Example:

The following command loads the program buggy into the debugger passing it the
arguments one, two, three and redirecting standard input and standard output from and
to the files pinput and poutput:

load buggy one two three < pinput > poutput

Related commands:

attach, detach, core, run

print Displaying program variables

 Description:

The print command displays the contents of program variables, registers, debugger
control variables, and can also be used to evaluate expressions containing these items
as well as constants and source language operator. Entire arrays, structures and unions
can also be displayed. The printarray command is also available for displaying the
contents of arrays.

 Usage:

print [-p process_list] [/fmt] value_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

value_expression specifies the value to be printed. Useful value expressions include
variable names, subscripted and unsubscripted array names, structure and union
names, and references to structure and union members.

/fmt specifies the output style and is given as one of the following single characters: x
(hexadecimal), d (decimal), u (unsigned decimal), o (octal), t (binary), c (ascii
character), f (floating point.

Example:

The following command prints the variable intvar as a hexadecimal integer:

print /x intvar

Notes:

The control variable %arraycount controls the maximum number of array elements
to display when an unsubscripted array name is specified.

The control variable %stringlen controls the maximum number of characters printed
when displaying character strings.

Related commands:

dump, printarray, x

printarray Displaying the contents of arrays

Description:

The printarray command is used to display the contents of arrays when greater
control of array indexing is desired.

Usage:

printarray [-p process_list] [/fmt] [-d (index_list)] array_name

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

array_name is the name of an array variable visible in the current scope.

/fmt specifies the output style and is given as one of the following single characters: x
(hexadecimal), d (decimal), u (unsigned decimal), o (octal), t (binary), c (ascii
character), f (floating point.

 -t specifies that the type of the value expression should also be displayed.

-d (index_list) specifies the index values to be used to display the array. The index list
is specified as a comma separated list of indexes with each index containing a lower
and upper bound and an optional step increment.

Example:

The following command displays every third element of the single dimensioned array
one_dim

printarray –d (1:12:3) one_dim

The following command displays elements (1,1),(2,1) and (3,1) of the two
dimensional array two_dims:

printarray –d (1:3,1) two_dims

Notes:

If an upper or lower bound is left out of the index information for a particular
dimension, the array’s declared upper or lower bound is used instead.

Related commands:

dump, print

quit Ending a debugging session

Description:

The quit command terminates the current debugging session.

Usage:

quit

Default alias:

q

Related commands:

kill

read Reading commands from a file

Description:

The read command allows debugger commands to be read from a text file. This
command can be used to automate frequently executed commands or to automatically
load a predefined debugging session. The file may be created in any text editor as
long as is saved as plain ASCII text without additional formatting.

Usage:

read {“filename”}

where filename is the name of a file that contains valid debugger commands. If an
error occurs while commands are being read from the specified file, the remaining
commands in the file will be ignored.

Example:

The following command will cause the debugger to execute the commands in the file
fxsetup:

read fxsetup

Notes:

It is permissible to nest read commands. That is, a file specified with the read
command may contain other read commands. It should be noted that use of this
feature might lead to infinite execution if the file used in a nested read command
contains a read command specifying the original file.

registers Displaying hardware registers

Description:

The registers command is used display the current contents of hardware registers for
the current or specified process.

Usage:

registers [-p process_list] [-g] [-f] [-Vf] [-Vd] [-Vai] [-Vaf] [-Vad]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-g displays the process general purpose registers.

-f displays the process dedicated floating point registers

-Vf displays the process vector registers in single precision floating point mode

-Vd displays the process vector registers in double precision floatint point mode

-Vai displays the process vector registers in integer format

-Vaf displays the process vector registers in single precision floating point format

-Vad display the process vector registers in double precision floating point format

Default alias:

r

Notes:

The contents of individual registers can be displayed in a variety of formats using the
print command.

Vector and floating point registers are system specific and may not be available on all
systems.

Related commands:

print, set

return Returning from the current subroutine

Description:

The return command resumes execution of the program being debugged until the
current procedure returns to its calling procedure or a breakpoint is encountered. If
the current procedure never returns to its calling procedure, execution will continue
until a breakpoint is encountered, an error occurs, or the program runs to completion.

Usage:

return [-p process_list]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Default alias:

R

Related commands:

continue, istepinto, istepover, stepinto, stepover

run Restarting program execution

Description:

The run command is used restart execution of a program optionally specifying
different arguments from those that were used when the program was initially loaded
with the load command.

Usage:

run program_arguments

 where program_arguments are the arguments to pass to the program as they would
be specified on the command line. Standard input and output redirection can be
established using the < and > operators as part of the argument list.

Example:

The following command restarts program execution the arguments one, two, three and
redirecting standard input and standard output from and to the files pinput and
poutput:

run one two three < pinput > poutput

Related commands:

attach, detach, core, kill, load

set Changing variable values

Description:

The set command is used change the value of a variable in the active or specified
process. It is also used to assign values to debugger control variables and debugger
convenience variables.

Usage:

set [-p process_list] variable = value

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

variable is the name of a variable visible in the current scope of the current or
specified process, a hardware register, a debugger control variable, or a debugger
convenience variable.

value is the new value to assign to the specified variable. The new value can be
specified as a constant or an expression to be evaluated before the assignment is
performed.

Example:

The following command changes the value of the array element node_valid[4]
in the current active process to 1:

set node_valid[4] = 1

signal Resuming execution with a specific signal

Description:

The signal command resumes program execution and present a specified signal the
program being debugged.

Usage:

signal [-p process_list] signal

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

signal is the positive integer that represents the signal you wish to control. Specifying
only a signal number will cause that signal to be presented to your program the next
time execution is resumed. You can remove any pending signal by specifying zero
instead of a signal number.

Default alias:

sig

Examples:

The following command will cause the process with process id 4 to receive a floating
point exception signal the next time execution is resumed:

signal –p p4 8

Related commands:

handle, list signals

stacktrace Displaying a stack trace

Description:

The stacktrace command is used to display the chain of procedure calls that
produced the current process state. Each procedure in the current chain is listed along
with the procedure that called it and the calling procedure's file and line number if
available. Optionally, the arguments to each procedure in the call stack can also be
displayed.

Usage:

 stacktrace [-p process_list] [-a]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-a enables the display of the arguments passed to each procedure in the call chain.

Default alias:

 t

Notes:

This command may not function correctly if the program being debugged is stopped
during execution of the entry code for a procedure or if the call chain contains one or
more procedures that do not follow the standard calling conventions.

Related commands:

down, frame, up

stepinto Executing single source statements

Description:

The stepinto command executes one or more source statements, starting with the next
statement to be executed. If one of the statements to be executed is a call to a
procedure, the procedure will be entered if complete symbol information is available
for it. If complete symbol information is not available, execution of the program will
continue until the statement following the procedure call is encountered.

Usage:

stepinto [-p process_list] [-c count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-c count is an integer expression that specifies the number of statements to execute. If
count is not specified, one statement will be executed.

Default alias:

s

Example:

The following command executes the next five statements of the current procedure:

stepinto 5

Notes:

The stepinto command will ignore any breakpoints set on instructions that are part of
the source statement being executed.

Related commands:

istepinto, istepover, stepover

stepover Stepping over procedure calls

Description:

The stepover command executes one or more source statements, starting with the
next statement to be executed. If one of the statements to be executed is a call to a
procedure, execution of the program will continue until the statement following the
procedure call is encountered or a breakpoint is encountered.

Usage:

stepover [-p process_list] [-c count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-c count is an integer expression that specifies the number of statements to execute. If
count is not specified, one statement will be executed.

Default alias:

S

Example:

The following command executes the next five statements of the current procedure,
treating any procedure calls as single statements:

stepover 5

Notes:

The stepover command will only stop for breakpoints set in a procedure which is
being treated as a single statement. It will ignore any breakpoints set on the
instructions that are part of the source statement being executed.

Related commands:

istepinto, istepover, stepinto

stop Stopping process execution

Description:

The stop command is used to interrupt execution of the active or specified process.

Usage:

stop [-p process_list]

 where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

Related commands:

continue

tbreak Setting a temporary breakpoint

Description:

The tbreak command is used to place a breakpoint at a given location in the program
being debugged. The location can be any valid address expression. The location may
also be specified as a source file and line number combination. When a breakpoint is
installed with the tbreak command, it will automatically be removed the first time it
stops program execution.

Usage:

tbreak [-p process_list] filename:line_number | *address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

filename:line_number specifies the source file and line number where the breakpoint
is set.

*address_expression specified an address where the breakpoint is set.

Example:

The following command sets a breakpoint on the location specified by the address
expression main+Ox50:

tbreak main+Ox5O

The following command sets a breakpoint on the seventh line of the file source.f:

tbreak source.f:7

Related commands:

 break, clear, codebreak, commands, condition, databreak, delete, disable,
enable, info breakpoints

thread Specifying the active thread

Description:

The thread command is used to make a thread the default active thread for the active
or specified process. The default active thread is used by other debugger commands,
such as print and registers, as the process context for retrieving register and memory
contents.

Usage:

thread [-p process_list] thread_id

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

thread_id is the integer thread identifier assigned by the debugger when the thread is
created.

Example:

Notes:

Thread debugging support is operating system dependent and may not be available in
all debuggers.

Related commands:

list processes, list threads, use

typeof Displaying the type of a symbol

Description:

The typeof command is used to display the type of a symbol in the active or specified
process. The symbol can be a variable, an aggregate data type, a function, or an
expression involving source language operators.

Usage:

typeof [-p process_list] [-v] symbol_name

 where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

-v displays the members of aggregate or derived data types.

symbol_name is the name of a variable, the name of a function or a source language
expression.

Example:

The following command displays the type of the variable simple:

typeof simple

The following command displays the type of the array element node[5] inside a
variable named node_stack:

typeof node_stack.node[5]

Related commands:

list classes, list members, list types

until Resuming execution until a specified location

Description:

The until command is used to resume execution at a given source line or program
address is encountered. This command is a short cut for setting a breakpoint,
executing a continue command, and then removing the breakpoint.

Usage:

until [-p process_list] filename:line_number | *address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

filename:line_number specifies the source file and line number where program
execution resumes.

*address_expression specifies an address where program execution resumes.

Example:

The following command resumes program execution at location specified by the
address expression main+Ox50:

until *main+Ox5O

The following command resumes program execution on the seventh line of the file
source.f:

until source.f:7

Related commands:

continue, jump

up Specifying the active stack frame

Description:

The up command is used to change the active stack frame in the active or specified
process.

Usage:

up [-p process_list] [count]

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

count is the integer specifying the number of frames to move up in the current call
stack. If count is not given, the default value 1 is used.

Notes:

Stack frames are numbered from 0 to n, where 0 is the frame for the current
procedure (i.e. the last routine that was called) and n is the total number of stack
frames.

Related commands:

down, frame, stacktrace

use Specifying the active process

Description:

The use command is used to make a process the default active process. The default
active process is the process which other debugger commands apply to when a
specific process is not supplied as a command argument. For threaded processes, a
default active thread may also be specified.

Usage:

use process_id[:thread_id]

where process_id is the integer process identifier assigned by the debugger when the
process is created. A process_id is specified as the letter ‘p’ followed by the integer
process identifier.

thread_id is the integer thread identifier assigned by the debugger when the thread is
created.

Example:

The following command makes the process having the process identifier p3 the
default active process:

use p3

The following command makes the process having the process identified p3 the
default active process and thread 2 within that process the default active thread:

use p3:2

Related commands:

list processes, list threads, thread

view Displaying program source code

Description:

The view command is used to display lines of source code from the program being
debugged.

Usage:

view linenum | function | line_spec [, line_spec]

where linenum is an integer line number in the current source file.

 function is the name of a function in the current program.

line_spec gives the name and line number of a source file as sourcefile:line number or
a positive or negative offset from the current line.

Example:

The following command displays 10 lines of source code around line 25 of the file
test.f:

view test.f:25

Notes:

Repeatedly entering the view command without any additional arguments will list
additional lines from the current source file until the end of the files is encountered.

The number of lines displayed by a single view command can be changed using the
set listsize command.

Related commands:

addpath, deletepath, info sources, info paths

while Executing debugger commands in a loop

Description:

The while command is used to create a loop of debugger commands that will execute
until a certain condition is met.

Usage:

while (condition) { command_list }

where condition is a valid expression for the source language that is currently active.
Multiple conditions can be expressed using the logical operators provided by a given
source language.

command_list is a list of valid debugger commands separated by semi-colons.

Example:

The following command sequence will print out the first 15 elements of the C array
values:

set @loop = 1

while(@loop < 16) { \

print values[@loop]; \

set @loop = @loop+1; }

Notes:

In the above example, @loop is a debugger convenience variable.

Related commands:

cycle, exit, if

x Displaying program memory

Description:

The x command displays program memory starting at a specified address.

Usage:

dump [-p process_list] [/ fmt] address_expression

where –p process_list is a comma separated list of process ids. Specifying the word
“all” as the process list will apply the command to all processes currently under
debugger control. If a process_list is not specified, the current active process is used
by default.

address_expression evaluates to an integer address specifying a location in program
memory.

/fmt specifies the output style and is given as an optional integer count, followed by a
format character, followed by an optional size character. Valid format characters are x
(hexadecimal), d (decimal), u (unsigned decimal), o (octal), t (binary), c (ascii
character), f (floating point) and i (disassembled instructions). Valid size characters
are b (one byte), h (two bytes), w or l (four bytes), and g or q (eight bytes). The
default behavior when no output style is specified is to output one hexadecimal four
byte value.

Example:

The following command displays the contents of the memory location Ox4O2790:

x Ox4O2790

The following command displays the contents of the memory location specified by
the program counter as a disassembled instruction:

x /i %pc

The following command displays the contents of four consecutive memory locations
starting at the address of the variable index1:

x /4 indexl

Related commands:

display, print, printarray, x

Appendix A

Debugging On Windows

This appendix describes the Windows specific aspects of Fx3.

Use the -g option with any Absoft compiler to direct the compiler to add symbol and line
number information to the object file. This option must be enabled for each source file
that you will want to have the source code displayed for while debugging. It is not
required for files that you are not interested in.

If you are using the Absoft Developer Tools interface to build your project, choose the
Debug Standard option in the Absoft Developer Tools Compiler Interface. This option is
found by choosing the Set Project Options… command in the Configure menu. The debug
options are on the Target tab.

debug compiler option

77

Appendix B

Debugging On Macintosh

This appendix describes the Macintosh specific aspects of Fx3.

Use the -g option with any Absoft compiler to direct the compiler to add symbol and line
number information to the object file. This option must be enabled for each source file
that you will want to have the source code displayed for while debugging. It is not
required for files that you are not interested in.

If you are using the Absoft Developer Tools interface to build your project, choose the
Debug Standard option in the Absoft Developer Tools Compiler Interface. This option is
found by choosing the Set Project Options… command in the Configure menu. The debug
options are on the Target tab.

79

81

Appendix C

Debugging On Linux

This appendix describes the Linux specific aspects of Fx3.

Use the -g option with any Absoft compiler to direct the compiler to add symbol and line
number information to the object file. This option must be enabled for each source file
that you will want to have the source code displayed for while debugging. It is not
required for files that you are not interested in.

83

Appendix D

Fx3 Control Variables

Fx3 defines a number of control variables, internal variables that modify the operation of
commands. The table below lists the control variables, their purpose, and default values.

Fx3 Control Variables

Name Controls Legal Values
%array whether arrays are printed “pretty” 0 – don’t print pretty, 1 – print pretty

%arraycount maximum number of array elements
displayed when unsubscripted arrays
displayed with the print command

any positive integer, default is 100

%case case folding for symbol table searches “lower”, “upper", or "both”, default is
“both”

%confirm whether dangerous operations require
confirmation

0 – don’t confirm, 1 - confirm

%deflang default expression language “C” or “FORTRAN”, default is “C”

%explang current expression language, when set
to "automatic", the expression
language is determined by the current
source file name

"automatic", "C", or "FORTRAN", default
is "automatic"

%follow default setting for attaching to
spawned children of debugged
processes

0 – don’t attach, 1 - attach , default is 1

%f90casefold default case folding for F90 compiled
code

“lower”, “upper”, “none”, default is
“upper”

%gdbwannabe format output of certain commands in
gdb style.

0 – don’t format, 1 – format, default is 0

%initialbreak breakpoint[s] where program is
initially halted

comma separated list of procedure names,
default is “MAIN_,MAIN__,main”

%lastbreak breakpoint ID of the last installed
breakpoint

internal debugger variable, can be read but
should not be set

%listsize number of source lines displayed by
the view command

 positive integer, default is 10

%null-stop whether printing of char arrays stops
at first null

0 – don’t stop, 1 - stop

%pretty whether structures are printed “pretty” 0 – don’t print pretty, 1 – print pretty

%prompt command prompt displayed when
using the debugger command line

any character string, default is “(Fx3) “

%showbase whether the debugger displays base
class information for C++ class types

0 – don’t show base info, 1 – show base
info default is 1

 Fx Control Variables 84

class information for C++ class types info, default is 1

%static whether C++ static members are
printed

0 – don’t print static members, 1 – print
static members

%stringlen maximum number of characters to
display for C char pointers, C char
arrays, and Fortran character variables

any integer, default is 80

%union printing of unions inside structures 0 – don’t print unions, 1 – print unions

%version version of Fx3 debugger internal debugger variable, can be read but
should not be set

85

addpath, 2
addressof, 3
aggregate, 9
alias, 4
assembly language, 13, 14
attach, 5
break, 6
breakpoint condition, 8
breakpoints, 6
catch, 7
clear, 8
Clear All Breakpoints command, 14
Close command, 11
codebreak, 9
command arguments, 26
commands, 10
Compiler Options, 2
condition, 11
Console, 4
Console pane, 4
Console window, 4
continue, 12
Continue command, 13
Control menu, 13
core, 13
cycle, 14
databreak, 15
debugging on Linux, 81
debugging on Macintosh, 79
debugging on Windows, 77
delete, 17
deletepath, 18
detach, 19
disable, 20
disasm, 21
display, 22
down, 23
dump, 24
enable, 25
Enable/Disbale Breakpoint command, 14
exit, 26
File menu, 11
filestatus, 27
Find command, 11

Find Next command, 12
frame, 28
Go to Line command, 12
handle, 29
if, 30
info, 31
Instruction Step Into command, 14
Instruction Step Over command, 14
isstepinto, 32
isstepover, 33
jump, 34
kill, 35
Kill command, 13
Linux, 81
list args, 36
list breakpoints, 37
list canbreak, 38
list classes, 39
list entries, 40
list frame, 41
list functions, 42
list globals, 43
list locals, 44
list members, 45
list objects, 46
list processes, 47
list signals, 48
list souce, 49
list statics, 50
list symbols, 51
list thread, 52
list types, 53
load, 54
Macintosh, 79
ommand window, 16
Open command, 11
Options

Compilers, 2
Pointers, 9
print, 55
printarray, 56
quit, 57
Quit command, 11
read, 58

registers, 59
Restart command, 13
return, 60
Return command, 14
run, 61
scope, 8
set, 62
Show Program Counter command, 12
signal, 63
single stepping, 6
skip count, 8
stack frame down command, 12
stack frame up command, 12
Stack window, 10
stacktace, 64
Step Into command, 13
Step Over command, 14
stepinto, 65

stepover, 66
stop, 67
Stop command, 13
Symbols window, 8
tbeak, 68
thread, 69
typeof, 70
Unload command, 13
until, 71
up, 72
use, 73
variables, 8, 9
view, 74
View menu, 11
while, 75
Windows, 77
x, 76

	Fx3 User Guide
	The Fx3 Debugger
	INTRODUCTION TO FX3
	How To Use This Manual

	PREPARING FOR DEBUGGING
	Compiler Options
	Starting a Debugging Session

	DEBUGGING CONCEPTS
	Getting Started
	Single Stepping
	Using Breakpoints
	Displaying Variables
	Changing Variables
	Debugging Hints

	FX3 MENUS AND WINDOWS
	File Menu
	Open… \(Ctrl+O\)
	Close (Ctrl+W)
	Quit

	View Menu
	Find… \(Ctrl+F\)
	Find Next (Ctrl+6)
	Go to Line… \(Ctrl+L\)
	Up (Ctrl+U)
	Down (Ctrl+D)
	Current Line (Ctrl+P)

	Debug Menu
	Continue (Ctrl+J)
	Restart (F8)
	Stop
	Kill (Ctrl+K)
	Unload
	Step Into (Ctrl+I)
	Step Over (Ctrl+S)
	Return (Ctrl+R)
	Run To Selection (Ctrl+T)
	Instruction Step Into (Ctrl+Shift+I)
	Instruction Step Over (Ctrl+Shift+S)
	Enable/Disable Breakpoint
	Clear All Breakpoints

	EXECUTING FX3 COMMANDS DURING INITIALIZATION
	DEBUGGING IN THE COMMAND WINDOW
	Examining Program Source Code
	Using the view command

	Examining the Stack
	Executing Your Program
	Resuming Program Execution
	Executing Single Statements
	Returning From Procedures
	Restarting Program Execution

	Using Breakpoints to Stop Program Execution
	Setting Breakpoints
	Executing Commands When A Breakpoint Occurs
	Using Breakpoint Conditions
	Using Breakpoint Ignore Counts
	Disabling and Enabling Breakpoints
	Removing Breakpoints

	Displaying the Values of Variables
	Displaying Simple Variables
	Displaying Arrays
	Displaying User Defined Types
	Using the Expression Analyzer
	Watching The Values of Variables
	Changing the Values of Variables

	COMMAND ARGUMENTS
	Identifier Scoping
	Implicit Scoping

	Specifying Symbols
	Symbol Names
	FORTRAN Symbols
	FORTRAN Data Types
	FORTRAN Subroutines and Functions
	FORTRAN Common Blocks
	FORTRAN Local Variables and Procedure Arguments
	FORTRAN Array Indexing
	FORTRAN Character Substrings

	C Symbols
	C Data Types
	C Functions
	C Extern Variables
	C Static Variables
	C Automatic Variables
	C Array Indexing and Pointer Dereferencing
	C Structure and Union Members

	Specifying Constants
	Integer Constants
	Decimal Constants
	Octal Constants
	Hexadecimal Constants
	Floating Point Constants
	Complex Constants
	Character String and C Character Constants

	Specifying Registers
	Expression Interpretation
	Current Expression Language
	Default Expression Language
	Supported Language Operators
	FORTRAN Operators
	C Operators
	Value Expressions
	Address Expressions
	Operand Interpretation

	Command Reference
	Appendix A Debugging On Windows
	Appendix B Debugging On Macintosh
	Appendix C Debugging On Linux
	Appendix D Fx3 Control Variables

