

User Guide

Pro Fortran

Mac OS X
With Intel Processors

 Pro Fortran
User Guide

Mac OS X

With Intel Processors 2781 Bond Street
 Rochester Hills, MI 48309
 U.S.A.
 Tel (248) 853-0095
 Fax (248) 853-0108
 support@absoft.com

All rights reserved. No part of this publication may be reproduced or used in any form by any means, without the
prior written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE
AND RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF
WARRANTIES WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO
REVISE THE PROGRAM MATERIAL AND MAKE CHANGES THEREIN FROM TIME TO TIME
WITHOUT OBLIGATION TO NOTIFY THE PURCHASER OF THE REVISION OR CHANGES. IN
NO EVENT SHALL ABSOFT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE PURCHASER'S USE OF THE PROGRAM
MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
252.227-7013. The contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE
SOFTWARE. ABSOFT AND ITS LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT
PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF ABSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO
YOU. Absoft and its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of
the form of the action (whether in contract, tort, (including negligence), product liability or otherwise), will be
limited to $50.

Absoft, the Absoft logo, Fx, Fx2, CLM, Pro Fortran, and MacFortran are trademarks of Absoft Corporation
Apple, the Apple logo, Velocity Engine, OS 9, and OS X are registered trademarks of Apple Computer, Inc.
AMD64 and Opteron are trademarks of AMD Corporation
CF90 is a trademark of Cray Research, Inc.
IBM, MVS, RS/6000, XL Fortran, and XL C/C++ are trademarks of IBM Corp.
Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MS-DOS is a trademark of Microsoft Corp.
Pentium, Pentium Pro, and Pentium II are trademarks of Intel Corp.
PowerPC is a trademark of IBM Corp., used under license.
Sun and SPARC are trademarks of Sun Microsystems Computer Corp.
UNIX is a trademark of the Santa Cruz Operation, Inc.
Windows 95/98/NT/ME/2000 and XP are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 1991-2007 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America. 10.0030907

Table of Contents i

Fortran User Guide

Fortran User Guide

Contents

CHAPTER 1 INTRODUCTION..1

Introduction to Absoft Pro Fortran...1
Absoft Fortran 90/95 ..1
Absoft FORTRAN 77 ..1

Conventions Used in this Manual ..2

Road Maps ...2
Fortran Road Maps...2

Year 2000 Problem..3
Fortran 90/95 DATE_AND_TIME Subroutine..4
Unix Compatibility Library ..4

CHAPTER 2 GETTING STARTED ..5

Compiling Basics ...5

Application Basics ...11

CHAPTER 3 USING THE ABSOFT EDITOR...............13

The Absoft Editor..13
Text Selection...13
Using Compilers...14
Pop-up menus ...14

Creating New Source Files ...15
Manipulating Windows ..16

Using the Editor Menus ..16
Application Menu...17

Preferences...17
Format ...17
Environment..19
Tools ...21

File Menu ...21
New…(N)...21
Open…(O) ...22
Open Recent ..22
Open Selected ..22
Open Complement ...22
Close (W) ..22
Close All ..22
Save (S)..22

ii Table of Contents

Fortran User Guide

Save As… ... 22
Save All... 23
Revert.. 23
Print Setup…(P) ... 23
Print… (P) ... 23
Page Setup…... 24

Edit Menu .. 24
Undo (Z) .. 25
Redo (Z) ... 25
Cut (X)... 25
Copy (C).. 25
Paste (V) .. 25
Clear.. 25
Select All (A)... 25
Find ... 26

Find (F)... 26
Find Next (F) .. 26
Find Previous (F)... 26

Bookmarks .. 27
Bookmarks Menu ... 27
Toggle Bookmark (F2)... 27
Previous Bookmark (F2) .. 27
Next Bookmark (F2).. 27
Clear File’s Bookmarks (F2)... 27
Clear All Bookmarks (Control F2).. 27

Format Menu ... 28
Show Info… (I) .. 28
Insert Continuation (I) ... 30
Go to Line (L).. 30
Match Brackets ({)... 30
Shift Left ([)... 30
Shift Right (])... 30
Comment... 30
Uncomment... 30
Convert to Upper Case.. 31
Convert to Lower Case ... 31

Tools Menu.. 31
Compile (Y)... 31
Check Syntax (K) .. 31
Stop (.) ... 31
Errors .. 31

Previous Error (D) .. 31
Next Error (E)... 32

Window Menu ... 32
Close Window (W).. 32
Zoom Window .. 32
Minimize Window (M).. 32
Hide Toolbar ... 32
Customize Toolbar... ... 32
Tile Horizontally ... 33
Tile Vertically ... 33
Cascade ... 33
Window list... 33

Help Menu ... 33
Tools Help... 33
Hide ToolTips ... 34

Table of Contents iii

Fortran User Guide

CHAPTER 4 USING THE COMPILERS...........................35

Compiling Programs...35

Using the Command Line ...35

File Name Conventions ...36

Using the Absoft Developer Tools Interface ...36
Working with Projects..37
Options Dialog ...38

Target Tab – General Options ...39
Target Type...39
Link Large Data Stubs ..40
Runtime Stack Trace (-et)...40
64-bit code (-m64)..40
Options..40

Speed Math (-speed_math=n)..42
Object File(s) Directory ..42
Target Directory..42
Target Filename ..42

Target Tab – FPU Options...43
FPU Rounding Mode ..43
FPU Exception Handling ..44
Don’t generate FMA instructions (-Q51) ...44

Other Target Options..44
Generate Assembly Language (-S) ..44
Generate Relocatable Object (-c)...45
Library Specification (-l) ...45
Library Path Specification (-L)..45

Absoft Developer Tools Interface ..45
Application Menu...46

About Tools ...46
Preferences…...46
Hide Tools ...47
Quit Tools ..47

File Menu ...47
New..47
Open ..47
Open Recent ..47
Close ..48
Save ...48
Save As ..48
Revert To Saved ..48
Page Setup... ..48
Print ...48
New File ..48

Edit Menu ...48
Undo ..48
Redo...48
View Previous..49

Configure Menu ...49
Add/Remove File(s)...49
Set Include Paths ...50
Set Project Options ..50

iv Table of Contents

Fortran User Guide

File Options... 50
Remove File Options .. 51
Remove All File Options .. 51
MRWE Preferences... ... 51
Set Default Options... 51

Tools Menu.. 52
Search.. 52
Build.. 52
Rebuild All.. 52
Update Dependencies.. 52
Check Syntax .. 52
Compile... 52
Edit.. 52
Preprocess ... 53
Clean ... 53
Stop ... 53
Execute.. 53
Debug.. 53
Profile.. 53
Terminal .. 53
Generate Makefile... 53

Window Menu ... 54
Hide Toolbar ... 54
Customize Toolbar... ... 54
Tile Horizontally ... 54
Tile Vertically ... 54
Project ... 54
Output ... 55

Help Menu ... 56
Tools Help... 56
Hide ToolTips ... 56

Absoft Fortran 95 Options... 57
General - F95 Options ... 57

Warning level (-znn) .. 58
Error Handling (-dq and -ea) ... 58
Max Internal Handle (-T nn) .. 58
Temporary string size (-t nn) .. 58
Cache Control (-YDEALLOC= {MINE | ALL | CACHE}).. 59
Warn of Non-Standard usage (-en) .. 59
Suppress warnings (-w)... 59
Suppress Warning number(s) (-Znn) .. 59
Use System Module Files (-SysModFiles).. 59
Set Module Paths (-p path) .. 59
Quiet (-q) .. 60
Verbose (-v) .. 60
Procedure Trace (-B80) .. 60
Output Version number (-V) ... 60
Default Recursion (-eR) ... 60

Compatibility - F95 Options .. 61
Disable compiler directive (-xdirective) .. 61
INTEGER and LOGICAL sizes (-in) ... 62
Character Argument Parameters (-YCFRL={0|1})... 62
Demote Double Precision to Real (-dp).. 62
Promote REAL and COMPLEX (-N113) .. 62
One trip DO loops (-ej)... 62
Static storage (-s) .. 62

Table of Contents v

Fortran User Guide

Check Array Boundaries (-Rb) ...63
Check Array Conformance (-Rc) ..63
Check Substrings (-Rs) ...63
Check Pointers (-Rp) ...63
Pointers Equivalent to Integers (-YPEI={0|1}) ...63

Format - F95 Options ...64
Free-Form (-ffree) ...64
Fixed-Form (-ffixed)..65
Alternate Fixed form (-falt_fixed)...65
Fixed line length (-W nn) ..65
YEXT_NAMES={ASIS | UCS | LCS} ...65
External Symbol Prefix (-YEXT_PFX=string) ..65
External Symbol Suffix (-YEXT_SFX=string) ..65
Treat as Big-Endian (-N26)...65
Treat as Little-Endian (-N27) ..66
Escape Sequences in Strings (-YCSLASH=1)..66
No Dot for Percent (-YNDFP=1)..66
MS Fortran 77 Directives (-YMS7D)..66

Common Block - F95 Options ...67
COMMON Block Name Prefix (-YCOM_PFX=string) ..67
COMMON Block Name Suffix (-YCOM_SFX=string) ..67
COMMON Block Name Character Case (-YCOM_NAMES={UCS | LCS})68

Other F95 Options ..68
Stack Size (-stack_size:size)...68
Disable Position Independent Code (-no-fpic) ..68
Speculative Execution (-B156) ...68
Inline CABS (-B157) ..68
Address Optimizations (-B158) ..68
Safe Floating-Point (-safefp) ..69
Disable Default Module File Path (-nodefaultmod) ..69
Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS})69
Symbol Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS})69
Ignore CDEC$ directives (-YNO_CDEC)..69

Absoft Fortran 90/95 Compiler Directives...69
NAME Directive..70
FREE[FORM] Directive..70
FIXED Directive..70
NOFREEFROM Directive...71
FIXEDFORMLINESIZE Directive...71
ATTRIBUTES Directive ...71
PACK[ON] Directive ..71
PACKOFF Directive ...72
STACK Directive ..72
UNROLL Directive ...72
NOUNROLL Directive ...72

Absoft FORTRAN 77 Options ...73
General - F77 Options ..74

Max Internal Handle (-T nn) ...74
Temporary string size (-t nn)...74
Suppress Warnings (-w) ..75
Warn of non-ANSI Usage (-N32) ...75
Quiet (-q) ...75
Verbose (-v) ...75
Check Array Boundaries (-C)..75
Conditional Compilation (-x)...75

Control - F77 Options...76

vi Table of Contents

Fortran User Guide

Compiler Directives (-Dname[=value]) .. 76
Compatibility - F77 Options .. 77

Integer Sizes (-i2 and -i8) ... 77
Vax/Mainframe Compatibility .. 78
Folding to Lower Case (-f).. 78
Static Storage (-s) ... 78
Folding to Upper Case (-N109).. 78
One-Trip DO Loops (F66) (-d)... 78
Append underscore to names (-N15).. 78

Miscellaneous - F77 Options ... 79
Promote REAL and COMPLEX (-N113) .. 79
Escape Sequences in Strings (-K) ... 80

Format - F77 Options... 80
ANSI Fortran 77 Fixed ... 81
Fortran 90 Free-Form (-8) .. 81
VAX Tab-Format (-V) .. 81
Wide Format (-W)... 81
Treat as Big-Endian (-N26) .. 81
Treat as Little-Endian (-N27) ... 81

COMMON Block - F77 Options ... 82
Align COMMON Variables (-N34) ... 82
Set COMMON Block Name (-N22)... 83
Don’t Mangle COMMON Block Name (-N110) ... 83

C/C++ Options .. 83
General – C/C++ Options .. 84

Max Internal Handle (-T n)... 84
Max Errors (-maxerr n) ... 85
Diagnostic Messages... 85
Suppress All Warnings (-w31) ... 85
Suppress Warnings (-w16) ... 85
Suppress Informationals (-w8).. 85
Suppress Anachronisms (-w2) .. 85
Suppress Template Warnings (-w1) ... 86
Treat Anachronisms as Errors (-wp)... 86
Treat All Warnings as Errors (-wabort) ... 86
No Alias Optimizations (-N19) .. 86
Quiet (-q) .. 86
Verbose (-v) .. 86
Procedure Trace (-N124).. 86
Verbose Templates (-ptv) ... 86
Include Tree to Stderr (-H) ... 86
No inlines (-inline none).. 86
Exception Handling (-except on|off)... 87

Preprocessor – C/C++ Options .. 87
Defines (-D name[=value]) ... 87
Undefines (-U name) ... 88
Do not search standard system directories .. 88
Preprocess files only ... 88

Format – C/C++ Options ... 89
C++ (-c++).. 89
ANSI C (-A).. 89
K and R C (-K).. 90

Linker Options.. 90
General - Link Options .. 91

Produce Map File .. 91

Table of Contents vii

Fortran User Guide

Suppress Warnings ..91
Verbose..91
Report Duplicate Symbols ...92
Exclude libac.a...92
Why Load ..92
Report Undefined Symbols..92
Add Framework(s)...92

Passing Options To The Linker..92
Undefine A Symbol (-u) ..92
Linker Options (-X and -Xlinker)..92

Other Link Options...93

Plug-ins...93
VAST ...94
IMSL Library ...95
LAPACK Library ...95
UNIX Library ...96
VAX/VMS Library...96

BUILD OPTIONS ...97

CHAPTER 5 PORTING CODE..99

Porting Code from VAX...99
Compile Time Options and Issues..100
Runtime Issues..101

Porting Code from IBM VS FORTRAN...101
Compile-time Options and Issues...102

Porting Code From Microsoft FORTRAN (PC version)...102
Compile-time Options and Issues...102

Porting Code from Sun Workstations...103

Porting Code from the NeXT Workstation...104

Porting Code from the IBM RS/6000 Workstation..104

Porting Code from Intel 386/486/Pentium Computers ..104

Porting Code To/From Other Macintosh Systems...104
Language Systems Fortran ...104
Other Absoft Compilers ...106

Other Porting Issues ...106
Memory Management...106

Dynamic Storage ...106
Static Storage ...107

Naming Conventions ..107
Procedure Names ...107
COMMON Block Names ..108

File and Path Names...108
Tab Character Size ...108
Runtime Environment ..109
Floating Point Math Control...111

viii Table of Contents

Fortran User Guide

Rounding Direction... 111
Exception Handling .. 112

CHAPTER 6 THE MACINTOSH RUNTIME
WINDOW ENVIRONMENT..113

Using MRWE.. 113
The MRWE Window... 114
How Your Program And MRWE Work Together... 115
Working With Text in MRWE .. 115
Using The MRWE Default Menus .. 116
File Menu... 116

Save (S)... 116
Save As… ... 116
Page Setup…... 116
Print Window…(P) ... 116
Quit (Q) ... 117

Edit Menu .. 117
Undo (Z) .. 117
Cut (X)... 117
Copy (C).. 117
Paste (V) .. 117
Clear.. 117

Font and Size Menus ... 117

Programming with MRWE ... 117
Program Organization: Fortran VS. Macintosh ... 118

MRWE Event Loop Operation ... 119
Customizing Menus ... 120

Adding Menus... 120
Special Characters... 120
Menus and the READ statement ... 121
Removing a Menu or Menu Item.. 122
Menu Response Routines and mrwe_DoMenu.. 122
Adding Checkmarks to Menus.. 123
Enabling/Disabling Menu Items ... 123

Launching OTHER APPLICATIONS... 124
Apple Events.. 125

Apple Event Target ... 125
Apple Event Class and ID... 126
Extra Information in an Apple Event .. 126
Receiving Apple Events.. 129
Error Codes Returned from Apple Event Routines... 132
Other Examples of Apple Events.. 132

Sending a request to the Finder .. 132
Using other standard Apple Events.. 133
Sending information between MRWE applications ... 133
Scripting ... 133

Further Information About Apple Events ... 134
Creating Multiple Windows... 134
Showing Alert Messages ... 135
SetMrwePrefs .. 136

Effects selected Application bundle, *.r file for *.rsrc file.To affect future applications built via the
command line modify /Application/Absoft10/Rincludes/mrweprefs.r. .. 136

Table of Contents ix

Fortran User Guide

Termination Options..136
Window Size Options ..137
Window Size ..137
Text characteristics ..137

CHAPTER 7 BUILDING PROGRAMS............................137
The Components of an Application..138
Working with Resources ..138

Creating Object Files ..138
Fsplit - Source Code Splitting Utility ...139

Building Programs ..140
The Elements of amake ..141

Using Macros...142
Advantages of using macros ...142
Defining macros..142
Special macros ..143
Cautions in using macros ..143

Using Description Files ...144
Working with dependency blocks...144
Defining a target more than once..145
Using include directives..145
A sample description file ..146

Using Dependency Rules...146
The default rules ...147
Creating your own rules..148

amake Usage and Syntax..149
Special Targets...151
Dummy Files ...151
Environment Variables ..152
Example: Rebuilding an Executable File...152

Error Handling and Cautions..153
Syntax Errors ...153
Other Common Errors ...154
Cautions ...155

CHAPTER 8 INTERFACING WITH OTHER
LANGUAGES ..157

Interfacing with C ...157
Fortran Data Types in C ...157
Related Compiler Options ..158
Rules for Linking..158
Passing Parameters Between C and Fortran ...158

Reference parameters...159
Value parameters ...160
Array Parameters ...161
Function Results ..161
Passing Strings to C...162

Calling Fortran math routines...163
Naming Conventions ..163
Accessing COMMON blocks from C ..164

x Table of Contents

Fortran User Guide

Declaring C Structures in Absoft Pro Fortran ... 164

Interfacing with Assembly Language ... 164

Debugging.. 164
Compiler Options... 164

Profiling... 165
Compiler Options... 165

APPENDIX A ABSOFT COMPILER OPTION GUIDE
..167

Absoft Pro Fortran Compiler Options ... 167

FPU Control Options ... 168

Fortran 90/95 Control Options.. 168

Fortran 90/95 Optimization Options .. 168

Fortran 90/95 Source Format Options ... 168

Fortran 90/95 Compatibility Options ... 169

FORTRAN 77 Control Options .. 169

FORTRAN 77 Optimization Options ... 170

FORTRAN 77 Source Format Options .. 170

FORTRAN 77 Compatibility Options .. 170

APPENDIX B EXCEPTIONS AND IEEE
ARITHMETIC...173

IEEE_FEATURES ... 173
IEEE_FEATURES_TYPE .. 173

IEEE_ARITHMETIC.. 174
IEEE_CLASS_TYPE .. 174
IEEE_ROUND_TYPE .. 175
Subroutines and Functions... 175

IEEE_EXCEPTIONS... 179
IEEE_FLAG_TYPE .. 180
IEEE_STATUS_TYPE.. 180
Subroutines and Functions... 180

Examples ... 182

Table of Contents xi

Fortran User Guide

APPENDIX C TERMINAL PROGRAMMING..............183

APPENDIX D ASCII TABLE...185

APPENDIX E BIBLIOGRAPHY..189

Fortran 90/95 ...189

FORTRAN 77 ..189

APPENDIX F TECHNICAL SUPPORT...........................191

 1

 Fortran User Guide

CHAPTER 1

Introduction

INTRODUCTION TO ABSOFT PRO FORTRAN

Absoft specializes in the development of Fortran compilers and related tools. Full
implementations of Fortran 77 and Fortran 90/95 are available for Macintosh OS X,
Windows, and Linux platforms. Absoft will continue to focus on Fortran in the future,
but the popularity of C/C++ in the Unix environment has required many of today's
Fortran programmers who are moving code to their desktop, to link Fortran code with C
libraries. Absoft compilers support most popular inter-language calling conventions
implemented on Macintosh OS X systems, providing compatibility with existing libraries
and object files, simplifying porting efforts.

This User Guide explains the operation of Absoft Fortran 90/95 and Absoft FORTRAN
77, and the Fx™ debugger on the Macintosh OS X operating system for the Intel family
of processors. In the event you have licensed only one of these compilers, please refer
only to the appropriate section(s) and disregard the others. All compilers operate in a
similar manner, share a common tool set, and are link compatible. A brief summary of
each compiler appears below.

Absoft Fortran 90/95

A complete, optimizing ANSI Fortran 90/95 implementation with extensions. Absoft
Fortran 90/95 is the result of a five-year joint development effort with Cray Research. It
utilizes a version of the CF90 front-end and is source compatible with several Cray F90
releases. It provides full support for interfacing with FORTRAN 77 and C Programming
Language libraries.

Absoft FORTRAN 77

Refined over 20 years, with emphasis on porting legacy code from workstations. Absoft
Fortran 77 is full ANSI 77 incorporating MIL-STD-1753, Cray-style POINTERs, plus
most extensions from VAX FORTRAN as well as many from IBM, Sun, HP, and Cray.
Absoft Fortran 77 supports legacy extensions that are not part of the Fortran 90/95
standard. See the chapter on Porting Code in this manual for further information. Fortran
77 is fully link compatible with Fortran 90/95 and C/C++ so existing, extended
FORTRAN 77 routines can be easily compiled and linked with new Fortran 90/95 or
C/C++ code.

2 Introduction

Fortran User Guide

CONVENTIONS USED IN THIS MANUAL

There are a few typographic and syntactic conventions used throughout this manual for
clarity.

• [] square brackets indicate that a syntactic item is optional.

• … indicates a repetition of a syntactic element.

• Term definitions are underlined.

• -option font indicates a compiler option.

• Italics are used for emphasis and book titles.

• Unless otherwise indicated, all numbers are in decimal form.

• FORTRAN examples appear in the following form:

 PROGRAM SAMPLE
 WRITE (9,*) "Hello World!"
 END

ROAD MAPS

Although this manual contains all the information needed to build programs with Absoft
Pro Fortran on Macintosh OS X, there are a number of other manuals that describe
Fortran 90/95 and FORTRAN 77 in further detail. The road map in this chapter will
guide you to these manuals for introductory or advanced reference. The bibliography in
appendices lists further information about each manual.

Fortran Road Maps

The Absoft implementation of Fortran 90/95 is detailed in the online manual, Fortran 90
Concise Reference, in the Documentation directory of the Pro Fortran CDROM.
FORTRAN 77 is detailed in the online manual, FORTRAN 77 Language Reference
Manual, also in the Documentation directory of the Pro Fortran CDROM. A discussion
of floating point precision is at the end of the chapter Porting Code. Figures 1-1 shows
additional manuals that can be used for referencing the FORTRAN language and internal
math operations.

 Introduction 3

ANSI C Standard
ANSI X3.159-1989

Annotated C++ Reference Manual
Ellis and Stroustrup

ANSI FORTRAN 77 Standard
ANSI X3.9-1978

ANSI Fortran 90 Standard
ANSI X3.198-1992

Absoft Fortran 90
Concise Reference

Absoft FORTRAN 77
Language Reference Manual

IEEE Floating Point Standard
P754

Absoft Pro Fortran User Guide

FORTRAN 77 language road map
Figure 1-1

YEAR 2000 PROBLEM

All versions of Absoft Pro Fortran products for Macintosh, Power Macintosh, Windows
95/98, Windows NT, Linux, and UNIX will operate correctly across the date transition to
the year 2000. Neither the compilers nor the runtime libraries have ever used 2-digit
years in their internal operation. This means the version of Absoft Pro Fortran that you
already have will continue to operate correctly. No patches or version updates are
required.

The only caveat may be for those porting code from VAX/VMS systems. Since the early
1980s, Absoft Pro Fortran products have included software libraries designed to facilitate
porting code from the VAX/VMS environment. Included in these VAX compatibility
libraries are two subroutines that emulate the VAX/VMS DATE and IDATE subroutines.
These subroutines return the year using a two-digit format. If you use DATE or IDATE
in a program that stores or compares dates, you may need to recode portions of your
application. Below are listed some of the alternatives supplied with Pro Fortran:

 Fortran User Guide

4 Introduction

Fortran User Guide

Fortran 90/95 DATE_AND_TIME Subroutine

This subroutine is part of the Fortran 90/95 language and returns integer data from the
date and real time clock. Refer to the Fortran 90 Concise Reference for further
information.

Unix Compatibility Library

There are a number of subroutines in the Unix Compatibility Library that return the date
and time in both INTEGER and CHARACTER format. Refer to the manual Absoft
Compatibility Libraries for information on their format and use.

 5

 Fortran User Guide

CHAPTER 2

Getting Started

The tutorial in this chapter introduces the two main functions of the Absoft Pro Fortran
Software Development package for Mac OS X: compiling source code and running
compiled applications. If you are familiar with the basics of compiling and running
programs, please see the table below as a guide to topics you may find useful.

TO DO THIS… TURN TO THIS SECTION…
Use the editor Using the Absoft Editor, Chapter 3

Use the compiler Using the Compilers, Chapter 4

Port from other platforms Porting Code, Chapter 5

Program Mac OS X MRWE, Chapter 6

Create applications Building Programs, Chapter 7

Interface with C Interfacing With Other Languages, Chapter 8

Debug programs Using the FX Debugger, Chapter 9

Road map for experienced users

COMPILING BASICS

The Absoft compilers can be run either from a command line or from the Absoft Tools
Interface. This chapter describes how to use the Absoft Tools Interface —the command
line interface is described in the chapter Using the Compilers and in the appendix
Terminal Programming.

Note: Throughout this chapter and the rest of the manual, it is assumed that the

compiler has been installed in the default installation folder
/Applications/Absoft10 on the boot volume. If this is not the case,
substitute the correct path in the examples as appropriate.

During the installation process, several example programs were placed in the
/Applications/Absoft10/examples folder. The example program used in this tutorial is
hello_ex.f. Follow the tutorial on the next few pages to learn how to use the graphical
interface to quickly compile small to medium size programs.

6 Getting Started

First, start up the interface to the compiler by double clicking the Absoft Tools icon in
the /Applications/Absoft10/bin folder.

The Absoft Tools Interface is project oriented, so the first thing you need to do is to
establish a name and location for your project. Type “hello” into the Name box. Change
the Location to a folder in your home directory, such as /Users/user_name/hello (be sure
sure to substitute your actual user name in for user_name above).

To create a double clickable windowed application, choose "New MRWE Application"
(Macintosh Runtime Window Environment) from the File Set: menu. This will supply
the resource files and other necessary files to have Absoft Tools create a windowed
Carbon application. MRWE provides an automatic Mac OS X Carbon interface for your
program with menus, a scrollable text window for program output, and the ability to
print. Choosing New Fortran 95 Project or New Fortran 77 Project will create a
terminal application and supply you only with an empty source file to start with. Empty
Project creates a Terminal application with no starting source file. For our demonstration
here we will create an MRWE application.

New Project dialog box

Click on the OK button and the MRWE Preferences dialog will appear. Most users will
want to make sure that the Pause at end of execution box is checked. You can alter the
initial size of the MRWE window in the Window Size Options section, or do nothing
and accept the default size and position. You can return to this menu later via the
MRWE Options selection in the Configure menu and make any desired adjustments.

Fortran User Guide

 Getting Started 7

MRWE Preferences dialog box

After you set the MRWE preferences, click the OK button and the project Options
menu is displayed.

Use this menu page to set project wide options and select which compilers to use. If you
know of any options that are necessary for your program you may set them now under
the appropriate tab and option subset (see chapter 4, Using the Compilers). You can
return to this menu later via the Set Project Options selection in the Configure menu
and make any necessary adjustments.

 Fortran User Guide

8 Getting Started

Project options dialog box

Click on the OK button to dismiss this dialog and the Main Project window will appear.
This window maintains all of the files in your project on the left and displays a variety of
information about your project on the right.

Each file in the Files list on the right side of the Project Options menu will be kept in a
separate folder based on the file extension. Initially, the list will contain three folders,
Fortran 95 Files, Resource Files, and Plist Files.

Most users will not need to do anything with the resource or plist files directly, but it is
important that they are a part of your MRWE project.

Fortran User Guide

 Getting Started 9

Main Project window

Notice that a file named hello.f95 is already a part of your project. This is a dummy
main program file provided by Absoft Tools. You can either edit it to contain your
Fortran code (as we will do in this example), or remove it from the project and add your
own Fortran source file(s).

The next step is to specify the file (or files) that the project consists of, in this case
/Applications/Absoft10/examples/hello_ex.f. This file contains a subroutine to call from
your main program. To open the appropriate dialog box, select Add/Remove File(s)…
from the Configure menu. Press the Add Files button and navigate to
/Applications/Absoft10/examples. Highlight hello_ex.f and press the Add button, then
press OK.

 Fortran User Guide

10 Getting Started

File selection dialog box

Now you need to create a main program unit and call the hello_ex subroutine. Double
click on hello.f95 in the Fortran 95 Files folder on the main Project window. This will
launch the Absoft Editor, ready to modify hello.f95. Add the text call hello_ex() on the
line just before the STOP statement. Go to the File menu and select Save. You may
now quit the Absoft Editor, see chapter 3 for more information about the Absoft Editor.

The last step is to build (compile) your application is to choose the Build command from
the Tools menu. This will compile both hello.f95 and hello_ex.f95 and create the
executable application hello.app, which will be located in the folder specified in the
project Location field. The “.app” file extension may not be visible in the Finder, but the
executable application icon will look like a piece of paper with a stylized “A” on it.

Fortran User Guide

 Getting Started 11

Main Project window after successful build

More detailed information concerning the creation of an application can be found in the
chapter Using the Compilers.

APPLICATION BASICS

The best way to run your application is to double click the application icon from the
Finder. You can also choose the Execute command from the Tools menu in Absoft tools.

Additional examples that may be helpful in writing Fortran 90/95 or FORTRAN 77
programs can be found in the /Applications/Absoft10/examples directory. Most
examples have an Absoft Tools project you can launch to build the program. Each
example source file starts out with a large comment, referred to as the header. Before
compiling an example, look at the header in the source code. It will list all of the
compiler options necessary to insure that the example will compile and run correctly. In
addition, the header describes the purpose of the example and other useful information.

 Fortran User Guide

 13

 Fortran User Guide

CHAPTER 3

Using the Absoft Editor

This chapter describes how to use the Absoft Editor to create and edit source files written
in FORTRAN. Since word processors embed formatting characters in a document, using
a word processor to create source files is not recommended. You can create source files
in a word processor or another editor and export them in text format, but the features of
the Absoft Editor make this unnecessary. The Absoft Editor incorporates powerful
features for editing FORTRAN 77, FORTRAN 90/95, C, and C++ source files. However,
this chapter will concentrate specifically on editing FORTRAN programs.

The Absoft Editor is a powerful tool for creating and maintaining program source files. It
is source language sensitive and will display keywords and comments in different text
colors, making them easier to distinguish in your source code.

With the Absoft Editor, you can edit multiple files at the same time, launch a compiler,
and return to the editor to correct syntax errors detected by the compiler. The Absoft
Editor is a Macintosh OS X program.

THE ABSOFT EDITOR

Basic editing functions are available as menu commands and there is usually more than
one way to initiate any command:

• Select the command from the menu or tool bar.

• Type in the key equivalent (such as typing the Control and the letter O

for the Open command).

Text Selection

Text may be selected for copying or deleting in two different manners. For small amounts
of text, you can drag the cursor over the text while holding the mouse button down. For
larger amounts of text, click the mouse button at the beginning of the selection, hold the
Shift key down, and the click the mouse button again at the end of the selection.

14 Using the Absoft Editor

Using Compilers

The editor can be used to run a compiler to either check the syntax of the source file or
compile it into an executable application. Default compiler options are set with the
Preferences control, described later in this chapter. Specific options for individual files
can be set either in the Source Info dialog for the file (also described later) or in the
Option Toolbar.

The Option Toolbar appears below the editor’s menu bar:

You can choose from a predefined set of options or type in your own custom set for the
file.

The Goto Toolbar also appears below the editor’s menu bar, to the right of the Option
Toolbar. It contains three controls that are of assistance when navigating source code
files.

The first drop-down menu is used to select the type of objects to locate such as functions,
modules, derived types, and so on. Once a type is selected, the second drop-down menu
displays the names of all those objects in the file. Select an item from this menu to
navigate directly to the location of that object in the source file. The third control will
refresh the list if you are actively creating new source with new objects.

Pop-up menus

Holding down the control key and clicking the mouse button with the cursor positioned
over an open file window will display a pop-up menu of context sensitive commands.

Cut

This command removes the selected text from the front-most window and
places it on the clipboard. Text on the clipboard may be pasted into other
windows.

Copy

 The Copy command copies the selected text from the front-most window and

places it on the clipboard. Text on the clipboard may be pasted into other
windows.

Fortran User Guide

 Using the Absoft Editor 15

Paste

 This command replaces the selected text in the front-most window with the

text on the clipboard. If no text is selected in the front-most window, the
clipboard text is inserted at the insertion point.

CREATING NEW SOURCE FILES

To create a new source file, choose the New command from the File menu. If Display new
file dialog box is checked on the Format tab of the Preferences property sheet (See
Preferences below) the following dialog will be presented, allowing you to specify the
type of new file to create:

Otherwise, the default file type will be determined by the Use as new file default format
setting on the Format tab of the Preferences property sheet.

 Fortran User Guide

16 Using the Absoft Editor

The window will be untitled (it will have the name “Untitled”) until the first time you
save it. At that time you will be asked to name the file. Text can be entered and edited
using the same basic editing techniques that you use with any Macintosh-based text
editor or word processor. You can cut and paste text within the window and move the
cursor to enter text at any line.

Manipulating Windows

One or more file windows can be open at any time in the Absoft Editor, allowing you to
easily cut and paste text between files.

When working with multiple windows, it is important to note that the Absoft Editor
distinguishes between the active window (front-most window) and any inactive windows.
Editing commands initiated from the menus will affect or insert text in the active (front-
most) window. If you want to know which window is your active window, check the
Window menu. In the Window menu, the active window will have a check mark next to it.

USING THE EDITOR MENUS

The rest of this chapter describes the editor commands in the Application, File, Edit,
Format, Tools, Window, and Help menus. The name of the command is given, followed
by its keyboard equivalent (if any) and a description of its function.

Fortran User Guide

 Using the Absoft Editor 17

Application Menu

The Application menu contains the standard commands for
Macintosh OS X applications. It also includes the
Preferences command which is used to configure the Absoft
Editor to your specific editing needs. Preferences consist of
three separate property tabs: Format, Environment, and Tools.

Preferences...

Format

The Format pane contains the following controls:

Language

 This selection box is used to establish the source language for making the

settings in the next sections. The default choices are any of Plain Text, Fortran
77, Fortran 90/95, C, C++, Makefile, or Ini. Additional, languages may be added
by editing the appropriate files in ./Resources/General Resources. See the
Color section below for more information.

Syntax Colors

 Fortran User Guide

18 Using the Absoft Editor

Fortran User Guide

 Use this section to change the default use of color and the actual color in the

text of Comments, Intrinsics, Keywords, literal Strings, and Numbers for the
selected language. Languages may define up to eight unique colors, and eight
or more keyword lists. Some additional color syntax settings for a given
language may be viewed, if available, by using the up and down buttons.
Additional, user defined keywords may be added by editing the associated
resource files located in ./Resources/General Resources/Languages.

Disable all color syntax

 Checking this check box disables syntax coloring for the selected language.

Use as new file default format

 This check box controls the default formatting for new files. For example, if

you want new (and unnamed) files to default to the Fortran 90/95 format
specifications that you have established, choose Fortran 90/95 from the
Language selection box and then check this check box.

Display new file dialog box

 This checkbox enables the new file type dialog box. Check this check box if

you would like to interactively choose the type of file and formatting each
time a new file is created. The default file type chosen with the Use as new file
default format setting will be the initial file type selected in this dialog box.

Auto wrap at column

 This option is available when either Fortran 90/95 or Fortran 77 are specified

in the Language selection. If you place a check in this box, the editor will
automatically wrap and continue your source line if you type past the
specified column. The character you choose will be placed in column six. The
default character is the ‘&’ character.

Default Properties

 This section controls the default property settings for all files of the currently

selected language type (see Show Info in the Edit menu discussed later in this
chapter). You can choose to have Line Format, Coding Form, and Line
Numbers shown by default in the text window with your file. (Coding Form is
available only for Fortran 90/95 and Fortran 77.) You can also set the default
Tab Size and whether or not you want Auto Indent enabled.

 The drop down list box is used to confirm or change the interpretation that the

Absoft editor applies to the format of the source file.

 Using the Absoft Editor 19

 Use the Show Info command in the Edit menu to set properties for individual

source files.

Environment

The Environment pane has the following controls:

Prompt for file at startup

 Check this check box if you want the Absoft Editor to prompt you for the

name of a file to open rather than starting up with a blank screen or
automatically creating a new file.

Always open new window

 Check this check box if you want the Absoft Editor to automatically create

a new file rather than starting up by prompting you for the name of a file
to open or starting up with a blank screen.

 Fortran User Guide

20 Using the Absoft Editor

Fortran User Guide

Save before launching tools

 Check this check box if you want the Absoft Editor to save changes to any

open files before starting a compiler.

Prompt before saving files

 Check this check box if you want the Absoft Editor to issue a prompt,

allowing you to confirm or cancel saving changes to any open files before
starting a compiler.

Always preserve backup copy

 Check this box if you want the Absoft Editor to maintain a backup copy of

the file before every Save command. The backup file will have the
extension .aeb.

Text Selection Filters

 The controls in this section establish the logic used for selecting text

elements. These controls allow you to select text based on the semantics
and syntax rules of the programming language of the source file.

Font Settings

 Use this button to select the text font and size you wish to use.

Cache Settings

 The editor maintains certain information about each file that you open

including the current cursor position, the tab size, etc. Use this Settings
button to specify how long this information should be maintained since the
last time the file was opened.

 Using the Absoft Editor 21

Tools

The text boxes in this section allow you to set the path to the tool that you prefer to use
for each of the source file types. You can also supply default options for individual tools
with these text boxes.

File Menu

The File menu contains commands for creating, opening,
saving, and closing files. There are also commands for
printing and for establishing your preferences for the way
that the Absoft Editor operates.

New…(N)

This command creates a new window for entering and
editing text. The window will be untitled (it will have the
name “Untitled”) until the first time you save it.

 Fortran User Guide

22 Using the Absoft Editor

Fortran User Guide

Open…(O)

Use this command to open an existing file. This command displays a standard file
selection dialog box to select the file to be opened. If you select a file that is already
open, the window that contains that file will be brought to the front of the editor.

Open Recent

Up to 16 files will appear in this list. They represent the file that have been most recently
opened in the Absoft Editor. They are listed as a convenience for quickly opening files
for editing.

Open Selected

This command opens the file selected in an include statement. It may be a Fortran or a C
include statement.

Open Complement

This command opens the complement of the current programming language file. If a C or
a Fortran source file is open, the header or include file with the same root name will be
opened. If a header or an include file is opened, the source file with the same root name
will be opened.

Close (W)

This command closes the file displayed in the front-most window. If any unsaved
changes had been made to the text, you will be asked to save it.

Close All

This command closes all files. If any unsaved changes had been made to any files, you
will be asked to save them.

Save (S)

Choose this command to save the text in the front-most editor window. The first time you
save, you will be asked to provide a name and a path for the file. Thereafter, each time
you save, the changes will automatically be written to this file. If no changes have been
made, this menu command is dimmed and unavailable.

Save As…

Use the Save As command to save the text in the front-most editor window to a different
file. A standard file save dialog will appear, allowing you to specify the name of file. The
front-most editor window becomes the newly named file.

 Using the Absoft Editor 23

Save All

Use this command to save the text in all open windows.

Revert

The Revert command restores the text in the editor window to its previously saved state.

Print Setup…(P)

Use this command to display the standard Print Setup dialog for printing.

Print… (P)

This command prints the front-most window to the currently selected printer.

In addition to the standard printing options, the Absoft Editor supports the following
additional print options by selecting the Absoft Editor category from the pop-up menu:

Wide Pages

You can select from Tile Across Page(s), Clip to Page, or Fit to Page to tile document text
across multiple pages, crop horizontal printing to the width of a single printed page, or
scale the document size so that all text fits horizontally on a printed page. The default is
Clip to Page.

 Fortran User Guide

24 Using the Absoft Editor

Print Color

Select the desired color printing support from Always, Use printer device information, or
Black and white only. The default is to use the current printers device information to
determine level of color printing supported.

Header and Footer

Use these text boxes to configure the default page headers and footers. The default is to
display the file name in the header and the page number in the footer. Additional options
include printing the date and/or time.

Page Setup…

Use this command to open the Page Setup dialog:

This dialog allows you to specify a page header and footer. Click on the right-arrow
buttons to insert the text you wish to display in the Header and the Footer: File Name,
Page Number, Date, and Time. This dialog also allows you to specify the document
margins.

Edit Menu

The commands in the Edit menu are used for performing standard
editor functions, such as Cut, Copy, and Paste.

Fortran User Guide

 Using the Absoft Editor 25

 Fortran User Guide

Undo (Z)

Use this command to undo changes made in the front-most window.

Redo (Z)

Use this command to redo commands that were undone with the Undo command.

Cut (X)

This command removes the selected text from the front-most window and places it on the
clipboard. Text on the clipboard may be pasted into other windows.

Copy (C)

The Copy command copies the selected text from the front-most window and places it on
the clipboard. Text on the clipboard may be pasted into other windows.

Paste (V)

This command replaces the selected text in the front-most window with the text on the
clipboard. If no text is selected in the front-most window, the clipboard text is inserted at
the insertion point.

Clear

Similar to cut, this command removes the selected text from the front-most window, but
does not place a copy on the clipboard.

Select All (A)

Use this command to select all of the text in the file displayed in the front-most window.

26 Using the Absoft Editor

Find

Fortran User Guide

This command displays the Find sub-menu with
commands for finding and replacing text within the file.

Find (F)

Use this command to open the Find dialog for locating specified text within the front-
most window.

The controls in the Find dialog are used as follows:

Find

 Enter the text string you wish to locate here. A history of previous uses of

this command is maintained, allowing you to select strings that you
located earlier.

Replace

Enter the text string that will replace found text. This text is used with the
Replace All, Replace, and Replace & Find buttons.

Ignore Case

 Check this box to find text occurrences in your source file that match your

specified text regardless of capitalization and case.

Find Next (F)

This command repeats the last Find command in the front-most window by searching
forwards in the file.

Find Previous (F)

This command repeats the last Find command in the front-most window by searching
backwards in the file.

 Using the Absoft Editor 27

Bookmarks

Bookmarks provide an easy way to “save your place” in a file so that you can later return
there quickly. Positioning the insertion caret on the line where you want the bookmark
set and then typing F2 sets (or unsets) a bookmark. In other words, F2 toggles a
bookmark.

A bookmark appears as a small flag at the beginning of the line. Pressing the F2 key
alone moves the insertion caret to the next bookmarked line in the file. Holding the Shift
key down and pressing the F2 key moves the insertion caret to the previous bookmarked
line in the file. .Holding the Shift key down and typing F2 clears all bookmarks in the
file.

Bookmarks Menu

 Fortran User Guide

The Bookmarks sub-menu provides commands for
setting, clearing, and moving between bookmarks.

Toggle Bookmark (F2)

Use this command to set or unset a bookmark on the line where the insertion caret is
positioned.

Previous Bookmark (F2)

Use this command to move to a previous bookmark location in the file.

Next Bookmark (F2)

Use this command to move to the next bookmark location in the file.

Clear File’s Bookmarks (F2)

Use this command to remove all bookmarks in the file.

Clear All Bookmarks (Control F2)

Use this command to remove all bookmarks in all files.

28 Using the Absoft Editor

Format Menu

The commands in the Format menu provide you with a
number of useful commands for managing and formatting
your source files.

Show Info… (I)

The Show Info dialog is used to control certain characteristics
of the display of the file in the front-most window. It also
allows you set specific commands and options if you use the
Absoft Editor to compile the source file. The characteristics
that can be controlled include:

Options

 If the Absoft Editor was not started from the Absoft Developer Tools

Interface, this field contains the tool option settings for the type of file as
established on the Tools page of the Preferences dialog (see Preferences
in the File menu, discussed earlier in this chapter, for more information).

If the Absoft Editor was started from the Absoft Developer Tools
Interface, this field contains the compiler settings for the project and
source file.

Language

 Use this selection box to establish or change the source language setting

for this file.

Fortran User Guide

 Using the Absoft Editor 29

 Fortran User Guide

Format

 This drop down list box is used to confirm or change the interpretation

that the Absoft editor applies to the format of the source file.

Line Style

 This selection box controls how end-of-record (end-of-line) characters are

interpreted. Lines in DOS files end with a carriage return/line feed pair.
Macintosh lines end with a carriage return only. Files on a Unix system
have lines terminated by line feeds only.

 The file must be saved before changes to this parameter will take affect.

Auto Indent

 This check box enables automatic spacing of new lines to the column

where the previous line started.
Coding Form

 FORTRAN 77 specifies the purpose of individual columns within a source

statement record. A check in this check box will color certain columns to
make them easier to identify. The specific columns are 6, 72-80, and 132-
140. For more information on source record fields, refer to the section
FORTRAN 77 ANSI Standard in The Fortran 77 Program chapter of
the FORTRAN 77 Language Reference Manual.

Read Only

A check in this check box will prevent you from making any inadvertent
changes to a file that you wish to maintain as read only.

Line Numbers

A check in this check box will display the line numbers of the source lines
in the file.

Tab Size

 The value in this edit box controls how many spaces a tab is expanded to.

Note that for column oriented languages such as FORTRAN 77, the value
in this field should agree with how the compiler interprets tab characters.

30 Using the Absoft Editor

Insert Continuation (I)

Use this command to insert a Fortran continuation line immediately after the line on
which the cursor is positioned. The cursor will be repositioned to the next character
position following the continuation character. The continuation character used is defined
on the Format page of the Preferences dialog. See Preferences in the Application menu,
described earlier for more information.

Go to Line (L)

This command opens the Goto dialog. Enter the line number of the line you wish to go to
and click on the Select button.

Match Brackets ({)

When editing any file, this command may be used to find the matching closing character
for the opening character next to the cursor on the line where the cursor is positioned.
The characters it will match are: (), {}, [], and <> – parentheses, braces, brackets, and
less-than greater-than. Double-clicking on an opening or closing character will select the
text that the characters enclose.

Shift Left ([)

Use this command to shift selected text to the left by one tab stop.

Shift Right (])

Use this command to shift selected text to the right by one tab stop.

Comment

This command inserts an exclamation mark (‘!’) in column one of the current line or the
selected lines.

Uncomment

This command deletes an exclamation mark (‘!’) from column one of the current line or
the selected lines.

Fortran User Guide

 Using the Absoft Editor 31

Convert to Upper Case

This command converts the selected text to upper case.

Convert to Lower Case

This command converts the selected text to lower case.

Tools Menu

The commands in the Tools menu are used to invoke various
functions of the language compilers you use. If the compiler issues
any diagnostics, they will be reported to you in the Errors window.
Errors are indicated with a red circle (stop sign) next to the
diagnostic message and warnings are indicated with an inverted
yellow triangle (caution sign). You can double-click on any line in this window to go
directly to the corresponding line in the Absoft editor window. The Errors window is
automatically opened only if the compiler issues warnings or errors.

Compile (Y)

Use this command to compile the file in the front-most window. The tool that you have
selected for the file type will be started with the command line shown in the Option
toolbar.

Check Syntax (K)

This command invokes the check syntax phase of the compiler that you have selected for
the type of file in the front-most window.

Stop (.)

Use this command to stop the compiler started with either the Check Syntax or Compile
command.

Errors

This sub-menu contains commands for moving to the previous or next error or warning in
the source file.

Previous Error (D)

If you compiled your source file with the Compile command in the Tools menu and error
diagnostics were issued by the compiler, you can use this command to go to the previous
error in the source file.

 Fortran User Guide

32 Using the Absoft Editor

Next Error (E)

If you compiled your source file with the Compile command in the Tools menu and error
diagnostics were issued by the compiler, you can use this command to go to the next
error in the source file.

Window Menu

The commands in this menu allow you to arrange the open
windows in the Absoft Editor and to bring a specific window
to the front.

Close Window (W)

This command closes the front-most window in the Absoft
Editor. It is the same as the Close command in the File menu.

Zoom Window

This command maximizes the front-most window.

Minimize Window (M)

This command minimizes the front-most window and places it on the docking bar.

Hide Toolbar

This command removes the toolbar from the front-most window.

Customize Toolbar...

Fortran User Guide

 Using the Absoft Editor 33

This menu command opens the Toolbar editor that allows you to customize the toolbar.

Tile Horizontally

Use this command to arrange your windows horizontally based on the order in which
they were opened.

Tile Vertically

This command is used to arrange your windows vertically based on the order in which
they were opened.

Cascade

This command is used to arrange your windows in a cascaded fashion.

Window list

Selecting the name of a window in this list will bring it to the front, restoring it to its
previous size if it has been minimized.

Help Menu

The commands in this menu are used to obtain help on the
listed topics.

Tools Help

Use this command to view Absoft Developer Tools Interface application online help
files.

 Fortran User Guide

34 Using the Absoft Editor

Fortran User Guide

Hide ToolTips

Use this command to disable pop-up tooltips for all windows and controls in the Absoft
Developer Tools Interface for the remainder of the session.

35

 Fortran User Guide

CHAPTER 4

Using the Compilers

This chapter describes how to use the Absoft Fortran 90/95 and FORTRAN 77 compilers
to create executable files on the Mac OSX operating system. Beginning with an overview
of invoking the compilers, this chapter explains how to compile a small number of
Fortran source files into an executable application. Next the Absoft Developer Tools
Interface, AbsoftTools, application is described with detailed descriptions of options and
compiler settings.

COMPILING PROGRAMS

Three methods of compiling programs are available: a traditional command line, the
Absoft Developer Tools Interface, and makefiles. The command line and the Absoft
Developer Tools Interface application are discussed in this chapter. Makefiles and the
Absoft make utility, amake, are described in the chapter Building Programs.

Source file names and compiler options are selected with the mouse pointer in the Absoft
Developer Tools Interface application. Arguments to the command line version are typed
in on the command line.

USING THE COMMAND LINE

To use a command line version of any of the Absoft compilers, you must first open a
Terminal application shell and set a number of environment variables that assist and
control the use of the compilers.

A command line version of an individual compiler can be started with one of the
commands: f95, or f77.

 f95 [options] files

 f77 [options] files

The various options are described in the specific compiler options sections later in this
chapter.

36 Using the Compilers

Fortran User Guide

FILE NAME CONVENTIONS

Compilation is controlled by the two compiler drivers: f77 and f95. These drivers take a
collection of files and, by default, produce an executable output file. Acceptable inputs to
f95 are:

File Type Default form
Free format Fortran 90/95 source files file.f90 or file.f95

Free format Fortran 90/95 preprocessor files file.F90 or file.F95

Fixed format Fortran 90/95 source files file.f

Fixed format Fortran 90/95 preprocessor files file.F

C language source files file.c

Assembly language source files file.s

Relocatable object files file.o

Acceptable inputs to f77 are:

File Type Default form
FORTRAN 77 source files file.f or file.for

FORTRAN 77 preprocessor files file.F or file.FOR

C language source files file.c

Assembly language source files file.s

Relocatable object files file.o

File names that do not have one of these default forms are passed to the linker. It is
assumed that the C compiler (cc), assembler (as), and linker (ld) are installed on the
system and use standard command line syntax.

Output file names take the form:

File Type Default form
Assembly language source files file.s

Relocatable object files file.o

Precompiled module file file.mod

Executable object files a.out

USING THE ABSOFT DEVELOPER TOOLS INTERFACE

The Absoft Developer Tools Interface, AbsoftTools, is started by double clicking on the
AbsoftTools icon, the equivalent alias icon in the Finder, or by clicking on the AbsoftTools
application icon in the Dock.

 Using the Compilers 37

Working with Projects

A project allows you to organize the entire source, object, include, library, and resource
files that constitute an application. It keeps track of which files are associated with the
application, which ones are dependent on other files, which ones have been recently
modified and need to be rebuilt. Also, it allows you to set specific options to be used with
the compilation tool associated with the various files in the project.

The first step in working with a project is to create a new one. Use the File menu New…
command to create a new project. The New Project dialog will appear as shown below:

Name is the name that will be applied to the project file, the associated makefile, and the
default name of the executable program. Location is the directory where the project file
and the associated makefile are created. Use the button labeled with an ellipsis to open a
directory browser to change the directory. Use the Create a directory of the same name
first check box to automatically create a subdirectory with the supplied name before
creating the actual project files. The Option Set drop-down menu is used to choose a
specific set of pre-determined options for the project. (See Set Default Options, described
later in this chapter, for information on configuring default option sets for new projects.)
The File Set drop-down menu is used to select a default set of source files to create for
the project. The Empty Project set creates a project with no source files by default. The
New Fortran 95 Project and the New Fortran 77 Project sets create projects containing a
new source file with the same name as the project file in the project directory. The New
MRWE Application menu item creates all the source files necessary for a Macintosh
Runtime Window Environment application, including a Fortran 95 file, a custom
Info.plist file and the resource description files.

After you click the OK button, if you selected a new MRWE application, the MRWE
Application Preferences dialog will appear. This dialog contains controls that allow you
to customize how MRWE handles text and text saving. It also allows you to specify what
your application does at the end of execution: quit immediately or pause automatically.
You can also choose the desired size of your MRWE window by providing screen
location and sizes or choosing to have your window appear maximized.

 Fortran User Guide

38 Using the Compilers

After you click the OK button to accept these values, the project options panel will be
displayed, allowing any of the global compiler options, Plugin options, or Build options
to be set or changed. After these are established, begin selection of the files that will
constitute the project by choosing the Add/Remove File(s) command from the Configure
menu.

Options Dialog

The Options dialog appears automatically after you confirm the settings for a New
Project. The Options dialog can be invoked in several manners: by selecting the Set
Project Options command to configure options for the current project, using the Set
Default Options command to configure a set of default options used in the creation of new
projects, or using the Set File Options command to configure options for the selected
source file.

The Options dialog has these features:

• Any button that contains ellipses, such as Set Module Path(s)…, will bring up
additional dialogs.

• As options are checked in the dialog, they will be added to the Options text field

in the lower portion of the current options pane.

Fortran User Guide

 Using the Compilers 39

The Options panel displayed with the Set Project Options command also has tabs for the
individual compilers and the linker. Within the Options dialog, you can select options to
modify the way compiled applications function. When the Build command is invoked, a
makefile is constructed and the source code will be compiled and linked into an
executable program, ready to run. If any errors occur, they will be listed in the Output
pane, under the Build tab. See the chapter Building Programs for information on
makefile commands and using amake.

Target Tab – General Options

The Target tab controls two option subsets that apply to all of the files for a project:
General and FPU. Choose the desired subset from the Options Subset drop-down menu.
General options are described first:

Target Type

The radio buttons and check boxes in this area of the Target tab control the type of
application produced by the compilation process. By default, a stand-alone terminal

 Fortran User Guide

40 Using the Compilers

Fortran User Guide

application (the Terminal Application button) is generated. This type of application runs in
the Terminal application command line shell. Use -cons to select this option on a
command line.

An application linked with MRWE (the MRWE Application button) creates an application
with a Macintosh style interface (see the chapter, Macintosh Programming for more
information). Use -mrwe to select this option on a command line.

Use the -plainappl option (selected with the Carbon Application button) when you are
creating an application with an interface that you supply. This type of application will
have neither an MRWE interface nor a Terminal application shell interface – you are
responsible for the interface presented to the user. The option includes all of the standard
Carbon API frameworks.

Specify the Static Library option if you are creating a static library (see Linking
Programs and Creating Libraries in the chapter titled Building Programs).

Link Large Data Stubs

The Carbon and Cocoa development APIs have initialization routines that are called
during application startup. For console applications, these are replaced by symbols in the
data segment. This imposes a limit on the size of a console application's data segment.
The Link Large Data Stubs option removes this limit by supplying stub routines located
in the text section.

Runtime Stack Trace (-et)

Use this option to enable a diagnostic stack trace back if a catchable error occurs at
runtime. The file name, line number, and list of calling procedures will be displayed at
the point of the error. Errors that can be caught include memory access violations, I/O
errors, and integer division by zero.

NOTE: This option is not implemented in Pro Fortran V10.0.

64-bit code (-m64)

This option is used to produce 64-bit executables. Programs compiled with the –m64
option have access to the full addressing capabilities of 64-bit processors.

Options

The Optimize and Debug drop-down menus are used to control the production of object
code. Selecting one of the available optimization choices in the Optimize menu enables
compiler optimizations.

 Using the Compilers 41

 Fortran User Guide

The Optimize options control compile time optimizations to generate an application with
code that executes more quickly. Absoft Pro Fortran is a globally optimizing compiler, so
various optimizers can be turned on which affect single statements, groups of statements
or entire programs. There are pros and cons when choosing optimizations; the application
will execute much faster after compilation but the compilation speed itself will be slow.
Some of the optimizations described below will benefit almost any Fortran code, while
others should only be applied to specific situations. Any optimization option
automatically enables –cpu:host (see CPU below).

The Basic (–O1) option will cause most code to run faster and enables optimizations that
do not rearrange your program. The optimizations include common subexpression
elimination, constant propagation, and branch straightening.

The Normal (–O2) option enables advanced optimizers that can substantially rearrange the
code generated for a program. The optimizations include strength reduction, loop
invariant removal, code hoisting, and loop closure. This option is not usable with
debugging options.

The Advanced (–O3) option enables advanced optimizers that can significantly rearrange
and modify the code generated for a program. The optimizations include loop
permutation (loop reordering), loop tiling (improved cache performance), loop skewing,
loop reversal, unimodular transformations, forward substitution, and expression
simplification. This option is not usable with debugging options.

The Fast (–O4) option enables all of the above optimizations and invokes the IPA (Inter-
Procedural Analyzer) linker. IPA can significantly increase compile time. Also, IPA can
cause previously working, but incorrect programs to fail. Since IPA may reorganize
storage, incorrect pointers or array bounds errors may be exposed. This option is not
usable with debugging options.

When None (Debug) is selected in the Optimize drop-down menu, the Debug options
menu is enabled allowing you to select the level of symbolic information to produced for
debugging with Fx (see the chapter Using the Fx Debugger):

Standard produces an object file containing typical debugging information with entry
points, line numbers, and program symbols. This is the standard debugging option and is
selected on the command line with the -g switch.

Full forces the compiler to place information in the debugger symbol tables for all
structures whether they have associated storage or not. Normally, the compiler does not
place information in the debugger symbol tables for structures that are only declared, but
never have storage associated with them. This keeps the symbol tables to a manageable
size when include files are used to make structure declarations. This option is selected on
the command line with the -g and –N111 switches.

42 Using the Compilers

Fortran User Guide

Use the CPU options to target object code to a specific type of processor. This option is
selected on the command line with–cpu:type switch. The recognized type arguments are:

default automatically establishes type based on the processor in the machine
that the program is compiled with

Intel automatically establishes type based on the processor in the machine
that the program is compiled with

The Enable Profiling option (-P from the command line) causes your program to be
instrumented for runtime profiling with the gprof tool. For information on using the Mac
OS X profiler, see the Mac OS X manual page for gprof.

The next two options in this section, Use UNIX Library and Use VAX/VMS Library,
automatically include these compatibility libraries in your project. The compatibility
libraries are described in the Absoft Support Libraries manual that is included Pro
Fortran.

Speed Math (-speed_math=n)

The Speed Math option enables aggressive floating point optimization. This option
should be used with care as high values, while improving performance, may reduce
accuracy; possibly to the level inaccurate results. From the command line, enable this
option with -speed_math=n where n is an integer from 0-12.

Object File(s) Directory

This is the directory where all object files will be created and maintained.

Target Directory

This is the directory where the executable file (or makefile target) will be placed.

Target Filename

The name of the generated executable file can be typed here. If no name is specified, the
default is to produce an executable file called a.out. The executable file will be placed in
the directory specified in the Target Directory text box. This option is specified on the
command line as -o name, where name is the name the executable file will be given.

 Using the Compilers 43

Target Tab – FPU Options

The FPU option subset provides control over the operation of the Floating-Point Unit of
the processor.

FPU Rounding Mode

These radio buttons control the rounding method used by the floating point unit. The
default method is the IEEE P754 default state: Round to nearest. The rounding method
can be controlled on the command line with the option:

 –round=mode

 where mode is one of:

NEAREST
DOWN
UP
TOZERO

 Fortran User Guide

44 Using the Compilers

Fortran User Guide

FPU Exception Handling

When a floating-point exception is produced, the default action of an application is to
supply an IEEE P754 defined value and continue. For undefined or illegal operations
(such as divide by zero or square root of a negative number) this value will usually be
either Infinity (INF) or Not A Number (NaN) depending on the floating-point operation.

Checking any of the exception boxes will cause the program to stop and produce a core
dump, rather than continue, if the exception is encountered. If the program is being
debugged, it will stop in the debugger at the statement line that caused the exception. The
syntax for using this option on the command line is:

 -TENV=exception[,exception,…]

 where exception is one or more of:

simd_imask invalid operation exception.
simd_dmask denormalized operand exception.
simd_zmask divide by zero exception.
simd_omask overflow exception.
simd_umask underflow exception.
simd_pmask precision exception.

Don’t generate FMA instructions (-Q51)

Use of the -Q51 option will cause the compiler not to use floating-point multiply-add type
of instructions. Since there is no rounding performed between the multiplication and
addition during the execution of these instructions, numeric results will vary depending
on where they are used.

Other Target Options

The following options are not available with the graphical interface to the compiler but
may used with the command line interface or the make facility.

Generate Assembly Language (-S)

Specifying the –S option will cause the compilers to generate assembly language output
in a form suitable for the system assembler. The file created will have the suffix “.s”.
For example, compiling test.f with the –S option will create test.s. If any C source
files are given as arguments to f77 or f95, this option will be passed to the C compiler. If
no other compiler process control options are specified and there are no relocatable
object files specified on the command line, the compilation process will halt after all
Fortran 90/95, FORTRAN 77, and any C source code files have been compiled to
assembly language source.

 Using the Compilers 45

 Fortran User Guide

Generate Relocatable Object (-c)

Specifying the –c option will cause the compilers to generate relocatable object files. In
the Macintosh OS X environment, this option indicates that all source files (Fortran
90/95, FORTRAN 77, C, and assembly) should be processed to relocatable object files. If
no linker options are present (see below), then the compilation process stops after all
object files have been created. If any C source files are given as arguments to f77 or f95,
this option will be passed to the C compiler.

Library Specification (-l)

Specifying the –lname option will cause the linker to search the library file libname.a.

Library Path Specification (-L)

The –Lpath option will cause the linker to search the specified directory named in path
for library files given with succeeding –l options.

ABSOFT DEVELOPER TOOLS INTERFACE

The following sections describe the menu commands available in the Absoft Developer
Tools Interface (AbsoftTools) application.

46 Using the Compilers

Application Menu

About Tools

This dialog displays various information about the application and its
environment, including the version number.

Preferences…

This command opens the Preferences dialog for editing and customizing the way the
Absoft Developer Tools Interface application operates. The options are divided into
several groups:

Preferences

The Startup Options check boxes control what action (if any) the Absoft Developer Tools
Interface application performs upon startup. If the Prompt for project at startup box is
checked, the application will open a standard file dialog for selecting an existing project
file. If the Always open new project box is checked, the application will open a standard
file dialog for creating a new project file, each time the application is launched.

The radio buttons in the Default Directory Options area control the master directory used
for creating new projects. It can be set to either the current working directory, or the
directory indicated by an environment variable. The default environment variable is
ABSOFT and points to the Pro Fortran installation directory.

The radio buttons under Tool Options allow you to specify the type of notification you
wish to receive from the various developer tools.

Fortran User Guide

 Using the Compilers 47

Check the Auto-add module file paths box to automatically pass the path of any module
that has been incorporated into the project to the appropriate tool.

If the Auto-add include file paths box is checked, the path of any include or header file
that has been incorporated into the project is automatically passed to the appropriate
compiler, as if the Set Include Paths command in the Configure menu had been used to
specify these directories.

The Single project window control toggles modes between single window projects and
dual project and output window style projects in the Absoft Developer Tools Interface
application.

Use the Editor menu and the Connect via Services menu to set the editor application to
launch for source file editing, and the inter-process communication style used to talk with
the specified editor, respectively. Services are currently only provided by the TextEdit+
application or the Absoft Editor. Selecting BBEdit from the pop-up menu will allow
complete two-way inter-process communication between the retail version of BBEdit for
Mac OS X and Absoft Developer Tools Interface via a set of custom AppleEvents.

Hide Tools

Hide the Absoft Developer Tools Interface application.

Quit Tools

Exit the Absoft Developer Tools Interface application.

File Menu

New

Use this command to create a new project file. All file selections,
include paths, and option settings are reset to default values. See
Working with Projects, above, for details on creating a new
project.

Open

This command is used to open a previously saved Absoft
Developer Tools Interface project file with all file selections and
option settings restored from that session.

Open Recent

Use the menu items on the submenu to open recently used project files.

 Fortran User Guide

48 Using the Compilers

Close

This command closes the current project. If you have a previously unsaved project
already open, you will be prompted to save it before continuing.

Save

Use this command to save your current file selections and option settings so that they can
be restored at a later time.

Save As

The Save As command saves your files selections and option settings to a different file
than the one currently in use. This command is useful for making a copy of the current
settings before making changes.

Revert To Saved

The Revert To Saved command restores the previously saved state of the current project
file.

Page Setup...

Use this command to display the standard Page Setup dialog box for printing.

Print

The Print command prints the active output tab. You can print the entire window by
pressing the control key while issuing this command.

New File

Use this command to create a new source file for the current project. The specified file
will be added to the project file and opened using the default source file editor
application.

Edit Menu

Undo

Use this command to undo the last editing action, if possible.

Redo

Use this command to reverse the last editing undo action, if possible.

Fortran User Guide

 Using the Compilers 49

View Previous

The View menu contains two commands: Previous and Next. If error or warning
diagnostics are issued by any the developer tools in the Build tab of the output pane, you
can use the Previous command to go to the previous error in the source file. Use the Next
command to go to the next error in the source file. These menu items can also be used
when the Search tab is active to go to the next match in the list.

Configure Menu

The primary menu for managing projects is the Configure
Menu. This menu is used to specify the files that comprise
the project, paths to search for include files, and the tool
options used to build the application or library.

Add/Remove File(s)

Use this command to open the file selection dialog. Select the project’s source files,
external object files, and libraries here by clicking either the Add Files... button to add
additional files or the Delete Files button to remove the selected files. Note that the type
of file displayed can be limited with the Add files as drop-down menu. If the source files
you are adding will be processed with the VAST preprocessor (see Plug-ins later in this
chapter), they must be selected and added to the project with the appropriate Add files as
setting.

To add multiple files at once you can either shift-click an extended selection range of
files or command-click to select a non-contiguous range of files from the standard file
dialog. To add files that may otherwise be inaccessible, hold down the Shift or Option
key while selecting the Add/Remove File(s) menu item.

 Fortran User Guide

50 Using the Compilers

The up and down pointing arrows above the File(s) Added list box are used to change the
compilation order of the source files and to set the order in which external object files
and library files are presented to the linker.

You can also add include and header files to the project. The paths to these files will
automatically be supplied to the appropriate compiler if the Auto-add include file paths
box is checked in Preferences.

The Add file paths relative to “…” check box can be used to toggle relative file paths on or
off as desired. The default is to use file paths relative to the current project file. The
current state of the check box will be used for all newly added files or paths.

Set Include Paths

Use this command to select additional directory paths to be searched for include and
header files, in the same manner that source files are added to the project. This is the -I
option on the command line and is used to supply a comma separated list of directory
paths which are prepended to file names used with the Fortran INCLUDE statement or the
C/C++ #include directive.

 -Ipath[,path…]

The paths are prepended in the order presented with the -I option when the include file is
not first found in the local directory and when it is not itself an absolute path (a full file
specification). Paths supplied with the -I option are searched before the path specified
with the ABSOFT shell variable.

The Add file paths relative to “…” check box can be used to toggle relative file paths on or
off as desired. The default is to use file paths relative to the current project file. The
current state of the check box will be used for all newly added files or paths.

Set Project Options

This command opens the Options dialog introduced earlier. The remaining tabs available
in this dialog and the options they control will be discussed in detail in the following
sections.

File Options

Fortran User Guide

The File Options command allows you to set individual
options for a specific project source file and tool. The menu
command becomes active after you first select a source file in the Files tab. Option
choices made will affect only the file name displayed in the options dialog title bar.
Options set using this command will override any options set by the Set Project Options
command.

 Using the Compilers 51

Remove File Options

The Remove File Options command allows you to remove individual options for a
specific file. The menu command becomes active after you first select a source file in the
Files tab.

Remove All File Options

The Remove All File Options command allows you to remove all individual source file
options for the entire project file.

MRWE Preferences...

If you have created an MRWE application (see Working with Projects earlier in this
chapter), this menu selection will display the MRWE Application Preferences dialog. With
this dialog you can modify how your application handles text and text saving. You can
also modify the text font and size as well as whether your application pauses or exits
when it has completed.

Set Default Options

Use this command to control the default options that are set when a new project is
created. Several default settings were established when Absoft Pro Fortran was installed,
including: None, Debug, and Optimize. Other common configurations are also supplied.

Set Default Options

Click on the settings you want to use when a new project is created. You can edit the
individual settings by clicking on the Edit button. The Options dialog (described earlier in
this chapter) will appear giving you complete control over all of the general, compiler,
linker options. You can also add your own default settings by clicking on the New button.
Delete an option set with the Delete button.

 Fortran User Guide

52 Using the Compilers

Tools Menu

Fortran User Guide

This menu provides access to the various developer tools you
will work with: compilers, editors, debuggers, profilers,
preprocessors, and makefiles.

Search

Use this command to search for strings of text in files.

Build

This is the primary command for building and updating your
project. When you have finished adding the files to your
project with the Add/Remove File(s) command in the
Configure menu and have set all of the options, use this
command to compile and link your program or library. This
command is also used when you change options or edit files.
It will recompile only those files that have been changed.

Rebuild All

Use this command to completely rebuild your project. All of the files will be processed
regardless of whether they have been modified since the last build or not.

Update Dependencies

This command is used to force the Absoft Developer Tools Interface to rescan all source
and include files for build dependencies.

Check Syntax

The Check Syntax command will check syntax only for the file currently selected in the
Files tab of the project window.

Compile

The Compile command will compile the file currently selected in the Files tab of the
project window.

Edit

Use this command to open for editing the file currently selected in the Files tab of the
project window.

 Using the Compilers 53

 Fortran User Guide

Preprocess

The Preprocess command is available only if you have the VAST parallel or VAST
Altivec preprocessor installed. It executes the installed multi-processor preprocessor and
leaves the intermediate file on your disk so that you can examine it.

Clean

Use this command to delete the executable and all of the object files in your project. It
will also delete any .rsrc files if your project incorporates resource description files
(.r). For a complete list of what files will be deleted see the appropriate section of the
associated makefile in the Makefile tab of the Output pane.

Stop

The Stop command terminates the currently executing tool.

Execute

Use this command to execute or run your program after it has finished building. Standard
input can be redirected from a file if necessary in the Execute dialog. Standard Output for
the executable will be shown in the Execute tab of the output pane by default.

Debug

Use this command to debug your program with the Absoft Fx debugger. See the chapter
Using the Fx Debugger for more information.

Profile

The Profile command will run your program and produce execution time statistics. Note
that you must first have produced a special instrumented executable by selecting the
Enable Profiling option on the Target tab of the Options dialog.

Terminal

This command opens a Terminal and sets the current working directory to that of your
project.

Generate Makefile

Use this command to create a makefile that can be used with the Absoft make utility,
amake. See the chapter Building Programs for information on makefile commands and
using amake.

54 Using the Compilers

Window Menu

The commands in this menu allow you to arrange the open
windows in the Absoft Developer Tools Interface, manage the
tool bar, and to bring a specific window to the front.

Hide Toolbar

Use this command to show or hide the toolbar.

Customize Toolbar...

This command displays the standard OS X toolbar dialog for
customizing toolbars.

Tile Horizontally

Select this command to tile all open Absoft Developer Tools Interface applications
windows in a horizontal fashion.

Tile Vertically

Select this command to tile all open Absoft Developer Tools Interface applications
windows in a vertical fashion.

Project

Use this command to activate or re-open the Project window for the current project file.
This menu item is only enabled if the Single Window Mode option has been turned off in
the Preferences dialog.

The toolbar is displayed across the top of the Project window, or above the Project pane,
if the Single Window Mode option is turned on. The toolbar provides quick mouse access
to many tools used in the Absoft Developer Tools Interface.

Build Build the program using the selected options.
Clean Delete all current object files, intermediate files, and the executable file for

the active program.
Run Execute the program.
Debug Debug the program.
Profile Profile the program

Fortran User Guide

 Using the Compilers 55

Search Search for text or expression.
Stop Halt execution of current developer tool.

Plus Add new source file to project.
Minus Remove selected file from project.
Files Add, remove, or re-order file(s) in this project

Output

Use this command to activate or re-open the Output window for the current project file.
This menu item is only enabled if the Single Window Mode option has been turned off in
the Preferences dialog.

The Output window, or pane, contains several tabs. Build shows the latest build or
compile results for the current project file. Search shows the latest search results for the
current project. Execute displays standard output when the program is launched from the
Absoft Developer Tools Interface application. Makefile show the associated makefile for
the current project document. Profile displays data files produced by the profiler.

 Fortran User Guide

56 Using the Compilers

Left Display previous item in source file editor.

Right Display next item in source file editor.

Help Menu

Tools Help

Use this command to view Absoft Developer Tools Interface application online help
files.

Hide ToolTips

Use this command to disable pop-up tooltips for all windows and controls in the Absoft
Developer Tools Interface for the remainder of the session.

Fortran User Guide

 Using the Compilers 57

ABSOFT FORTRAN 95 OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of Fortran 90/95 programs. Select the Set Project Options
command in the Configure menu to access the Options dialog. The Fortran 90/95 options
fall into four categories: General, Compatibility, Format, and Common Block.

For quick reference, the options listed in the sections that follow are in the order in which
they appear in the option tabs. Each option is listed with the corresponding option
letter(s) and a short description. When an option is checked in the Absoft Developer
Tools Interface application, the same letters will appear in the in the corresponding
Options box.

General - F95 Options

When this subset of the F95 options tab is selected, options for controlling various aspects
of compiling the Fortran 90/95 programs are available. Click on the box next to the
option to add the option for compiling.

 Fortran User Guide

58 Using the Compilers

Fortran User Guide

Warning level (-znn)

Use the -znn option to suppress messages by message level, where nn is a message level.
Diagnostics issued at the various levels are:

 0 errors, warnings, cautions, notes, comments
 1 errors, warnings, cautions, notes
 2 errors, warnings, cautions
 3 errors, warnings
 4 errors

The default level is -z3; the compiler will issue error and warning diagnostics, but not
cautions, notes, and comments. See also the -znn option.

Error Handling (-dq and -ea)

Normally, the Absoft Fortran 90/95 compiler will stop if more than 100 errors are
encountered. This many errors usually indicate a problem with the source file itself or the
inability to locate an INCLUDE file. If you want the compiler to continue in this
circumstance, select the Allow > 100 or -dq option. The Stop on Error or -ea option will
cause the f95 compiler to abort the compilation process on the first error that it
encounters.

Max Internal Handle (-T nn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 100000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

The default value can be increased by powers of ten by specifying the -T nn, where nn is
a positive integer constant. When this option is specified, the number of handles will be
100000x10nn bytes.

Temporary string size (-t nn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. The compiler will assume that the operation in
question will require 1024 bytes of temporary string space. This default value can be
increased by powers of ten by specifying the -t nn, where nn is a positive integer
constant. When this option is specified, the default temporary string size will be
1024x10nn bytes.

 Using the Compilers 59

 Fortran User Guide

Cache Control (-YDEALLOC= {MINE | ALL | CACHE})

This option is used to control the underlying runtime memory management associated
with the Fortran 95 ALLOCATE and DEALLOCATE statements. By default the runtime caches
memory that has been deallocated (CACHE). Specifying MINE will cause all user
allocated memory to be returned via a call to free(2) when a call to DEALLOCATE is
executed. Specifying ALL will cause all user allocated memory to be returned via a call to
free(2) and return any compiler allocated memory that has been cached. The tradeoff is
minimizing memory use (ALL/MIME) versus speed of execution (CACHE).

Warn of Non-Standard usage (-en)

Use of the -en option will cause the compiler to issue a warning whenever the source
code contains an extension to the Fortran 90/95 standard. This option is useful for
developing code which must be portable to other environments.

Suppress warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code will generate
a warning message.

Suppress Warning number(s) (-Znn)

Use the -Znn option to suppress messages by message number, where nn is a message
number. This option is useful if the source code generates a large number of messages
with the same message number, but you still want to see other messages. See also the -
znn option.

Use System Module Files (-SysModFiles)

Checking this box automatically adds the f90includes include directory to the search
path for modules.

Set Module Paths (-p path)

The Absoft Fortran 90/95 compiler will automatically search the local directory and
$(ABSOFT)/f90includes for precompiled module files. Use this command to open the
file selection dialog to add additional search paths. Paths specified are searched in a
position dependent order. If module files are maintained in other directories, use the -p
option to specify a path or complete file specification. See Fortran 90/95 Module Files
in the chapter, Building Programs for more information.

Note: there must be a space between the option (-p) and the path.

60 Using the Compilers

Fortran User Guide

Quiet (-q)

The Absoft Fortran 90/95 compiler normally displays information to standard output (the
command line window) as it compiles an application. Enabling the -q option will
suppress any messages printed to standard output. Errors will still be printed, however.

Verbose (-v)

Enabling the -v option will cause the f95 command, described later in the Building
Programs chapter, to display the commands it is sending to the compiler and linker.

Procedure Trace (-B80)

Specifying the -B80 option will cause the compiler to generate code to write the name of
the currently executing procedure to standard out. This option is useful for tracing
program execution and quickly isolating execution problems.

Output Version number (-V)

The -V option will cause the f95 compiler to display its version number. This option may
be used with or without other arguments.

Default Recursion (-eR)

If you select the -eR option, all FUNCTIONs and SUBROUTINEs are given the RECURSIVE
attribute. Normally, if the compiler detects a recursive invocation of a procedure not
explicitly given the RECURSIVE attribute, a diagnostic message will be issued. The -eR
option disables this.

 Using the Compilers 61

Compatibility - F95 Options

When this subset of the F95 options tab is selected, options for enhancing the
compatibility of Fortran 90/95 programs with other programming languages are
available. Click on the box next to the option to add the option for compiling.

Disable compiler directive (-xdirective)

The -x option is used to disable compiler directive in the source file. directive may be any
of the following:

 NAME
 FIXED
 FREE
 STACK

 Fortran User Guide

62 Using the Compilers

Fortran User Guide

See the section Absoft Fortran 90/95 Compiler Directives, later in this chapter, for
more information on using compiler directives in your source code.

INTEGER and LOGICAL sizes (-in)

Without an explicit length declaration, INTEGER data types default to thirty-two bits or
four bytes (KIND=4). The –i2 option can be used to change this default length to sixteen
bits or two bytes (KIND=2). The –i8 option can be used to change the default INTEGER size
to 64 bits or 8 bytes (KIND=8). However, an explicit length specification in a type
declaration statement always overrides the default data length.

Character Argument Parameters (-YCFRL={0|1})

Use the –YCFRL=1 option to force the compiler to pass CHARACTER arguments in a
manner that is compatible with g77 and f2c protocols. Use the –YCFRL=0 option (the
default) to pass CHARACTER arguments in a manner that is compatible with Absoft
Compilers on other platforms. Note: this option should be used consistently on all files
that will be linked together into the final application.

Demote Double Precision to Real (-dp)

The -dp option will cause variables declared in a DOUBLE PRECISION statement and
constants specified with the D exponent to be converted to the default real kind. Similarly,
variables declared in a DOUBLE COMPLEX statement and complex constants specified with
D exponents will be converted to the complex kind in which each part has the default real
kind.

Promote REAL and COMPLEX (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits or four bytes (KIND=4) and sixty-four bits or eight bytes
(KIND=4), respectively. The -N113 option is used to promote these to their double
precision equivalents (KIND=8). This option does not affect variables which appear in
type statements with explicit sizes (such as REAL (KIND=4) or COMPLEX (KIND=4)).

One trip DO loops (-ej)

Fortran 90/95 requires that a DO loop not be executed if the iteration count, as established
from the DO parameter list, is zero. The -ej option will cause all DO loops to be executed at
least once, regardless of the initial value of the iteration count.

Static storage (-s)

The -s option is used to allocate local variables statically, even if SAVE was not specified
as an attribute. In this way, they will retain their definition status on repeated references
to the procedure that declared them. Two types of variables are not allocated to static
storage: variables allocated in an ALLOCATE statement and local variables in recursive
procedures.

 Using the Compilers 63

 Fortran User Guide

Check Array Boundaries (-Rb)

When the –Rb compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Assumed size arrays whose last dimension is *
cannot be checked. In addition, file names and source code line numbers will be
displayed with all run time error messages.

Check Array Conformance (-Rc)

The –Rc compiler option is used to check array conformance. When array shapes are not
known at compile time and where they must conform, runtime checks are created to
insure that two arrays have the same shape.

Check Substrings (-Rs)

When the –Rs compiler option is turned on, code will be generated to check that
character substring expressions do not specify a character index outside of the scope of
the character variable or character array element.

Check Pointers (-Rp)

Use –Rp compiler option is used to generate additional program code to insure that
Fortran 90 style POINTER references are not null.

Pointers Equivalent to Integers (-YPEI={0|1})

This option controls whether or not the compiler will allow or accept a CRI style pointer
to be equivalent to an integer argument. By default the Absoft Fortran 90/95 compiler
allows this. Even with this relaxed error checking the compiler will correctly choose the
right interface for the following example:

 interface generic
 subroutine specific1(i)
 integer i
 end subroutine specific1
 subroutine specific2(p)
 integer i
 pointer (p,i)
 end subroutine specific2
 end interface
 call generic(i)
 call generic(loc(i))
 end

Regardless of the switch setting, this example will compile and the executable generated
will be equivalent to:

 call specific1(i)
 call specific2(loc(i))

64 Using the Compilers

Format - F95 Options

For compatibility with other Fortran environments and to provide more flexibility, the
compiler can be directed to accept source code that has been written in a number of
different formats. The two basic formats are free-form and fixed-form.

This subset of the F95 options tab displays options for controlling how Fortran 90/95
interprets the format of source files. These options allow Absoft Fortran 90/95 to accept
older or variant extensions of Fortran source code from other computers such as
mainframes.

F95 Format Options

Free-Form (-ffree)

The -f free option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Free Source Form. This is the default for file names with an extension
of “.f95”.

Fortran User Guide

 Using the Compilers 65

 Fortran User Guide

Fixed-Form (-ffixed)

The -ffixed option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Fixed Source Form which is the same as the standard FORTRAN 77
source form.

Alternate Fixed form (-falt_fixed)

The -falt_fixed option instructs the compiler to accept source code written in following
form:

If a tab appears in columns 1 through 5, then the compiler examines the next character. If
the next character is not a letter (a-z, or A-Z) then it is considered a continuation
character and normal rules apply. If it is a zero, a blank, another tab, or a letter, the line is
not a continuation line.

Fixed line length (-W nn)

Use the -W option to set the line length of source statements accepted by the compiler in
Fixed-Form source format. The default value of nn is 72. The other legal values for nn
are 80 and 132 — any other value produces an error diagnostic.

YEXT_NAMES={ASIS | UCS | LCS}

The -YEXT_NAMES option is used to specify how the external names of globally visible
symbols, such as FUNCTION and SUBROUTINE names, are emitted. By default, names are
emitted entirely in upper case. Set this option to LCS to emit names entirely in lower
case. Set this option to ASIS to force external names to emitted exactly as they appear in
the source program. This option controls how external names will appear to other object
files.

External Symbol Prefix (-YEXT_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of external procedure names.

External Symbol Suffix (-YEXT_SFX=string)

The -YEXT_SFX option can be used to append a user specified string to the external
representation of external procedure names.

Treat as Big-Endian (-N26)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be big-endian by default. The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files.

66 Using the Compilers

Fortran User Guide

Treat as Little-Endian (-N27)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be little-endian by default. The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files.

Escape Sequences in Strings (-YCSLASH=1)

If the -YCSLASH=1 option is turned on, the compiler will transform the following escape
sequences marked with a ‘\’ embedded in character constants:
 \a Audible Alarm (BEL, ASCII 07)
 \b Backspace (BS, ASCII 8)
 \f Form Feed (FF, ASCII 12)
 \n Newline (LF, ASCII 10)
 \r Carriage Return (CR, ASCII 13)
 \t Horizontal Tab (HT, ASCII 09)
 \v Vertical Tab (VT, ASCII 11)
 \xh[h] Hexidecimal, up to 2 digits
 \o[o[o]] Octal number, up to 3 digits
 \\ Backslash

The default is -YCSLASH=0.

No Dot for Percent (-YNDFP=1)

This option instructs the compiler to disallow the use of a ‘.’ (period) as a structure field
component dereference operator. The default is to allow both ‘%’ (percent), which is the
Fortran 90/95 standard, and a period which is typically used with DEC style RECORD
declarations. The use of a period may cause certain Fortran 90/95 conforming programs
to be mis-interpreted (a period is used to delineate user defined operators and some
intrinsic operators). The default is -YNDFP=0. This switch implements Fortran 90/95
standard parsing for structure component referencing.

MS Fortran 77 Directives (-YMS7D)

The -YMS7D option causes the compiler to recognize Microsoft Fortran 77 style
directives in the form of $directive where the dollar-sign character is in column one of
the source file. directive must be from the set of supported MS directives.

 Using the Compilers 67

Common Block - F95 Options

This subset of the F95 options tab displays options for controlling how Fortran 90/95
treats common block names.

F95 Common Block Options

COMMON Block Name Prefix (-YCOM_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of COMMON block names.

COMMON Block Name Suffix (-YCOM_SFX=string)

The -YCOM_SFX option can be used to append a user specified string to the external
representation of COMMON block names.

 Fortran User Guide

68 Using the Compilers

Fortran User Guide

COMMON Block Name Character Case (-YCOM_NAMES={UCS | LCS})

The -YCOM_NAMES option is used to specify how the external names COMMON blocks are
emitted. The default (-YCOM_NAMES=UCS) is to emit COMMON block names entirely in
upper case. Set this option to LCS to emit names entirely in lower case.

Other F95 Options

The following options are not available with the graphical interface to the compiler but
may be entered manually in the option box, used with the command line interface, or
with the make facility (See the chapter, Building Programs).

Stack Size (-stack_size:size)

Use this option to establish the amount of memory reserved for stack use only. size is
entered as a hexadecimal value (e.g. 8000000). This option sets the stack size in the
application and is not subject to the ulimit maximum of 64 MB.

Disable Position Independent Code (-no-fpic)

Use this option to turn off position independent code generation.

Speculative Execution (-B156)

The –B156 option enables speculative execution. It removes loop invariant expressions
from within conditionals in loops. If the expression would normally be executed, this
option may improve performance. If the expression would not normally be executed, this
option may impair performance. This option is automatically enabled with the –O2
optimization option. It may be disabled with the +B156 option.

Inline CABS (-B157)

The –B157 option turns on inlining of the CABS and CDABS functions. This may overflow
for extremely large values; the library routine will not overflow. This option is
automatically enabled with the –O2 optimization option. It may be disabled with the
+B157 option.

Address Optimizations (-B158)

The –B158 option enables optimization of address calculations in loops. This will tend to
reduce register pressure within the loop at the cost of more instructions. This option is
automatically enabled with the –O2 optimization option. It may be disabled with the
+B158 option.

 Using the Compilers 69

 Fortran User Guide

Safe Floating-Point (-safefp)

The –safefp option is used to disable optimizations that may produce inaccurate or
invalid floating point results in numerically sensitive codes. The effect of this option is to
preserve the FPU control word, enable NAN checks, disable CABS inlining, and disable
floating-point register variables.

Disable Default Module File Path (-nodefaultmod)

The Absoft Fortran 90/95 compiler will automatically search the directory
$(ABSOFT)/f90includes for precompiled module files. Use the –nodefaultmod to
disable this.

Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS})

The -YVAR_NAMES option is used to specify how the case of variable names is treated.
By default, variable names are processed entirely in upper case (UCS), regardless of the
how they appear in the source code. Set this option to LCS to fold variable names to
lower case. Set this option to ASIS to force variable names to be processed exactly as
they appear in the source program.

Symbol Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS})

The -YALL_NAMES option is used to specify how the case of all symbolic names is
treated. By default, symbolic names are processed entirely in upper case (UCS),
regardless of the how they appear in the source code. Set this option to LCS to fold all
symbolic names to lower case. Set this option to ASIS to force symbolic names to be
processed exactly as they appear in the source program. This option is the same as using
the -YVAR_NAMES, -YCOM_NAMES, and -YEXT_NAMES options, which may appear after
the -YALL_NAMES option to control an individual symbolic name type.

Ignore CDEC$ directives (-YNO_CDEC)

The compiler recognizes CDEC$ directives that contain conditional compilation directives.
Use this option disable them.

Absoft Fortran 90/95 Compiler Directives

Compiler directives are lines inserted into source code that specify actions to be
performed by the compiler. They are not Fortran 90/95 statements. If you specify a
compiler directive while running on a system that does not support that particular
directive, the compiler ignores the directive and continues with compilation.

A compiler directive line begins with the characters CDIR$ or !DIR$. How you specify
compiler directives depends on the source form you are using.

70 Using the Compilers

Fortran User Guide

If you are using fixed source form, indicate a compiler directive line by placing the
characters CDIR$ or !DIR$ in columns 1 through 5. If the compiler encounters a nonblank
character in column 6, the line is assumed to be a compiler directive continuation line.
Columns 7 and beyond can contain one or more compiler directives. If you are using the
default 72 column width, characters beyond column 72 are ignored. If you have specified
80 column lines, characters beyond column 80 are ignored.

If you are using free source form, indicate a compiler directive line by placing the
characters !DIR$ followed by a space, and then one or more compiler directives. If the
position following the !DIR$ contains a character other than a blank, tab, or newline
character, the line is assumed to be a compiler directive continuation line.

If you want to specify more than one compiler directive on a line, separate each directive
with a comma.

NAME Directive

The NAME directive allows you to specify a case-sensitive external name in a Fortran
program. You can use this directive, for example, when writing calls to C routines. The
case-sensitive external name is specified on the NAME directive, in the following format:

!DIR$ NAME (fortran=“external” [,fortran=“external”]...)

where: fortran is the name used for the object throughout the Fortran
program whenever the external name is referenced.

 external is the external name.

FREE[FORM] Directive

The FREE or FREEFORM directive specifies that the source code in the program unit is
written in the free source form. The FREE directive may appear anywhere within your
source code. The format of the FREE directive is:

!DIR$ FREE

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

FIXED Directive

The FIXED directive specifies that the source code in the program unit is written in the
fixed source form. The FIXED directive may appear anywhere within your source code.
The format of the FIXED directive is:

!DIR$ FIXED

 Using the Compilers 71

 Fortran User Guide

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

NOFREEFROM Directive

The NOFREEFORM directive is the same as the FIXED directive (see above) and specifies
that the source code in the program unit is written in the fixed source form.

FIXEDFORMLINESIZE Directive

The FIXEDFORMLINESIZE directive specifies the line length for fixed-form source code.
The format of the FIXEDFORMLINESIZE directive is:

!DIR$ FIXEDFORMLINESIZE:{72|80|132}

ATTRIBUTES Directive

The ATTTRIBUTES directive can be used to apply special attributes to simplify passing
variables between Fortran 90/95 and other languages. The format of the ATTTRIBUTES
directive is:

!DIR$ ATTTRIBUTES attr-list::sym-list

where: attr-list is a comma separated list of attributes from the
following set.

 ALIAS
 C
 REFERENCE
 STDCALL
 VALUE

 sym-list is a comma separated list of symbols.

The ALIAS attribute takes the form of

ALIAS:external

where: external is the is the external name of the procedure.

PACK[ON] Directive

The PACK or PACKON directive specifies that sequenced structure fields be aligned on byte
even byte or word (four-byte) boundaries. The default is 1 (byte). The format for this
compiler directive is:

!DIR$ PACK [= {1|2|4}]

72 Using the Compilers

Fortran User Guide

The packing directives affect the current program unit being compiled (if there is one), or
the next program unit (when there is no current program unit). The packing directive is
reset to the default (PACKOFF) after the end of each program unit. A packing directive
affects only derived-types found below the directive in the source code.

PACKOFF Directive

The PACKOFF directive returns structure field alignment to the default for the machine
architecture which is alignment on the most efficient boundary for the data type. The
format for this compiler directive is:

!DIR$ PACKOFF

STACK Directive

The STACK directive causes the default storage allocation to be the stack in the program
unit that contains the directive. This directive overrides the -s command line option in
specific program units of a compilation unit. The format for this compiler directive is:

!DIR$ STACK

UNROLL Directive

The UNROLL directive is used to control loop unrolling by the compiler. Loop unrolling is
automatically enabled with the –O3 option. Use this directive to control loop unrolling
independent of the –O3 option. The format for this compiler directive is:

!DIR$ UNROLL N

where N is the count of the number of times to unroll the loop. If N is 0, the count is
automatic. If N is 1, loop unrolling is disabled.

NOUNROLL Directive

The NOUNROLL directive is used to disable loop unrolling by the compiler. Loop unrolling
is automatically enabled with the –O3 option. Use this directive to disable loop unrolling
in all circumstances. The format for this compiler directive is:

!DIR$ NOUNROLL

 Using the Compilers 73

 Fortran User Guide

ABSOFT FORTRAN 77 OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of FORTRAN 77 programs. Select the Set Project Options
command in the Configure menu to access the Options dialog. The options for
FORTRAN 77 fall into several categories: General, Control, Compatibility,
Miscellaneous, Format, and Common Block.

For quick reference, the options listed in the sections that follow are in the order in which
they appear on the F77 tab of the options dialog. Each option is listed with the
corresponding option letter(s) and a short description. When an option is checked in the
Absoft Developer Tools Interface application, the same letters will appear in the in the
corresponding Options box.

74 Using the Compilers

General - F77 Options

These options control the general characteristics of the FORTRAN 77 components of the
program being built.

F77 General Options

Max Internal Handle (-T nn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 20000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

Temporary string size (-t nn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. This undetermined length occurs when the REPEAT

Fortran User Guide

 Using the Compilers 75

 Fortran User Guide

function is used or when a CHARACTER*(*) variable is declared in a subroutine or
function. In these cases, the compiler will assume that the operation in question will
require 1024 bytes of temporary string space. This default value can be changed by
specifying the -t nn, where nn is a positive integer constant. When this option is specified,
the default temporary string size will be nn bytes.

Suppress Warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code or a missing
label on a FORMAT statement generate warning messages. Compile time diagnostic
messages are divided into two categories: errors and warnings. Error messages indicate
that the compiler was unable to generate an output file. Warning messages indicate that
some syntactic element was not appropriate, but the compiler was able to produce an
output file.

Warn of non-ANSI Usage (-N32)

Use of the -N32 option will cause the compiler to issue a warning whenever the source
code contains an extension to the ANSI FORTRAN 77 standard (American National
Standard Programming Language FORTRAN, X3.9-1978). This option is useful for
developing code which must be portable to other environments.

Quiet (-q)

The Absoft Fortran 77 compiler normally displays information to standard output (the
command line window) as it compiles an application. Enabling the -q option will
suppress any messages printed to standard output. Errors will still be printed, however.

Verbose (-v)

Enabling the -v option will display the individual commands that are sent to the command
line window, such as the front and back ends of the compiler and the linker.

Check Array Boundaries (-C)

When the -C compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Exceptions: arrays whose last dimension is *
and dummy arguments whose last dimension is 1 cannot be checked. In addition, file
names and source code line numbers will be displayed with all run time error messages.

Conditional Compilation (-x)

Statements containing an X or a D in column one are treated as comments by the
compiler unless the -x compiler option is selected. This option allows a restricted form of
conditional compilation designed primarily as a means for easily removing debugging
code from the final program. When the -x option is selected, any occurrence of an X or a
D in column one is replaced by a blank character. The only source formats for which
conditional compilation is valid are standard FORTRAN 77, VAX Tab-Format, and wide

76 Using the Compilers

format. The compiler also incorporates a complete set of statements for conditional
compilation which are described in the Conditional Compilation Statements section
The FORTRAN 77 Program chapter of the Absoft FORTRAN 77 Language Reference
Manual.

Control - F77 Options

When this subset of the F77 tab is selected, a dialog is shown for setting compiler
directives:

Compiler Directives (-Dname[=value])

Use this text box to enter the names and optional values of conditional compilation
variables. The -D option is used to define conditional compilation variables from the
command line. value can only be an integer constant. If value is not present, the
variable is given the value of 1. Conditional compilation is described in the Conditional

Fortran User Guide

 Using the Compilers 77

Compilation Statements section of the chapter The FORTRAN 77 Program of the
Absoft FORTRAN 77 Language Reference Manual.

Compatibility - F77 Options

This subset of the F77 tab of the options dialog displays compatibility options for
compiling FORTRAN programs. These options allow Absoft Fortran 77 to accept older
or variant extensions of FORTRAN source code from other computers such as
mainframes. Many of these can be used for increased compatibility with FORTRAN
compilers on various mainframe computers.

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER and LOGICAL data types default to
thirtytwo bits (four bytes). The –i2 option can be used to change this default length to
sixteen bits (two bytes) for both INTEGER and LOGICAL. The –i8 option can be used to
change the default INTEGER size to 64 bits (8 bytes). However, an explicit length
specification in a type declaration statement always overrides the default data length.

 Fortran User Guide

78 Using the Compilers

Fortran User Guide

Vax/Mainframe Compatibility

The VAX and mainframe compatibility switches may be quickly turned on by clicking in
the VAX/Mainframe Compatibility check box. Selecting this option is the same as
specifying -f -s from the command line.

Folding to Lower Case (-f)

The -f option will force all symbolic names to be folded to lower case. By default, the
compiler considers upper and lowercase characters to be unique, an extension to
FORTRAN 77. If you do not require case sensitivity for your compilations or specifically
require that the compiler not distinguish between case, as in FORTRAN 77, use this
option. This option should be used for compatibility with VAX and other FORTRAN
environments.

Static Storage (-s)

In FORTRAN 66, all storage was static. If you called a subroutine, defined local
variables, and returned, the variables would retain their values the next time you called
the subroutine. FORTRAN 77 establishes both static and dynamic storage. Storage local
to an external procedure is dynamic and will become undefined with the execution of a
RETURN statement. The SAVE statement is normally used to prevent this, but the -s
compiler option will force all program storage to be treated as static and initialized to
zero. The -N1 compiler option causes the definition of variables initialized in DATA
statements to be maintained after the execution of a RETURN or END statement. This option
should be used for compatibility with VAX and other FORTRAN environments.

Folding to Upper Case (-N109)

By default, the compiler considers upper and lowercase characters to be unique, an
extension to FORTRAN 77. If you do not require case sensitivity for your compilations
or specifically require that the compiler not distinguish between case, as in FORTRAN
77, including the -N109 option on the compiler invocation command line will force all
symbolic names to be folded to upper case.

One-Trip DO Loops (F66) (-d)

FORTRAN 66 did not specify the execution path if the iteration count of a DO loop, as
established from the DO parameter list, was zero. Many processors would execute this
loop once, testing the iteration count at the bottom of the loop. FORTRAN 77 requires
that such a DO loop not be executed. The -d option will cause all DO loops to be executed
at least once, regardless of the initial value of the iteration count.

Append underscore to names (-N15)

Use of the -N15 option will cause the compiler to define SUBROUTINE and FUNCTION
names with a trailing underscore. This option can be used to avoid name conflicts with
the system libraries or to interface with other FORTRAN environments.

 Using the Compilers 79

Miscellaneous - F77 Options

This subset displays a set of options for compiling FORTRAN 77 programs. These
options allow Absoft Fortran 77 to accept older or variant extensions of FORTRAN 77
source code from other computers such as mainframes. Many of these can be used for
increased compatibility with FORTRAN compilers on various mainframe computers.

F77 Miscellaneous Options

Promote REAL and COMPLEX (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits (four bytes) and sixty-four bits (eight bytes), respectively. The
-N113 option is used to promote these to their double precision equivalents: DOUBLE
PRECISION and DOUBLE COMPLEX. This option does not affect variables which appear in
type statements with explicit sizes (such as REAL*4 or COMPLEX*8).

 Fortran User Guide

80 Using the Compilers

Escape Sequences in Strings (-K)

If the -K option is turned on, the compiler will transform certain escape sequences marked
with a ‘\’ embedded in character constants. For example ‘\n’ will be transformed into a
newline character for your system. Refer to chapter The FORTRAN 77 Program of the
Absoft FORTRAN 77 Language Reference Manual for more information on the escape
sequences that are supported.

Format - F77 Options

For compatibility with other FORTRAN environments and to provide more flexibility,
the compiler can be directed to accept source code which has been written in a variety of
different formats. The default setting is to accept only ANSI standard FORTRAN source
code format. See the chapter The FORTRAN 77 Program of the Absoft FORTRAN 77
Language Reference Manual for more information on alternative source code formats.

F77 Format Options

Fortran User Guide

 Using the Compilers 81

 Fortran User Guide

ANSI Fortran 77 Fixed

The default source form is ANSI FORTRAN 77 as described in the chapter The
FORTRAN 77 Program of the Absoft FORTRAN 77 Language Reference Manual.
There is no option for this setting.

Fortran 90 Free-Form (-8)

Use of the -8 option instructs the compiler to accept source code written in the format for
the Fortran 90 Free Source Form.

VAX Tab-Format (-V)

Use of the -V option causes the compiler to accept source code in the form specified by
VAX Tab Format.

Wide Format (-W)

Use of the -W option causes the compiler to accept statements which extend beyond
column 72 up to column 132.

Treat as Big-Endian (-N26)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be big-endian by default. The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files.

Treat as Little-Endian (-N27)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be little-endian by default. The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files.

82 Using the Compilers

COMMON Block - F77 Options

Several options are available pertaining to the usage of common blocks in FORTRAN 77
source code.

Align COMMON Variables (-N34)

If a COMMON block is defined in a manner which causes a misaligned storage location,
the -N34 option can be used to insert space to eliminate the misalignment. This option
may invalidate your code if the same COMMON block is defined differently in different
program units.

Fortran User Guide

 Using the Compilers 83

 Fortran User Guide

Set COMMON Block Name (-N22)

The -N22 option is used to change the scheme the compiler employs for generating global
names for COMMON blocks. The default is to prepend the characters “_C” to the COMMON
block name. This option causes the compiler to append a single underscore (_) instead.
See also the -N110 option below.

Don’t Mangle COMMON Block Name (-N110)

The -N110 option prevents the compiler from mangling (changing) the global names for
COMMON blocks. The default is to prepend the characters “_C” to the COMMON block name
so that it does not conflict with other global names such as external procedure names.
This option causes the compiler to emit the COMMON block name exactly as it appears in
source.

C/C++ OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of C/C++ programs with either the Absoft compiler or the
GNU compiler. The choice of specific compiler is made on the Build tab of the Options
dialog described at the end of this chapter.

This section of the manual describes the options of the Absoft C/C++ compiler only. The
GNU options in the Absoft Developer Tools Interface application are provided as a
convenience; for more information on using the Mac OS X C/C++ compiler, see the
Macintosh OS X manual page for cc.

Select the Set Project Options command in the Configure menu to access the Options
dialog. The C/C++ options fall into three categories: General, Preprocessor, and Format.
For quick reference, the options listed in the sections that follow are in the order in which
they appear in the dialog. Each option is listed with the corresponding option letter(s) and
a short description. When an option is checked in the Absoft Developer Tools Interface
application, the same letters will appear in the in the corresponding Options box.

84 Using the Compilers

General – C/C++ Options

These options control some general characteristics of the C/C++ components of the
program being built. For information on using specific options of the Mac OS X C/C++
compiler, see the Mac OS X manual page for cc.

C/C++ General Options

Max Internal Handle (-T n)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 10000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

Fortran User Guide

 Using the Compilers 85

 Fortran User Guide

Max Errors (-maxerr n)

This option sets the maximum number of errors that can be emitted before the compiler
aborts. Setting a reasonable number, such as 20, prevents the compiler from issuing
hundreds of meaningless error messages when a brace or semi-colon is missing.

Diagnostic Messages

The level of diagnostic reporting can be controlled with the next seven options. The
Absoft C/C++ compiler categorizes diagnostic messages as follows:

error non-recoverable syntactic error such as a missing brace or semi-
colon

warning the usage or construction may be an error or non-portable, but is
allowed on the assumption that you know what you are doing

informational the element is legal but may be the cause of a subtle bug
anachronism currently allowed construction which may not be supported in a

future release
template show the point of instantiation of a template function when that

instantiation caused an error

Suppress All Warnings (-w31)

Checking this box suppresses the listing of all diagnostic warning messages. Various
levels of warnings may be suppressed by checking the individual warning boxes as
discussed below.

Suppress Warnings (-w16)

Checking this box suppresses the listing of most warning messages. The only diagnostic
warnings still reported are informational and anachronisms.

Suppress Informationals (-w8)

This check box controls the listing of informational warning messages such as using a
member name in a derived class that was defined in the base class, referencing a function
which does not have a prototype, or defining a variable which is never used.

Suppress Anachronisms (-w2)

Checking this box suppresses the listing of anachronism warning messages in C++
compilations such as a trailing comma in a parameter list, a temporary used for non-
const reference, or the use of a count in delete[].

86 Using the Compilers

Fortran User Guide

Suppress Template Warnings (-w1)

This option suppresses warnings issued when an error occurs while instantiating a
template function.

Treat Anachronisms as Errors (-wp)

This check box causes the usage of C++ anachronisms to be treated as errors. This option
should always be used when developing new code to avoid the use of deprecated
features.

Treat All Warnings as Errors (-wabort)

This check box causes any warning condition to be treated as an error.

No Alias Optimizations (-N19)

The -N19 option is selected to prevent the compiler from performing address
optimizations when pointer aliases are present.

Quiet (-q)

The Absoft C/C++ compiler normally displays information to standard output as it
compiles an application. Enabling the -q option will suppress any messages printed to
standard output. Errors will still be printed to the standard diagnostic output, however.

Verbose (-v)

Enabling the -v option will cause ACC to display the commands it is sending to the
compiler and linker.

Procedure Trace (-N124)

Specifying the –N124 option will cause the compiler to generate code to write the name
of the currently executing procedure to standard out. This option is useful for tracing
program execution and quickly isolating execution problems.

Verbose Templates (-ptv)

This option causes the compiler to print a message to stderr whenever a template is
instantiated.

Include Tree to Stderr (-H)

An include file tree will be printed to stderr when the -H option is enabled.

No inlines (-inline none)

This option prevents the compiler from inlining functions.

 Using the Compilers 87

Exception Handling (-except on|off)

This option enables C++ exception handling. It allows you to use the try/catch/throw
constructs in your program. All functions that are called directly or indirectly from a try
block must be compiled with the -except on option. Only specify this option when you
are actually using exception handling as there is a considerable overhead to its use.

Preprocessor – C/C++ Options

This subset of the C/C++ tab of the options dialog displays options for controlling the
preprocessor stage of the C and C++ compilation process.

Defines (-D name[=value])

Use these edit and list text boxes to define the names and optional values of preprocessor
variables. The -D option is used to define preprocessor variables from the command line.

 Fortran User Guide

88 Using the Compilers

Fortran User Guide

value can only be an integer constant. If value is not present, the variable is given the
value of 1.

Undefines (-U name)

Use these edit and list text boxes to undefine the names preprocessor variables. The -U
option is used to undefine preprocessor variables from the command line.

Do not search standard system directories

Do not search the standard system directories for header files (-nostdinc). Only search
directories provided by the –I option.

Preprocess files only

The Preprocess files only option (-E) directs the compiler to place the output of the C
preprocessor in a specified file, or to stdout.

 Using the Compilers 89

Format – C/C++ Options

This subset of the C/C++ tab of the options dialog displays options used to specify the
language syntax format of the source files.

C/C++ Format Options

C++ (-c++)

Enabling the -c++ option allows you to use the namespaces and runtime type information
features ANSI C++ in your source code.

ANSI C (-A)

Set the -A option for source which conforms to the ANSI X3.159-1989 standard for the C
programming language

 Fortran User Guide

90 Using the Compilers

Fortran User Guide

K and R C (-K)

The -K option is set with the radio button titled K and R C and should be used with older
style Kernighan and Ritchie C. This is the default option.

LINKER OPTIONS

The linker options detailed in this section give you control over certain aspects of the
program linking process. Select the Set Program Options command in the Configure
menu to access the Options dialog.

For quick reference, the options listed in the sections that follow are in the order in which
they appear in the dialog boxes. For information on using specific options of the Mac OS
X Linker, see the Mac OS X manual pages for ld. When an option is checked, the same
letters will appear in the Options box.

 Using the Compilers 91

General - Link Options

There is only one set of options for the linker in the Options dialog:

Produce Map File

Produce a load map, which lists all the segments and sections. The list will contain the
address where each input file’s section appears in the output file and the section’s size.

Suppress Warnings

Use this option to suppress all linker warning messages.

Verbose

This option traces the progress of the linker.

 Fortran User Guide

92 Using the Compilers

Fortran User Guide

Report Duplicate Symbols

Use this option to treat multiply defined symbols as warnings instead of errors. The first
such symbol is used for linking. Other symbols of the same name may be accessed by
local references.

Exclude libac.a

Use this option to exclude libac.a from the set of default libraries used for linking. This
may be necessary if you are compiling C/C++ code using a compiler other than the
Absoft C/C++ compiler.

Why Load

This option indicates why each member of a library is loaded.

Report Undefined Symbols

For the first number undefined symbols this option, displays each file in which the
symbol appears, its type and whether the file defines or references it

Add Framework(s)...

This button displays a file browser that allows you add system frameworks to your
project. On a command line use –framework name.

Passing Options To The Linker

For ease of use within the Macintosh OS X environment, many of the options that are
available to the system linker are also available to the f77 and f95 compiler drivers.
Specifying any of these options indicates that all files specified on the command line
should be processed through the linkage phase. Unless the –S or –c options are specified,
all intermediate files (relocatable objects and/or assembly source) will be deleted. See the
system documentation on ld for more information regarding these options. In brief, the
options are as follows:

Undefine A Symbol (-u)

Specifying the –usymbol_name option will enter symbol_name as an undefined symbol to
the linker.

Linker Options (-X and -Xlinker)

Use the –X option switch to pass an option directly to the linker. The FORTRAN 77 or
Fortran 90/95 driver will pass option to the linker. If you want to pass an options which
takes an argument, use the –X option twice.

 Using the Compilers 93

For C and C++, the option is name –Xlinker.

Other Link Options

For more information on using specific options of the Mac OS X linker, see the Mac OS
X manual page for ld.

PLUG-INS

The Plug-ins tab of the Options dialog provides a way to integrate any additional tools
that you may have purchased into your project. Select the Set Project Options command
in the Configure menu to access the Options dialog.

Two types of plug-ins are available: libraries and preprocessors. The check boxes for
these items are enabled only if the product was purchased and installed.

IMPORTANT: Source files that are processed by a VAST preprocessor must be added
to the project using the VAST Preprocessor file type. Use the Add files as drop-down

 Fortran User Guide

94 Using the Compilers

menu select the type of preprocessor as required. See the section describing
Add/Remove File(s) discussed earlier in this chapter.

VAST

Crescent Bay Software develops the VAST pre-processors. They are pre-processor and
library combinations for multi-processor and AltiVec Mac OS X installations and can be
used with FORTRAN 77, Fortran 90/95, or C/C++ programs. Click the Settings tab to
display a dialog for specifying additional preprocessor options.

Documentation for the VAST preprocessors is provided in electronic format on the
Absoft Pro Fortran CDROM.

IMPORTANT: The VAST preprocessors do not support the use of automatic static
storage (-s option) by either Absoft Fortran 90/95 or FORTRAN 77.

Fortran User Guide

 Using the Compilers 95

The VAST preprocessors can be invoked from a command line or within a custom
makefile by using the supplied compiler drivers, pf90 and pf77, for Fortran 90/95 and
FORTRAN 77, respectively. The VAST drivers v90, v77, vlf, vlf90, vlf95 are used for
VAST-F/AltiVec support for Absoft Fortran 90/95, Absoft FORTRAN 77, IBM XLF
FORTRAN 77, IBM XLF Fortran 90, and IBM XLF Fortran 95. The combined multi-
processor and AltiVec VAST drivers are pv90, pv77, pvlf, pvlf90, and pvlf95. The
VAST-C/AltiVec driver for IBM XLC is vlc.

IMSL Library

The IMSL check box controls the use of the Visual Numerics IMSL Math and Statistics
libraries. Complete documentation is provided on the Pro Fortran CDROM. Place a
check in this box to automatically link against the library.

LAPACK Library

These libraries contain the basic LAPACK and LAPACK90 libraries obtained from
www.netlib.org. LAPACK is used for the most common problems in numerical linear
algebra including linear equations, linear least squares, eigenvalue, and singular value
problems. LAPACK90 is the Fortran 90/95 interface for LAPACK. Source code for these
libraries is supplied with Pro Fortran.

 Fortran User Guide

http://www.netlib.org/

96 Using the Compilers

Fortran User Guide

UNIX Library

The Unix library supplied routines compatible with those provided by Sun Microsystems
and other Unix based Fortran compilers. Documentation on the routines in this library is
available in the Compatibility Libraries manual supplied with Pro Fortran. Source code
to all library routines is supplied.

VAX/VMS Library

The VMS library has a few additional routines with calling conventions that match VAX
FORTRAN. Documentation on the routines in this library is available in the
Compatibility Libraries manual supplied with Pro Fortran. Source code to all library
routines is supplied.

None of the routines in this library are part of the ANSI FORTRAN 77 or Fortran 90/95
standards and should be used with caution if portability between platforms is a concern.

 Using the Compilers 97

BUILD OPTIONS

Use this tab of the Options dialog to specify the tools that are used to build an
application. The Tools section specifies the compilers, linker, make facilities, and any
additional developer tools. The default path to these tools is the BIN directory of the
main Absoft directory defined by the environment variable ABSOFT (e.g.
Applications\Absoft\Bin). Paths specified by the environment variable PATH will also be
searched. Use fully qualified paths for tools not residing in these directories.

Build Options

The Prebuild and Postbuild edit boxes in the Custom Build section can be used to specify
files containing additional macros, rules, dependencies, and commands to be inserted into
the makefile. Examine the Makefile tab in the output window (discussed later in this
chapter) for more information.

 Fortran User Guide

98 Using the Compilers

Fortran User Guide

The check boxes at the bottom of this property page allow you to:

1. Discontinue the build process after the first error is encountered
2. Prevent the build process from updating file dependencies
3. Display file dependency scan progress
4. Specify that only the Fortran 90/95 compiler be used for all FORTRAN language

compilations.
5. All normal C and C++ file extensions will be handled by the C++ compiler only
6. Indicate that no default libraries names are to be supplied to the linker
7. Clean up output files using wildcard characters instead of deleting each output file

individually.

99

 Fortran User Guide

CHAPTER 5

Porting Code

This chapter describes issues involved in porting FORTRAN 77 code from other
platforms. One of the major design goals for Absoft Fortran 77 is to permit easy porting
of FORTRAN 77 source code from mainframe computers such as VAX and IBM, and
from workstations such as Sun. The result is the rich set of statements and intrinsic
functions accepted by Absoft Fortran 77. The last section of this chapter describes
Macintosh OS X specific issues about porting code.

As a general rule when porting code, use the following two compiler options:

 -f Fold all symbols to lower case.
 -s Force all program storage to be treated as static and initialized to zero.

Ported programs that have incorrect runs or invalid results are usually caused by the
differences between the Macintosh and other environments such as floating point math
precision or stack-size issues. See the section Other Porting Issues later in this chapter
for special considerations when porting code to the Macintosh. In addition, you may want
to use this option:

-C Check array boundaries and generate better runtime errors. Using this option
makes programs slightly larger and they will execute slower.

If you want to use the Absoft debugger, Fx, add the -g option to generate debugging
information.

PORTING CODE FROM VAX

Absoft Fortran 77 automatically supports most of the VAX FORTRAN language
extensions. Below is a list of key VAX FORTRAN extensions that are supported and a
list of those that are not supported. For a complete list of VAX extensions, refer to
Appendix H. Using various options, the compiler can also accept VAX Tab-Format
source lines and/or 132-column lines. Otherwise, only ANSI FORTRAN 77 fixed format
lines are accepted.

Key Supported VAX FORTRAN Extensions

• NAMELIST—the NAMELIST terminator may be either “$” or “&”
• STRUCTURE, RECORD, UNION, MAP, %FILL statements
• DO WHILE loops
• INCLUDE statement
• ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
• Hollerith and hexadecimal constant formats

100 Porting Code

Fortran User Guide

• “!” comments

Key Unsupported VAX FORTRAN Extensions

• Absoft Fortran 77 uses IEEE floating point representation
• I/O statements DELETE, DEFINE FILE, and REWRITE
• Data dictionaries

Compile Time Options and Issues

Absoft Fortran 77 can be made even more compatible with VAX FORTRAN by using a
group of compiler options collectively referred to as the “VAX compatibility options”,
listed below. When using the Commando interface for the compiler, they may be invoked
by a single check box.

 -f Fold all symbols to lower case.
 -s Force all program storage to be treated as static and initialized to zero.

VAX-compatible time, date, and random number routines are available by linking with
the file vmslib.o in the FLibraries folder. They are:

DATE subroutine returns current date as CHARACTER*9
IDATE subroutine returns current date as 3 INTEGER*4
TIME subroutine returns current time as CHARACTER*8
SECNDS subroutine returns seconds since midnight
RAN function returns random number

The following list of VAX FORTRAN “qualifiers” shows the equivalent Absoft Fortran
77 options or procedures:

/ANALYSIS_DATA no equivalent
/CHECK BOUNDS -C to check array boundaries
/CHECK NONE do not use the -C option
/CHECK OVERFLOW no equivalent
/CHECK UNDERFLOW no equivalent
/CONTINUATIONS no equivalent
/CROSS_REFERENCE no equivalent
/DEBUG -g to generate debugging information
/D_LINES -x to compile lines with a “D” or “X” in column 1
/DIAGNOSTICS append ≥ filename to the f77 command line to create a file

containing compiler warning and error messages (type Option-> for
the ≥ character)

/DML no equivalent
/EXTEND_SOURCE -W to permit source lines up to column 132 instead of 72
/F77 do not use the -d option

 Porting Code 101

 Fortran User Guide

/NOF77 -d for FORTRAN 66 compatible DO loops
/G_FLOATING see the section Numeric Precision later in this chapter
/I4 do not use the -i option
/NOI4 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and

LOGICAL*2
/LIBRARY no equivalent
/LIST a symbol table dump may be generated with the -D option
/MACHINE_CODE -S to generate an assembly source file that can be assembled
/OBJECT no equivalent
/OPTIMIZE -O to use basic optimizations
/PARALLEL no equivalent
/SHOW no equivalent
/STANDARD -N32 to generate warnings for non-ANSI FORTRAN 77 usage
/WARNINGS DECLARATIONS
 the IMPLICIT NONE statement may be used to generate warnings for

untyped data items
/WARNINGS NONE -w to suppress compiler warnings

The tab size on the Macintosh may be different than the VAX. You can set the tab size
for a file by pressing -Y while editing a file and typing the tab size for the file. For
more information about tab size, see the section Tab Size later in this chapter.

Runtime Issues

If the program is having problems with I/O, make sure you are using the -N3 and -N51
options described in detail in sections Use record lengths in I/O and RECL Defines 32-
bit words in chapter Using the Compiler.

PORTING CODE FROM IBM VS FORTRAN

Absoft Fortran 77 automatically supports most of the IBM VS FORTRAN language
extensions. Below is a list of key VS FORTRAN extensions that are supported and not
supported. Using a compiler option, Absoft Fortran 77 can also accept VS FORTRAN
Free-Form source lines which use 80 columns, otherwise, only ANSI FORTRAN 77
fixed format lines are accepted.

Key Supported VS FORTRAN Extensions

• “*” comments in column 1
• Can mix CHARACTER and non-CHARACTER data types in COMMON blocks
• The NAMELIST terminator may be an ampersand “&”
• Hollerith constants

102 Porting Code

Fortran User Guide

Key Unsupported VS FORTRAN Extensions

• Absoft Fortran 77 uses IEEE floating point representation (more accurate)
• Debug statements
• I/O statements DELETE, REWRITE, and WAIT
• INCLUDE statement syntax is different

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with VS FORTRAN by using these
compiler options:

 -f Fold all symbols to lower case
 -s Force all program storage to be treated as static and initialized to zero

PORTING CODE FROM MICROSOFT FORTRAN (PC VERSION)

Absoft Fortran 77 automatically supports many of the Microsoft FORTRAN language
extensions. Below is a list of key Microsoft FORTRAN extensions that are supported and
not supported. Absoft Fortran 77 does not have the code size restrictions found in the
segmented Microsoft FORTRAN models.

Key Supported Microsoft FORTRAN Extensions

• The NAMELIST terminator may be an ampersand “&”
• The Free-Form Source Code is very similar to VS FORTRAN (-V option)
• AUTOMATIC statement
• STRUCTURE, RECORD, UNION, MAP statements
• SELECT CASE statements
• DO WHILE loops
• INCLUDE statement
• OPEN statement displays standard file dialog when using FILE=""
• Conditional compilation statements

Key Unsupported Microsoft FORTRAN Extensions

• Metacommands
• MS-DOS specific intrinsic functions
• INTERFACE TO statement

Compile-time Options and Issues

 Porting Code 103

 Fortran User Guide

Absoft Fortran 77 can be made even more compatible with Microsoft FORTRAN by
using these compiler options:

 -f Fold all symbols to lower case
 -s Force all program storage to be treated as static and initialized to zero

The following list of Microsoft FORTRAN metacommands shows the equivalent Absoft
Fortran 77 options or procedures:

$DEBUG -C to check array boundaries and other run-time checks
$DECLARE the IMPLICIT NONE statement may be used to generate warnings for

untyped data items
$DO66 -d for FORTRAN 66 compatible DO loops
$FLOATCALLS all floating point is calculated inline or with a threaded math library in

Absoft Fortran 77
$FREEFORM -V for IBM VS FORTRAN Free-Form source code
$INCLUDE use the INCLUDE statement
$LARGE not necessary — Absoft Fortran 77 does not have the data size

restrictions found in the segmented Microsoft FORTRAN models
$LINESIZE not applicable
$LIST no equivalent
$LOOPOPT -U for loop unrolling optimization; -R for loop invariant removal
$MESSAGE no equivalent
$PACK use $PACKON and $PACKOFF
$PAGE not applicable
$PAGESIZE not applicable
$STORAGE:2 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and

LOGICAL*2
$STORAGE:4 do not use the -i option
$STRICT -N32 to generate warnings for non-ANSI FORTRAN 77 usage
$SUBTITLE not applicable
$TITLE not applicable
$TRUNCATE no equivalent

If code ported from MS-DOS does not compile because of many errors, the end-of-line
characters within the file may not match the return character (decimal 13 or Control-M)
the Macintosh expects. To remove extraneous linefeeds from files transferred from MS-
DOS which have both a linefeed and a return character, use the Replace… item in the
Find menu and type control-J for the string to find and nothing for the string to replace.

PORTING CODE FROM SUN WORKSTATIONS

Absoft Fortran 77 automatically supports most of the Sun FORTRAN language
extensions. Below is a list of key Sun FORTRAN extensions that are supported and not

104 Porting Code

Fortran User Guide

supported. The Sun FORTRAN compiler appends an underscore to all external names to
prevent collisions with the C library. Absoft Fortran 77, by default, does not append an
underscore to maintain compatibility with the Macintosh. The -N15 option may be used to
append underscores to routine names.

Key Supported Sun FORTRAN Extensions

• NAMELIST; the NAMELIST terminator may be either “$” or “&”
• STRUCTURE, RECORD, POINTER, UNION, MAP, %FILL statements
• DO WHILE loops
• INCLUDE statement
• ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
• Hollerith and hexadecimal constant formats
• “!” comments in column 1

Absoft has a compiler for Sparc-based SunOS systems. It has the same features and
language extensions as Absoft Fortran 77. The compilers are 100% source-compatible.

PORTING CODE FROM THE NEXT WORKSTATION

Absoft FORTRAN 77, formerly available, but now discontinued on the NextStep
operating system for either Motorola or Intel microprocessors had the same optimizations
and language extensions as Absoft Fortran 77. The object-oriented extensions of the
NeXT compiler are specific to the NextStep environment and are not supported with
Absoft Fortran 77 for the Macintosh OS X. The compilers are 100% source-compatible.

PORTING CODE FROM THE IBM RS/6000 WORKSTATION

Absoft FORTRAN 77, formerly available, but now discontinued for the IBM RS/6000
computer and had the same optimizations and language extensions as Absoft Fortran 77
for Windows with Intel or PowerPC processors. The compilers are 100% source
compatible.

PORTING CODE FROM INTEL 386/486/PENTIUM COMPUTERS

Absoft Pro Fortran is available for the Intel Pentium systems including Windows 95,
Windows 98, and Windows/NT. It has the same optimizations and language extensions
as Absoft Pro Fortran for the Macintosh. The compilers are 100% source compatible.

PORTING CODE TO/FROM OTHER MACINTOSH SYSTEMS

Language Systems Fortran

Absoft Fortran 77 and Language Systems Fortran share many extensions implemented in
other compilers. In addition, Absoft Fortran 77 automatically supports most of the

 Porting Code 105

 Fortran User Guide

Language Systems Fortran specific language extensions. Below is a list of key Language
Systems extensions that are supported and a list of those that are not supported. For a
complete list of Language Systems extensions and their usage, refer to Appendix N.

Key Supported Language Systems Fortran Extensions

• STRING declaration statement
• POINTER declaration statement
• LEAVE control statement
• GLOBAL, CGLOBAL, and PBLOBAL statements
• CEXTERNAL and PEXTERNAL statements
• INT1, INT2, INT4, and JSIZEOF intrinsic functions

Key Unsupported Language Systems Fortran Extensions

• variables in FORMAT statements
• Language Systems Fortran compiler directives

106 Porting Code

Fortran User Guide

Other Absoft Compilers

Over the past 15 years, Absoft has offered several different compilers for a number of
Macintosh environments. This section outlines some of the differences between these
products.

MacFortran This 68000 compiler supported ANSI FORTRAN 77 and compiled

programs directly from the Finder without using MPW. Although
it lacked optimizations and support for many of the extensions in
Absoft Pro Fortran for Macintosh, it compiled very fast and was
easy to use.

MacFortran/020 This 68000 compiler was the same as MacFortran but it could also

produce faster code for 68020 and 68030 systems that incorporated
a floating point unit.

MacFortran II This 68000 compiler is very similar to Absoft Pro Fortran for

Macintosh. It supports many of the same optimizations and
extensions, but is designed for 68000 based Macintoshes.

OTHER PORTING ISSUES

Not all porting and compatibility issues can be solved automatically by Absoft Pro
Fortran or by using various option combinations. There are six issues that must be
addressed on a program-by-program basis for the Macintosh computer:

Memory Management Tab Character Size
Naming Conventions Numeric Precision
File and Path Names Floating Point Math Control

Memory Management

Local variables and temporary values are stored in the stack frame. All other storage is
allocated statically in the data and/or bss sections.

Dynamic Storage

Storage for variables local to a function or a subroutine is allocated in the stack frame. As
a result, local variables are undefined when execution of a function or subroutine begins
and become undefined again when execution terminates. This can cause difficulties in
two areas.

First, problems may arise when porting Fortran applications from environments that
statically allocate all memory; the application may except variables to retain their
definition status across procedure references. However, it produces applications that

 Porting Code 107

 Fortran User Guide

make more effective use of memory and provides the ability to call functions and
subroutines recursively. The next section describes how to declare static storage space.

Second, the Macintosh OS X stack is limited to 512 KB and large arrays allocated in the
stack frame may overflow the stack. You can increase the stack size with the ulimit
command (ulimit is a bash command - the csh equivalent to ulimit -s is limit
stack) to raise the stack size limit:

ulimit –s
512
ulimit -s 32768
ulimit -s
32768

Static Storage

There are three ways to define static storage in Fortran. The first two allow static
variables to be defined selectively and are either placing them in COMMON blocks or using
the SAVE statement. The third method, using the –s compiler option, forces all program
storage to be treated as static. Static memory is allocated out of the data and/or bss
sections and remains defined for as long as the application runs. In addition, all static
storage will be initialized to zero when the application begins execution.

Naming Conventions

Global names in Fortran include all procedure names and COMMON block names, both of
which are significant to 31 characters. All global names in Absoft FORTRAN 77 are case
sensitive unless one of the compiler character case options has been selected. All global
names in Absoft Fortran 90/95 are upper case unless one of the compiler character case
options has been selected. All other symbols are manipulated as addresses or offsets from
local labels and are invisible to the linker.

Procedure Names

Names of functions and subroutines in Fortran programs will appear in the assembly
language source output or object file records exactly as they are stated in the Fortran
source code with a leading underscore (“_”) prepended. This is identical to how the C
Programming Language represents symbolic names on Macintosh OS X.

If a FORTRAN 77 subroutine is defined as:

 SUBROUTINE SUB(…)
 .
 .
 .
 RETURN
 END

108 Porting Code

Fortran User Guide

It will be defined in assembly language as:

 .text
 .globl _sub
 _sub:
 .
 .
 .
 blr

COMMON Block Names

The convention in Absoft Pro Fortran us to precede the name given in the COMMON
statement with the characters “_C”. BLANK common uses the characters _blank.

For example, the COMMON block declaration:

 COMMON /the_block/ a, b, c

Eill produce the following assembler directive:

 .comm _Cthe_block, 0x0000000c

File and Path Names

When the compiler encounters the Fortran INCLUDE statement, it takes the CHARACTER
constant immediately following as a file name, searches for the file, and, if the file is
found, copies its contents into the source file. If an absolute or relative path name is
specified, the compiler will search only that path. If only a file name is given, the
compiler will first look for the file in the current directory. It will then search any
directory defined by the environment variable F77INCLUDES. Additional search paths
may be specified with the –I compiler option.

Tab Character Size

The compiler assumes a standard tab size of eight spaces. This is the default for most
editors. When the compiler encounters a tab character (ASCII 9) during compilation, it is
replaced with the appropriate number of spaces for alignment to the next tab stop. By
setting the environment variable TABSIZE, the tab size used by the compiler can be
changed. The following command line for the Bourne shell will set the tab size for the
compiler to four spaces:

 TABSIZE=4
 export TABSIZE

 Porting Code 109

 Fortran User Guide

Runtime Environment

A number of the aspects of the runtime environment can be controlled with the
ABSOFT_RT_FLAGS environment variable. This variable can be a combination of any of
the following switches (the leading minus sign is required for each switch and multiple
switches must be separated by one or more spaces):

-defaultcarriage

Causes the units preconnected to standard output to interpret carriage
control characters as if they had been connected with ACTION='PRINT'.

-fileprompt

Causes the library to prompt the user for a filename when it implicitly
opens a file as the result of I/O to an unconnected unit number. By default,
the library creates a filename based on the unit number.

-vaxnames

Causes the library to use 'vax style' names (FORnnn.DAT) when creating
a filename as the result of I/O to an unconnected unit number.

-unixnames

Causes the library to use 'unix style' names (fort.nnn) when creating a
filename as the result of I/O to an unconnected unit number.

-bigendian

Causes the library to interpret all unformatted files using big endian byte
ordering.

-littleendian

Causes the library to interpret all unformatted files using little endian byte
ordering.

-noleadzero

Causes the library to surpress the printing of leading zeroes when
processing an Fw.d edit descriptor. This only affects the limited number of
cases where the ANSI standard makes printing of a leading zero
implementation defined.

110 Porting Code

Fortran User Guide

-reclen32

Causes the library to interpret the value specified for RECL= in an OPEN
statement as 32-bit words instead of bytes.

-f90nlexts

Allows f90 namelist reads to accept non-standard syntax for array
elements. Without this flag, the following input results in a runtime error:

$ONE
A(1)=1,2,3,4
$END

When -f90nlexts is set, the values are assigned to the first four elements of
A.

-nounit9

Causes UNIT 9 not to be preconnected to standard input and output.

-maceol

Formatted sequential files are in Classic Macintosh format where each
record ends with a carriage return,

-doseol

Formatted sequential files are in Windows format where each record ends
with a carriage return followed by a line feed.

-unixeol

Formatted sequential files are in Unix format where each record ends with
a line feed.

-hex_uppercase

Data written with the Z edit descriptor will use upper case characters for
A-F.

-strict_nan_input

Floating point input values for NaN and Infinity must be exactly the case
insensitive strings “nan” and “infinity”.

 Porting Code 111

 Fortran User Guide

-relaxed_input

Floating point input values must conform exactly to requirements of the
Fortran standards.

Floating Point Math Control

This section describes the basic information needed to control the floating-point unit
(FPU) built into Intel. The FPU provides a hardware implementation of the IEEE
Standard For Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985). As a result it
allows a large degree of program control over operating modes. There are two aspects of
FPU operation that can affect the performance of a FORTRAN program:

Rounding direction

Exception handling

A single subroutine is provided with the compiler that is used to retrieve the current state
of the floating-point unit or establish new control conditions:

CALL fpcontrol(cmd,arg)

where: cmd is an INTEGER variable that is set to 0 to retrieve the state of

the floating point unit and 1 to set it to a new state.

 arg is an INTEGER variable that receives the current state of the

floating point unit if cmd is 0 and contains the new state if cmd is
1.

Rounding Direction

The first aspect of FPU operation that may affect a FORTRAN program is rounding
direction. This refers to the way floating-point values are rounded after completion of a
floating-point operation such as addition or multiplication. The four possibilities as
defined in the fenv.inc include file are:

 FE_TONEAREST round to nearest
 FE_TOWARDZERO round toward zero
 FE_UPWARD round toward +infinity
 FE_DOWNWARD round toward -infinity

112 Porting Code

Fortran User Guide

Exception Handling

The second aspect of FPU operation that affects FORTRAN programs is the action taken
when the FPU detects an error condition. These error conditions are called exceptions,
and when one occurs the default action of the FPU is to supply an error value (either
Infinity or NaN) and continue program execution. Alternatively, the FPU can be
instructed to generate a floating point exception and a run time error when an exception
takes place. This is known as enabling the exception. The five exceptions that can occur
in a FORTRAN program are:

 FE_INEXACT inexact operation
 FE_DIVBYZERO divide-by-zero
 FE_UNDERFLOW underflow
 FE_OVERFLOW overflow
 FE_INVALID invalid argument

NOTE At the time this manual was written Macintosh OS X does not support floating

exception handling.

113

 Fortran User Guide

CHAPTER 6

The Macintosh Runtime Window Environment

This chapter discusses the Macintosh Runtime Window Environment (MRWE), a special
feature of Absoft Pro Fortran which gives your Fortran 90/95 and FORTRAN programs a
Macintosh interface with windows and menus. Usually, when you want to create
applications with windows and menus, you need to know how to use the Macintosh
Toolbox and the Apple user-interface guidelines. When you create an application using
MRWE, your program will automatically exhibit these features without the need for
intensive Macintosh programming. MRWE is convenient and flexible to use.

USING MRWE

MRWE is a collection of pre-compiled Fortran routines contained in the library file
libmrwe.a that you can link with your program. Applications generated by Absoft Pro
Fortran are usually linked with this library unless explicitly select a different Target Type.
The Fortran source code for MRWE is in the FExamples folder and can be used as an
example of how to call Macintosh toolbox routines.

114 The Macintosh Runtime Window Environment

The Absoft Developer Tools Interface allows you to select the format of the executable
file. An executable setting of MRWE Application (the default) will cause your program to
be built as a stand-alone, double-clickable application with MRWE providing a window
and menus interface. If your source code includes its own event loop or relies on the
Carbon library even loop and calls Toolbox routines, you should disable MRWE by
choosing Carbon Application for the target type.

The MRWE Window

When you launch a program that has been linked with the MRWE library, you will see a
blank window on the screen and, above it, a menu bar, as shown below. This window is
where MRWE displays standard output from Fortran programs and is where all standard
input is typed. It looks like a terminal display, but allows you to see text that has scrolled
off the screen.

Fortran User Guide

 The Macintosh Runtime Window Environment 115

The Macintosh Runtime Window Environment

Standard input and output are preconnected to the Fortran I/O units 5, 6, 9 and *. Any of
these except * may be connected instead to a file by specifying the unit in an OPEN
statement. After closing the file on that unit, the unit will be reconnected to standard
input and output.

How Your Program And MRWE Work Together

When your program is launched, control is first passed to MRWE, which sets up a
Macintosh environment with menus and a window. After the window appears, the
application begins executing your Fortran program. By default MRWE is inactive until
an I/O statement occurs. You cannot pull down menus or terminate the application at this
point. Your Macintosh is completely dedicated to executing your Fortran program at
maximum speed.

Working With Text in MRWE

The MRWE that appears is named after the application (truncated to 24 characters) with
“ output” appended. Text can be entered from the keyboard.

You can only type into the window when a READ statement is currently active for
standard input (i.e. one of the preconnected units), and you can only type on the last line

 Fortran User Guide

116 The Macintosh Runtime Window Environment

of the window. Any text that was already in the window when the READ statement
began cannot be modified. You can, however, copy any text in the window to the
clipboard. Also, when using the extended keyboard, the Home, End, Page Up, and Page
Down keys can be used for scrolling. To insert an end-of-file character, type either
Command-Return or Command-Enter.

The MRWE window has a text limit of 30K. When this limit is reached, the oldest text in
the window is automatically deleted to make room for new output. If you prefer, you can
specify that MRWE save all text to a file, indicating your preference when the project is
created or by later modifying the MRWEPrefs.r resource file.

Using The MRWE Default Menus

An MRWE application automatically has several menus built-in. Following is a
description of the commands performed by each item within these default menus.

File Menu

The File menu contains commands for saving and printing the text in
the window.

Save (S)

This command saves the MRWE text to a text file. The window title is used for the
file name, and if the file already exists, it is overwritten. The window title is the name
of the application with the word “ output” appended. To automatically save you can
indicate your preference when the project is created or by later modifying the
MRWEPrefs.r resource file..

Save As…

This command saves the window text to a text file. It displays a standard file dialog
prompting for a file name in which to save the text. The default file name is the name
of the application (truncated to 24 characters) with “ output” appended. If the file
already exists, you will be prompted to overwrite it.

Page Setup…

Choosing this command displays the standard page setup dialog box for the printer.

Print Window…(P)

To print the contents of the window to the printer, use this menu item. A dialog box is
displayed showing the printing status. When a block of text is selected, this menu
item changes to Print Selection… and prints just the selected text rather than the entire
window.

Fortran User Guide

 The Macintosh Runtime Window Environment 117

Quit (Q)

This command stops execution of the application by executing a STOP statement, thus
closing all open Fortran units.

Edit Menu

The Edit menu contains the standard editing commands for cutting, pasting,
and copying text.

Undo (Z)

This command is always disabled unless a desk accessory is being used.

Cut (X)

This command removes the selected text in the window and places it on the
Clipboard. Text on the Clipboard may be pasted into other applications. Like other
editing commands, this command is only available during a READ statement, and any
text that was already in the window before the READ statement began cannot be cut.

Copy (C)

The Copy command places the selected text from the window onto the Clipboard and
leaves the text of the window unchanged. Text on the Clipboard may be pasted into
other applications.

Paste (V)

This command replaces the selected text of the window with the text on the
Clipboard. If no text is selected in the window, the Clipboard text is inserted at the
insertion point. Like other editing commands, this command is only available during
a READ statement, and any text that was already in the window before the READ
statement began cannot be pasted into.

Clear

This command clears the selected text. Like other editing commands, this command
is only available during a READ statement.

Font and Size Menus

The font and the size menus list available fonts and font sizes. They allow you to change
the appearance of text in a window to improve viewing. A checkmark beside an item in
these menus shows the current setting for the frontmost window.

PROGRAMMING WITH MRWE

 Fortran User Guide

118 The Macintosh Runtime Window Environment

The sections that follow discuss features of MRWE that improve your program’s user
interface and allow it to communicate with other programs. Menus can be easily
customized and messages can be sent to other programs. Before discussing these features,
a better understanding of the differences between a typical Macintosh application and a
typical Fortran program is necessary.

Program Organization: Fortran VS. Macintosh

Usually a program has the following structure: first, it initializes its variables, possibly
reading data from files, then it calculates, then it outputs the results. Some of these steps
may be repeated, but the basic order of execution is linear (see the figure below). Once a
program begins, there is typically very little interaction with the user.

Initialization
 and
 data
 input

Calculate

Write
 out

 results

Initialization,
including menus

Dispatch
the

event

Mouse-click

Keypress

AppleEvent

Event
Loop

Ask Macintosh
 Operating

System for the
next event
pending

Other

 Typical Fortran Program Typical Macintosh Program

The Macintosh, on the other hand, presents a very different, highly interactive
environment to the user. The interface provided on a Macintosh between the program and
the user allows for control and data selections to be made in a graphical manner as well
as the more traditional textual methods. The Macintosh communicates user requests to
the program through a mechanism known as an event that describes an action such as
making a menu selection, clicking the mouse button, or typing a key on the keyboard.
After the program receives an event it processes it, carrying out whatever action is
required.

These actions are usually directed by an event loop, in which the program requests from
the Macintosh any events pending for the program, carries out the directed action, and
then repeats the process (see figure 8-5). When no events are pending, the program will
carry out whatever other procedures it was designed to do. Some programs may simply

Fortran User Guide

 The Macintosh Runtime Window Environment 119

 Fortran User Guide

be idle at this stage if they are designed entirely to react to user input (such as a drawing
program).

Unfortunately, there is much more to Macintosh programming than this simple
description implies, and it would be necessary to add a great deal of programming to
even the simplest Fortran program to add a Macintosh look and feel to it. MRWE can add
most of these features to your program and provides facilities that allow you to add
additional features without delving into the details of Macintosh programming.

MRWE Event Loop Operation

As the preceding discussion indicates, an event loop is a necessary component of a
Macintosh program, and one is built into the MRWE routines. To use it, you must
provide subprograms that this event loop can call to respond to user requests. This
section will describe how to use this built-in event loop.

Just one call to the subroutine mrwe_EventLoop will begin this mechanism, making your
program behave automatically in response to user actions.

EXTERNAL recur,term
CALL mrwe_EventLoop(recur,term)

where: recur is the name of a routine that will be called repeatedly while

the event loop executes. This routine should execute quickly and
return so that the program remains responsive to the user. Specify
zero if you do not want to use a recurrent routine.

 term is the name of a routine that you want to call when the

program terminates. Specify zero if you do not want to use a
termination routine.

When using these routines, remember to declare them as external in the subprogram in
which mrwe_EventLoop is called. After calling mrwe_EventLoop, all events will be
processed appropriately and, if a menu item is chosen, the subprogram you have
associated with it will be called. Before making this call, you will probably want to set up
menu items and tell MRWE which routine will respond to particular menu items. This
process will be explained in the next section on Customizing Menus.

Note that mrwe_EventLoop never returns to the procedure from which it was called. It
loops endlessly, processing the events sent by the user. Your program will only end when
one of the following occurs: the user chooses to quit, one of your menu response routines
issues a STOP statement, or there is a runtime error. [Caution: mrwe_EventLoop must
not be called more than once.]

120 The Macintosh Runtime Window Environment

Fortran User Guide

Customizing Menus

This section describes how to customize menus to suit your application. Menus and menu
items can be added, deleted, or modified easily using MRWE.

Adding Menus

Menus can be added to your program at any time, but if you call mrwe_EventLoop you
should probably install some menus and items first. This is because after calling
mrwe_EventLoop, the user will control most of what the program does next. To install a
menu item, call the function mrwe_AddMenu specifying the menu name, the item name,
and the name of the menu response routine that should be called when the item is
chosen:

INTEGER*4 mrwe_AddMenu
EXTERNAL Routine
itemID = mrwe_AddMenu(menuName,itemName,Routine)

where: menuName is a CHARACTER expression that specifies the menu that

the item will appear in. If the menu does not already appear in the
menu bar, it will be created and will appear to the right of the
other menus.

 itemName is a CHARACTER expression that specifies the name of

the item to be added to the bottom of the menu. If the item already
exists, then only the Routine can be changed.

 Routine is the name of the menu response routine to be called

when the item is chosen, and should be declared external in the
routine from which mrwe_AddMenu is called.

 itemID, the function result, is an INTEGER*4 value. If an error

occurs, itemID is -1; otherwise, it is a value that uniquely
identifies the menu item. The itemID is a composite of the menu
number and item number. If an EQUIVALENCE is done of itemID
to an array of two INTEGER*2 elements, the first element is the
menu number and the second element is the item number.

Special Characters

 The Macintosh Runtime Window Environment 121

 Fortran User Guide

Certain characters have special meanings in menu item names. If you specify any of the
characters listed below when creating the item, you must include those characters in
exactly the same order when referring to the item by name.

Character Meaning

< When followed by the letters B, I, U, O, or S, sets the style of a menu
item to bold, italic, underline, outline, or shadow, respectively.

/ When followed by a character, invokes the item from the keyboard by
pressing the command key and the character together.

(Disables the menu item. This is not recommended—instead, see
“Enabling/Disabling Menu Items” later in this section.

! When followed by a character, puts that character to the left of the
item; also, see “Adding Checkmarks to Menus” later in this section.

- Makes the item a line separator when it is the first character in the
menu item name; typically used as (- to disable the separator.

Special Characters in Menu Item Names

Menus and the READ statement

The menu items that you install in the menu bar by calling mrwe_AddMenu will be
available to a user of your program after your program calls mrwe_EventLoop and as
soon as your menu response routines have finished responding to any menu items that
have been chosen. The user will also be able to pull down the menus while your program
is in the middle of executing a READ statement on standard input (units *, 5, 6, or 9), but
the menu items will be disabled. This is because menu response routines must not
execute Fortran I/O statements while the program is in the middle of a READ statement
on Standard Input.

If you know that your menu response routine and every routine that it calls does not
execute any Fortran I/O statements, you can enable the menu item even during a READ
on Standard Input. To do this, add a @ character to the beginning of the name of the
menu item when you install it with mrwe_AddMenu.

122 The Macintosh Runtime Window Environment

Fortran User Guide

Removing a Menu or Menu Item

To remove a menu item or an entire menu, use the function mrwe_RemoveMenu:

INTEGER mrwe_RemoveMenu
iresult = mrwe_RemoveMenu(itemID)

where: itemID is an INTEGER*4 expression that specifies the item to be

removed from the specified menu. It is the same value that was
returned by mrwe_AddMenu when the item was first installed. If
you specify 0 for the item component of itemID, the entire menu
will be removed.

 iresult is an INTEGER. The function will return a value of 0 if

successful, or -1 if there was an error.

Important: When a menu item is removed, any items that come after it will be given
new item numbers. For example, in a menu with four items: if item #2 is removed, then
item #3 becomes item #2, and item #4 becomes item #3. Any variable containing an
itemID for an item after the one removed will no longer indicate the proper item. Note
also that while item numbers are renumbered when an item is removed, menu numbers
do not change when a menu is removed.

Menu Response Routines and mrwe_DoMenu

When you choose a menu item while running an MRWE application, the routine that
performs that function (the “response routine”) is executed. This type of routine should
be declared as:

INTEGER FUNCTION Routine(itemID)
INTEGER*4 itemID

where: itemID is the same value that was returned by mrwe_AddMenu

when the item was first installed. This value can be helpful if
more than one item uses the same response routine.

Your response routine is called by the function mrwe_DoMenu, which is normally called
by mrwe_DoMouseDown whenever a mouse-down event occurs with the cursor in the
menu bar at the top of the screen. The mrwe_DoMenu function can also be called explicitly
at any time during the program when you want to execute the routine associated with a
menu command. The mrwe_DoMenu routine will return one of the following two results:
the result of the response routine, or -1 if the item could not be found. Call the
mrwe_DoMenu function as follows:

INTEGER mrwe_DoMenu
iresult = mrwe_DoMenu(itemID)

 The Macintosh Runtime Window Environment 123

 Fortran User Guide

where: itemID is an INTEGER expression. It is the same value that was
returned by mrwe_AddMenu when the item was first installed. It is
a composite of the menu and item numbers.

 iresult is the INTEGER returned by the response routine

mrwe_DoMenu called. If you declare your response routines as
functions, they can return a value through mrwe_DoMenu. If you
declare them as subroutines, you can call mrwe_DoMenu as a
subroutine.

Adding Checkmarks to Menus

Checkmarks can be placed beside a menu item after it is created by calling the routine
mrwe_MenuItemCheckmark:

CALL mrwe_MenuItemCheckmark (itemID,state)

where: itemID is an INTEGER*4 expression that specifies the menu item

where the checkmark will be placed. It is the same value that was
returned by mrwe_AddMenu when the menu item was installed.

 state, is a LOGICAL expression. If state =.TRUE., a checkmark
will be placed next to the item; if state =.FALSE., the checkmark
will be removed.

Enabling/Disabling Menu Items

The function mrwe_MenuItemEnable is used to enable or disable a menu item:

INTEGER mrwe_MenuItemEnable
iresult = mrwe_MenuItemEnable(itemID,state)

where: itemID is an INTEGER*4 expression that specifies the menu item

which will be enabled or disabled. It is the same value that was
returned by mrwe_AddMenu when the item was first installed.

 state is a LOGICAL expression. If the state = .TRUE., the menu
item will be enabled; if state = .FALSE., the item will be
disabled.

 iresult is an INTEGER. The function will return a value of 0 if

successful, or -1 if there was an error.

When installing an item by calling mrwe_AddMenu, you can also disable it by adding the
special character (before the item name. However, this method will not work correctly
with the mrwe_MenuItemEnable function and is not recommended. Instead, install the
item as enabled, and then explicitly disable it using mrwe_MenuItemEnable.

124 The Macintosh Runtime Window Environment

Fortran User Guide

Further Information About Menus

For further information on menu features, see Inside Macintosh I, “The Menu Manager”.
To access these features, use the menu number and item number in the itemID returned
by mrwe_AddMenu. If the routine expects a MenuHandle, this INTEGER*4 value can be
derived using the function GetMHandle, passing to it the menu number as a VAL2():

RECORD /ItemID/ sdItem ! defined in the file MRWE.inc
EXTERNAL DefaultSettings
INTEGER*4 h_menu

sdItem.both=mrwe_AddMenu('Settings','Use Defaults',DefaultSettings)
h_menu = GetMHandle(VAL2(sdItem.menu))
CALL SetItemMark(VAL4(h_menu), VAL2(sdItem.item),VAL1(‘•’))

Launching OTHER APPLICATIONS

From your Fortran program you can launch other Macintosh applications using the
function mrwe_LaunchApp as defined below. You can also make an application that is
already running become the front-most, active application. [Note: This function can only
be used with System 7.]

INTEGER mrwe_LaunchApp
iresult=mrwe_LaunchApp (name,front,useMin)

where: name is a CHARACTER expression that specifies the application to

be launched and can be expressed in one of the following three
ways:

1) process=programName Identifies the application to be

launched; specify the path if
necessary.

2) creator=XXXX Launches an application using its
creator type. However, if there is
more than one program with the
same creator type, the system will
launch the first one it finds.

3) self Allows an MRWE application to
refer to itself. You can use this to
bring your program to the front (see
example below).

 The Macintosh Runtime Window Environment 125

 Fortran User Guide

 front is a LOGICAL expression that determines whether the
specified application should be the frontmost application. If
front=.TRUE., the application will become the frontmost
application. If the application is not currently running, it will be
launched in front of all other applications. If the application is
already running, it will become the frontmost application. If
front=.FALSE., the position of the application will remain
unchanged. The menu bar at the top of the screen shows the
menus of the frontmost application.

 useMin is a LOGICAL expression that refers to the amount of
memory needed to run the program. If useMin=.TRUE., then the
program will be launched if the minimum amount of memory
specified is available. If useMin=.FALSE., then the program is
launched only if the preferred amount is available in the system.
These values can be viewed and changed in the Finder by
selecting the application’s icon and choosing Get Info in the File
menu. If the program is already running, useMin will be ignored.

 iresult is an INTEGER error code indicating problems that may

prevent launching the application. (See the table later in this
chapter for a list of error codes.)

The following statement shows how to launch ResEdit:

CALL mrwe_LaunchApp('creator=RSED',.TRUE.,.FALSE.)

ResEdit is specified by using its creator ID 'RSED'. The value of front is .TRUE., so the
program is launched in front of all other running applications. Because useMin = .FALSE.,
ResEdit will only be launched if the preferred amount of memory is available.

The next example shows how to make your Fortran program the frontmost application:

CALL mrwe_LaunchApp('self',.TRUE.,.FALSE.)

Apple Events

Apple Events is a System 7 feature that allows Macintosh applications to communicate
with each other. By using this feature, you can have your applications send messages to
and receive messages from other applications. MRWE allows you to use both the
standard messages defined by Apple Computer and to define your own messages. This
section will describe how these events (or messages) are classified, what information you
must specify to transmit an event successfully, and examples of how to send and receive
various events.

Apple Event Target

126 The Macintosh Runtime Window Environment

Fortran User Guide

The application to which you send an Apple Event is called the target and is specified
similarly to the way name is specified when launching an application (see “Launching
Other Applications” above):

Target Specification Description

process=programName Sends the message to the application whose name is
specified; include the path if necessary.

creator=XXXX Sends the message to an application whose Creator
ID is specified.

sender Sends the message to the application that sent the
last Apple Event received by your application.

browser Shows the Browser dialog box, allowing the user at
runtime to select any currently running application
to send the Apple Event to.

browser=prompt Shows the Browser dialog box with a custom prompt
message instead of Choose a program to link to:.

self Sends a message to itself.
same Sends an event to the same target to which the most

recent event was sent.

Target Specification for Apple Events

Apple Event Class and ID

The class and ID of an event indicate the action to be carried out—what the sender
wants the target application to do. The class is a category of events that perform related
functions. For example, Finder events make the Finder perform specific tasks such as
restarting or shutting down the computer. The class and eventID arguments are
specified with CHARACTER*4 values. For Finder events, the class is indicated by the
abbreviation FNDR. The event ID identifies the specific event being sent, such as “rest”
for restart. (See the table later in this section for a list of common Apple Events).

Extra Information in an Apple Event

Some Apple Events require additional information in order to complete a message. For
example, an Open Document or Print Document event must specify which document to
act on; this is called extra information. Events can be classified according to the kind of
extra information required, if any. The following table shows the three kinds of extra
information supported by MRWE and how they are represented as INTEGER values.

 The Macintosh Runtime Window Environment 127

 Fortran User Guide

Kind Value Description

signal 0 A signal event needs no extra information. It signals a
request to do something or indicates that something has been
done. For example, an application can tell another
application to quit.

document 1 A document event operates on a document. The name of the
document being operated on must be specified. For example,
one application can tell another application to print a
document.

text 2 A text event includes a character string. Two MRWE
applications can pass information back and forth using text
events.

Kind of Extra Information for an Apple Event

Typical Apple Events

Apple Computer has defined many Apple Events and has specified the class, event ID,
and kind of extra information associated with each event. An application that supports the
Apple Events feature can send or receive at least four basic events called Required Apple
Events: Open Application, Open Document, Print Document, and Quit Application.
MRWE supports some of the standard Apple Events and also allows you to define your
own events. It allows you to send these events to other programs and to specify routines
that will respond if one of these events is received by your application (see Receiving
Apple Events later in this section). Required Apple Events is a subset of the Core class
of Apple Events—the latter is identified by the abbreviation “aevt”.

Following is a table of common Apple Events, their class, event ID, and extra
information specifications, and a brief description of what they do.

128 The Macintosh Runtime Window Environment

Fortran User Guide

Event name Class Event
ID

Kind of
extra
info

What the event does

Open Document aevt odoc document Tells the target application to open the
specified document.†

Print Document aevt pdoc document Tells the target application to print the
specified document.†

Open
Application

aevt oapp signal Tells the receiving application it has just
been opened; usually causes an untitled
document to appear.†

Quit Application aevt quit signal Tells the receiving application to begin the
process of quitting.

Do Script misc dosc text Tells an application to perform actions
specified in a scripting language.

Restart FNDR rest signal Tells the Macintosh to restart.*

Shutdown FNDR shut signal Tells the Macintosh to shut down.*

Sleep FNDR slep signal On a portable Macintosh, puts the computer
in low-power mode.*

Empty Trash FNDR empt signal Tells the Finder to empty the trash.*

About aevt abou signal Tells the Finder to show its “About This
Macintosh” window.*

Show Clipboard FNDR shcl signal Tells the Finder to show its clipboard
window.*

† When an application is first launched, it will immediately receive one of these three events. Open Application is
only sent when neither Open Document nor Print Document will be sent upon launch. When MRWE launches an
application, it automatically sends an Open Application event.

* These Apple Events only work if sent to the Finder on the Macintosh running the application. Also, they all
work the same as the corresponding Finder menu items.

Common Apple Event Specifications

Sending Apple Events

An Apple Event can be sent from one application to another as follows:

INTEGER mrwe_SendAE
iresult=mrwe_SendAE(class,eventID,extraKind,target,extraInfo)

where: class, a CHARACTER*4 expression, is a category of related events,

such as FNDR for Finder events.

 The Macintosh Runtime Window Environment 129

 Fortran User Guide

 eventID, a CHARACTER*4 expression, identifies which event to
send, such as 'odoc' for an Open Document event or 'quit' for a
Quit Application event.

 extraKind, an INTEGER, specifies the kind of extra information, if

any, that needs to be sent along with the event. Its value can be 0
for a signal event, 1 for a document event, or 2 for a text event.

 target, a CHARACTER expression, identifies the application that

the event is sent to.

 extraInfo, a CHARACTER expression, is the extra information

needed for certain kinds of Apple Events.

 iresult is an INTEGER error code indicating problems that may

occur while sending the event, such as an inability to send the
event or the target application’s inability to receive the event
properly. (See the table for a list of error codes.)

For example, you could send an Apple Event from an MRWE application to any
application which understands Apple Events, and tell it to print a certain text file. To
have your program tell Microsoft Word™ to print the document called results, you
would use the following statement:

ires = mrwe_SendAE('aevt','pdoc',1,'creator=MSWD','results')

It only takes one function call to send an event. The first argument identifies the target
application (Microsoft Word), the second and third arguments define the class and event
ID, and the fourth and fifth arguments indicate that the event is a document event and
specify the name of the file.

Receiving Apple Events

MRWE provides a mechanism for receiving Apple Events, but it is up to you to
determine how your program will react when it receives a event. When using Apple
Events, you must specify routines that respond to particular events, just as you would
specify a response routine when adding menu items (see “Customizing Menus” earlier in
this chapter). For example, you may write one routine to respond to Open Document
events and another to respond to Print Document events. You need to tell MRWE which
events you want to respond to and the name of the routine that will handle the event. You
do this by installing an Apple Event response routine using the function
mrwe_AddAppleEvent.

LOGICAL mrwe_AddAppleEvent
EXTERNAL Routine
lresult=mrwe_AddAppleEvent(class,eventID,extraKind,Routine)

where: class, a CHARACTER*4 expression, identifies the category of the

event to be received.

130 The Macintosh Runtime Window Environment

Fortran User Guide

 eventID, a CHARACTER*4 expression, identifies which event

within the class will be received, such as 'odoc' for an Open
Document event or 'quit' for a Quit Application event.

 extraKind, an INTEGER, specifies the kind of extra information, if

any, that will be received along with the event. Its value can be 0
for a signal event, 1 for a document event, or 2 for a text event.

 Routine is the name of the response routine MRWE will call

when the event is received, and should be declared external in the
routine from which mrwe_AddAppleEvent is called.

 lresult is a LOGICAL value indicating whether the response

routine was installed. If lresult=.TRUE., the routine was
installed properly. If lresult=.FALSE., the response was not
installed because Apple Events are not supported by System 6.

For example, a routine that handles Print Document events could be installed with the
following call, where PrintDoc is the name of a function that will be called every time
the application receives a Print Document event.

lres = mrwe_AddAppleEvent('aevt', 'pdoc', 1, PrintDoc)

Response routines should be declared like this for signal events:

INTEGER FUNCTION Routine(class,eventID)
CHARACTER class*4, eventID*4

or like this for a response routine that responds to document or text Apple Events:

INTEGER FUNCTION Routine(class,eventID,extraInfo)
CHARACTER class*4, eventID*4, extraInfo*(*)

For a document event, extraInfo is the path and filename of the document to act on. For
a text event, it is a text string. The INTEGER value that your function should return is an
error code. It should return 0 if everything went well, or one of the error codes shown in
error code table to indicate to the sender that a problem occurred while responding to the
event. There is one response routine that is built into MRWE to handle Quit Application
events, called mrwe_QuitAE. Normally, there should be no need to change this routine.

When your application is launched by the Finder under System 7, the Finder will send
either an Open Application event, an Open Document event, or a Print Document event.
The following table shows several methods you can use to launch an application and the
corresponding Apple Event your application will receive:

 The Macintosh Runtime Window Environment 131

 Fortran User Guide

Method of launch Apple Events received

Double-click the application icon or single-
click it and choose Open from the File menu.

An Open Application event.

Double-click a document icon. An Open Document event, if successful. The
creator of the document must match that of the
application (Mrwe by default). Also, if there is
more than one application with the same creator,
the application that is launched may not be the one
you expect.

Select the application icon and the icons of
one or more documents, then double click on
any selected icon or choose Open in the File
menu.

An Open Document event for each document
whose creator matches the application’s creator.

Select the icons of one or more documents,
then drag them to the application icon.

An Open Document event for each document.

Select the application icon and the icons of
one or more documents, then choose Print in
the File menu.

A Print Document event for each document whose
creator matches the application’s creator.
Immediately after the Print Document events, a
Quit Application event will be received.

Launch the application from another
application.

Probably an Open Application event, although it
depends on the application doing the launch.

Apple Events Received Upon Launch

132 The Macintosh Runtime Window Environment

Fortran User Guide

Error Codes Returned from Apple Event Routines

Apple Event routines return an INTEGER error code. If the value returned is 0, no error
occurred; if it is not 0, an error occurred either in sending the Apple Event, or in the
target application receiving the event. Following is a list of error codes and their
meanings:

Error code Meaning

0 No error occurred in either sending or receiving the event.

-108 Not enough memory available to complete the action. If sending an
Apple Event to an application that is not currently running, the preferred
amount of memory is not available in which to launch it.

-128 The user of the application pressed Cancel in the Browser dialog.

-1701 The wrong kind was specified for an Apple Event, or the extra
information in the event could not be extracted properly.

-1712 No response from the target application within the limit of seven
seconds.

-1717 No handler installed to handle Apple Events of that class and eventID.
Handlers should be installed before the call to mrwe_EventLoop is made.

-5553 The operating system does not support the requested feature. For
example, System 6 does not support either Apple Events or using
mrwe_LaunchApp to launch other applications.

Error Codes for Apple Events

Other Examples of Apple Events

Following are some additional examples of common events you might wish to transmit
between applications:

Sending a request to the Finder

If you are running lengthy processes overnight or over the weekend, you may want to
turn off your machine after all processes are completed. To do this, simply send the
Finder a Shut Down Apple Event. This will turn off the computer if the Shut Down item in
the Finder's Special menu can turn off the system. When sending an Apple Event to the
Finder, you must properly specify the path of the System Folder that contains the Finder.
For example, if your hard disk is named “HD”, you could send a Shut Down event with
the following statement:

 The Macintosh Runtime Window Environment 133

 Fortran User Guide

ires = mrwe_SendAE('FNDR','shut',0,'process=HD:System Folder:Finder','')

Using other standard Apple Events

To cause another application (which supports Apple Events) to open a particular file, you
would send that application an Open Document event specifying the file:

ires = mrwe_SendAE('aevt','odoc',1,'creator=MSWD','test')

To allow your application to respond to Open Document events, install a response routine
to handle Open Document events:

ires = mrwe_AddAppleEvent('aevt','odoc',1,OpenDocProc)

Sending information between MRWE applications

One application could send a document event to another application telling it to process
the file in a certain way. When the second application finishes, it can send a signal event
back to the sender to indicate completion.

Another way to send messages is through text events. The class and eventID are not
limited to the examples shown in the table earlier in this section. They can be defined as
any four characters you choose to distinguish different events. Following is an example
of how to send information through text events. The sending application would include:

CHARACTER*30 internalFile
WRITE (internalFile,*) a,b,c
ires=mrwe_SendAE('mrwe','guas',2,'process=SecondApp',internalFile)

and the receiving application would include:

EXTERNAL GuasProc
.
ires=mrwe_AddAppleEvent('mrwe','guas',2,GausProc)
.
END
.
INTEGER FUNCTION GausProc(class,type,internalFile)
CHARACTER*4 class,type
CHARACTER*(*) internalFile
.
READ (internalFile,*) a,b,c

Scripting

Scripting refers to text commands that an application can interpret and execute. An Apple
Event called Do Script sends text commands from one application to another that has a
scripting language, allowing the scriptable application to be controlled. It is not enough
for an application to have a scripting language; it must also accept the Do Script Apple
Event.

134 The Macintosh Runtime Window Environment

Fortran User Guide

 ires = mrwe_SendAE('misc','dosc',2,'creator=WILD','Answer "Press '
 & 'OK to flash the screen." with "Flash" '//CHAR(13)//'Flash')

Further Information About Apple Events

MRWE supports sending and receiving only certain kinds of Apple Events. This is
because the information carried in an Apple Event can be very diverse and complex.
Some programs may use Apple Events to carry information in a form MRWE cannot
recognize. To learn more about Apple Events, consult Inside Macintosh VI , “Apple
Events Manager” (Chapter 6), and the Apple Events Registry, published by Apple
Computer, Inc.

Creating Multiple Windows

You can easily open additional windows in MRWE. While the standard window
described at the beginning of this chapter shows characters in the standard input and
output units, additional windows can show characters written to other units. By
specifying ACCESS="window" in an OPEN statement, you open a window connected to the
unit specified in the OPEN statement. Any read or write functions associated with that unit
will appear in a window. The ACCESS specifier can be expressed in the following three
ways:

ACCESS="window"

ACCESS="window, height, width"

ACCESS="window, height, width, top_edge, left_edge"

where: height and width define the dimensions of the window in pixels

(not including the title bar of the window). Both arguments should
be expressed as positive integers.

 top_edge and left_edge define the distance in pixels from the

top of the screen to the top of the window and from the left edge
of the screen to the left edge of the window, respectively. Both
arguments are expressed as signed integers (either positive or
negative).

The following is a simple example of how to use the OPEN statement to create an
additional window in an MRWE application:

OPEN (7,FILE='Second Window',ACCESS='window, 200, 360')

WRITE (7,*) 'This text will appear in the second window'

READ (7,*) ! This is like a PAUSE statement, but in the new window

CLOSE (7)

The first line creates a window titled 'Second Window' and connects it to unit 7. The size
will be 200 pixels tall and 360 pixels wide. Since the location of the window is not
specified, the window will open using the MRWE default for window location. The

 The Macintosh Runtime Window Environment 135

second line writes the statement to the window. The READ statement in the third line will
function like a PAUSE statement and wait for the user to press the Return or Enter key.
When either key is pressed, the program will continue to the fourth line, which will close
the window.

Showing Alert Messages

Macintosh applications often announce messages when a problem occurs by showing an
Alert dialog box:

Show Alert Box Example

To show an Alert dialog box, use:

CALL mrwe_ShowAlert(button,message)

where: button is an INTEGER whose value indicates the contents of the

button that dismisses the Alert.

 message is a CHARACTER string containing the text of the message

to be displayed.

Following are the possible values of the button argument and the corresponding buttons
that will appear in the dialog box:

Value Button

0 Ok

1 Cancel

2 Continue

3 Quit (causes the program to stop)

4 Ok (widens the dialog box by 15 percent)

“Show Alert” Buttons

 Fortran User Guide

136 The Macintosh Runtime Window Environment

SetMrwePrefs

The MRWE interface to your Fortran program can be easily customized to meet your
needs by specifying the text characteristics and how the application behaves when it
quits. The initial attributes of the MRWE interface are established when you create or
modify the options of a project that includes MRWE. Additionally, the SetMrwePrefs
program allows you to modify these characteristics after the application has been built.

SetMrwePrefs is located in the /Applications/Absoft10/bin. Use the finder to
navigate to this folder and double click on the SetMrwePrefs application. Use the Open
command in the file menu to select the program that you want to customize. The
following dialog window will open:

SetPrefs Dialog Box
Figure 8-7

Below is a brief description of the options that are available to you within the SetPrefs
Tool. Options are grouped according to the way they appear in the SetPrefs dialog box
and are followed by the appropriate command line arguments.

Effects selected Application bundle, *.r file for *.rsrc file.To affect future applications
built via the command line modify /Application/Absoft10/Rincludes/mrweprefs.r.

Termination Options

These options control the actions of the MRWE window before the application stops
executing.

 Pause at end of execution

Fortran User Guide

 The Macintosh Runtime Window Environment 137

 Fortran User Guide

Click the checkbox if you want MRWE to pause after the program ends, allowing
you to read output in the window. By default, MRWE immediately quits.

 Save window text on close

When MRWE quits, text in the window can be saved. If this option is never, text
will not be saved. If this option is prompt, a dialog will ask whether text should be
saved. To automatically save text without a prompt, use always.

Window Size Options

These options affect only the standard MRWE window, not windows opened with the
ACCESS=“window” specifier in an OPEN statement.

 Window Size

When MRWE starts, this specifies the size of the window. If the normal is
selected, the window is the default size. If maximize is selected, the window is
maximized. You can specify explict location and size if normal is selected.

Text characteristics

These options control the appearance of text characters in the window. You may
prefer a text style different than the default for easier reading. Also, the text style of
the window controls the text style when you print from MRWE.

 Tab Size

This is the tab modulo size MRWE. If the value is greater than 20 or less than 0,
the value is the default, 8. If the value is 0, tabs are passed as is to the application.

 Font Size (-fsize fontsize)

Type in a font size in points or select one from the pop-up menu; the default is 9.

CHAPTER 7

Building Programs

This chapter covers the specifics of building Fortran 90/95 and FORTRAN 77 programs,
including a discussion of the make facility. This chapter details the Absoft tools available
for advanced programming and linking using the command line. The Fsplit utility is

138 The Macintosh Runtime Window Environment

Fortran User Guide

also described. You use each tool on the command line – the syntax and a description of
each command is given below.

The Components of an Application

Program code, system calls, library routines, and features of the Macintosh OS X
operating system and interface are all important components of an application. Output
from tools such as amake and ld are combined with your object code to create a
Macintosh application.

Working with Resources

A resource is one of the most important concepts in Macintosh programming. A resource
is a collection of information used by the Macintosh OS X operating system, such as
menus, dialog definitions, or icons. These and other types of special information are
stored in the executable image of a program file. The application itself may use some of
the resources and other applications may use the resources for getting information about
the application.

Resources are added to your program by the linker and are created using special tools and
programs. Various dialog editors provide an interactive method of modifying existing
resources or copying resources between files. The Macintosh program, rez, included
with the Apple developer tools, is a resource compiler that creates new resources based
on a textual resource description file.

CREATING OBJECT FILES

After you create and edit source files, or port files from other environments (see the
chapter, Porting Code), these files are compiled using one or more of the Absoft
compilers (described in the chapter, Using the Compilers).

The compiler is invoked by using one of the commands: f95 or f77 – these commands
control both components of the compiler (front and back ends), the system assembler
(as) and the linker (ld) (see the section below on Linking Programs). The features of
the f95 and f77 commands simplify the process of creating finished applications,
especially if you are working with a limited number of source files.

To initiate one of the Absoft compilers from the command line, follow these command
syntax guidelines:

f95 [option…] [file…]
f77 [option…] [file…]

where option… represents one or more of the compiler options described in the chapter,
Using the Compilers. These options must begin with a dash (-); if more than one option
is used, separate each option with a space. Also, some arguments appended to an
individual option, such as a filename, may need to be separated from the option letter
with a space — see the chapter, Using the Compilers for specific option rules.

 The Macintosh Runtime Window Environment 139

 Fortran User Guide

When these commands are invoked on the command line, each file will be compiled to
generate an executable application. By default, the resulting application will be given a
name the a.out. To compile hello.f with the static local storage option, and generate
an application named welcome, enter:

f77 -s -o welcome.exe hello.f

The option, -o name, specifies the name of the executable file overriding the default
name of a.out. The name of the file must appear after the -o option as shown above.
This option is passed directly to the linker; therefore, it has no effect when used in
conjunction with the -c option. In this case, a space is required between the -o and name.

Remember that the f77 and f95 commands are used to control the compilation process.
The actual compilers consist of the front-end (parsers and syntax analyzers) and the back-
end (code generator).

If you need to create object files that are to be combined in a library, use the compiler
commands with the -c option. This will suppress any linking functions and an executable
file will not be created, as in the following example:

f95 -c Hello.f95 Goodbye.f95

The files are compiled into the object files Hello.o and Goodbye.o. After a source file
has been compiled into an object file, it contains object code as well as any symbolic
external references not known at compile time.

Since the linker is directly accessed in the f77 and f95 commands, any set of options
may be passed directly to the linker. To do this, append the following option to the
compiler command:

-X opts

The argument opts is a string enclosed in quotes to be passed to the linker. For example,
-X -v will pass the -v option (display additional information) to the linker.

Fsplit - Source Code Splitting Utility

When you need to manage large files, work on small portions of Fortran code, or port
code from other environments, you may want to split large, cumbersome source files into
one procedure per file. This can be done using the Fsplit tool. The command syntax for
the tool is shown below.

Fsplit [option…] [file…]

Fsplit splits FORTRAN source files into separate files with one procedure per file. The
following command line will generate individual files for each procedure:

Fsplit largefile.f

140 The Macintosh Runtime Window Environment

Fortran User Guide

A procedure includes block data, function, main, program, and subroutine program
declarations. The procedure, proc, is put into file proc.f with the following exceptions:

• An unnamed main program is placed in MAIN.f.
• An unnamed block data subprogram is placed in a file named

blockdataNNN.f, where NNN is a unique integer value for that file. An
existing block data file with the same name will not be overwritten.

• Newly created procedures (non-block data) will replace files of the
same name.

• File names are truncated to 14 characters.

Output files are placed into the directory in which the fsplit command was executed.
The tab size is pulled from the environment variable TABSIZE if it exists, otherwise, a tab
size of 8 is used. Options for the command are:
 -v Verbose progress of fsplit is displayed on standard diagnostic.
 -V Source files are in VAX FORTRAN Tab-Format.
 -I Source files are in IBM VS FORTRAN Free-Form.
 -8 Source files are in Fortran 90 Free Source Form.
 -W Source files are in wide format.

BUILDING PROGRAMS

It is often necessary in software development to maintain large numbers of files, many of
which are dependent on other files in some way. It can become very difficult and time-
consuming to manage these complex file relationships manually and to ensure that the
appropriate files are updated when modifications are made to other related files. For
example, when a source file is altered, it is necessary to recompile it in order to build or
rebuild an updated object file and to link the object file with the appropriate auxiliary
files (such as libraries) to form a complete and up-to-date executable file. It may also be
necessary to use multiple languages and other programming resources during this
process.

The Absoft amake utility allows you to automate much of this process of file
maintenance by keeping a record of file dependencies according to rules that are either
built-in to amake or specified by the user. (The amake utility is also referred to as
"amake", the "make program", or the "make command" throughout this section.)
Following these rules, the program determines whether any files need to be updated, and
if so, rebuilds them automatically. If a file needs to be updated and does not exist, amake
will create it based on the dependency rules for that file.

While amake is used primarily in software development, it can also be employed in other
types of routine project management activities that involve file dependency relationships
such as deleting temporary files, updating documents, or performing backups. In this

 The Macintosh Runtime Window Environment 141

 Fortran User Guide

section, we will focus on the use of amake to maintain an up-to-date executable file
during the course of a software project.

The major advantages of using amake in this type of environment are that it:

• saves considerable time and computing resources since only the files
that need to be updated at a particular time are rebuilt;

• simplifies project management by performing many routine functions

automatically and helping to coordinate the activities of projects
involving multiple programmers; and

• frees programmers from the need to perform routine file maintenance

activities manually.

This section discusses the operation of the Absoft amake program and explains how you
can define your own rules to adapt the program to your particular environment. It also
covers the topics of creating description files and macros, command usage and options,
using environment variables, and handling errors. The level of presentation assumes a
familiarity with programming and the process of developing software, but does not
require any previous knowledge of the amake utility itself.

The Elements of amake

A key concept in understanding the operation of the amake program is that of file
dependency. Files that are required to build (or rebuild) other files are referred to here as
prerequisite files (or prerequisites). A file that is dependent on these prerequisites is
called a target file (or target). For example, an object file (the target) is dependent on one
or more source files (the prerequisites). The amake program searches through a file
dependency tree to establish the relationships between targets and prerequisites. If a
prerequisite file has been updated more recently than its target file (or at exactly the same
time), amake will (re)build the target file. [Note: The term (re)build is used in this section
to indicate that a file will be built (created) if it does not exist, or rebuilt (updated) if it
does exist.]

As mentioned above, the Absoft amake program operates based on rules that are: built-in
to the program, specified by the user, or a combination of both. The program uses
information from the following sources to determine whether a particular file needs to be
(re)built and, if so, how this will be done:

• A description file supplied by the user that specifies:
 (a) dependency relationships between targets and prerequisites,

and
 (b) the commands needed to (re)build the target file.

• File names and the date/time each file was last modified.

142 The Macintosh Runtime Window Environment

Fortran User Guide

• A set of default rules that define how files are (re)built based on the
relationships between their suffixes.

Using Macros

Before discussing how a description file is created and used, it is necessary to have some
understanding of how macros are used with amake. The term macro, as used here, refers
to a symbol or character string that substitutes for something else, such as a set of
commands. Macros are very useful in defining dependency relationships.

Advantages of using macros

The amake tool allows you to define macros easily, either within the description file
itself, or as arguments on the amake command line. By using macros, you can:

• Represent recurring strings, such as file names or commands, in
simplified form, reducing redundancy and thus, file size.

• Improve the consistency, readability, and maintainability of your

description files.
• Allow for variation in the value of a macro from one (re)build to the

next, and for values to be changed globally simply by redefining the
corresponding macro.

Defining macros

A macro definition is made up of three basic elements: a name, followed by an equal
sign, followed by a symbol or string that defines what the macro represents (in
description files, usually a command string). You invoke a macro by placing a $ symbol
immediately before the name and enclosing the name in either parentheses () or braces {
}. [Exception: A name of only one character can be invoked without being enclosed in
parentheses or braces.] By convention, macro names are written in uppercase characters,
but any combination of upper or lower case letters or other non-reserved characters is
acceptable. The following are examples of valid macro definitions and their
corresponding invocations:

Macro Definition Macro Invocation
DEBUGOPT = -g $(DEBUGOPT)
SRCFILES = one.f two.f $(SRCFILES)
OBJFILES = one.o two.o $(OBJFILES)
ALLFILES = $(SRCFILES) $(OBJFILES) $(ALLFILES)

The last example invokes the two previous macros within the definition, producing a list
of the two FORTRAN source files and two object files as follows:

one.f two.f one.o two.o

 The Macintosh Runtime Window Environment 143

 Fortran User Guide

The order of precedence for macro definitions is (from highest to lowest): the amake
command line, the description file, and the default definitions.

Special macros

The amake utility includes a set of special-purpose macros that you may find useful in
building your description files and rules. The most commonly-used are:

Macro Function
$@ Represents the full name of the current target—for use

only on a (re)build command line. (When building a library
it represents the name of the library.)

$* Represents the base name of the current target—for use
only on a (re)build command line.

$< Represents a current prerequisite—for use only on a
(re)build command line.

$$@ Represents the base name of the current target—for use
only on a dependency line.

$? Represents a list of prerequisites that have been changed
more recently than the current target—for use only on a
(re)build command line.

Other special macros that are provided with Absoft amake include:

Macro Function
MAKE Used for recursive makes—that is, when a make

command is included as part of a description file.
MAKEFLAGS Sets the command-line options available to make—

usually defined as an environment variable (see
Environment Variables later in this section).

SUFFIXES Contains the default list of suffixes for the
.SUFFIXES special target (see Special Targets later
in this section).

Cautions in using macros

In addition to being aware of the order of precedence for macro definitions (see above)
you should use caution in defining and using macros for the following reasons:

• A description file macro should be defined before the first time it is
used in a dependency block.

• A macro should be defined only once within a description file.
• Macros may not be recursive—a macro may not directly or indirectly

reference itself\.

144 The Macintosh Runtime Window Environment

Fortran User Guide

• If you reference an undefined macro, amake will assign it a null string
and no error message will be given.

• While other characters are acceptable, it is advisable to use upper-case
characters for macro names and to avoid characters that have special
meanings in the operating system environment.

Using Description Files

The relationships between target files and their prerequisite files are specified in a
description file which is called either makefile or Makefile by default (in that order).
This file contains one or more dependency blocks, each consisting of the following
elements:

• The target file name followed by a colon.
• The prerequisite file names (if any) following the colon.
• White space (a tab or spaces) followed by the commands needed to

rebuild the target file.

[Note: Description files are also commonly referred to as makefiles. The term description
file is used in this section for the sake of consistency.]

Working with dependency blocks

The general form of a dependency block is:

target: prerequisite1 prerequisite2...
 command(s) to (re)build target

For readability and ease of maintenance, we recommend that you:

• Place the target file name, colon, and prerequisite file name(s) on the
first line and command(s) on the second line whenever possible; and

• Use a tab rather than spaces to precede commands.

For example, the first line of the following block:

test: a.f95 b.f95 libstat.a
 f95 -o test a.f95 b.f95 libstat.a

specifies that the target test is dependent on the prerequisites a.f95, b.f95, and
libstat.a. If any of the three prerequisites have been updated at the same time or after the
target, test will be rebuilt automatically using the command specified on the second line.
The first line is referred to here as the dependency line and the second as the (re)build
command line, or simply, the command(s). [Note: The term (re)build command line in
this context applies only to dependency blocks and should not be confused with the make
command line discussed later in this section.]

 The Macintosh Runtime Window Environment 145

 Fortran User Guide

If desired, the entire dependency block can be placed on one line by including a
semicolon after the last prerequisite file name. The example above would look like:
test: a.f95 b.f95 libstat.a; f95 -o test a.f95 b.f95 libstat.a

If a line exceeds the maximum length allowed on your system, or you wish to shorten it
and continue it onto the next line, you can use the continuation character for your
environment. Using the example above, the backslash character (\) must be the last
character on the first line as follows:

test: a.f95 b.f95 libstat.a; f95 -o test a.f95 \
b.f95 libstat.a

Defining a target more than once

There may also be times when you will need to define the same target more than once
within the same description file. This can be done using the double-colon feature of
Absoft amake. This allows you to define two different sets of prerequisites (and the
associated (re)build commands) for the same target. This feature is particularly useful in
updating archive libraries. For example:

libgraph.a:: vertex.f95
 $(F95) -c -g -DDEBUG vertex.f95
 ar –r libgraph.a vertex.o
 rm vertex.o

libgraph.a:: edge.f95
 $(F95) -c -O edge.f95
 ar –r libgraph.a edge.o
 rm edge.o

In this example, two different sets of commands are passed to the Fortran 90/95 compiler
during the process of building the library libgraph.a.

Using include directives

An include directive can be used to include a text file within a description file. Such a
text file could consist of macro definitions, dependency blocks, or any other components
you would include as part of a description file. An include directive consists of the word
include, left-justified, followed by one or more spaces or tabs, followed by the name of
the file that is to be included at that point in the description file. For example:

include mymacros.txt

Included files are processed before the next line in the current description file. They can
also be nested.

146 The Macintosh Runtime Window Environment

Fortran User Guide

A sample description file

The following is an example of a simple description file:

program name
NAME = util

set FLAGS for command line
F95FLAGS = -g
LDFLAGS =

SRCS = util.f95 build.f95 parse.f95 tstring.f95
OBJS = util.o build.o parse.o tstring.o
PROG = $(NAME)

$(PROG): $(OBJS)
 $(F95) $(F95FLAGS) $(OBJS) -o $(PROG) $(LDFLAGS)

util.o: util.f95 util.inc tstring.inc decl.inc

build.o: build.f95 util.inc tstring.inc decl.inc

parse.o: parse.f95 util.inc tstring.inc decl.inc

tstring.o: tstring.f95 tstring.inc

Explanation:
• Lines beginning with a pound sign (#) are interpreted as comments.
• Lines containing an equal sign (=) are macro definitions; macros

should be defined before they are used in a dependency block. (See
Defining macros and Cautions in using macros earlier in this
section).

• The lines containing a colon are dependency lines.
• Lines indented under dependency lines are (re)build commands.
• A dependency line and a set of (re)build commands together constitute

a dependency block.

Although the order of these components may not affect the operation of amake, we
suggest that you follow the format shown above in creating and maintaining your
description files, that is: macro definitions, followed by user-defined suffix rules,
followed by dependency blocks—with each definition, rule, or block separated by a blank
line.

Using Dependency Rules

The amake utility uses a set of internal rules, commonly referred to as dependency rules
or suffix rules to determine how to (re)build a particular target file. These rules determine
file relationships based on filename suffixes. Absoft amake looks for dependency rules in
two locations:

1. a default file that is automatically read by amake, and

 The Macintosh Runtime Window Environment 147

 Fortran User Guide

2. your description file.

Rules specified in a description file always override the corresponding default rules.

The default rules

The default dependency rules (or suffix rules) automatically handle the common file
transformations that amake performs, such as compiling source files to produce object
files. Without these default rules, you would have to specify all file relationships in a
description file; this would tend to become very complex and redundant in a large
software development project. The default rules are located in:

/usr/absoft10/bin/default.mk.

The following is a list of the default dependency rules included with Absoft amake for
Fortran 90/95 and FORTRAN 77 files. The macros shown within these rules are pre-
defined in the default.mk file. [Note: The numbers on the left are not part of the rules
and are included for reference only.]

Default Rules for Fortran 90/95 files

(1) .f90:
 $(F95) $(F95FLAGS) $(LDFLAGS) -o $@ $<

(2) .f90.o:
 $(F95) $(F95FLAGS) -c $*.f90

(3) .f95:
 $(F95) $(F95FLAGS) $(LDFLAGS) -o $@ $<

(4) .f95.o:
 $(F95) $(F95FLAGS) -c $*.f95

 Explanation:

(1) Compiles a Fortran 90 source file into an executable target.
(2) Creates an object file from a Fortran 90 source file.
(3) Compiles a Fortran 95 source file into an executable target.
(4) Creates an object file from a Fortran 95 source file.

148 The Macintosh Runtime Window Environment

Fortran User Guide

Default Rules for FORTRAN 77 files

(1) .f:
 $(F77) $(FFLAGS) $(LDFLAGS) -o $@ $<

(2) .f.o:
 $(F77) $(FFLAGS) -c $*.f

(1) .for:
 $(F77) $(FFLAGS) $(LDFLAGS) -o $@ $<

(2) .for.o:
 $(F77) $(FFLAGS) -c $*.for

 Explanation:

(1) Compiles a FORTRAN 77 source file into an executable target.
(2) Creates an object file from a FORTRAN 77 source file.
(3) Compiles a FORTRAN 77 source file into an executable target.
(4) Creates an object file from a FORTRAN 77 source file.

Creating your own rules

In general, it is best to rely on the default dependency rules as much as possible. There
will be times, however, when you may need to modify the behavior of amake by creating
your own dependency rules. There are two possible ways to do this:

• Include dependency rules in your description file, or

• Modify the file of default rules by adding your own rule(s), or
deleting/changing existing rule(s).

We recommend that you use the first alternative if possible, and avoid modifying the
default rules unless absolutely necessary. Since rules in a description file always override
any corresponding default rules, the first alternative should be sufficient for virtually any
circumstance. [Caution: Unless you are replacing an existing default rule, it is advisable
to avoid using suffixes that are pre-defined in amake to avoid conflicts with the default
rules.]

 The Macintosh Runtime Window Environment 149

 Fortran User Guide

The following is an example of a user-specified dependency rule included in the
description file discussed earlier in this section:

program name
NAME = util

set FLAGS for command line
F95FLAGS = -g
LDFLAGS =

SRCS = util.f95 build.f95 parse.f95 tstring.f95
OBJS = util.o build.o parse.o tstring.o
PROG = $(NAME)

.f95.o:
 $(F95) $(F95FLAGS) /c $<
 cp $< /home/usr/workdir

$(PROG): $(OBJS)
 $(F95) $(F95FLAGS) $(OBJS) /o $(PROG) $(LDFLAGS)

util.o: util.f95 util.inc tstring.inc decl.inc

build.o: build.f95 util.inc tstring.inc decl.inc

parse.o: parse.f95 util.inc tstring.inc decl.inc

tstring.o: tstring.f95 tstring.inc

The user-supplied rule:

.f95.o:
 $(F95) $(F95FLAGS) -c $<
 cp $< /home/usr/workdir

will override the corresponding default rule in the default.mk file:

.f95.o:
 $(F95) $(F95FLAGS) -c $<

Rather than following the default rule for creating an object file from a Fortran 90/95
source file, the new suffix rule will override the default to invoke the Fortran compiler
and copy the resulting object file to the working directory. (The default rule only invokes
the Fortran 90/95 compiler.)

amake Usage and Syntax

The amake command accepts options, description file names, macro definitions, and
target file names as arguments in the form:

make [options] [description file] [macros] [target(s)]

Arguments specified on the amake command line override any corresponding definitions
found in a description file or in the default dependency rules.

150 The Macintosh Runtime Window Environment

Fortran User Guide

amake command-line options are specified with a dash (-):

-d Lists the prerequisites for each dependency block that caused
amake to rebuild a target. All prerequisites that are newer than the
target are displayed. Useful for determining why certain (re)build
commands are executed.

-D Displays the contents of a description file as it is read by the amake
program.

-e Causes environment variables to override macros defined in a
description file. By default, user-defined macros override
environment variables (see Environment Variables below).

-f Takes an argument in the form filename which specifies the name
of a description file to be used in place of the default name
makefile. A file name consisting of a dash (-) uses the standard
input rather than filename as input. If there are no -f arguments,
the program will search (by default) for a file named makefile or
Makefile in the current directory.

-i Ignores error codes returned by commands. This is equivalent to
using the .IGNORE special target in a description file (see Special
Targets below). Useful in situations when it is not necessary that
certain commands execute successfully.

-k This option stops processing on the current entry when an error
occurs, but continues processing on other branches of the
dependency tree that do not depend on the current entry.

-n Displays all commands, but does not execute them. (Command
lines beginning with an @ character are also displayed.) Useful in
debugging/testing description files.

-p Prints a complete list of macro definitions, dependency blocks, and
suffix rules.

-q Returns a zero or nonzero status code depending on whether the
target is or is not up-to-date, respectively. Useful when amake is
called from a script or tool that requires the current target.

-r Does not use the default rules (i.e., does not read in the
default.mk file). Useful for situations where you want to
completely isolate the environment in which amake operates.

-s Does not print command lines before executing. This is equivalent
to using the .SILENT special target in a description file.

 The Macintosh Runtime Window Environment 151

 Fortran User Guide

-t Touches the target files (assigning them the current date/time)
without executing the commands to (re)build them. Used to bypass
the (re)build process for particular targets—should be used with
caution.

Any command-line arguments other than options, description file names, or macros are
assumed to be the names of targets to be (re)built; these are evaluated in left-to-right
order. If there are no such arguments, the first target in the description file whose name
does not begin with a period is rebuilt (see below).

Special Targets

In addition to the options listed above, the following special targets can be used in a
dependency block (rule) to further customize the behavior of amake:

.DEFAULT Used when there is no target name specified or
default rule for building a target file. A set of pre-
defined commands are invoked by the .DEFAULT
target.

.DONE This target and its prerequisites are processed after
all other targets have been (re)built.

.IGNORE Ignores all error codes; equivalent to the -i option
on the make command line.

.INIT This target and its prerequisites are processed
before any other targets are (re)built.

.SILENT Executes commands, but does not send them to the
standard output; equivalent to the -s option on the
make command line.

.SUFFIXES Used to add dependency rules to the default rules
(specify .SUFFIXES as the target followed by the
suffixes to be added as the prerequisites), or to
delete the default rules entirely (specify .SUFFIXES
as the target without prerequisites).

Dummy Files

There may be times when you will want to run amake without actually (re)building a
target or when you need to force a target to be (re)built regardless of when the last
modification was made to a prerequisite. You can do this by using dummy files—i.e.,
specifying one or more filenames in your description file that do not represent an actual
file, but that cause the behavior of amake to change. Often, this can be used to bypass the
established dependency tree and force amake to behave in a desired manner.

152 The Macintosh Runtime Window Environment

Fortran User Guide

The most common type of dummy filename is a dummy target. For example:

clobber :
 rm *.o

will execute the commands on the second line without (re)building any files.

Environment Variables

Each time you run amake, the environment variables that exist at that time are read and
added to the existing macro definitions. Essentially, environment variables are handled in
the same manner as macros by amake. As briefly described earlier in this section, the
MAKEFLAGS variable (also sometimes referred to as the MAKEFLAGS macro) defines the
command-line options available to amake and is usually defined as an environment
variable; the MAKEFLAGS environment variable is read and processed prior to any options
specified on the amake command line.

When you run amake, the following order of precedence is followed (from highest to
lowest priority):

1. command-line arguments

2. description file entries (definitions)

3. environment variables

4. default dependency rules

If you invoke the /e command-line option, priority levels 2 and 3 are reversed so that the
order of precedence becomes:

1. command-line arguments

2. environment variables

3. description file entries (definitions)

4. default dependency rules

Example: Rebuilding an Executable File

Generally, in a software development environment, you would run the amake utility
whenever there is a need to update an executable file, such as after changes have been
made to source files or libraries. To summarize the operation of amake, the program:

1. Searches for a description file called makefile (or, if that name does
not exist, Makefile) by default, or another name assigned through the
-f option.

 The Macintosh Runtime Window Environment 153

 Fortran User Guide

2. Checks dependencies in a bottom-up manner, establishing
relationships between targets and their prerequisites and building a
dependency tree in the process.

3. (Re)builds target files when they are out-of-date with respect to their
prerequisites according to commands specified in the description file,
the default rules, or both.

Using our sample description file, amake will: read in the macro definitions, check the
syntax of all entries, and (re)build the executable file util based on the .f95.o suffix
rule and the dependency blocks (lines) following it:

program name
NAME = util

set FLAGS for command line
F95FLAGS = -g
LDFLAGS =

SRCS = util.f95 build.f95 parse.f95 tstring.f95
OBJS = util.o build.o parse.o tstring.o
PROG = $(NAME)

.f95.o:
 $(F95) $(F95FLAGS) /c $<
 cp $< /home/usr/workdir

$(PROG): $(OBJS)
 $(F95) $(FFLAGS) $(OBJS) /o $(PROG) $(LDFLAGS)

util.o: util.f95 util.inc tstring.inc decl.inc

build.o: build.f95 util.inc tstring.inc decl.inc

parse.o: parse.f95 util.inc tstring.inc decl.inc

tstring.o: tstring.f95 tstring.inc

Error Handling and Cautions

The following is a list of common errors you may encounter while using amake and
possible reasons for their occurrence.

Syntax Errors

Error Message Explanation

Badly formed macro Incorrect syntax for a macro definition—
often, the macro name is missing.

Improper macro An error occurred during macro expansion.
Often, the problem is a missing parenthesis
or bracket.

154 The Macintosh Runtime Window Environment

Fortran User Guide

Macro too long ... A macro name is too long; cannot be longer
than 100 characters.

Rules must be after target Occurs when a line beginning with a space
or tab has been encountered before a depen-
dency line in a description file.

Other Common Errors

Error Message Explanation

Cannot open file The description file specified in an include
directive could not be found or was not
accessible. (See Using include directives
earlier in this section.)

Don't know how to make target There is no target entry in a description file,
none of the default rules apply, and there is
no .DEFAULT rule.

Too many options The amake program has exceeded the
allocated space while processing command-
line options or a target list.

Too many rules defined for target Multiple sets of rules have been defined for
a target; targets may only have one set of
rules.

Unexpected end of line seen The colon in a dependency line is missing.

 The Macintosh Runtime Window Environment 155

 Fortran User Guide

Cautions

In addition to handling the errors described above, particular caution should be exercised
as follows when running amake:

• Use of the -t (touch) or -i (ignore errors) options can be destructive
in the way that they override the normal behavior of amake (see
amake Usage and Syntax earlier in this section). These options
should be used with great care and, if possible, tested first before being
used with actual files. The -t option, in particular, can save
considerable time by "updating" files without (re)building them, but it
erases the file relationships that would normally be established.

• Unforeseen problems can arise by changing default rules or variables,
such as the MAKEFLAGS environment variable. It is best not to change
these default values but, if this must be done, caution is advisable.

• Caution should be used when defining and using macros, especially
when macros are to be invoked recursively and when using any of the
special pre-defined macros described earlier in this section.

157

 Fortran User Guide

CHAPTER 8

Interfacing With Other Languages

This chapter discusses interfacing Absoft Pro Fortran with the C Programming Language
and assembly language, debugging programs, and profiling executables. Although
Fortran programs can call C functions easily with just a CALL statement, the sections
below should be read carefully to understand the differences between argument and data
types.

INTERFACING WITH C

Absoft Pro Fortran is designed to be fully compatible with the implementation of the
standard C Programming Language provided on Macintosh OS X. The linker can be used
to freely link C modules with Fortran main programs and vice versa. However, some
precautions must be taken to ensure proper interfacing. Data types in arguments and
results must be equivalent. The case of global symbols C is significant. The symbolic
names of external procedure must match in case and decoration.

Fortran Data Types in C

 Fortran C

LOGICAL*1 l unsigned char l;
LOGICAL*2 m unsigned short m;
LOGICAL*4 n unsigned long n;

CHARACTER*n c char c[n];

INTEGER*1 i or BYTE i char i;
INTEGER*2 j short j;
INTEGER*4 k int k;
 long k1;
INTEGER*8 l long long l;

REAL*4 a float a;
REAL*8 d double d;

COMPLEX*8 c struct complx {
 float x;
 float y;
 };
 struct complx c;

COMPLEX*16 d struct dcomp {
 double x;
 double y;
 };
 struct dcomp d;

158 Interfacing With Other Languages

Fortran User Guide

1. On 64-bit systems, long is equivalent to INTEGER*8.

The storage allocated by the C language declarations will be identical to the storage
allocated by the corresponding Fortran declaration.

There are additional precautions when passing Fortran strings to C routines. See the
section Passing Strings to C later in this chapter for more information.

Related Compiler Options

Symbols in C programs are case sensitive and are often written entirely in lower case.
Occasionally, C functions designed to be used with Fortran will also have a trailing
underscore added to the function names. Certain compiler options are helpful when
combining procedures written in both Fortran and C.

FORTRAN 77 code should be compiled with the following options:

 -f fold symbols to lower case
 -s use static storage
 -N15 append trailing underscores to global names

Fortran 90 code should be compiled with the following options:

 -YEXT_NAMES=LCS fold symbols to lower case
 -s use static storage
 - YEXT_SFX=_ append trailing underscores to global names

C code does not have to be compiled with any special options for the C compiler.

Rules for Linking

When linking Fortran and C programs, the f77 or f90 compiler driver should be used so
that the appropriate Fortran and C libraries are included in the final application. The
following command will compile the file f1.f with the FORTRAN 77 compiler and the
file c1.c with the C compiler. It will then link the two resulting object files along with
o1.o and the appropriate libraries to generate an executable application named exec:

 f77 –o exec f1.f c1.c o1.o

Passing Parameters Between C and Fortran

The Absoft Pro Fortran compilers use the same calling conventions as the C
programming language. Therefore, a Fortran routine may be called from C without being
declared in the C program and vice versa, if the routine returns all results in parameters.
Otherwise, the function must be typed compatibly in both program units. In addition, care

 Interfacing With Other Languages 159

 Fortran User Guide

must be taken to pass compatible parameter types between the languages. Refer to the
table earlier in this chapter.

Reference parameters

By default, all Fortran arguments to routines are passed by reference, which means
pointers to the data are passed, not the actual data. Therefore, when calling a Fortran
procedure from C, pointers to arguments must be passed rather than values. Both integer
and floating point values may be passed by reference. Consider the following example:

SUBROUTINE SUB(a_dummy,i_dummy)
REAL*4 a_dummy
INTEGER*4 i_dummy

WRITE (*,*) 'The arguments are ',a_dummy, ' and ', i_dummy
RETURN
END

The above subroutine is called from Fortran using the CALL statement:

a_actual = 3.3
i_actual = 9
CALL SUB(a_actual, i_actual)
END

However, to call the subroutine from C, the function reference must explicitly pass
pointers to the actual parameters as follows:

int main()
{
 float a_actual;
 int i_actual;
 void SUB();

 a_actual = 3.3;
 i_actual = 9;
 SUB(&a_actual,&i_actual);
 return 0;
}

Note that the values of the actual parameters may then be changed in the Fortran
subroutine with an assignment statement or an I/O statement.

When calling a C function from Fortran with a reference parameter, the C parameters are
declared as pointers to the data type and the Fortran parameters are passed normally:

PROGRAM convert_to_radians
WRITE (*,*) 'Enter degrees:'
READ (*,*) c
CALL C_RAD(c)
WRITE (*,*) 'Equal to ',c,' radians'
END

160 Interfacing With Other Languages

Fortran User Guide

void C_RAD(c)
float *c;
{
 float deg_to_rad = 3.14159/180.0;
 *c = *c * deg_to_rad;
}

Value parameters

Absoft Pro Fortran provides the intrinsic function %VAL() for passing value parameters.
Function interfaces may also be used to specify which arguments to pass by value.
Although it is generally pointless to pass a value directly to a Fortran procedure, these
functions may be used to pass a value to a C function. The following is an example of
passing a 4-byte integer:

WRITE (*,*) 'Enter an integer:'
READ (*,*) i
CALL C_FUN(VAL(i))
END

void C_FUN(i)
int i;
{
 printf ("%d is ",i);
 if (i % 2 == 0)
 printf ("even.\n");
 else
 printf ("odd.\n");
}

The value of i will be passed directly to C_FUN, and will be left unaltered upon return.
Value parameters can be passed from C to Fortran with use of the VALUE statement. The
arguments that are passed by value are simply declared as VALUE.

 void C_FUN()
 {
 void FORTRAN_SUB();
 int i;

 FORTRAN_SUB(i);
 }

 SUBROUTINE FORTRAN_SUB(i)
 VALUE i
 ...
 END

Note that C will pass all floating-point data as double precision by default, and that the
only Fortran data type that cannot be passed by value is CHARACTER.

 Interfacing With Other Languages 161

 Fortran User Guide

Array Parameters

One-dimensional arrays can be passed freely back and forth as both language
implementations pass arrays by reference. However, since C and Fortran use different
row/column ordering, multi-dimensional arrays cannot be easily passed and indexed
between the languages.

 INTEGER ia(10)

 CALL C_FUN(ia)
 WRITE (*,*) ia

 END

 void C_FUN(i)
 int i[];
 {

 for(i=0; j<10; j++)

int j;

 i[j]=j;
 }

Function Results

In order to obtain function results in Fortran from C language functions and vice versa,
the functions must be typed equivalently in both languages: either INTEGER, REAL, or
DOUBLE PRECSION. All other data types must be returned in reference parameters. The
following are examples of the passing of function results between Fortran and C. The
names are case-sensitive, so trying to call cmax, for example, will result in an error at link
time.

A call to C from Fortran

PROGRAM callc
INTEGER*4 CMAX, A, B

WRITE (*,*) 'Enter two numbers:'
READ (*,*) A, B
WRITE (*,*) 'The largest of', A, ' and', B, ' is ', CMAX(A,B)
END

int CMAX (x,y)
int *x,*y;
{
 return((*x >= *y) ? *x : *y);
}

162 Interfacing With Other Languages

Fortran User Guide

A call to Fortran from C

main()
{
float QT_TO_LITERS(), qt;

 printf ("Enter number of quarts:\n");
 scanf ("%f",&qt);
 printf("%f quarts = %f liters.\n", qt, QT_TO_LITERS(&qt));
}

REAL*4 FUNCTION QT_TO_LITERS(q)
REAL*4 q;

QT_TO_LITERS = q * 0.9461;
END

Passing Strings to C

Fortran strings are a sequence of characters padded with blanks out to their full fixed
length, while strings in C are a sequence of characters terminated by a null character.
Therefore, when passing Fortran strings to C routines, you should terminate them with a
null character. The following Fortran expression will properly pass the Fortran string
string to the C routine CPRINT:

PROGRAM cstringcall
character*255 string
string = 'Moscow on the Hudson'
CALL CPRINT(TRIM(string)//CHAR(0))
END

void CPRINT (anystring)
char *anystring;
{
 printf ("%s\n",anystring);
}

This example will neatly output “Moscow on the Hudson”. If the TRIM function were
not used, the same string would be printed, but followed by 235 blanks. If the CHAR(0)
function was omitted, C would print characters until a null character was encountered,
whenever that might be.

 Interfacing With Other Languages 163

 Fortran User Guide

You can also take advantage of the string length arguments that Fortran passes. After the
end of the formal argument list, Fortran passes (and expects) the length of each
CHARACTER argument as a 32-bit integer value parameter. For example:

SUBROUTINE FPRINT(string)
character*(*) string
print *, string
END

#include <string.h>

int main()
{
char string[] = {”Moscow on the Hudson”};
void FPRINT(char *, int);

 FPRINT(string, strlen(string));
 return 0;
}

Calling Fortran math routines

All of the Fortran intrinsic math functions which return values recognized by the C
Programming Language can be called directly from C as long as the Fortran run time
library, libf77math.a, is linked to the application.

Taking the intrinsic function names in lower case and adding two underscores to the
beginning forms the names of the functions that can be called.

The following example calls the Fortran intrinsic function SIN directly from C:

main()
{
float sin_of_a, a, __sin();

 a = 3.1415926/6;
 sin_of_a = __sin(a);
}

Naming Conventions

Global names in FORTRAN include procedure names and COMMON block names, both of
which are significant to 31 characters. All global names can be case sensitive, meaning
the compiler recognizes the difference between upper and lower case characters. In the
FORTRAN 77 compiler, use of the -f option will fold global names to lower case, while
the -N109 option will fold global names to upper case. . In the Fortran 95 compiler, use of
the –YEXT_NAMES=LCS option will fold global names to lower case, while the
-YEXT_NAMES=UCS option will fold global names to upper case. All other symbols in
FORTRAN are manipulated as addresses or offsets from local labels and are invisible to
the linker.

164 Interfacing With Other Languages

Fortran User Guide

Accessing COMMON blocks from C

COMMON block names are global symbols formed in Absoft Pro Fortran by prepending the
characters “_C” to the name of the COMMON block. The elements of the COMMON block
can be accessed from C by declaring an external structure using this name. For example,

COMMON /comm/ a,b,c

can be accessed with the C declaration:

extern struct {
 float a;
 float b;
 float c;
} _CCOMM;

Declaring C Structures in Absoft Pro Fortran

If there are equivalent data types in FORTRAN for all elements of a C structure, a
RECORD can be declared in FORTRAN to match the structure in C:

C FORTRAN

struct str { STRUCTURE /str/
char c; CHARACTER c
long l; INTEGER*4 l
float f; REAL*4 f
double d; REAL*8 d
}; END STRUCTURE
struct str my_struct; RECORD /str/ my_struct

By default, the alignment of the C structure should be identical to the FORTRAN
RECORD. Refer to the Specification and DATA Statements chapter of the FORTRAN 77
Language Reference Manual for more information on the FORTRAN RECORD type.

INTERFACING WITH ASSEMBLY LANGUAGE

If you are interested in interfacing to Fortran through assembly language, refer to the
Apple document supplied with the Macintosh OS X developer tools.

DEBUGGING

Debugging a Fortran program is accomplished with the Absoft source-level debugger,
Fx™. This is a multi-language, windowed debugger designed especially for the Intel
based Linux computers. The operation of the debugger is detailed in the chapter, Using
the Fx Debugger. The following paragraphs describe the compiler options and resources
necessary to prepare a program for debugging.

Compiler Options

 Interfacing With Other Languages 165

 Fortran User Guide

The -g compiler option directs the compiler to add symbol and line number information
to the object file. This option should be enabled for each source file that you will want to
have source code displayed while debugging. It is not required for files that you are not
interested in.

It is recommended that all optimization options be disabled while debugging. This is
because the optimizers can greatly distort the appearance and order of execution of the
individual statements in your program. Code can be removed or added (for loop
unrolling), variables may be removed or allocated to registers (making it impossible to
examine or modify them), and statements may be executed out of order.

PROFILING

The Macintosh OS X operating system includes the libraries and tools necessary to
obtain procedure level profiles of your application. You simply create an instrumented
version of your application (see Compiler Options below) and then execute it. The file
gmon.out will automatically be created. Use gprof to display and analyze the results.

Compiler Options

The -P compiler option directs the compiler to add the symbol information to the object
file necessary to profile an application. Enabling this option will allow the application to
report the number of times a particular subroutine is called or a function is referenced.

All other options that you would normally use should be enabled, including optimization.

167

 Fortran User Guide

Appendix A

Absoft Compiler Option Guide

This appendix summarizes general options for Absoft Pro Fortran compilers and specific
options for the Absoft Fortran 90/95 and FORTRAN 77 compilers. Refer to the chapter,
Using the Compilers for detailed descriptions of the options

ABSOFT PRO FORTRAN COMPILER OPTIONS

Option Effect�
-c suppresses creation of an executable file — leaves compiled files in

object code format.�
-g generates symbol information for Fx™.�
-Lpath library file search path specification.

-lname library file specification.

-O enables a group of basic optimizations which will cause most code

to run faster without the expense of application size or memory
usage.�

-o name directs the compiler to produce an executable file called name
where name is a Macintosh OS X file name.

-P instrument executable for profiling.�
-S generates an assembly language output file.�
-s allocate local variables statically.

-u undefine a symbol to the linker.

-v directs the compiler to print status information as the compilation

process proceeds.

-w suppresses listing of all compile-time warning messages.�
-Xoption linker option.�

168 Absoft Compiler Option Guide

Fortran User Guide

FPU CONTROL OPTIONS
-round=mode set the FPU rounding method.

-trap=exception enable FPU exceptions.

FORTRAN 90/95 CONTROL OPTIONS
-YEXT_SFX append trailing characters to procedure names.

-B112 disable stack alignment.

-dq Allow more than 100 error diagnostics.�
-ea Causes the f95 compiler to abort the compilation process on the

first error that it encounters.�
-en Causes the compiler to issue a warning whenever the source code

contains an extension to the Fortran 90/95 standard.

-eR Default recursion �
-g Generates symbol information for Fx™.�
-Mnn Suppresses messages by message number.�
-mnn Suppresses messages by message level.�
-P Instrument executable for profiling.�
-V Causes the f95 compiler to display its version number.

-v Directs the compiler to print status information as the compilation

process proceeds�
-w Suppresses listing of all compile-time warning messages.�

FORTRAN 90/95 OPTIMIZATION OPTIONS

-O[n] enables a group of basic optimizations which will cause most code
to run faster without the expense of application size or memory
usage.�

FORTRAN 90/95 SOURCE FORMAT OPTIONS

-fform sets the form of the source file to free, fixed, or alt_fixed.�
-Wn sets the line length of source statements accepted by the compiler in

Fixed-Form source format.�

 Absoft Compiler Option Guide 169

 Fortran User Guide

FORTRAN 90/95 COMPATIBILITY OPTIONS

-dp causes variables declared in a DOUBLE PRECISION statement and
constants specified with the D exponent to be converted to the default
real kind.�

-ej causes all DO loops to be executed at least once, regardless of the
initial value of the iteration count.�

-in set default integer size to n (2 or 8) bytes.�
-N113 set default real size to 8 bytes (KIND=8).�
-p path specify module search path�
-s allocate local variables statically

-Rb generate code to check array boundaries.�
-Rc generate code to validate substring indexes.�
-Rp generate code to check for null pointers.�
-Rs generate code check array conformance.�
-tn this option increases the default temporary string size to 1024x10n

bytes.�
-xdirective disable compiler directive in the source file.

-YCFRL forces the compiler to pass g77/f2c compatible CHARACTER

arguments.�
-YCOM_NAMES specify COMMON block names externally in upper or lower case.�
-YCOM_PFX specify COMMON block external name prefix.�
-YCOM_SFX specify COMMON block external name suffix.�
-YCSLASH directs the compiler to transform certain escape sequences marked

with a ‘\’ embedded in character constants.�
-YEXT_NAMES Specify procedure names externally in upper, lower, or mixed

case.�
-YEXT_PFX Specify procedure external name prefix.�
-YEXT_SFX Specify procedure external name suffix.�
-YMS7D Recognize Microsoft style compiler directives beginning with a ‘$’

in column 1.�
-YNDFP disallow the use of a ‘.’ as a structure field separator.�
-YPEI pointers are Equivalent to Integers allows a Cray-style pointer to be

manipulated as an integer.�

FORTRAN 77 CONTROL OPTIONS
-N15 append trailing underscores to procedure names.

-C generates code to check that array indexes are within array bounds -

file names and source code line numbers will be displayed with all
run time error messages�

-D used to define conditional compilation variables from the command
line (-D name[=value]) — if value is not present, the variable
is assigned the value of 1�

170 Absoft Compiler Option Guide

Fortran User Guide

-g generates symbol information for Fx™.�
-Ipath specify path to search for INCLUDE files.�
-P instrument executable for profiling.�
-q suppress non-diagnostic output.�
-Tnn used to change the number of handles used internally by the

compiler.

-tnn modifies the default temporary string size to nn bytes from the
default of 1024 bytes

-v directs the compiler to print status information as the compilation
process proceeds�

-w suppresses listing of all compile-time warning messages�
-x replaces any occurrence of X or D in column one with a blank

character: allows a restricted form of conditional compilation �

FORTRAN 77 OPTIMIZATION OPTIONS

-O[n] enables a group of basic optimizations which will cause most code
to run faster without the expense of application size or memory
usage.

FORTRAN 77 SOURCE FORMAT OPTIONS

-8 directs the compiler to accept source code written in Fortran 90/95
Free Source Form

-V directs the compiler to accept VAX Tab-Format source code�
-W directs the compiler to accept statements which extend beyond

column 72 up to column 132

FORTRAN 77 COMPATIBILITY OPTIONS

-N15 causes the compiler to define SUBROUTINE and FUNCTION
names with a trailing underscore�

-d causes all DO loops to be executed at least once, regardless of the
initial value of the iteration count (FORTRAN 66 convention)�

-f folds all symbolic names to lower case�
-in changes the default storage length of INTEGER from 4 bytes to n

(2 or 8).�
-K directs the compiler to transform certain escape sequences marked

with a ‘\’ embedded in character constants�
-N22 don’t mangle COMMON block names with leading “_c”

 Absoft Compiler Option Guide 171

 Fortran User Guide

-N26 force the compiler to consider the byte ordering of all unformatted
files to be big-endian by default

-N27 force the compiler to consider the byte ordering of all unformatted
files to be little-endian by default

-N109 folds all symbolic names to UPPER CASE�
-N113 changes REAL and COMPLEX data types without explicit length

declara-tion to DOUBLE PRECISION and DOUBLE COMPLEX�
-s forces all program storage to be treated as static: see -N1 also�

 Fortran User Guide

Appendix B

Exceptions and IEEE Arithmetic

Three modules are provided to support floating-point exceptions and IEEE arithmetic:
IEEE_FEATURES, IEEE_ARITHMETIC, and IEEE_EXCEPTIONS. Use of these modules and
the procedures in them ensure portability of programs exploiting features of IEEE
arithmetic across platforms. The module IEEE_ARITHMETIC contains a USE statement for
IEEE_EXCEPTIONS. Any procedure that uses IEEE_ARITHMETIC will have access to the
public features of IEEE_EXCEPTIONS.

IEEE_FEATURES

This module defines the derived type IEEE_FEATURES_TYPE whose components are all
private. Its purpose is to express the need for particular IEEE features.

IEEE_FEATURES_TYPE

The only possible values are the following constants:

IEEE_DATATYPE IEEE data types are available

IEEE_DENORMAL IEEE denormalized values are supported

IEEE_DIVIDE IEEE division to the required precision is supported

IEEE_HALTING control of halting is supported

IEEE_INEXACT_FLAG inexact exceptions are supported.

IEEE_INF IEEE infinities (positive and negative) are supported

IEEE_INVALID_FLAG invalid exceptions are supported

IEEE_NAN IEEE NaN (Not a Number) values are supported

IEEE_ROUNDING all IEEE rounding modes are supported

IEEE_SQRT SQRT is supported to the IEEE standard

IEEE_UNDERFLOW_FLAG underflow exceptions supported

174 Exceptions and IEEE Arithmetic

Fortran User Guide

IEEE_ARITHMETIC

This module defines the two derived types IEEE_CLASS_TYPE and IEEE_ROUND_TYPE
whose components are all private. The purpose of IEEE_CLASS_TYPE is to identify the
class of a value. The purpose of IEEE_ROUND_TYPE is to specify or inquire the rounding
mode. This module also defines two elemental operators for each of these types: == and
/=. The == operator returns true if two values of these types are equal and false if they
are not. The /= operator returns true if two values of these types are not equal and false
if they are equal.

The IEEE_ARITHMETIC module further provides a number of subroutines and functions
for inquiry, performing operations, and setting the IEEE rounding environment.

IEEE_CLASS_TYPE

The only possible values are the following constants:

IEEE_SIGNALING_NAN NaN (Not a Number)

IEEE_QUIET_NAN NaN (Not a Number)

IEEE_NEGATIVE_INF negative infinity

IEEE_NEGATIVE_NORMAL negative number

IEEE_NEGATIVE_DENORMAL negative number smaller than the normal representation

IEEE_NEGATIVE_ZERO negative zero

IEEE_POSITIVE_ZERO zero

IEEE_POSITIVE_DENORMAL positive number smaller than the normal representation

IEEE_POSITIVE_NORMAL positive number

IEEE_POSITIVE_INF positive infinity

 Exceptions and IEEE Arithmetic 175

 Fortran User Guide

IEEE_ROUND_TYPE

The only possible values are the following constants:

IEEE_NEAREST

IEEE_TO_ZERO

IEEE_UP

IEEE_DOWN

Subroutines and Functions

The IEEE_ARITHMETIC module provides the following inquiry functions:

logical function IEEE_SUPPORT_DATATYPE(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if the data type of the argument is supported in
conformance with section 14.8 of the Fortran 2003 Draft Standard.

logical function IEEE_SUPPORT_DENORMAL(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if denormalized numbers are supported for the data type
of the argument.

logical function IEEE_SUPPORT_DIVIDE(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if division to the accuracy specified by the IEEE
standard is supported for the data type of the argument.

logical function IEEE_SUPPORT_INF(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if infinities numbers are supported for the data type of
the argument.

logical function IEEE_SUPPORT_IO(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if IEEE rounding is supported during formatted input
and output conversions for the data type of the argument.

176 Exceptions and IEEE Arithmetic

Fortran User Guide

logical function IEEE_SUPPORT_NAN(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if NaN (Not a Number) values are supported for the data
type of the argument.

logical function IEEE_SUPPORT_ROUNDING(round_value, x)
type(IEEE_ROUND_TYPE), intent(in) :: round_value
real(kind=SP), intent(in), optional :: x

returns the value .TRUE. if the specified rounding type is supported for the data
type of the argument.

logical function IEEE_SUPPORT_SQRT(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if SQRT to the accuracy specified by the IEEE standard is
supported for the data type of the argument.

logical function IEEE_SUPPORT_STANDARD(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if all capabilities and facilities specified by the IEEE
standard are supported for the data type of the argument.

logical function IEEE_SUPPORT_UNDERFLOW(x)
real(kind=any), intent(in), optional :: x

returns the value .TRUE. if control of underflow mode is supported for the data
type of the argument. Control of underflow mode allows specifying gradual or
abrupt underflow. On some processors, chopped underflow can produce code that
executes faster.

The IEEE_ARITHMETIC module provides the following elemental functions for data
values that IEEE_SUPPORT_DATATYPE(x) returns .TRUE.:

elemental type(IEEE_CLASS_TYPE) function IEEE_CLASS(x)
real(kind=any), intent(in) :: x

returns the class of the input argument x.

elemental real function IEEE_COPY_SIGN(x, y)
real(kind=any), intent(in) :: x, y

returns a result that has the value of x and the sign of y, even when x is a special
value such as NaN or infinity.

 Exceptions and IEEE Arithmetic 177

 Fortran User Guide

elemental logical function IEEE_IS_FINITE(x)
real(kind=any), intent(in) :: x

returns the value .TRUE. if the value of x is finite. That is its class is one of:

IEEE_NEGATIVE_NORMAL IEEE_POSITIVE_DENORMAL
IEEE_NEGATIVE_DENORMAL IEEE_POSITIVE_NORMAL
IEEE_NEGATIVE_ZERO IEEE_POSITIVE_ZERO

elemental logical function IEEE_IS_NAN(x)
real(kind=any), intent(in) :: x

returns the value .TRUE. if the value of x is a NaN.

elemental logical function IEEE_IS_NORMAL(x)
real(kind=any), intent(in) :: x

returns the value .TRUE. if the value of x is normal. That is its class is one of:

IEEE_NEGATIVE_NORMAL IEEE_POSITIVE_NORMAL
IEEE_NEGATIVE_ZERO IEEE_POSITIVE_ZERO

elemental logical function IEEE_IS_NEGATIVE(x)
real(kind=any), intent(in) :: x

returns the value .TRUE. if the value of x is negative. That is its class is one of:

IEEE_NEGATIVE_NORMAL IEEE_NEGATIVE_ZERO
IEEE_NEGATIVE_DENORMAL IEEE_NEGATIVE_INFINITY

elemental real function IEEE_LOGB(x)
real(kind=any), intent(in) :: x

returns the unbiased exponent of x as a floating-point value. If x is 0.0, -infinity is
returned and IEEE_DIVIDE_BY_ZERO is signaled.

elemental real function IEEE_NEXT_AFTER(x, y)
real(kind=any), intent(in) :: x, y

returns the neighbor of x in the direction of y. The kind of the result is the same as
x. If x is 0.0, the result is the smallest denormalized number.

elemental real function IEEE_REM(x, y)
real(kind=any), intent(in) :: x, y

returns the exact remainder of x/y. The function is defined as x-y*n where n is
the nearest integer to x/y. If |n-x/y|=½, n is even. The kind of the result is the
same as x.

178 Exceptions and IEEE Arithmetic

Fortran User Guide

elemental real function IEEE_RINT(x)
real(kind=any), intent(in) :: x

returns the rounded to integer value of x. x is rounded according to the current
rounding mode.

elemental real function IEEE_SCALB(x, i)
real(kind=any), intent(in) :: x
integer (kind=4), intent(in) :: i

returns the floating-point value of x*2**i. The kind of the result is the same as x.

elemental logical function IEEE_UNORDERED(x, y)
real(kind=any), intent(in) :: x, y

returns if either x or y is a NaN.

elemental real function IEEE_VALUE(x, class)
real(kind=any), intent(in) :: x
type(IEEE_CLASS_TYPE), intent(in) :: class

returns a value of the specified IEEE_CLASS_TYPE.

The IEEE_ARITHMETIC module provides the following non-elemental subroutines:

subroutine IEEE_GET_ROUNDING_MODE(round_value)
type(IEEE_ROUND_TYPE), intent(out) :: round_value

the current rounding mode is returned in the round_value variable.

subroutine IEEE_GET_UNDERFLOW_MODE(gradual)
logical(kind=4). Intent(out) :: gradual

the current underflow mode (gradual/abrupt) is returned in the gradual variable.
If the mode is gradual, the value of gradual of will be set to .TRUE.. If
IEEE_SUPPORT_UNDERFLOW_CONTROL(x) returns .FALSE. this subroutine will
produce a runtime error and should not be called.

subroutine IEEE_SET_ROUNDING_MODE(round_value)
type(IEEE_ROUND_TYPE), intent(in) :: round_value

the rounding mode is set to the mode specified in the round_value variable.

 Exceptions and IEEE Arithmetic 179

 Fortran User Guide

subroutine IEEE_SET_UNDERFLOW_MODE(gradual)
logical(kind=4), intent(in) :: gradual

the underflow mode is set to gradual if the value of the gradual variable is
.TRUE.. If the value of the gradual variable is .FALSE., the underflow mode is
set to abrupt. If IEEE_SUPPORT_UNDERFLOW_CONTROL(x) returns .FALSE. this
subroutine will produce a runtime error and should not be called.

The IEEE_ARITHMETIC module provides the following kind function:

integer(kind=4) function IEEE_SELECTED_REAL_KIND(p, r)
integer(kind=4), intent(in), optional :: p
integer(kind=4), intent(in), optional :: r

returns the kind of an IEEE floating-point value with the requested precision and
exponent range. This function is similar to SELECTED_REAL_KIND, but only
returns IEEE reals.

IEEE_EXCEPTIONS

This module defines the two derived types IEEE_FLAG_TYPE and IEEE_STATUS_TYPE
whose components are all private. The purpose of IEEE_FLAG_TYPE is to identify the
exception flags. The purpose of IEEE_STATUS_TYPE is to save and restore the current
floating-point environment.

The IEEE_EXCEPTIONS module also provides a number of subroutines and functions for
inquiry and getting and setting exception flags.

An important feature of exception flags is that they may or may not halt execution of the
program depending on the state of the halting modes. A floating-point operation (such as
divide-by-zero) will cause an exception flag to signal, but unless the halting mode for
that flag is set to true, execution will continue with an IEEE default value. The
IEEE_GET_FLAG subroutine can be used to retrieve the current state (signaling or quiet) of
a specific exception flag.

180 Exceptions and IEEE Arithmetic

Fortran User Guide

IEEE_FLAG_TYPE

The only possible values are the following constants:

IEEE_INVALID

IEEE_OVERFLOW

IEEE_DIVIDE_BY_ZERO

IEEE_UNDERFLOW

IEEE_INEXACT

and the array constants:

IEEE_USUAL

type(IEEE_FLAG_TYPE), parameter, dimension(3) :: IEEE_USUAL = &
 (/IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID/)

IEEE_ALL

type(IEEE_FLAG_TYPE), parameter, dimension(5) :: IEEE_ALL = &

 (/IEEE_USUAL, IEEE_UNDERFLOW, IEEE_INEXACT/)

IEEE_STATUS_TYPE

This type is used to save and restore the floating-point environment.

Subroutines and Functions

The IEEE_EXCEPTIONS module provides the following elemental subroutines:

elemental subroutine IEEE_GET_FLAG(flag, flag_value)
type(IEEE_FLAG_TYPE), intent(in) :: flag
logical(kind=4), intent(out) :: flag_value

retrieves the state of the specified flag. If the flag is signaling, flag_value is set
to .TRUE.. If the flag is quiet, flag_value is set to .FALSE..

elemental subroutine IEEE_GET_HALTING_MODE(flag, halting)
type(IEEE_FLAG_TYPE), intent(in) :: flag
logical(kind=4), intent(out) :: halting

 Exceptions and IEEE Arithmetic 181

 Fortran User Guide

retrieves the halting mode of the specified flag. If the flag mode is halting,
halting is set to .TRUE.. If the flag mode is continue, halting is set to
.FALSE..

The IEEE_EXCEPTIONS module provides the following non-elemental subroutines:

subroutine IEEE_GET_STATUS(status_value)
type(IEEE_STATUS_TYPE) :: status_value

retrieves the state of the floating-point environment.

subroutine IEEE_SET_FLAG(flag, flag_value)
type(IEEE_FLAG_TYPE), intent(in) :: flag
logical(kind=4), intent(in) :: flag_value

sets the state of the specified flag. If flag_value is.TRUE., the flag is set to
signaling. If flag_value is .FALSE., the flag is set to quiet.

elemental subroutine IEEE_SET_HALTING_MODE(flag, halting)
type(IEEE_FLAG_TYPE), intent(in) :: flag
logical(kind=4), intent(in) :: halting

sets the halting mode of the specified flag. If halting is.TRUE., the flag mode is
set to halting. If halting is .FALSE., the flag mode is set to continue.

subroutine IEEE_SET_STATUS(status_value)
type(IEEE_STATUS_TYPE) :: status_value

sets the state of the floating-point environment.

182 Exceptions and IEEE Arithmetic

Fortran User Guide

EXAMPLES

The following example demonstrates the sequence necessary to exercise program control
over detection of an exception.

subroutine safe_divide(a, b, c, fail)
use IEEE_EXCEPTIONS
use IEEE_ARITHMETIC
real a, b, c
logical fail
type(IEEE_STATUS_TYPE) status

! save the current floating-point environment, turn halting for
! divide-by-zero off, and clear any previous divide-by-zero flag
call IEEE_GET_STATUS(status)
call IEEE_SET_HALTING_MODE(IEEE_DIVIDE_BY_ZERO, .false.)
call IEEE_SET_FLAG(IEEE_DIVIDE_BY_ZERO, .false.)

! perform the operation
c = a/b

! determine if a failure occurred and restore the floating-point
! environment
fail = IEEE_IS_NAN(c) .or. .not. IEEE_IS_FINITE(c)
call IEEE_SET_STATUS(status)

end subroutine safe_divide

 Fortran User Guide

Appendix C

Terminal Programming

All of the Absoft tools are also designed to be used in a command line environment. This
appendix outlines the use of the Macintosh Terminal application which provides a
command line interface to the OS X operating system.

Open a terminal through the Finder by navigating to the /Applications/Utilities
folder and double clicking on the Terminal application. A window will open and a
command prompt will appear. The prompt will look similar to:

[computer_name:~] username%

The ~ symbol is an abbreviation for your home directory (/Users/username/). If you
enter a change directory command such as “cd fortran” (assuming you have a folder
named fortran in your home directory) the prompt will change to:

[computer_name:~/fortran] username%

and /Users/username/fortran will be the current working directory. To return to your
home directory you can enter “cd ..”. This will take you up one directory. You can also
enter “cd ~” from any directory to return to your home directory.

The environment variables must be modified so that the system can find the Absoft
compilers. Change the current working directory to your home directory (cd ~) and enter
the following command to edit a file with a simple text editor:

pico .tcshrc

This launches the text editor pico and specifies that we want to edit the file .tcshrc.
The file .tcshrc is a special file which is read every time you open a terminal. Enter the
following text on the first line in the editor:

setenv ABSOFT /Applications/Absoft10

This creates an environment variable named ABSOFT and sets its value to
/Applications/Absoft10 (the location of the Absoft compilers). The existing
environment variable path must be modified to allow the system to find the Absoft
compilers. Enter the following text on the second line in the editor:

set path = ($ABSOFT/bin $path)

A $ before an environment variable indicates that we are referencing the value of that
variable. This line modifies the path environment variable, instructing the system to look
in the /Applications/Absoft10/bin directory for executable programs.

184 Terminal Programming

Fortran User Guide

To exit pico, press Ctrl-X and answer “y” to the “Save modified buffer” question.
Because this file is only read when a terminal session is started, it is necessary to close
this terminal and then open a new one. The compilers can now be used from the terminal.

Change the current working directory (with the cd command) to one containing a Fortran
source file. Use the ls command to list the files in the current directory.

Compile and link the Fortran file with the command:

f77 source.f -o myprogram

or

f95 source.f95 -o myprogram

These commands will automatically compile and link your source file to produce an
executable file named myprogram. Enter “./myprogram” to run your program. The “./”
indicates to look in the current working directory for the file. (Note: omitting “-o name”
produces an executable named a.out.)

If you just wish to compile your source file into an object file to be linked later, add the
-c option:

f77 source.f -c

or

f95 source.f95 -c

These commands both produce source.o. You can link object files together to create
executables with the f77 and f95 commands as well:

f77 source1.o source2.o source3.o -o myprogram

or

f95 source1.o source2.o source3.o -o myprogram

Refer to the chapter Using the Compilers for a description of compiler options.

 185

 Fortran User Guide

Appendix D

ASCII Table

ASCII codes 0 through 31 are control codes that may or may not have meaning on
Macintosh. They are listed for completeness and historical reasons and may aid when
porting code from other systems. Codes 128 through 255 are extensions to the 7-bit
ASCII standard and the symbol displayed depends on the font being used; the symbols
shown below are from the Times New Roman font. The Dec, Oct, and Hex columns refer
to the decimal, octal, and hexadecimal numerical representations.

Character Dec Oct Hex Description
NULL 0 000 00 null
SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text
ECT 4 004 04 end of trans
ENQ 5 005 05 enquiry
ACK 6 006 06 acknowledge
BEL 7 007 07 bell code
BS 8 010 08 back space
HT 9 011 09 horizontal tab
LF 10 012 0A line feed
VT 11 013 0B vertical tab
FF 12 014 0C form feed
CR 13 015 0D carriage return
SO 14 016 0E shift out
SI 15 017 0F shift in
DLE 16 020 10 data link escape
DC1 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative ack
SYN 22 026 16 synch idle
ETB 23 027 17 end of trans blk
CAN 24 030 18 cancel
EM 25 031 19 end of medium
SS 26 032 1A special sequence
ESC 27 033 1B escape
FS 28 034 1C file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
US 31 037 1F unit separator

Character Dec Oct Hex Description
 32 040 20 space
! 33 041 21 exclamation
" 34 042 22 quotation mark
35 043 23 number sign
$ 36 044 24 dollar sign
% 37 045 25 percent sign
& 38 046 26 ampersand
' 39 047 27 apostrophe
(40 050 28 opening paren
) 41 051 29 closing paren
* 42 052 2A asterisk
+ 43 053 2B plus
, 44 054 2C comma
- 45 055 2D minus
. 46 056 2E period
/ 47 057 2F slash
0 48 060 30 zero
1 49 061 31 one
2 50 062 32 two
3 51 063 33 three
4 52 064 34 four
5 53 065 35 five
6 54 066 36 six
7 55 067 37 seven
8 56 070 38 eight
9 57 071 39 nine
: 58 072 3A colon
; 59 073 3B semicolon
< 60 074 3C less than
= 61 075 3D equal
> 62 076 3E greater than
? 63 077 3F question mark

186 ASCII Table

Fortran User Guide

Character Dec Oct Hex Description
@ 64 100 40 commercial at
A 65 101 41 upper case letter
B 66 102 42 upper case letter
C 67 103 43 upper case letter
D 68 104 44 upper case letter
E 69 105 45 upper case letter
F 70 106 46 upper case letter
G 71 107 47 upper case letter
H 72 110 48 upper case letter
I 73 111 49 upper case letter
J 74 112 4A upper case letter
K 75 113 4B upper case letter
L 76 114 4C upper case letter
M 77 115 4D upper case letter
N 78 116 4E upper case letter
O 79 117 4F upper case letter
P 80 120 50 upper case letter
Q 81 121 51 upper case letter
R 82 122 52 upper case letter
S 83 123 53 upper case letter
T 84 124 54 upper case letter
U 85 125 55 upper case letter
V 86 126 56 upper case letter
W 87 127 57 upper case letter
X 88 130 58 upper case letter
Y 89 131 59 upper case letter
Z 90 132 5A upper case letter
[91 133 5B opening bracket
\ 92 134 5C back slash
] 93 135 5D closing bracket
^ 94 136 5E circumflex
_ 95 137 5F underscore
` 96 140 60 grave accent
a 97 141 61 lower case letter
b 98 142 62 lower case letter
c 99 143 63 lower case letter
d 100 144 64 lower case letter
e 101 145 65 lower case letter
f 102 146 66 lower case letter
g 103 147 67 lower case letter
h 104 140 68 lower case letter
i 105 151 69 lower case letter
j 106 152 6A lower case letter
k 107 153 6B lower case letter
l 108 154 6C lower case letter
m 109 155 6D lower case letter
n 110 156 6E lower case letter
o 111 157 6F lower case letter
p 112 160 70 lower case letter
q 113 161 71 lower case letter
r 114 162 72 lower case letter
s 115 163 73 lower case letter
t 116 164 74 lower case letter
u 117 165 75 lower case letter
v 118 166 76 lower case letter
w 119 167 77 lower case letter
x 120 170 78 lower case letter
y 121 171 79 lower case letter
z 122 172 7A lower case letter
{ 123 173 7B opening brace
| 124 174 7C vertical bar
} 125 175 7D closing brace

Character Dec Oct Hex
~ 126 176 7E tilde
 127 177 7F delete
� 128 200 80
� 129 201 81
‚ 130 202 82
ƒ 131 203 83
„ 132 204 84
… 133 205 85
† 134 206 86
‡ 135 207 87
ˆ 136 210 88
‰ 137 211 89
Š 138 212 8A
‹ 139 213 8B
Œ 140 214 8C
� 141 215 8D
� 142 216 8E
� 143 217 8F
� 144 220 90
‘ 145 221 91
’ 146 222 92
“ 147 223 93
” 148 224 94
• 149 225 95
– 150 226 96
— 151 227 97
˜ 152 230 98
™ 153 231 99
š 154 232 9A
› 155 233 9B
œ 156 234 9C
� 157 235 9D
� 158 236 9E
Ÿ 159 237 9F
 160 240 A0
¡ 161 241 A1
¢ 162 242 A2
£ 163 243 A3
¤ 164 244 A4
¥ 165 245 A5
¦ 166 246 A6
§ 167 247 A7
¨ 168 250 A8
© 169 251 A9
ª 170 252 AA
« 171 253 AB
¬ 172 254 AC
- 173 255 AD
® 174 256 AE
¯ 175 257 AF
° 176 260 B0
± 177 261 B1
² 178 262 B2
³ 179 263 B3
´ 180 264 B4
µ 181 265 B5
¶ 182 266 B6
· 183 267 B7
¸ 184 270 B8
¹ 185 271 B9
º 186 272 BA
» 187 273 BB

 ASCII Table 187

 Fortran User Guide

Character Dec Oct Hex
¼ 188 274 BC
½ 189 275 BD
¾ 190 276 BE
¿ 191 277 BF
À 192 300 C0
Á 193 301 C1
Â 194 302 C2
Ã 195 303 C3
Ä 196 304 C4
Å 197 305 C5
Æ 198 306 C6
Ç 199 307 C7
È 200 310 C8
É 201 311 C9
Ê 202 312 CA
Ë 203 313 CB
Ì 204 314 CC
Í 205 315 CD
Î 206 316 CE
Ï 207 317 CF
Ð 208 320 D0
Ñ 209 321 D1
Ò 210 322 D2
Ó 211 323 D3
Ô 212 324 D4
Õ 213 325 D5
Ö 214 326 D6
× 215 327 D7
Ø 216 330 D8
Ù 217 331 D9
Ú 218 332 DA
Û 219 333 DB
Ü 220 334 DC
Ý 221 335 DD

Character Dec Oct Hex
Þ 222 336 DE
ß 223 337 DF
à 224 340 E0
á 225 341 E1
â 226 342 E2
ã 227 343 E3
ä 228 344 E4
å 229 345 E5
æ 230 346 E6
ç 231 347 E7
è 232 350 E8
é 233 351 E9
ê 234 352 EA
ë 235 353 EB
ì 236 354 EC
í 237 355 ED
î 238 356 EE
ï 239 357 EF
ð 240 360 F0
ñ 241 361 F1
ò 242 362 F2
ó 243 363 F3
ô 244 364 F4
õ 245 365 F5
ö 246 366 F6
÷ 247 367 F7
ø 248 370 F8
ù 249 371 F9
ú 250 372 FA
û 251 373 FB
ü 252 374 FC
ý 253 375 FD
þ 254 376 FE
ÿ 255 377 FF

 189

 Fortran User Guide

Appendix E

Bibliography

FORTRAN 90/95

These books and manuals are useful references for the Fortran 90/95 programming
language and the floating point math format used by Absoft Pro Fortran on Linux.

Michael Metcalf and John Reid, FORTRAN 90/95 explained, Oxford University Press

(1996)

Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams, Programmer’s Guide to

Fortran90, Unicomp, Inc (1994)

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, and Brian T. Smith, Fortran Top

90, Unicomp, Inc (1994)

James F. Kerrigan, Fortran 90, O’Reilly & Associates, Inc (1993)

American National Standard Programming Language Fortran 90, X3.198-1991, ANSI,

1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of

IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

FORTRAN 77

These books and manuals are useful references for the FORTRAN language and the
floating point math format used by Absoft Pro Fortran on Linux.

Page, Didday, and Alpert, FORTRAN 77 for Humans, West Publishing Company (1983)

Kruger, Anton, Efficient FORTRAN Programming, John Wiley & Sons, Inc. (1990)

Loren P. Meissner and Elliot I. Organick, FORTRAN 77, Addison-Wesley Publishing

Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company (1978)

J.N.P. Hume and R.C. Holt, Programming FORTRAN 77, Reston Publishing Company,

Inc. (1979)

Harice L. Seeds, FORTRAN IV, John Wiley & Sons (1975)

190 Bibliography

Fortran User Guide

Jehosua Friedmann, Philip Greenberg, and Alan M. Hoffberg, FORTRAN IV, A Self-

Teaching Guide, John Wiley & Sons, Inc. (1975)

James S. Coan, Basic FORTRAN, Hayden Book Company (1980)

American National Standard Programming Language FORTRAN, X3.9-1978, ANSI,

1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of

IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and I.E. Stegun, Handbook of Mathematical Functions, U.S. Department

of Commerce, National Bureau of Standards (1972)

 191

 Fortran User Guide

Appendix F

Technical Support

The Absoft Technical Support Group will provide technical assistance to all registered
users of current products. They will not answer general questions about operating
systems, operating system interfaces, graphical user interfaces, or teach programming.
For further help on these subjects, please consult this manual and any of the books and
manuals listed in the bibliography.

Before contacting Technical Support, please study this manual and the language
reference manuals to be sure your problem is not covered here. Specifically, refer to the
chapter Using the Compilers in this manual. To help Technical Support provide a quick
and accurate solution to your problem, please include the following information in any
correspondence or have it available when calling.

Product Information:

Name of product .
Version number.
Serial number.
Version number of the operating system.

System Configuration:

Hardware configuration (hard drive, etc.).
System software release (i.e. 4.0, 3.5, etc).
Any software or hardware modifications to your system.

Problem Description:

What happens?
When does it occur?
Provide a small (20 line) step-by-step example if possible.

Contacting Technical Support:

Address: Absoft Corporation
 Attn: Technical Support
 2781 Bond Street
 Rochester Hills, MI 48309

192 Technical Support

Fortran User Guide

telephone: (248) 853-0095 9am - 3pm EST
FAX (248) 853-0108 24 Hours
email support@absoft.com 24 Hours
World Wide Web http://www.absoft.com

Index

 Fortran User Guide

132 column source code, 65, 82
386, porting from, 106
64-bit code, 40
Absoft address, 193
Absoft Editor commands

Edit menu, 24
File menu, 21
Formatmenu, 28
Help menu, 33
Tools menu, 31
Window menu, 32

ABSOFT_RT_FLAGS, 111
Adding Menus, 122
advanced optimizations, 41
Alert dialog box, 137
amake tool, 142
ANSI C source format, 90
Apple Events, 127

class, 128
ID, 128
target, 128

array
boundary checking, 63, 75

ASCII table, 187
assembly language, 44

interfacing with FORTRAN, 166
ATTRIBUTES directive, 71
basic optimizations, 41
bookmarks, 27

clear bookmarks, 27
next bookmark, 27
previous bookmark, 27
toggle bookmark, 27

Bookmarks menu, 27
C

function results, 163
interfacing with FORTRAN. (see interfacing

FORTRAN and C)
C/C++

options, 84
carriage returns

adding, 105
Check Syntax menu command, 31
Clear bookmarks, 27
Clear menu command, 119
Clipboard, 119
Close All menu command, 22
Close box, 139
Close menu command, 22
command line, 185
Command-Enter, 118
Command-Return, 118
COMMON blocks from C, 166
COMMON, aligning data, 83
Compile menu command, 31
compiler directives, 69

ATTRIBUTES directive, 71
FIXED directive, 70
FIXEDFORMLINESIZE directive, 71
FREE[FORM] directive, 70
NAME directive, 70

NOFREEFORM directive, 71
NOUNROLL directive, 72
PACK[ON] directive, 71
PACKOFF directive, 72
STACK directive, 72
UNROLL directive, 72

compiler options, 169
- -TENV, FPU exception handling, 44
-!N61, use temporary files, 87
-8, Fortran 90, 82
-A, ANSI C, 90
-A, ANSI C source format, 90
-B156, speculative execution, 68
-B157, inline CABS, 68
-B158, address optimizations, 68
-B80, procedure trace, 60
-C, check boundaries, 75
-c, relocatable object, 45
-c++, ANSI C++, 90
-D, define compiler variable, 77
-d, define preprocessor variable, 88
-d, one trip DO loops, 79
-E, preprocess to file, 89
-ea , stop on error, 58
-ej, one trip DO loops, 62
-en, non-standard usage, 59
-ep, demote Double Precision, 62
-eq, allow greater than 100 errors, 58
-eR, default recursion, 60
-et, runtime stack trace, 40
-except, exception handling, 88
-f, case fold, 78, 101
-f, case folding, 166
-f, fixed source form, 65
-f, freed source form, 64
-g, Fx2 debugging, 101
-H, include tree to stderr, 87
-i, integer sizes, 62, 78
-inline none, no inlines, 87
-K, escape sequences, 66, 81
-K, K & R C source format, 90
-K, K&R C, 91
-L, library path specification, 45
-l, library specification, 45
-m64, 64-bit code, 40
-maxerr, max errors, 86
-MS7D, Microsoft directives, 66
-N1, static storage, 78
-N109, case fold, 78
-N110, no Common mangling, 84
-N113, floating point sizes, 62, 80
-N124, procedure trace, 87
-N15, append underscore, 79
-N22, set Common, 84
-N26, set big-endian, 65, 82
-N26, set little-endian, 66, 82
-N32, non-ANSI, 75
-N34, align COMMON, 83
-nodefaultmod, MODULE path, 69
-no-pic, no position independent code, 68
-nostdinc, no standard includes, 89

 Index

Fortran User Guide

-O1, basic optimizations, 41
-O2, normal optimizations, 41
-O3, advanced optimizations, 41
-O4, IPA optimizations, 41
-P , enable profiling, 42, 167
-p , module files, 59
-ptv, verbose templates, 87
-q, quiet, 87
-q, quiet, 60, 75
-Q51, no fma instructions, 42, 44
-Rb, check array conformance, 63
-Rb, check boundaries, 63
-round=, FPU rounding mode, 43
-Rp, check pointers, 63
-Rs, check substrings, 63
-S, assembly language, 44
-s, static storage, 62, 78, 101
-safefp, safe floating-point, 69
-speed_math, fast math, 42
-stack_size, stack size, 68
-SysModFiles, F95 include directory, 59
-T, max internal handle, 58, 74, 85
-t, temporary strings, 58, 75
-u, undefine preprocessor variable, 89
-u, undefine symbol, 93
-v , show progress, 60, 75
-V , show version, 60
-V, VAX Tab-Format, 82
-v, verbose, 87
VAX compatibility, 78
-W, line length, 65
-w, suppress compiler warnings, 59, 75
-W, wide format, 82
-w1, suppress template warnings, 87
-w16, suppress warnings, 86
-w31, suppress all warnings, 86
-w8, suppress anachronism warnings, 86
-w8, suppress informational warnings, 86
-wp, treat anachronisms as errors, 87
-x , disable compiler directive, 61
-x, conditional compilation, 76
-Xlinker, linker options, 93
-YALL_NAMES, symbolic names, 69
-YCFRL=1, CHARACTER argument parameters,

62
-YCOM_NAMES, COMMON block case, 68
-YCOM_PFX, COMMON block prefix, 67
-YCOM_SFX, COMMON block suffix, 67
-YDEALLOC, cache control, 59
-YEXT_NAMES, external names, 65
-YEXT_PFX, external symbol prefix, 65
-YEXT_SFX, external symbol suffix, 65
-YNDFP, type elements, 66
--YNO_CDEC, ignore CDEC$ directives, 69
-YPEI, pointers equivalent to integers, 63
-YVAR_NAMES, variable names, 69
-z, suppress messages, 58
-Z, suppress warning number, 59

compiler version, 60
compiling FORTRAN source code, 5
complex data types

equivalent declarations in C, 159
conditional compilation, 76

conditional compilation variables, 77
continuation lines, 102
conventions used in the manual, 2
Convert to Lower Case menu command, 31
Convert to Upper Case menu command, 31
Copy menu command, 25, 119
Customize Toolbar menu command, 33
Cut menu command, 25, 119
DATE subroutine, 102
debugging, 166
default MODULE path, 69
Delete menu command, 25
divide by zero exceptions, 114
DO loops

one trip, 79
DO Loops, 62
documentation conventions, 2
Edit

menu, 24
elemental functions, 178
elemental subroutines, 182
enabling the exception, 114
Enabling/Disabling Menu Items, 125
end-of-file character, 118
Environment Preferences, 19
errors, 58

at runtime, 103
event loop, 121
exceptions

divide by zero, 114
operand error, 114
overflow, 114

extensions
key Microsoft FORTRAN, 104
key Sun FORTRAN ones, 106
key VAX FORTRAN ones, 101
key VS FORTRAN ones, 103

extensions to FORTRAN 77, 2
external procedure name, 110
f77.exe, 140
File

menu, 21
Find menu command, 26
Find Next menu command, 26
FIXED directive, 70
FIXEDFORMLINESIZE directive, 71
floating point

unit, 114
floating point unit

exception handling, 114
rounding direction, 113

FORM='BINARY' specifier, 105
Format menu, 28
Format Preferences, 17

Color, 18
Language, 17

Fortran 77
introduction, 1
options, 73

FORTRAN 77 extensions, 2
Fortran 77 Fixed Source Form, 82
Fortran 90 Fixed Source Form, 65
Fortran 90 Free Source Form, 64, 82

 Index

 Fortran User Guide

Fortran 95
options, 57

FORTRAN math routines
calling from C, 165

FPU exception handling;, 44
FPU rounding mode;, 43
fr.exe, 140
framewords, 93
FREE[FORM] directive, 70
Fsplit utility tool, 141
function

call to C from FORTRAN, 163
call to FORTRAN from C, 164

g77, 160
gcc, 160
Go to Line menu command, 30
graying of text, 2
Help menu, 33
ibe.exe, 140
IBM RS/6000, porting from, 106
IDATE subroutine, 102
IEEE floating point math, 114
IEEE_ALL, 182
IEEE_CLASS, 178
IEEE_CLASS_TYPE, 180
IEEE_COPY_SIGN, 178
IEEE_DATATYPE, 175
IEEE_DENORMAL, 175
IEEE_DIVIDE, 175
IEEE_DIVIDE_BY_ZERO, 179, 182
IEEE_DOWN, 177
IEEE_FEATURES_TYPE, 175, 176
IEEE_FLAG_TYPE, 181
IEEE_GET_FLAG, 181, 182
IEEE_GET_HALTING_MODE, 182
IEEE_GET_ROUNDING_MODE, 180
IEEE_GET_STATUS, 183
IEEE_GET_UNDERFLOW_MODE, 180
IEEE_HALTING, 175
IEEE_INEXACT, 182
IEEE_INEXACT_FLAG, 175
IEEE_INF, 175
IEEE_INVALID, 182
IEEE_INVALID_FLAG, 175
IEEE_IS_FINITE, 179
IEEE_IS_NAN, 179
IEEE_IS_NEGATIVE, 179
IEEE_IS_NORMAL, 179
IEEE_LOGB, 179
IEEE_NAN, 175
IEEE_NEAREST, 177
IEEE_NEGATIVE_DENORMAL, 176
IEEE_NEGATIVE_INF, 176
IEEE_NEGATIVE_NORMAL, 176
IEEE_NEGATIVE_ZERO, 176
IEEE_NEXT_AFTER, 179
IEEE_OVERFLOW, 182
IEEE_POSITIVE_DENORMAL, 176
IEEE_POSITIVE_INF, 176
IEEE_POSITIVE_NORMAL, 176
IEEE_POSITIVE_ZERO, 176

IEEE_QUIET_NAN, 176
IEEE_REM, 179
IEEE_RINT, 180
IEEE_ROUND_TYPE, 176
IEEE_ROUNDING, 175
IEEE_SCALB, 180
IEEE_SELECTED_REAL_KIND, 181
IEEE_SET_FLAG, 183
IEEE_SET_HALTING_MODE, 183
IEEE_SET_ROUNDING_MODE, 180
IEEE_SET_STATUS, 183
IEEE_SET_UNDERFLOW_MODE, 181
IEEE_SIGNALING_NAN, 176
IEEE_SQRT, 175
IEEE_STATUS_TYPE, 181
IEEE_SUPPORT_DATATYPE, 177, 178
IEEE_SUPPORT_DENORMAL, 177
IEEE_SUPPORT_DIVIDE, 177
IEEE_SUPPORT_INF, 177
IEEE_SUPPORT_IO, 177
IEEE_SUPPORT_NAN, 178
IEEE_SUPPORT_ROUNDING, 178
IEEE_SUPPORT_SQRT, 178
IEEE_SUPPORT_STANDARD, 178
IEEE_SUPPORT_UNDERFLOW, 178
IEEE_SUPPORT_UNDERFLOW_CONTROL,

180, 181
IEEE_TO_ZERO, 177
IEEE_UNDERFLOW, 182
IEEE_UNDERFLOW_FLAG, 175
IEEE_UNORDERED, 180
IEEE_UP, 177
IEEE_USUAL
IEEE_VALUE, 180

, 182

IMSL libraries, 96
include tree to stderr, 87
input from keyboard, 117
inquiry functions, 177
Insert Continuation menu command, 30
Intel 386, porting from, 106
interfacing FORTRAN and C

calling FORTRAN math routines, 165
compatible type declarations, 159
function call to C from FORTRAN, 163
function call to FORTRAN from C, 164
function results, 163
LOC function, 163
passing an array, 163
passing pointers, 161
passing strings, 164
passing values, 161
reference parameters, 161

passing to C, 162
passing to FORTRAN, 161

VAL function, 162
value parameters, 162

intrinsic functions
LOC, 163
math, 165
VAL, 162

italicized text, defined, 2

 Index

Fortran User Guide

K & R C source format, 90
key equivalent, 13
keyboard input, 117
kind function, 181
Language Systems Fortran, 107
LAPACK library, 96
Launching OTHER APPLICATIONS, 126
libmrwe.a file, 115
library path specification, 45
library specification, 45
linefeed character, removing, 105
Link Large Data Stubs, 40
Linker options, 91
LOC, intrinsic function, 163
MacFortran, 108
MacFortran II, 108
MacFortran/020, 108
Match Brackets menu command, 30
math routines

FORTRAN, 165
max errors, 86
memory management, 109
menu

adding, 122
checkmarks, 125
deleting, 124
deleting an item, 124
item, enabling and disabling, 125

menus
Edit, 24
File, 21
Format, 28
Help, 33
Tools, 31
Window, 32

metacommands, Microsoft FORTRAN, 105
Microsoft FORTRAN

metacommands, 105
porting from, 104

module files, 59
MRWE

customization, 120
Event Loop, 121
programming, 120

MRWE preferences, 138
mrwe_AddMenu, 122
mrwe_DoMenu, 124
MS-DOS files, translating, 105
MS-DOS, porting from, 104
Multiple Windows, 136
NAME directive, 70
naming conventions, 165
New menu command, 21
New Window menu command, 32, 33
Next bookmark, 27
Next Error menu command, 32
NeXT, porting from, 106
no inlines, 87
NOFREEFORM directive, 71
non ANSI warnings, 75
non-elemental subroutines, 180, 183
normal optimizations, 41
NOUNROLL directive, 72

one trip DO, 79
open additional windows, 136
Open menu command, 22
operand error exceptions, 114
options, 169
options, manual convention, 2
other porting issues, 108
overflow exceptions, 114
PACK[ON] directive, 71
PACKOFF directive, 72
page setup dialog, 118
Page Setup menu command, 23, 24
Paste menu command, 25, 119
pause after the program ends, 139
Plug-Ins, 94
porting code, 101

doesn’t run correctly;, 103
from IBM RS/6000, 106
from Intel 386, 106
from Microsoft FORTRAN, 104
from MS-DOS, 104
from NeXT, 106
from SCO Unix, 106
from Sparc, 105
from Sun FORTRAN, 105
from VAX FORTRAN, 101
from VS FORTRAN, 103

PowerPC options, 45
ppcbe.exe, 140
preconnected units, 117
Preferences menu command, 17
Previous bookmark, 27
Previouse Error menu command, 31, 32
Print menu command, 23
procedure naming conventions, 166
profiling, 167
Properties menu command, 28
qualifiers, VAX FORTRAN, 102
quiet, 87
Quit menu command, 119
RAN function, 102
rc, resource compiler, 140
Receiving Apple Events, 131
relocatable object, 45
removing linefeed character, 105
Required Apple Events, 129
Rever menu command, 23
road maps, 2
RS/6000, porting from, 106
running compiled applications, 5
runtime error messages, 103
Save All menu command, 23
Save As menu command, 22
Save menu command, 22
SCO Unix, porting from, 106
scriptable application, 135
SECNDS subroutine, 102
Select All menu command, 25
Sending Apple Events, 130
SetMrwePrefs, 138
Shift Left menu command, 30
show compiler progress, 60
source line length, 65

 Index

 Fortran User Guide

Sparc, Absoft compiler for, 106
Sparc, porting from, 105
square brackets, defined, 2
STACK directive, 72
stack trace, 40
static storage, 62
Stop menu command, 31
string length, 58
strings

passing FORTRAN to C, 164
Sun FORTRAN, porting from, 105
support, 193
suppress all warning messages, 86
suppress anachronism warning messages, 86
suppress informational warning messages, 86
suppress list of compiler warning messages, 59
suppress template warning messages, 87
suppress warning messages, 86
TABSIZE variable, 142
target file, updating, 143
technical support, 193
Terminal, 185
Text characteristics, 139
text selection, 13
Tile Horizontally menu command, 33
Tile Vertically menu command, 33
TIME subroutine, 102
Toggle bookmark, 27

Tools menu, 31
Tools Preferences, 21
tracing, 60, 87
treat anachronisms as errors, 87
undefine symbol, 93
underlined text, defined, 2
Undo menu command, 25, 119
UNIX libraries, 97
UNROLL directive, 72
updating target file, 143
use temporary files, 87
using compilers, 14
VALUE statement, 162
VAST pre-processor, 95
VAX compatibility, 78
VAX FORTRAN

porting from, 101
qualifiers, 102

VAX Tab-Format source, 82
VAX/VMS libraries, 97
verbose, 87
verbose templates, 87
VS FORTRAN, porting from, 103
wide source format, 82
Window characteristics, 139
Window menu, 32

Window menu command, 33
Y2K bug, 3

	Absoft Pro Fortan User Guide
	Contents
	Chapter 1 Introduction
	INTRODUCTION TO ABSOFT PRO FORTRAN
	Absoft Fortran 90/95
	Absoft FORTRAN 77

	CONVENTIONS USED IN THIS MANUAL
	ROAD MAPS
	Fortran Road Maps

	YEAR 2000 PROBLEM
	Fortran 90/95 DATE_AND_TIME Subroutine
	Unix Compatibility Library

	Chapter 2 Getting Started
	COMPILING BASICS
	APPLICATION BASICS

	Chapter 3 Using the Absoft Editor
	THE ABSOFT EDITOR
	Text Selection
	Using Compilers
	Pop-up menus

	CREATING NEW SOURCE FILES
	Manipulating Windows

	USING THE EDITOR MENUS
	Application Menu
	Preferences...
	Format
	Environment
	Tools

	File Menu
	New…\(\(N\)
	Open…\(\(O\)
	Open Recent
	Open Selected
	Open Complement
	Close (((W)
	Close All
	Save ((S)
	Save As…
	Save All
	Revert
	Print Setup…\(\(\(P\)
	Print… \(\(P\)
	Page Setup…

	Edit Menu
	Undo ((Z)
	Redo (((Z)
	Cut ((X)
	Copy ((C)
	Paste ((V)
	Clear
	Select All ((A)
	Find
	Find ((F)
	Find Next ((F)
	Find Previous (((F)

	Bookmarks
	Bookmarks Menu
	Toggle Bookmark ((F2)
	Previous Bookmark ((F2)
	Next Bookmark (F2)
	Clear File’s Bookmarks \(\(\(F2\)
	Clear All Bookmarks (Control(F2)

	Format Menu
	Show Info… \(\(\(I\)
	Insert Continuation ((I)
	Go to Line ((L)
	Match Brackets (({)
	Shift Left (([)
	Shift Right ((])
	Comment
	Uncomment
	Convert to Upper Case
	Convert to Lower Case

	Tools Menu
	Compile ((Y)
	Check Syntax ((K)
	Stop ((.)
	Errors
	Previous Error ((D)
	Next Error ((E)

	Window Menu
	Close Window ((W)
	Zoom Window
	Minimize Window ((M)
	Hide Toolbar
	Customize Toolbar...
	Tile Horizontally
	Tile Vertically
	Cascade
	Window list

	Help Menu
	Tools Help
	Hide ToolTips

	Chapter 4 Using the Compilers
	COMPILING PROGRAMS
	USING THE COMMAND LINE
	FILE NAME CONVENTIONS
	USING THE ABSOFT DEVELOPER TOOLS INTERFACE
	Working with Projects
	Options Dialog
	Target Tab – General Options
	Target Type
	Link Large Data Stubs
	Runtime Stack Trace (-et)
	64-bit code (-m64)
	Options

	Speed Math (-speed_math=n)
	Object File(s) Directory
	Target Directory
	Target Filename

	Target Tab – FPU Options
	FPU Rounding Mode
	FPU Exception Handling
	Don’t generate FMA instructions \(�Q51\)

	Other Target Options
	Generate Assembly Language (-S)
	Generate Relocatable Object (-c)
	Library Specification (-l)
	Library Path Specification (-L)

	ABSOFT DEVELOPER TOOLS INTERFACE
	Application Menu
	About Tools
	Preferences…
	Hide Tools
	Quit Tools

	File Menu
	New
	Open
	Open Recent
	Close
	Save
	Save As
	Revert To Saved
	Page Setup...
	Print
	New File

	Edit Menu
	Undo
	Redo
	View Previous

	Configure Menu
	Add/Remove File(s)
	Set Include Paths
	Set Project Options
	File Options
	Remove File Options
	Remove All File Options
	MRWE Preferences...
	Set Default Options

	Tools Menu
	Search
	Build
	Rebuild All
	Update Dependencies
	Check Syntax
	Compile
	Edit
	Preprocess
	Clean
	Stop
	Execute
	Debug
	Profile
	Terminal
	Generate Makefile

	Window Menu
	Hide Toolbar
	Customize Toolbar...
	Tile Horizontally
	Tile Vertically
	Project
	Output

	Help Menu
	Tools Help
	Hide ToolTips

	ABSOFT FORTRAN 95 OPTIONS
	General - F95 Options
	Warning level (-znn)
	Error Handling (-dq and -ea)
	Max Internal Handle (-T nn)
	Temporary string size (-t nn)
	Cache Control (-YDEALLOC= {MINE | ALL | CACHE})
	Warn of Non-Standard usage (-en)
	Suppress warnings (-w)
	Suppress Warning number(s) (-Znn)
	Use System Module Files (-SysModFiles)
	Set Module Paths (-p path)
	Quiet (-q)
	Verbose (-v)
	Procedure Trace (-B80)
	Output Version number (-V)
	Default Recursion (-eR)

	Compatibility - F95 Options
	Disable compiler directive (-xdirective)
	INTEGER and LOGICAL sizes (-in)
	Character Argument Parameters (-YCFRL={0|1})
	Demote Double Precision to Real (-dp)
	Promote REAL and COMPLEX (-N113)
	One trip DO loops (-ej)
	Static storage (-s)
	Check Array Boundaries (-Rb)
	Check Array Conformance (-Rc)
	Check Substrings (-Rs)
	Check Pointers (-Rp)
	Pointers Equivalent to Integers (-YPEI={0|1})

	Format - F95 Options
	Free-Form (-ffree)
	Fixed-Form (-ffixed)
	Alternate Fixed form (-falt_fixed)
	Fixed line length (-W nn)
	YEXT_NAMES={ASIS | UCS | LCS}
	External Symbol Prefix (-YEXT_PFX=string)
	External Symbol Suffix (-YEXT_SFX=string)
	Treat as Big-Endian (-N26)
	Treat as Little-Endian (-N27)
	Escape Sequences in Strings (-YCSLASH=1)
	No Dot for Percent (-YNDFP=1)
	MS Fortran 77 Directives (-YMS7D)

	Common Block - F95 Options
	COMMON Block Name Prefix (-YCOM_PFX=string)
	COMMON Block Name Suffix (-YCOM_SFX=string)
	COMMON Block Name Character Case (-YCOM_NAMES={UCS | LCS})

	Other F95 Options
	Stack Size (-stack_size:size)
	Disable Position Independent Code (-no-fpic)
	Speculative Execution (-B156)
	Inline CABS (-B157)
	Address Optimizations (-B158)
	Safe Floating-Point (-safefp)
	Disable Default Module File Path (-nodefaultmod)
	Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS})
	Symbol Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS})
	Ignore CDEC$ directives (-YNO_CDEC)

	Absoft Fortran 90/95 Compiler Directives
	NAME Directive
	FREE[FORM] Directive
	FIXED Directive
	NOFREEFROM Directive
	FIXEDFORMLINESIZE Directive
	ATTRIBUTES Directive
	PACK[ON] Directive
	PACKOFF Directive
	STACK Directive
	UNROLL Directive
	NOUNROLL Directive

	ABSOFT FORTRAN 77 OPTIONS
	General - F77 Options
	Max Internal Handle (-T nn)
	Temporary string size (-t nn)
	Suppress Warnings (-w)
	Warn of non-ANSI Usage (-N32)
	Quiet (-q)
	Verbose (-v)
	Check Array Boundaries (-C)
	Conditional Compilation (-x)

	Control - F77 Options
	Compiler Directives (-Dname[=value])

	Compatibility - F77 Options
	Integer Sizes (-i2 and -i8)
	Vax/Mainframe Compatibility
	Folding to Lower Case (-f)
	Static Storage (-s)
	Folding to Upper Case (-N109)
	One-Trip DO Loops (F66) (-d)
	Append underscore to names (-N15)

	Miscellaneous - F77 Options
	Promote REAL and COMPLEX (-N113)
	Escape Sequences in Strings (-K)

	Format - F77 Options
	ANSI Fortran 77 Fixed
	Fortran 90 Free-Form (-8)
	VAX Tab-Format (-V)
	Wide Format (-W)
	Treat as Big-Endian (-N26)
	Treat as Little-Endian (-N27)

	COMMON Block - F77 Options
	Align COMMON Variables (-N34)
	Set COMMON Block Name (-N22)
	Don’t Mangle COMMON Block Name \(-N110\)

	C/C++ OPTIONS
	General – C/C++ Options
	Max Internal Handle (-T n)
	Max Errors (-maxerr n)
	Diagnostic Messages
	Suppress All Warnings (-w31)
	Suppress Warnings (-w16)
	Suppress Informationals (-w8)
	Suppress Anachronisms (-w2)
	Suppress Template Warnings (-w1)
	Treat Anachronisms as Errors (-wp)
	Treat All Warnings as Errors (-wabort)
	No Alias Optimizations (-N19)
	Quiet (-q)
	Verbose (-v)
	Procedure Trace (-N124)
	Verbose Templates (-ptv)
	Include Tree to Stderr (-H)
	No inlines (-inline none)
	Exception Handling (-except on|off)

	Preprocessor – C/C++ Options
	Defines (-D name[=value])
	Undefines (-U name)
	Do not search standard system directories
	Preprocess files only

	Format – C/C++ Options
	C++ (-c++)
	ANSI C (-A)
	K and R C (-K)

	LINKER OPTIONS
	General - Link Options
	Produce Map File
	Suppress Warnings
	Verbose
	Report Duplicate Symbols
	Exclude libac.a
	Why Load
	Report Undefined Symbols
	Add Framework(s)...

	Passing Options To The Linker
	Undefine A Symbol (-u)
	Linker Options (-X and -Xlinker)

	Other Link Options

	PLUG-INS
	VAST
	IMSL Library
	LAPACK Library
	UNIX Library
	VAX/VMS Library
	BUILD OPTIONS

	Chapter 5 Porting Code
	PORTING CODE FROM VAX
	Compile Time Options and Issues
	Runtime Issues

	PORTING CODE FROM IBM VS FORTRAN
	Compile-time Options and Issues

	PORTING CODE FROM MICROSOFT FORTRAN (PC VERSION)
	Compile-time Options and Issues

	PORTING CODE FROM SUN WORKSTATIONS
	PORTING CODE FROM THE NEXT WORKSTATION
	PORTING CODE FROM THE IBM RS/6000 WORKSTATION
	PORTING CODE FROM INTEL 386/486/PENTIUM COMPUTERS
	PORTING CODE TO/FROM OTHER MACINTOSH SYSTEMS
	Language Systems Fortran
	Other Absoft Compilers

	OTHER PORTING ISSUES
	Memory Management
	Dynamic Storage
	Static Storage

	Naming Conventions
	Procedure Names
	COMMON Block Names

	File and Path Names
	Tab Character Size
	Runtime Environment
	Floating Point Math Control
	Rounding Direction
	Exception Handling

	Chapter 6 The Macintosh Runtime Window Environment
	USING MRWE
	The MRWE Window
	How Your Program And MRWE Work Together
	Working With Text in MRWE
	Using The MRWE Default Menus
	File Menu
	Save ((S)
	Save As…
	Page Setup…
	Print Window…\(\(P\)
	Quit ((Q)

	Edit Menu
	Undo ((Z)
	Cut ((X)
	Copy ((C)
	Paste ((V)
	Clear

	Font and Size Menus

	PROGRAMMING WITH MRWE
	Program Organization: Fortran VS. Macintosh
	MRWE Event Loop Operation

	Customizing Menus
	Adding Menus
	Special Characters
	Menus and the READ statement
	Removing a Menu or Menu Item
	Menu Response Routines and mrwe_DoMenu
	Adding Checkmarks to Menus
	Enabling/Disabling Menu Items

	Launching OTHER APPLICATIONS
	Apple Events
	Apple Event Target
	Apple Event Class and ID
	Extra Information in an Apple Event
	Receiving Apple Events
	Error Codes Returned from Apple Event Routines
	Other Examples of Apple Events
	Sending a request to the Finder
	Using other standard Apple Events
	Sending information between MRWE applications
	Scripting

	Further Information About Apple Events

	Creating Multiple Windows
	Showing Alert Messages
	SetMrwePrefs
	Effects selected Application bundle, *.r file for *.rsrc file.To affect future applications built via the command line modify /Application/Absoft10/Rincludes/mrweprefs.r.
	Termination Options
	Window Size Options
	Window Size
	Text characteristics

	Chapter 7 Building Programs
	The Components of an Application
	Working with Resources

	CREATING OBJECT FILES
	Fsplit - Source Code Splitting Utility

	BUILDING PROGRAMS
	The Elements of amake
	Using Macros
	Advantages of using macros
	Defining macros
	Special macros
	Cautions in using macros

	Using Description Files
	Working with dependency blocks
	Defining a target more than once
	Using include directives
	A sample description file

	Using Dependency Rules
	The default rules
	Creating your own rules

	amake Usage and Syntax
	Special Targets
	Dummy Files
	Environment Variables
	Example: Rebuilding an Executable File

	Error Handling and Cautions
	Syntax Errors
	Other Common Errors
	Cautions

	Chapter 8 Interfacing With Other Languages
	INTERFACING WITH C
	Fortran Data Types in C
	Related Compiler Options
	Rules for Linking
	Passing Parameters Between C and Fortran
	Reference parameters
	Value parameters
	Array Parameters
	Function Results
	Passing Strings to C

	Calling Fortran math routines
	Naming Conventions
	Accessing COMMON blocks from C
	Declaring C Structures in Absoft Pro Fortran

	INTERFACING WITH ASSEMBLY LANGUAGE
	DEBUGGING
	Compiler Options

	PROFILING
	Compiler Options

	Appendix A Absoft Compiler Option Guide
	ABSOFT PRO FORTRAN COMPILER OPTIONS
	FPU CONTROL OPTIONS
	FORTRAN 90/95 CONTROL OPTIONS
	FORTRAN 90/95 OPTIMIZATION OPTIONS
	FORTRAN 90/95 SOURCE FORMAT OPTIONS
	FORTRAN 90/95 COMPATIBILITY OPTIONS
	FORTRAN 77 CONTROL OPTIONS
	FORTRAN 77 OPTIMIZATION OPTIONS
	FORTRAN 77 SOURCE FORMAT OPTIONS
	FORTRAN 77 COMPATIBILITY OPTIONS

	Appendix B Exceptions and IEEE Arithmetic
	IEEE_FEATURES
	IEEE_FEATURES_TYPE

	IEEE_ARITHMETIC
	IEEE_CLASS_TYPE
	IEEE_ROUND_TYPE
	Subroutines and Functions

	IEEE_EXCEPTIONS
	IEEE_FLAG_TYPE
	IEEE_STATUS_TYPE
	Subroutines and Functions

	EXAMPLES

	Appendix C Terminal Programming
	Appendix D ASCII Table
	Appendix E Bibliography
	FORTRAN 90/95
	FORTRAN 77

	Appendix F Technical Support
	Index

