
IDL Version 7.0
November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

Application
Programming

1107IDL70BLD

Restricted Rights Notice
The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressly prohibited by U.S. laws and regulations. The recipient is responsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

FLAASH is licensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Part I: Application Programming

Chapter 1
Overview of IDL Applications .. 15
What is an IDL Application? ... 16
About Building Applications in IDL ... 17

Chapter 2
Creating and Running Programs in IDL .. 19
Overview of IDL Program Types .. 20
Creating $MAIN$ Programs ... 22
About Named Programs .. 25
Creating a Simple Program ... 26
Running Named Programs .. 28
Compiling Your Program .. 30
Making Code Readable ... 34
Application Programming 3

4

Command Line Tips and Tricks .. 35
Recording IDL Command Line Input .. 40
Interrupting or Aborting Execution ... 41
For More Information on Programming .. 43

Chapter 3
Executing Batch Jobs in IDL ... 45
Overview of Batch Files .. 46
Batch File Execution .. 47
Interpretation of Batch Statements ... 49
A Batch Example ... 50

Chapter 4
Creating SAVE Files of Programs and Data 51
Overview of SAVE Files ... 52
About Program and Data SAVE Files ... 54
Creating SAVE Files of Program Files .. 56
Saving Variables from an IDL Session .. 65
Executing SAVE Files ... 67
Changes to IDL 5.4 SAVE Files .. 70

Chapter 5
Creating Procedures and Functions ... 73
Overview of Procedures and Functions ... 74
Defining a Procedure ... 75
Defining a Function ... 78
Automatic Compilation and Execution .. 79
Parameters .. 81
Using Keyword Parameters ... 85
Determining if a Keyword is Set ... 86
Supplying Values for Missing Keywords .. 87
Supplying Values for Missing Arguments ... 88
Keyword Inheritance .. 89
Entering Procedure Definitions .. 96
How IDL Resolves Routines ... 97
Parameter Passing Mechanism .. 98
Calling Mechanism .. 100
Contents Application Programming

5

Calling Functions/Procedures Indirectly ... 102

Chapter 6
Library Authoring .. 103
Overview of Library Authoring .. 104
Recognizing Potential Naming Conflicts .. 105
Advice for Library Authors ... 108
Converting Existing Libraries ... 109

Chapter 7
Program Control .. 111
Overview of Program Control ... 112
Compound Statements ... 114
IF...THEN...ELSE ... 117
CASE ... 119
SWITCH .. 121
CASE Versus SWITCH .. 122
FOR...DO .. 125
REPEAT...UNTIL ... 130
WHILE...DO ... 131
Jump Statements .. 133
Definition of True and False ... 136

Chapter 8
Debugging and Error-Handling .. 139
Debugging and Error-Handling Overview .. 140
What Happens When Execution Stops .. 141
Working with Breakpoints .. 143
Stepping Through a Program .. 145
Monitoring Variable Values .. 146
Correcting Errors During Execution ... 148
Obtaining Traceback Information ... 149
Controlling and Recovering from Errors ... 150
Creating Custom Error Messages .. 152
Notifying the User of Errors .. 154
Math Errors .. 155
Application Programming Contents

6

Chapter 9
Building Cross-Platform Applications .. 161
Overview of Cross-Platform Issues ... 162
Which Operating System is Running? ... 163
File and Path Specifications ... 164
Files and I/O ... 166
Math Exceptions .. 168
Responding to Screen Size and Colors .. 169
Printing ... 170
SAVE and RESTORE .. 171
Widgets in Cross-Platform Programs .. 172
Using External Code .. 175
IDL DataMiner Issues .. 176

Chapter 10
Multithreading in IDL .. 177
The IDL Thread Pool ... 178
Controlling the IDL Thread Pool ... 181
Routines that Use the Thread Pool ... 187

Chapter 11
Writing Efficient IDL Programs .. 191
Overview of Program Efficiency ... 192
Use Vector and Array Operations .. 194
Use System Functions and Procedures .. 197
Virtual Memory ... 198
The IDL Code Profiler ... 203

Part II: Components of the IDL Language

Chapter 12
Expressions and Operators ... 211
Overview of Expressions and Operators .. 212
Mathematical Operators ... 213
Minimum and Maximum Operators .. 220
Matrix Operators .. 222
Logical Operators ... 224
Bitwise Operators ... 227
Contents Application Programming

7

Relational Operators ... 231
Assignment and Compound Assignment .. 234
Other Operators ... 237
Operator Precedence .. 240

Chapter 13
Working with Data in IDL .. 245
Data Types ... 246
Data Type and Structure of Expressions ... 250
Date/Time Data ... 253
Defining and Using Constants ... 257
Accuracy and Floating Point Operations ... 264
Type Conversion Functions ... 267
Variables .. 270
System Variables ... 272

Chapter 14
Strings .. 273
Overview of Strings ... 274
String Operations ... 275
Non-string and Non-scalar Arguments .. 276
String Concatenation ... 277
Using STRING to Format Data ... 278
Byte Arguments and Strings .. 280
Case Folding .. 282
Whitespace .. 283
Finding the Length of a String .. 285
Substrings .. 286
Splitting and Joining Strings ... 289
Comparing Strings ... 290
Non-Printing Characters .. 294
Learning About Regular Expressions .. 295

Chapter 15
Arrays ... 299
Overview of Arrays ... 300
Understanding Array Subscripts ... 304
Application Programming Contents

8

Assignment Operations and Arrays ... 308
Using Scalar Values as Subscripts ... 310
Using Arrays as Subscripts .. 312
Conditionally Altering Array Elements ... 315
Subscript Ranges .. 317
Avoid Using Range Subscripts .. 321
Combining Subscripts .. 322
Manipulating Arrays .. 324
Columns, Rows, and Array Majority ... 330

Chapter 16
Structures .. 335
Overview of Structures .. 336
Creating and Defining Structures ... 337
Structure References .. 340
Using HELP with Structures .. 342
Parameter Passing with Structures ... 343
Arrays of Structures ... 345
Structure Input/Output ... 347
Advanced Structure Usage ... 350
Automatic Structure Definition .. 352
Relaxed Structure Assignment ... 354

Chapter 17
Pointers ... 357
Overview of Pointers ... 358
Heap Variables ... 359
Creating Heap Variables .. 361
Saving and Restoring Heap Variables ... 362
Pointer Heap Variables .. 363
IDL Pointers ... 364
Operations on Pointers ... 367
Dangling References .. 371
Heap Variable Leakage .. 372
Pointer Validity .. 374
Freeing Pointers ... 375
Pointer Examples ... 376
Contents Application Programming

9

Chapter 18
Files and Input/Output .. 381
Overview of File Access ... 382
Formatted and Unformatted Input/Output ... 384
Opening Files .. 387
Closing Files .. 388
Understanding (LUNs) .. 389
Returning Information About a File Unit .. 392
File Unit Manipulations ... 395
Reading and Writing Very Large Files ... 397
Using Free Format Input/Output ... 399
Using Explicitly Formatted Input/Output .. 404
Format Codes .. 409
Using Unformatted Input/Output .. 447
Portable Unformatted Input/Output ... 454
Associated Input/Output .. 459
File Manipulation Operations .. 465
Reading and Writing FORTRAN Data ... 466
Platform-Specific File I/O Information ... 470

Chapter 19
Using Language Catalogs .. 471
What Is a Language Catalog? .. 472
Creating a Language Catalog File ... 473
Using the IDLffLangCat Class .. 476
Widget Example .. 479

Chapter 20
Using the XML Parser Object Class .. 483
About XML ... 484
Using the XML Parser ... 486
Example: Reading Data Into an Array .. 491
Example: Reading Data Into Structures .. 498
Building Complex Data Structures .. 505
Application Programming Contents

10
Chapter 21
Using the XML DOM Object Classes .. 507
About the Document Object Model ... 508
About the XML DOM Object Classes ... 511
Using the XML DOM Classes ... 518
Tree-Walking Example .. 524

Part III: Creating Applications in IDL

Chapter 22
Providing Online Help For Your Application 531
Overview of Creating Application Help .. 532
Providing Help Within the User Interface ... 533
Displaying Text Files ... 536
Using an External Viewer .. 537
About IDL’s Online Help System .. 538
Using Other Online Help Viewers ... 539
Using the IDL Assistant Help System ... 545

Chapter 23
Distributing Runtime Mode Applications ... 563
What Is an IDL Runtime Mode Application? .. 564
Limitations of Runtime Applications ... 567
Steps to Distribute a Runtime Application .. 568
Preferences for Runtime Applications ... 569
Runtime Licensing ... 573
Embedded Licensing .. 577
Creating an Application Distribution ... 578
Starting a Runtime Application ... 579
Installing Your Application ... 582

Chapter 24
Distributing Virtual Machine Applications 583
What Is a Virtual Machine Application? ... 584
Limitations of Virtual Machine Applications .. 585
Steps to Distribute Your Application ... 586
Preferences for Virtual Machine Applications .. 587
Creating Application SAVE Files .. 589
Contents Application Programming

11
Creating a Virtual Machine Distribution ... 591
Starting a Virtual Machine Application .. 592

Chapter 25
Distributing Callable IDL Applications .. 595
What Is a Callable IDL Application? .. 596
Limitations of Runtime Mode Callable IDL Applications .. 597
Steps to Distribute a Callable IDL Application ... 598
Preferences for Callable IDL Applications ... 599
Runtime Licensing .. 600
Embedded Licensing ... 601
Creating a Callable IDL Application Distribution .. 603
Starting a Callable IDL Application .. 606
Installing Your Callable IDL Application ... 607

Chapter 26
Creating a Runtime Distribution .. 609
About Runtime Distributions .. 610
Creating a Distribution Using MAKE_RT .. 611
Working with the manifest_rt.txt File ... 616
Runtime Application Launch Scripts .. 618
Incorporating the IDL DataMiner ... 624
Installing a Runtime Distribution .. 625

Index ... 627
Application Programming Contents

12
Contents Application Programming

Part I: Application
Programming

Chapter 1

Overview of IDL
Applications
This chapter includes information about the following topics:
What is an IDL Application? 16 About Building Applications in IDL 17
Application Programming 15

16 Chapter 1: Overview of IDL Applications
What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (a MAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing a small program to analyze a single data set or a
large-scale application for commercial distribution, it is useful to understand the
programming concepts used by the IDL language.

Can I Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and others who use IDL. (If you intend to distribute your applications, it is a good
idea to avoid any code that depends on the qualities of a specific platform. See
“!VERSION” (IDL Reference Guide) and “Tips on Creating Widget Applications”
(Chapter 3, Widget Application Programming) for some hints on writing platform-
independent code.) Of course, IDL applications can only be run from within the IDL
environment, so anyone who wishes to run your IDL application must have access to
an IDL license.

If you would like to distribute your IDL application to people who do not have access
to an IDL license, you have several options. Many IDL applications will run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider a runtime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 23, “Distributing Runtime Mode Applications” for a
complete discussion of the different ways you can distribute an application written in
IDL.
What is an IDL Application? Application Programming

Chapter 1: Overview of IDL Applications 17
About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL is a time-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

• IDL is a complete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including
BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and
NetCDF).

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• IDL programs run the same across all supported platforms (Microsoft
Windows and a wide variety of Unix systems) with little or no modification.
This application portability allows you to easily support a variety of
computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.
Application Programming About Building Applications in IDL

18 Chapter 1: Overview of IDL Applications
About Building Applications in IDL Application Programming

Chapter 2

Creating and Running
Programs in IDL
The following topics are covered in this chapter:
Overview of IDL Program Types 20
Creating $MAIN$ Programs 22
About Named Programs 25
Creating a Simple Program 26
Running Named Programs 28
Compiling Your Program 30

Making Code Readable 34
Command Line Tips and Tricks 35
Recording IDL Command Line Input 40
Interrupting or Aborting Execution 41
For More Information on Programming . . . 43
Application Programming 19

20 Chapter 2: Creating and Running Programs in IDL
Overview of IDL Program Types

In addition to being a useful interactive data analysis tool, IDL is a powerful
programming language. Many of IDL’s programming language features and
constructs can be used either interactively at the IDL command line or as part of a
larger program — which can itself be invoked at the IDL command line or by other
programs. A program may or may not be compiled before execution. The type of
programs you use in IDL will depend upon your tasks.

Program Type Description

iTools State File
(.isv)

Restore or share an iTools session — you can save the current
state of an iTool as an iTools State (*.isv) file. Whenever you
close an iTool window, you are prompted to save the current
state as an *.isv file so that you can return to the current state
of the data later when you open the *.isv file. Other IDL
users running the same version or a newer version of IDL can
open *.isv files. The iTool State file includes the data
visualized at the time it was created. There is no need to
provide a separate data file to support the visualization. See
the iTool User’s Guide for details.

$MAIN$
Program

Repeat a series of command line statements or interactively
change variable values in a program file. These short programs
or procedures are called $MAIN$ (main-level) programs.
They are not explicitly named, and cannot be called from other
programs. See “Creating $MAIN$ Programs” on page 22 for
details.

Named Program
File (.pro)

Create programs and applications — you can create programs
for data analysis or visualization using one or more named
program files (*.pro). Program files are created in the IDL
Editor or a text editor of your choice. See “About Named
Programs” on page 25.

Table 2-1: IDL Program Types
Overview of IDL Program Types Application Programming

Chapter 2: Creating and Running Programs in IDL 21
Batch File Automate processing tasks — you can automate routine or
lengthy processing tasks using a batch file, which contains one
or more IDL statements or commands. Each line of the file is
read and executed before proceeding to the next line. See
Chapter 3, “Executing Batch Jobs in IDL” for additional
information on batch files.

SAVE File
(.sav)

Share programs and distribute applications — you can create a
SAVE file containing data or named program files in a .sav
file to share with other users who may or may not have a full
IDL installation. See Chapter 4, “Creating SAVE Files of
Programs and Data” for details.

Program Type Description

Table 2-1: IDL Program Types (Continued)
Application Programming Overview of IDL Program Types

22 Chapter 2: Creating and Running Programs in IDL
Creating $MAIN$ Programs

A $MAIN$ (main-level) program can be created in two ways: at the command line
and in a text editor. You typically create a $MAIN$ program at the IDL command
line when you have a few commands you want to run without creating a separate file
to contain them. Creating a $MAIN$ program in a text file allows you to combine the
functionality of named procedures and functions with the ability to have command
line access to variable data that is defined in the $MAIN$ scope.

$MAIN$ programs are not explicitly named; they consist of a series of statements
that are not preceded by a procedure (PRO) or function (FUNCTION) heading. They
do, however, require an END statement. Since there is no heading, the program
cannot be called from other routines and cannot be passed arguments. When IDL
encounters a main program either as the result of a .RUN executive command, or in a
text file, it compiles it into the special program named $MAIN$ and immediately
executes it. Afterwards, it can be executed again using the .GO executive command.

Creating a $MAIN$ Program at the Command Line

To create a $MAIN$ level program at the command line, start IDL and complete the
following steps:

1. Initialize a variable. At the IDL command line, enter the following:

A = 2

2. Designate a command line $MAIN$ program. Enter .RUN at the IDL
command line:

.RUN

The command line prompt changes from IDL> to -.

3. Enter the program statements. Create a $MAIN$ level program consisting
of the following statements:

A = A * 2
PRINT, A
END

The $MAIN$ program is immediately compiled and executed when you enter
the END statement. IDL prints 4.

4. Re-execute the $MAIN program. Enter .GO at the IDL command line:

.GO

The $MAIN$ program is executed again, and now IDL prints 8.
Creating $MAIN$ Programs Application Programming

Chapter 2: Creating and Running Programs in IDL 23
Creating a $MAIN$ Program in a Text File

When you create a $MAIN$ program in a named text file, you can execute the
program and have command line access to variables. This is an easy way to run and
test various variable values without having to modify the code and rerun the entire
program, or set breakpoints. The following example allows you to create, save, run
and test a $MAIN$ program.

1. Create the $MAIN$ program file. Enter the following into the IDL Editor.
This example consists of a function that modifies the image data, and a
$MAIN$ program. The $MAIN program displays the original image, solicits a
threshold value, passes the value to the function, and displays the new image
data:

FUNCTION stretchImage, img, value

; Stretch image by input amount.
image = img > value
RETURN, image

End

; --- Begin $MAIN$ program.---------------------
; Display the image, solicit threshold value and
; display new results.

; Set up display.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Access image data and display.
img = READ_PNG(FILEPATH('mineral.png', $
 SUBDIRECTORY = ['examples', 'data']))
dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, img

; Ask for a threshold value and stretch image.
READ, threshold, PROMPT='Enter Numerical Value: '
newImg = stretchImage(threshold, img)

; Display the results.
TVSCL, newImg

END
Application Programming Creating $MAIN$ Programs

24 Chapter 2: Creating and Running Programs in IDL
2. Save the $MAIN$ program. Save the file as interactivestretch.pro. It
is important to note that a $MAIN$ program should not have the same name as
any internal procedures or functions.

3. Run the $MAIN program. Type the following at the command line to run the
program:

.RUN interactiveStretch.pro

This compiles internal functions and procedures, and executes the $MAIN
program. The command line prompt changes from IDL> to -.

4. Enter a threshold value. Enter 67 (or any value between 0–255) at the
command line and press Enter. This scales the image so that the remaining
pixel values are stretched across all possible intensities (0 to 255).

5. Test another threshold value. Enter .GO at the IDL command line:

.GO

Enter a different value and press enter to see the results. These two final steps
can be repeated as many times as you like.
Creating $MAIN$ Programs Application Programming

Chapter 2: Creating and Running Programs in IDL 25
About Named Programs

Longer routines and programs, consisting of more than a few lines, are typically
given their own explicit names, allowing them to be called from other programs as
well as executed at the IDL command line. Named programs are stored in disk files
created using a text editor. The IDL Workbench includes a built-in text editor, but
any text editor can be used to create named IDL programs. Files containing IDL
programs, procedures, and functions are assumed to have the filename extension
.pro.

Note
Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. See “Command
Line Tips and Tricks” on page 35 for details on using the IDL Editor.

Most IDL applications consist of one or more IDL procedures, functions, object
definitions, and object method routines:

• Procedures — a procedure is a self-contained sequence of IDL statements
with a unique name that performs a well-defined task. Procedures are defined
with the procedure definition statement, PRO.

• Functions — a function is a self-contained sequence of IDL statements that
performs a well-defined task and returns a value to the calling program unit
when it is executed. Functions are defined with the function definition
statement FUNCTION.

• Object definitions — an object definition describes an IDL object, which can
encapsulate both instance data and method routines. For additional
information on IDL’s object-oriented programming features, see Chapter 1,
“The Basics of Using Objects in IDL” (Object Programming).

• Object methods — these routines are procedures and functions that act on
object instance data. See “Acting on Objects Using Methods” (Chapter 1,
Object Programming) for additional information.

See the following section for a simple procedure that calls a function. See Chapter 5,
“Creating Procedures and Functions” for details on creating and calling procedures
and functions, defining argument and keyword parameters, and using keyword
inheritance.

Note
See Chapter 6, “Library Authoring” for information on procedure naming.
Application Programming About Named Programs

26 Chapter 2: Creating and Running Programs in IDL
Creating a Simple Program

In this section, we’ll create a simple “Hello World” program consisting of two .pro
files. Start the IDL Workbench and complete the steps described below.

Note
For information on using the IDL Editor, see

1. Open a new IDL Source File. Start the IDL Editor by selecting File → New
→ IDL Source File or clicking the New IDL Source File button on the
toolbar.

2. Create a procedure. Type the following in the IDL Editor:

PRO hello_main
name = ''
READ, name, PROMPT='Enter Name: '
str = HELLO_WHO(name)
PRINT, str

END

3. Save the procedure. To save the file, select File → Save or click the Save
button on the toolbar. Save the file with the name hello_main.pro in the
main IDL directory (which the Save As dialog should already show).

4. Create a function. Open a new IDL source file by selecting File → New →
IDL Source File or clicking the New IDL Source File button on the toolbar.
Enter the following code:

FUNCTION hello_who, who
RETURN, 'Hello ' + who

END

5. Save the function. Save the file as hello_who.pro in the main IDL
directory. This simple program, consisting of a user-defined procedure, calls a
user-defined function.

6. Compile the programs. Compile hello_main.pro and hello_who.pro
programs by selecting Project → Build All.

Note
You can also type .COMPILE hello_who.pro, hello_main.pro at the
IDL command prompt to compile the files. With functions, the compilation
order does matter. See “Compiling Your Program” on page 30 for details.

7. Run the program. Select Run → Run hello_main.
Creating a Simple Program Application Programming

Chapter 2: Creating and Running Programs in IDL 27
8. Enter a name. Type your name at the IDL command line, which now reads
“Enter Name” and press the Enter key. This passes the text to the function
hello_who. The “Hello name” string is returned to the procedure and printed
in the Console View.
Application Programming Creating a Simple Program

28 Chapter 2: Creating and Running Programs in IDL
Running Named Programs

IDL program files, identified with a .pro extension, can be compiled and executed
using the following methods:

• Running Programs Using the IDL Workbench Interface

• Running Programs From the IDL Command Line

• Running Programs Using Executive Commands

Running Programs Using the IDL Workbench
Interface

To run an IDL program using the IDL Workbench interface, do the following:

1. Open the file in the IDL Editor. For example, select:
File → Open File

and select examples/demo/demosrc/d_uscensus.pro from your IDL
installation directory.

2. Compile the file by selecting Run → Compile filename

where filename is the name of the file opened in the IDL Editor
(d_uscensus.pro, in this example).

3. Execute the file by selecting Run → Run filename

where filename is the name of the file opened in the IDL Editor
(d_uscensus.pro, in this example).

Running Programs From the IDL Command Line

When a file is specified by typing only the filename at the IDL prompt, IDL searches
the current directory for filename.pro (where filename is the file specified) and then for
filename.sav. If no file is found in the current directory, IDL searches in the same way
in each directory specified by !PATH. If a file is found, IDL automatically compiles
the contents and executes any functions or procedures that have the same name as the
file specified (excluding the extension). See “Automatic Compilation” on page 30 for
additional details.

Using the previous example, run the US Census Data demo by entering the following
at the command line:

d_uscensus
Running Named Programs Application Programming

Chapter 2: Creating and Running Programs in IDL 29
Running Programs Using Executive Commands

When a file is specified using either the .RUN, .RNEW, .COMPILE, or @ command
followed by the filename, IDL searches the current directory for filename.pro
(where filename is the file specified) and then for filename.sav. If no file is found in
the current directory, IDL searches in the same way in each directory specified by
!PATH. If a file is found, IDL compiles or runs the file as specified by the executive
command used. Executive commands can be entered only at the IDL command
prompt, and are often used when executing $MAIN$ program files. See “About
Executive Commands” on page 38 for more information.

Note
If you are compiling files that do not exist in your path, make sure to compile
functions before procedures. This keeps IDL from misinterpreting a function call as
a subscribed variable or array definition. See “Compiling Your Program” on
page 30 for details.

Warning
If the current directory contains a subdirectory with the same name as filename, IDL
will consider the file to have been found and stop searching. To avoid this problem,
specify the extension (.pro or .sav, usually) when entering the run, compile, or
batch file executive command.

The details of how !PATH is initialized and used differ between the various operating
systems, although the overall concept is the same. See “!PATH” (Appendix D, IDL
Reference Guide) for more information.
Application Programming Running Named Programs

30 Chapter 2: Creating and Running Programs in IDL
Compiling Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (a function or procedure built into IDL, such as iPLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compiles it automatically. When a user-defined function or procedure is called,
IDL must find the routine and then compile it. Compilation can be either automatic or
manual, as described below.

Warning
User-written functions must be defined before they are referenced, unless they:

1) Exist in the IDL !PATH.
2) Exist in a .pro file with the same name as the function.
3) Are reserved using the FORWARD_FUNCTION statement.

Defining the function is necessary to distinguish between function calls and
subscripted variable references. See “About Calling and Compiling Functions” on
page 79 for details.

Automatic Compilation

When you enter the name of an uncompiled user-defined routine at the command line
or call the routine from another routine, IDL searches the current directory for
filename.pro, then filename.sav, where filename is the name of the specified
routine. If no file is found in the current directory, IDL searches each directory
specified by !PATH. (For more on the IDL path, see “!PATH” (IDL Reference
Guide).)

If no file matching the routine name is found, IDL issues an error:

% Attempt to call undefined procedure/function: 'routine'

where routine is the name of the routine you specified.

If a file is found, IDL automatically compiles the contents of the file up to the routine
with the same name of the file (excluding the suffix), and then executes the routine. If
the file does not contain the definition of a routine with the same name as the file,
IDL issues the same error as when the no file with the correct name is found.

For example, suppose a file named proc1.pro contains the following procedure
definitions:

PRO proc1
PRINT, 'This is proc1'

END
Compiling Your Program Application Programming

Chapter 2: Creating and Running Programs in IDL 31
PRO proc2
PRINT, 'This is proc2'

END

PRO proc3
PRINT, 'This is proc3'

END

If you enter proc1 at the IDL command line, only the proc1 procedure will be
compiled and executed. If you enter proc2 or proc3 at the command line, you will
get an error informing you that you attempted to call an undefined procedure.

In general, the name of the IDL program file should be the same as the name of the
last routine within the file. This last routine is usually the main routine, which calls
all the other routines within the IDL program file (or, in the case of object classes, the
class definition). Using this convention for your IDL program files ensures that all
the related routines within the file are compiled before being called by the last main
routine.

Program files within the IDL distribution use this formatting style. For example, open
the program file for the XLOADCT procedure, xloadct.pro, in the IDL Editor.
This file is in the lib/utilities subdirectory of the IDL distribution. This file
contains several routines. The main routine (XLOADCT) is at the bottom of the file.
When this file is compiled, the IDL Console notes all the routines within this file that
are compiled:

IDL> .COMPILE XLOADCT
% Compiled module: XLCT_PSAVE.
% Compiled module: XLCT_ALERT_CALLER.
% Compiled module: XLCT_SHOW.
% Compiled module: XLCT_DRAW_CPS.
% Compiled module: XLCT_TRANSFER.
% Compiled module: XLOADCT_EVENT.
% Compiled module: XLOADCT.

Note that the main XLOADCT procedure is compiled last.

Tip
When editing a program file containing multiple functions and/or procedures in the
IDL Editor, you can easily move to the desired function or procedure in the Outline
view by selecting the Outline tab next to the Project Explorer tab. Select the
function or procedure name from the list, and the Editor highlights and displays it.
Application Programming Compiling Your Program

32 Chapter 2: Creating and Running Programs in IDL
Manual Compilation

There are several ways to manually compile a procedure or function.

• Use the .COMPILE executive command at the IDL command line:

.COMPILE myFile

where myFile is the name of a .pro file located either in IDL’s current
working directory or in one of the directories specified by !PATH. All the
routines included in the specified file will be compiled, but none will be
executed automatically. If you are using the IDL Workbench, the .pro file
will also be opened in the IDL Editor.

• If the file is open in the IDL Editor, select Run → Compile or click the
Compile button on the toolbar. All routines within the file will be compiled,
but none will be executed automatically.

• Use the .RUN or .RNEW executive command at the IDL command line:

.RUN myFile

where myFile is the name of a .pro file located either in IDL’s current
working directory or in one of the directories specified by !PATH. All the
routines included in the specified file will be compiled, and any $MAIN$ level
programs will be executed automatically. If you are using the IDL Workbench,
the .pro file will also be opened in the IDL Editor.

• Use the .RUN, .RNEW, or .COMPILE executive command with no filename
argument to interactively create and compile a $MAIN$ level program. The
Command line prompt changes from IDL > prompt toe - so that you can start
entering the $MAIN$ level program. See “Creating $MAIN$ Programs” on
page 22 for additional details.

Note
Only .pro files can be compiled using the manual compilation mechanisms.
Attempting to compile a SAVE (.sav) file using one of these mechanisms will
result in an error.

The “Hello World” example shown in “Compiling Your Program” on page 30 has a
user-defined procedure that contains a call to a user-defined function. If you enter the
name of the user-defined procedure, hello_main, at the command line, IDL will
compile and execute the hello_main procedure. After you provide the requested
input, a call to the hello_who function is made. IDL searches for hello_who.pro,
and compiles and executes the function.
Compiling Your Program Application Programming

Chapter 2: Creating and Running Programs in IDL 33
Compilation Errors

If an error occurs during compilation, the error is reported in the IDL Workbench
Console view. For example, because the END statement is commented out, the
following user-defined procedure will result in a compilation error:

PRO procedure_without_END
PRINT, 'Hello World'

;END

When trying to compile this procedure (after saving it into a file named
procedure_without_END.pro), you will receive an error similar to the following
the IDL Console view:

IDL> .COMPILE procedure_without_END

% End of file encountered before end of program.
At: C:\ITT\workspace\Default\procedure_without_end.pro, Line 4

% 1 Compilation error(s) in module PROCEDURE_WITHOUT_END.

Note
The IDL Editor displays a red dot to the left of each line that contains an error.

Setting Compilation Options

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears. The syntax of COMPILE_OPT is as
follows:

COMPILE_OPT opt1 [,opt2, ..., optn]

where optn is any of the available options documented in “COMPILE_OPT” (IDL
Reference Guide). These options allow you to change default values of true and false,
hide routines from HELP, and reserve the use of parentheses for functions. See
COMPILE_OPT for complete details.
Application Programming Compiling Your Program

34 Chapter 2: Creating and Running Programs in IDL
Making Code Readable

Commenting code and limiting line length both promote readability. See the
following sections for details.

Using Code Comments

In IDL, the semicolon (;) is the comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully document programs with comments. Comments in IDL do not slow down code
execution or add noticeable size to IDL files.

A comment can exist on a line by itself, or can follow another IDL statement, as
shown below:

; This is a comment
COUNT = 5 ; Set the variable COUNT equal to 5.

Using Line Continuations

The line continuation character ($) allows you to break a single IDL statement into
multiple lines. The dollar sign at the end of a line indicates that the current statement
is continued on the following line. The dollar sign character can appear anywhere a
space is legal, except within a string constant or between a function name and the first
open parenthesis. Any number of continuation lines are allowed. The following
example shows a line continuation after the space at the end of the third line:

PRO sample_recurse2, oNode, indent
;; "Visit" the node by printing its name and value
PRINT, indent gt 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $

oNode->GetNodeName(), ':', oNode->GetNodeValue()
...
Making Code Readable Application Programming

Chapter 2: Creating and Running Programs in IDL 35
Command Line Tips and Tricks

Entering text at the command line allows you to perform ad hoc analysis, compile and
launch applications, and create $MAIN$ programs. IDL provides some valuable
command line functionality to support these tasks. See the following sections for
details.

• “Copying and Pasting Multiple IDL Code Lines” on page 35

• “Recalling Commands” on page 36

• “Special Command Line Characters” on page 37

• “Special Command Line Key Combination” on page 38

Note
Also see “Recording IDL Command Line Input” on page 40 for information on
maintaining the history of an IDL session in a file.

Copying and Pasting Multiple IDL Code Lines

You can paste multiple lines of text from the clipboard to the command line. You
simply need to place some text in the clipboard and paste it into the command line.
Any source of text is valid, with emphasis on the requirement that the text be
convertible to ASCII.

When you are using the tty-based command line version of IDL and you paste
multiple lines, make sure that they contain only a single IDL command or are
statements containing line continuation characters ($). Multi-line statements will
produce unintended IDL interpreter behavior or errors. Lines are transferred to the
command line as is. Namely, leading white space is not removed and comment lines
are sent to the IDL interpreter without distinction.

If you are using the IDL Workbench, you can paste multiple statements directly into
the Command Line view. You can also drag single or multiple lines from the
Command History view to the Command Line view.
Application Programming Command Line Tips and Tricks

36 Chapter 2: Creating and Running Programs in IDL
Recalling Commands

By default, IDL saves the last 500 commands entered in a recall buffer. These
command lines can be viewed, edited, and re-entered. The Command History view to
the right of the Console displays the command history, organized by day.

You can re-use and edit commands by recalling them on the Command Line. The up-
arrow key (↑) on the keypad recalls the previous command you entered to IDL.
Pressing it again recalls the previous line, moving backward through the command
history list. The down-arrow key (↓) on the keypad moves forward through the
command history.

Note
Using the HELP procedure with the RECALL_COMMANDS keyword displays the
entire contents of the recall buffer in the IDL Console.

Command recall is always available in the IDL Workbench. The command recall
feature is enabled for the tty-based command-line version of IDL by setting the
IDL_EDIT_INPUT preference to true, which sets the system variable !EDIT_INPUT
to a non-zero value (the default is 1). See “!EDIT_INPUT” (Appendix D, IDL
Reference Guide) for details.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by setting
the IDL_RBUF_SIZE preference equal to a number other than one (in the IDL
Workbench, you can set this value via the General tab of the IDL Workbench
Preferences dialog as well.)
Recalling Commands Application Programming

Chapter 2: Creating and Running Programs in IDL 37
Special Command Line Characters

Commands entered at the IDL prompt are usually interpreted as IDL statements to be
executed. Other interpretations include executive commands that control execution
and compilation of programs, shell commands, and so on. Input to the IDL prompt is
interpreted according to the first character of the line, as shown in the following table.

Note
The information in this section applies equally to IDL used in command-line mode
or in the IDL Workbench.

First Character Action

. Executive command. See “About Executive
Commands” on page 38 for details.

? Help inquiry. For example, enter ? on the Command
Line to open the online help system. Enter ? .RUN to
open the Help system to the page that explains the
.RUN command.

 $ Send an operating system commands to a subprocess.

Note - the SPAWN procedure is a more flexible
alternative. It need not be used interactively and the
standard output of the command can be saved in an
IDL string array. See “SPAWN” (IDL Reference
Guide) for details.

@ Batch file initiation.

↑ or ↓ key Recall /edit previous commands.

CTRL+D In UNIX command-line mode, exits IDL, closes all
files, and returns to operating system.

CTRL+Z In UNIX command-line mode, suspends IDL.

All others IDL statement.

Table 2-2: Interpretation of the First Character in an IDL Command
Application Programming Special Command Line Characters

38 Chapter 2: Creating and Running Programs in IDL
About Executive Commands

IDL executive commands compile programs, continue stopped programs, and start
previously compiled programs. All of these commands begin with a period and must
be entered in response to the IDL prompt. Commands can be entered in either
uppercase or lowercase and can be abbreviated. Under UNIX, filenames are case
sensitive; under Microsoft Windows, filenames can be specified in any case. See
“Executive Commands” (IDL Quick Reference) for a descriptions of the available
executive commands.

Note
Comments (prefaced by the semicolon character in IDL code) are not allowed
within executive commands.

Executive commands are used to create $MAIN$ programs. See “Creating $MAIN$
Programs” on page 22 for details.

Special Command Line Key Combination

When working at the command line, key combinations can be used to quickly edit a
command. The line-editing abilities and the keys that activate them differ somewhat
between the different operating systems. To access the history of commands entered
at the command line, see “Recalling Commands” on page 36.

Note
The behavior can also differ within the same operating system, between the
tty-based command line and the Command Line view in the IDL Workbench.

The table below lists the edit functions and the corresponding keys.

Function TTY (Command line) IDL Workbench

Move cursor to start of line CTRL+A or Home CTRL+A or Home

Move cursor to end of line CTRL+E or End CTRL+A or Home

Move cursor left one
character

Left arrow Left arrow

Move cursor right one
character

Right arrow Right arrow

Table 2-3: Command Recall and Line Editing Keys
Special Command Line Characters Application Programming

Chapter 2: Creating and Running Programs in IDL 39
Move cursor left one word CTRL+B,
(R13 on Sun Keyboard)

CTRL+left arrow

Move cursor right one word CTRL+F,
(R15 on Sun Keyboard)

CTRL+right arrow

Delete from current to start
of line

CTRL+U CTRL+U

Delete from current to end
of line

CTRL+K CTRL+K

Delete current character CTRL+X or CTRL+D CTRL+X or Delete

Delete previous character CTRL+H, or Backspace,
or Delete

Backspace

Delete previous word CTRL+W, or ESC-Delete

Generate IDL keyboard
interrupt

CTRL+C CTRL+break

Move back one line in
recall buffer

CTRL+N, Up arrow Up arrow

Move forward one line in
recall buffer

Down arrow Down arrow

Redraw current line CTRL+R

Overstrike/Insert ESC-I

EOF if current line is
empty, else EOL

CTRL+D

Search recall buffer for text Available only in
command-line mode.
Enter ^ , then input
search string at prompt.

Insert the character at the
current Executive
Commands position

any character any character

Function TTY (Command line) IDL Workbench

Table 2-3: Command Recall and Line Editing Keys (Continued)
Application Programming Special Command Line Characters

40 Chapter 2: Creating and Running Programs in IDL
Recording IDL Command Line Input

Journaling provides a record of an interactive session by saving all text entered from
the Command Line in a file. In journaling, all text entered to the IDL prompt is
entered directly into the file, and any text entered from the terminal in response to any
other input request (such as with the READ procedure) is entered as a comment. The
result is a file that contains a complete description of the IDL session. JOURNAL has
the form:

JOURNAL[, Argument]

where Argument is either a filename (if journaling is not currently in progress) or an
expression to be written to the file (if journaling is active). The first call to
JOURNAL starts the logging process. If no argument is supplied, a journal file
named idlsave.pro is started.

Warning
Under all operating systems, creating a new journal file will cause any existing file
with the same name to be lost. Supply a filename argument to JOURNAL to avoid
destroying existing files.

When journaling is not in progress, the value of the system variable !JOURNAL is
zero. When the journal file is opened, the value of this system variable is set to the
number of the logical file unit on which the file is opened. This allows IDL routines
to check if journaling is active. You can send any arbitrary data to this file using the
normal IDL output routines. In addition, calling JOURNAL with an argument while
journaling is in progress results in the argument being written to the journal file as if
the PRINT procedure had been used. In other words, the statement,

JOURNAL,

is equivalent to

PRINTF, !JOURNAL, Argument

with one significant difference—the JOURNAL statement is not logged to the file,
only its output; while the PRINTF statement will be logged to the file in addition to
its output.

Journaling ends when the JOURNAL procedure is called again without an argument
or when IDL is exited. The resulting file serves as a record of the interactive session
that went on while journaling was active. It can be used later as an IDL batch input
file to repeat the session, and it can be edited with any text editor if changes are
necessary. See “JOURNAL” (IDL Reference Guide) for examples.
Recording IDL Command Line Input Application Programming

Chapter 2: Creating and Running Programs in IDL 41
Interrupting or Aborting Execution

To manually stop programs that are running, issue a keyboard interrupt by typing
Ctrl+C. A message indicating the statement number and program unit being
executed is issued on the terminal or IDL Console acknowledging the interrupt. The
values of variables can be examined, statements can be entered from the keyboard,
and variables can be changed. The program can be resumed by issuing the
.CONTINUE executive command to resume or the .STEP executive command to
execute the next statement and stop.

Variable Context After Interruption

When a program is interrupted, the variable context is within the program unit where
the program stopped. IDL checks for interrupts after each statement. Program
execution does not stop until the active statement finishes, so it can take some time
after you type an interrupt for the program to be interrupted.

Note
You can view the variables in a program using the IDL Workbench Variables view.

To revert to the next-higher program level, use the RETURN statement at the
Command Line. You can repeat this command until the program returns to the main
level. To return control to the main program level, use the RETALL command. To
find out where the interrupt occurred, use the HELP command to determine the
program context.

Varibles view

Aborting IDL on UNIX Systems

If you use IDL in command-line mode on a UNIX system and need to abort rather
than exit using the EXIT command, type Ctrl+\. This is a very abrupt exit—all
variables are lost, and open files may not be saved. You should always close IDL
using the EXIT command when possible. Avoid using Ctrl+\ except in emergency
situations.

Note
After aborting IDL by using Ctrl+\ , you may find that your terminal is left in the
wrong state. You can restore your terminal to the correct state by issuing one of the
following UNIX commands:
Application Programming Interrupting or Aborting Execution

javascript:doEclipse("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=org.eclipse.debug.ui.VariableView)")

42 Chapter 2: Creating and Running Programs in IDL
% reset or % stty echo -cbreak
Interrupting or Aborting Execution Application Programming

Chapter 2: Creating and Running Programs in IDL 43
For More Information on Programming

Here we have just touched on the possibilities that IDL offers for programmers. For
more information on how to prepare and run programs, see Chapter 5, “Creating
Procedures and Functions” for creating and calling procedures and functions. It also
describes argument and keyword parameters, and keyword inheritance.
Application Programming For More Information on Programming

44 Chapter 2: Creating and Running Programs in IDL
For More Information on Programming Application Programming

Chapter 3

Executing Batch Jobs
in IDL
The following topics are covered in this chapter:
Overview of Batch Files 46
Batch File Execution 47

Interpretation of Batch Statements 49
A Batch Example . 50
Application Programming 45

46 Chapter 3: Executing Batch Jobs in IDL
Overview of Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch file is read and executed before proceeding to the next line. This makes batch
files different from main-level programs, which are compiled as a unit before being
executed, and named programs, in which all program modules are compiled as an
unit before being executed. A file created by the JOURNAL routine is an example of
an batch file. Program types and more information on journaling are described in
Chapter 2, “Creating and Running Programs in IDL”.

Note
Batch files are sometimes referred to as include files, since they can be used to
“include” the multiple IDL statements contained in the file in another file.

See the following topics for more information on batch files:

• “Batch File Execution” on page 47

• “Interpretation of Batch Statements” on page 49

• “A Batch Example” on page 50

Tip
For information on how to specify a batch file as a startup file that is automatically
executed when IDL is started, see “Startup Files” (Chapter 1, Using IDL).
Overview of Batch Files Application Programming

Chapter 3: Executing Batch Jobs in IDL 47
Batch File Execution

You can run IDL in non-interactive mode (batch mode) by entering the character @
followed by the name of a file containing IDL executive commands and statements.
Commands and statements are executed in the order they are contained in the file, as
if they had been entered at the IDL command prompt.

Batch execution can be terminated before the end of the file, with control returning to
interactive mode without exiting IDL, by calling the STOP procedure from the batch
file. Calling the EXIT procedure from the batch procedure has the usual effect of
terminating IDL.

Executing a Batch File

To execute a batch file, enter the name of the file, prefaced with the “@” character, at
the IDL prompt:

@batchfile

where batchfile is the name of the file containing IDL statements. Note that the @
symbol must be the first character on the line in order for it to be interpreted properly.

Note
This syntax can also be used within an IDL program file.

The cntour01 batch file contains the following lines:

; Restore Maroon Bells data into the IDL variable "elev".
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples','data'])
; Make the x and y vectors giving the column and row positions.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FINDGEN(92).

Enter the following at the IDL command line to execute the batch file:

@cntour01

IDL reads statements from the specified file until the end of the file is reached.
Variables ELEV, X, and Y appear in the variable watch window. Batch files can also
be nested by placing a call to one batch file within another. For example, the surf01
batch file calls the cntour01 batch file and uses the variable data to create a surface
display. To see the results, enter the following at the command line:

@surf01
Application Programming Batch File Execution

48 Chapter 3: Executing Batch Jobs in IDL
Naming and Locating Batch Files

If filename does not include a file extension, IDL searches the current working
directory and the directories specified by the !PATH system variable for a file with
filename as its base, with the file extension .pro. If filename.pro is not found in a
given directory, IDL searches for filename with no extension in that directory. If
filename is found (with or without the .pro extension), the file is executed and the
search ends. If filename includes a full path specification, IDL does not search the
directories in !PATH.
Batch File Execution Application Programming

Chapter 3: Executing Batch Jobs in IDL 49
Interpretation of Batch Statements

Each line of a batch file is interpreted exactly as if it was entered from the keyboard.
In batch mode, IDL compiles and executes each statement before reading the next
statement. This differs from the interpretation of main-level programs compiled using
.RNEW or .RUN, in which all statements in a program are compiled as a single unit
and then executed.

GOTO statements are illegal in the batch mode because each batch file statement is
compiled and executed sequentially.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending with
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

; This will not work in batch mode.
FOR I = 1, 10 DO BEGIN

A = X[I]
...
...

ENDFOR

In batch mode, IDL compiles and executes each line separately, causing syntax errors
in the above example because no matching ENDFOR is found on the line containing
the BEGIN statement when the line is compiled. The above example could be made
to work by writing the block of statements as a single line using the $ (continuation)
and & (multiple commands on a single line) characters.
Application Programming Interpretation of Batch Statements

50 Chapter 3: Executing Batch Jobs in IDL
A Batch Example

You can create a batch file in the IDL Editor or other text editor program. An
example of an IDL executive command line that initiates batch execution:

@myfile

This command causes the file myfile to be used for statement and command input.
If this file is not in the current directory, the directories specified by !PATH are also
searched.

An example of the contents of a batch file follows:

; Run program A:
.RUN proga
; Run program B:
.RUN progb
; Print results:
PRINT, AVALUE, BVALUE
; Close unit 3:
CLOSE, 3

The batch file should not contain complete program units. Complete program units
should be compiled and run by using the .RUN and .RNEW commands in the batch
files, as illustrated above.

Example Code
Several working batch files are included in the distribution. For an example, type
@sigprc09 at the IDL prompt to run the batch file. The source code for this
example is located in sigprc09, in the examples/doc/signal directory.
A Batch Example Application Programming

Chapter 4

Creating SAVE Files of
Programs and Data
The following topics are covered in this chapter:
Overview of SAVE Files 52
About Program and Data SAVE Files 54
Creating SAVE Files of Program Files 56

Saving Variables from an IDL Session . . . 65
Executing SAVE Files 67
Changes to IDL 5.4 SAVE Files 70
Application Programming 51

52 Chapter 4: Creating SAVE Files of Programs and Data
Overview of SAVE Files

You can create binary files containing data variables, system variables, functions,
procedures, or objects using the SAVE procedure. These SAVE files can be shared
with other users who will be able to execute the program, but who will not have
access to the IDL code that created it. Variables that are used from session to session
can be saved as and recovered from a SAVE file.

Tip
A startup file can be set up to execute the RESTORE command every time IDL is
started. See “Startup Files” (Chapter 1, Using IDL) for information on specifying a
startup files.

Note
Files containing IDL routines and system variables can only be restored by versions
of IDL that share the same internal code representation. Since the internal code
representation changes regularly, you should always archive the IDL language
source files (.pro files) for routines you are placing in IDL SAVE files so you can
recompile the code when a new version of IDL is released.

What Can be Stored in a SAVE File

A SAVE file can contain system variables, data variables, or named program files.
See the following topics for details:

• Named routines — store one or more routines in a single SAVE file and
distribute it other IDL users. See “About Program and Data SAVE Files” on
page 54.

• Variable data — store system or session variable data in a SAVE file. See
“Saving Variables from an IDL Session” on page 65.

Warning
Variables and routines cannot be stored in the same SAVE file.

Save Files and Application Development

For distributable applications, IDL does not compile .pro files. Therefore, any
procedures or functions used by an application must be resolved and contained in a
SAVE file. For IDL applications, these routines can be part of the main SAVE file
Overview of SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 53
that is restored when your application is started. The following are examples of cases
in which you might use SAVE to create .sav files:

• To create SAVE files for any procedures or functions that are not contained in
the main SAVE file that is restored when a native IDL application is started

• To create SAVE files for any procedures or functions used by a Callable IDL
or ActiveX application

• To create SAVE files for any variables used by your application, such as
custom ASCII templates

If your application is composed of a number of procedures and other types of files, it
would likely be easier to create a SAVE file using the IDL Workbench Build Project
interface; see Running and Building IDL Projects for information. See Chapter 23,
“Distributing Runtime Mode Applications” for more information on creating
applications in IDL, including how to license your application and package it for
distribution.

Accessing and Running SAVE Files

Depending upon the name and contents of the SAVE file, there are a number of ways
to restore the file. SAVE files containing routines can be executed in a fully licensed
version of IDL, through the IDL Virtual Machine (if created in IDL version 6.0 or
later), or using the IDL_Savefile object. SAVE files containing variable data can be
restored using the RESTORE procedure or the IDL_Savefile object. You may also be
able to automatically compile and restore the file by typing the name of the file at the
command line. See “Executing SAVE Files” on page 67 for details.
Application Programming Overview of SAVE Files

../com.rsi.idl.doc.wb/Running_and_Building_IDL_Projects.html

54 Chapter 4: Creating SAVE Files of Programs and Data
About Program and Data SAVE Files

The SAVE procedure can be used to quickly save IDL routines and data variables in a
binary format that can be shared with other IDL users, or with others who have
installed the IDL Virtual Machine. If you are developing an application for
distribution to users who do not have a version of IDL installed, you should also see
Chapter 23, “Distributing Runtime Mode Applications”.

Warning
Variables and routines cannot be stored in the same SAVE file.

Note
While IDL routines or data can be saved in a file with any extension, it is common
to use the extension .sav for SAVE files. Using the .sav extension has two
benefits: it makes it clear to another IDL user that the file contains IDL routines or
data, and it allows IDL automatically locate and compile the routines in the file as
described in “Automatic Compilation” on page 30.

If your program or utility consists of multiple routines, each procedure or function
used by your program must be resolved and contained in a SAVE file. You have the
following options:

• Include all routines in a main SAVE file that is restored first. This makes all
routines available without having to restore any additional SAVE files. You
can do this manually, by compiling all of the routines yourself (possibly with
the assistance of the RESOLVE_ALL or ITRESOLVE routines).

• Create a separate SAVE file for each routine used by your application.
Assuming each SAVE file uses the .sav extension and has the same name as
the procedure or function it contains, this allows you to simply place the files
in a directory included in !PATH; IDL will compile all of the files
automatically when needed.

If your program also contains variable data, you must create a separate SAVE file to
contain the data. Variable data must be explicitly restored before any routine attempts
to use the variables contained in the file. See “Executing SAVE Files” on page 67 for
more information.
About Program and Data SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 55
Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portable between different versions of IDL. If you created
your SAVE file with a version of IDL earlier than 5.5, you will need to recompile
your original .pro files and re-create the SAVE file using the current version of
IDL.
Application Programming About Program and Data SAVE Files

56 Chapter 4: Creating SAVE Files of Programs and Data
Creating SAVE Files of Program Files

The following examples create SAVE files that are stand-alone IDL applications that
can be run on any Windows, UNIX or Mac OS X computer containing the IDL
Virtual Machine or a licensed copy of IDL. See the following examples:

• Example: A SAVE File of a Simple Routine below creates two SAVE files.
One SAVE file contains variable data, the other SAVE file contains a
procedure uses RESTORE to access the variable data in the first SAVE file.

• “Example: A Save File of a Simple Widget Application” on page 59 displays
an image in a simple widget application.

• “Example: Creating a SAVE File of an Object Definition” on page 60 shows
the special steps that must be taken when creating a SAVE file of an object that
has dependencies upon other objects.

• “Example: A SAVE File of a Custom iPlot Display” on page 62 restores
variable data and plots it in an iPlot display.

Note
If you want your customers to run your application on a computer without IDL, you
will need to include a runtime version of IDL with a runtime or embedded license in
your application distribution. See Chapter 23, “Distributing Runtime Mode
Applications” for details.

Example: A SAVE File of a Simple Routine

The following example creates two SAVE files. One SAVE file contains variable
data, loaded from an image file. This SAVE file is then restored by the program in the
main SAVE file, which uses a simple call to the ARROW procedure to point out an
area of interest within the image.

Save Image Variable Data

1. Start a fresh session of IDL. This avoids saving unwanted session
information.

2. Read image data into a variable. Open an image file containing an MRI
proton density scan of a human thorax, and read the data into a variable named
image:

READ_JPEG, (FILEPATH('pdthorax124.jpg', SUBDIRECTORY= $
['examples', 'data'])), image
Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 57
3. Create a SAVE file containing the image data. Use the SAVE procedure to
save the image variable in a SAVE file by entering the following:

SAVE, image, FILENAME='imagefile.sav'

This stores the SAVE file in your current working directory.

Note
When using the SAVE procedure, some users identify binary files containing
variable data using a .dat extension instead of a .sav extension. While any
extension can be used to identify files created with SAVE, it is recommended that
you use the .sav extension to easily identify files that can be restored.

Save a Procedure that Restores Variable Data

1. Create the program file. Create the following IDL program that first restores
the image variable contained within the imagefile.sav file. This variable is
used in the following program statements defining the size of the window and
in the TV routine which displays the image. The ARROW routine then draws
an arrow within the window. Enter the following lines in a text editor.

PRO draw_arrow

; Restore image data.
RESTORE, 'imagefile.sav'

; Get the dimensions of the image file.
s = SIZE(image, /DIMENSIONS)

; Prepare display device and display image.
DEVICE, DECOMPOSED = 0
WINDOW, 0, XSIZE=s[0], YSIZE=s[1], TITLE="Point of Interest"
TV, image

; Draw the arrow.
ARROW, 40, 20, 165, 115

; The IDL Virtual Manchine exits IDL when the end of a
; program is reached if there are not internal events. The
; WAIT statement here allows the user to view the .sav file
; results for 10 seconds when executed through the IDL
; Virtual Machine.
WAIT, 10

END

2. Save the file. Name the saved file draw_arrow.pro.
Application Programming Creating SAVE Files of Program Files

58 Chapter 4: Creating SAVE Files of Programs and Data
3. Reset the IDL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET_SESSION

4. Compile the program. Enter the following at the IDL prompt:

.COMPILE draw_arrow

5. Resolve dependencies. Use RESOLVE_ALL (or ITRESOLVE if the routine
has any dependencies on iTools components) to iteratively compile any
uncompiled user-written or library procedures or functions that are called in
any already-compiled procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve procedures or functions that are called via
quoted strings such as CALL_PROCEDURE, CALL_FUNCTION, or
EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these
routines.

6. Create the SAVE file. Create a file called draw_arrow.sav that contains the
user-defined draw_arrow procedure. When the SAVE procedure is called with
the ROUTINES keyword and no arguments, it create a SAVE file containing
all currently compiled routines. Because the procedures within the
draw_arrow procedure are the only routines that are currently compiled in the
IDL session, create the SAVE file as follows:

SAVE, /ROUTINES, FILENAME='draw_arrow.sav'

Note
When the name of the SAVE file uses the .sav extension and has the same
base name as the main level program, it can be automatically compiled by
IDL. This means that it can be called from another routine or restored from
the IDL command line using only the name of the saved routine. See
“Automatic Compilation” on page 30 for details.

7. Test the SAVE file. Select Start → Programs → IDL 7.0 → IDL Virtual
Machine. Click on the splash screen and open draw_arrow.sav. You could
also test the SAVE file from IDL, enter the following at the command prompt.

RESTORE, 'draw_arrow.sav'
draw_arrow
Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 59
See “Executing SAVE Files” on page 67 for all the available ways to run a SAVE file.

Example: A Save File of a Simple Widget Application

The following example creates a native IDL application that displays an image in a
simple widget interface. When any application runs in the IDL Virtual Machine,
there must some element (such as widget or interface events, or a WAIT statement)
that keeps the application from immediately exiting with the END statement is
reached. This example includes a Done button for this reason. The example in
“Example: A SAVE File of a Simple Routine” on page 56 includes a WAIT
statement.

1. Create a .pro file. Enter the following in the IDL Editor, and save it as
myApp.pro:

PRO done_event, ev
; When the 'Done' button is pressed, exit
; the application.

WIDGET_CONTROL, ev.TOP, /DESTROY

END

PRO myApp

; Read an image file.
READ_JPEG, (FILEPATH('endocell.jpg', SUBDIRECTORY = $

['examples', 'data'])), image

; Find the dimensions of the image.
info = SIZE(image,/DIMENSIONS)
xdim = info[0]
ydim = info[1]

; Create a base widget containing a draw widget
; and a 'Done' button.
wBase = WIDGET_BASE(/COLUMN)
wDraw = WIDGET_DRAW(wBase, XSIZE=xdim, YSIZE=ydim)
wButton = WIDGET_BUTTON(wBase, VALUE='Done',
EVENT_PRO='done_event')

; Realize the widgets.
WIDGET_CONTROL, wBase, /REALIZE

; Retrieve the widget ID of the draw widget.
WIDGET_CONTROL, wDraw, GET_VALUE=index
Application Programming Creating SAVE Files of Program Files

60 Chapter 4: Creating SAVE Files of Programs and Data
; Set the current drawable area to the draw widget.
WSET, index

; Display some data.
TV, image

; Call XMANAGER to manage the event loop.
XMANAGER, 'myApp', wBase, /NO_BLOCK

END

2. Reset the IDL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET_SESSION

3. Compile the application. Select Run → Compile to compile the .pro file.

4. Resolve dependencies. Type RESOLVE_ALL at the command line to resolve
all procedures and functions that are called in the application:

RESOLVE_ALL

Note
If your program relies on iTools components, use ITRESOLVE instead of
RESOLVE_ALL.

5. Create the SAVE file. Enter the following to save the compiled application as
a SAVE file:

SAVE, /ROUTINES, FILENAME = 'myApp.sav'

See “Executing SAVE Files” for ways to run the SAVE file.

Example: Creating a SAVE File of an Object
Definition

When you create a SAVE file that contains an object defined in a .pro file, you must
save the .pro file as a SAVE file, just like any other procedure you wish to
distribute. However, it is important to note that if the object has any inherited
properties from superclasses or other objects, and the object definitions exist in .pro
files, you must also compile and include these object definition files in your SAVE
file. Objects using a .pro extension typically exist in the IDL distribution’s lib
subdirectory and its subdirectories.
Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 61
Note
Do not confuse the process of saving an instance of an object with saving its
definition. A reference to an instantiated object is stored in an IDL variable, and
must be saved in a SAVE file as a variable. An object definition, on the other hand,
is an IDL routine, and must be saved in a SAVE file as a routine. It is important to
remember that restoring an instance of an object does not restore the object’s
definition. If the object is defined in .pro code, you must save the object definition
routine and the object instance variable in separate SAVE files, and restore both
instance and definition in the target IDL session.

The IDL distribution includes and example of a composite object composed of an
image, a surface, and a contour, which are combined into a single object called the
IDLexShow3 object. To see this object being used in an application, run the
show3_track.pro file in the examples/doc/objects directory. This procedure
has dependencies on two objects (trackball.pro and
IDLexShow3__define.pro). You must use RESOLVE_ALL and explicitly
include these two objects in the CLASS keyword string array in order to create a
valid SAVE file.

If you fail to resolve all object dependencies, you will receive an error stating that
there was an attempt to call and undefined procedure or function when you run the
SAVE file. If the error references an object, add the object name to the CLASS
keyword string array to resolve the problem. Undefined procedure or function errors
are more likely to appear when you restore a SAVE file using the IDL Virtual
Machine, which does not search !PATH to resolve routines. Using RESTORE at the
command line does search !PATH. Therefore, a SAVE file that can be successfully
executed using RESTORE may not succeed when called from the IDL Virtual
Machine. If you are distributing SAVE files to users running the IDL Virtual
Machine, make sure to test the SAVE file in the Virtual Machine.

Complete the following steps to create a save file of an object:

1. Reset your session. Either start a new IDL session or enter the following at the
IDL prompt to ensure that no unwanted session information is saved along
with the program:

.FULL_RESET_SESSION

2. Open the main procedure. Open and compile show3_track.pro file by
entering the following at the IDL command prompt:

.COMPILE Show3_Track.pro
Application Programming Creating SAVE Files of Program Files

62 Chapter 4: Creating SAVE Files of Programs and Data
3. Resolve object dependencies. Use the CLASS keyword to resolve
dependencies to other object .pro files by passing it a string or string array
containing the name(s) of the objects:

RESOLVE_ALL, CLASS=['Trackball', 'IDLexShow3']

4. Create the SAVE file. Enter the following at the IDL command prompt:

SAVE, /ROUTINES, FILENAME='show3_track.sav'

5. Test the SAVE file. Select Start → Programs → IDL 7.0 → IDL Virtual
Machine. Click on the splash screen and open show3_track.sav. You could
also test the SAVE file from IDL. Enter the following at the command prompt.

RESTORE, 'show3_track.sav'
show3_track

See “Executing SAVE Files” on page 67 for all the available ways to run a SAVE file.

Example: A SAVE File of a Custom iPlot Display

The following example configures a custom iPlot display and stores the program in a
SAVE file. Restoring the SAVE file opens iPlot with the specified data.

Note
When working with iTools, you can create an iTool State (.isv) file that contains
data and application state information.You can share this file with other IDL users
who have the same version or a newer version of IDL. See the iTool User’s Guide
for details. This is not the same as packaging iTools functionality into a SAVE file,
which is described in this example. When iTools functionality is packaged into a
SAVE file, it can be accessed by IDL users or through the IDL Virtual Machine.

1. Access and save data. Save variable data from a batch file into a SAVE file:

@plot01
SAVE, FILENAME='plotdata01.sav'

2. Create the program file. This program restores data, and creates a plot
display in an iPlot display. Enter the following lines in a text editor:

PRO ex_saveiplot

; Define variables.
RESTORE, 'plotdata01.sav'

; Use the LINFIT function to fit the data to a line:
coeff = LINFIT(YEAR, SOCKEYE)
Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 63
;YFIT is the fitted line:
YFIT = coeff[0] + coeff[1]*YEAR

; Plot the original data points with PSYM = 4, for diamonds:
iPLOT, YEAR, SOCKEYE, /YNOZERO, SYM_INDEX = 4, $
 SYM_COLOR=[255,0,0], LINESTYLE=6, $
 TITLE = 'Quadratic Fit', XTITLE = 'Year', $
 YTITLE = 'Sockeye Population'

; Overplot the smooth curve using a plain line:
iPLOT, YEAR, YFIT, /OVERPLOT

END

3. Reset you session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET_SESSION

4. Compile the program. Use the .COMPILE executive command as follows:
Compile the main program file:

.COMPILE ex_saveiplot

5. Resolve dependencies. Use ITRESOLVE to resolve dependencies upon iTool
components:

ITRESOLVE

6. Create the SAVE file. Use the /ROUTINES keyword to include all currently
compiled routines:

SAVE, /ROUTINES, FILENAME='ex_saveiplot.sav'

7. Test the SAVE file. Select Start → Programs → IDL 7.0 → IDL Virtual
Machine. Click on the splash screen and open ex_saveiplot.sav. You
could also run the SAVE file from IDL. Enter the following at the command
prompt.

RESTORE, 'ex_saveiplot.sav'
ex_saveiplot

See “Executing SAVE Files” on page 67 for all the available ways to run a SAVE file.
Application Programming Creating SAVE Files of Program Files

64 Chapter 4: Creating SAVE Files of Programs and Data
Other Examples of SAVE File Creation

See the following topics for additional SAVE file examples:

• “ASCII_TEMPLATE” (IDL Reference Guide) contains Example: Create a
SAVE File of a Custom ASCII Template

• “XROI” (IDL Reference Guide) contains the following SAVE file examples:

• “Example: Save ROI Data”

• “Example: Save the XROI Utility with ROI Data”
Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 65
Saving Variables from an IDL Session

In addition to distributing IDL code in binary format, you can also create SAVE files
that contain variable data. The state of variables in an IDL session can be saved
quickly and easily, and can be restored to the same point. This feature allows you to
stop work, and later resume at a convenient time. Variables that you may wish to
create a SAVE file of include frequently used data files or system variable definitions.

Saving Data Variables in a SAVE File

Data can be conveniently stored in SAVE files, relieving you of the need to remember
the dimensions of arrays and other details. It is very convenient to store images this
way. For instance, if the three variables Red, Green, and Blue hold the color table
vectors, and the variable Image holds the image variable, the IDL statement,

SAVE, FILENAME = 'image.sav', Red, Green, Blue, Image

will save everything required to display the image properly in a file named
image.sav. At a later date, the simple command,

RESTORE, 'image.sav'

will recover the four variables from the file. See “Save Image Variable Data” on
page 56 for an additional example.

Saving Heap Variables in a SAVE File

The SAVE procedure works for heap variables just as it works for all other supported
types. By default, when IDL saves a pointer or object reference in a SAVE file, it
recursively saves the heap variables that are referenced by that pointer or object
reference.

In some cases, you may want to save the pointer or object reference, but not the heap
variable that are referenced by that pointer or object reference. You can specify that
the heap variable associated with a pointer or object reference not be saved using the
HEAP_NOSAVE procedure or the HEAP_SAVE function. See the documentation for
HEAP_SAVE for additional details.

Saving System Variables in a SAVE File

System variables can also be saved and later applied to another session of IDL. For
instance, you may choose to customize !PATH, the system variable defining the
directories IDL will search for libraries, batch/include files, and executive commands
Application Programming Saving Variables from an IDL Session

66 Chapter 4: Creating SAVE Files of Programs and Data
or !P, the system variable that controls the definition of graphic elements associated
with plot procedures. You can save these definitions in a SAVE file and later
automatically restore or selectively restore the variables to apply the settings to other
IDL sessions.

To save and restore the state of all current and system variables within an IDL
session, you could use the following statement:

SAVE, /ALL, FILENAME = 'myIDLsession.sav'

The ALL keyword saves all system variables and local variables from the current
IDL session. See Chapter 13, “Working with Data in IDL” for information on these
elements of an IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyword
does not save routines.

To restore the session information, enter:

RESTORE, 'myIDLsession.sav'

Note
If the file is not located in your current working directory, you will need to define
the path to the file.

Long iterative jobs can save their partial results in a SAVE format to guard against
losing data if some unexpected event such as a machine crash should occur.

Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portable between different versions of IDL. If you created
your SAVE file with a version of IDL earlier than 5.5, you will need to recompile
your original .pro files and re-create the SAVE file using the current version of
IDL.
Saving Variables from an IDL Session Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 67
Executing SAVE Files

IDL SAVE files (created using the SAVE procedure) can contain one or more
routines that have been packaged into a single binary file. SAVE files can also
contain system or data variables.

Note
While IDL routines or data can be saved in a file with any extension, it is common
to use the extension .sav for SAVE files. Using the .sav extension has two
benefits: it makes it clear to another IDL user that the file contains IDL routines or
data, and it allows IDL to locate routines with the same base name as the file in
SAVE files located in IDL’s path.

This section describes various ways to restore files created with the SAVE procedure.
In order of increasing complexity and flexibility, your options are:

• “Using the IDL Virtual Machine to Run SAVE Files”, described below

• “Executing SAVE Files by Name” on page 67

• “Using RESTORE to Access SAVE Files” on page 68

• “Using the IDL_Savefile Object to Access SAVE Files” on page 69

Using the IDL Virtual Machine to Run SAVE Files

Users without an IDL license can use the IDL Virtual Machine to access programs
contained in SAVE files created in IDL version 6.0 or later. See “Starting a Virtual
Machine Application” (Chapter 24, Application Programming) for instructions.

Note
There are a few limitations to SAVE file contents discussed in “Limitations of
Virtual Machine Applications” (Chapter 24, Application Programming).

Executing SAVE Files by Name

You can execute a program stored in a SAVE file from the IDL command line by
typing in the name of the routine if the file meets the following conditions:

• The SAVE file has the same base name as the routine you wish to run

• The SAVE file has the extension .sav

• The SAVE file is stored in a directory included in the !PATH system variable
Application Programming Executing SAVE Files

68 Chapter 4: Creating SAVE Files of Programs and Data
Call the procedure with the same name as the .sav file to restore the program and
execute it immediately using IDL’s automatic compilation mechanism. IDL will
search the current directory then the path specified by !PATH for a .sav file with the
name of the called routine and, if it finds the .sav file, it restores, compiles and
executes it automatically.

For example, to restore and execute the draw_arrow routine contained in the file
draw_arrow.sav (created in “Example: A SAVE File of a Simple Routine” on
page 56), enter the following at the command line:

draw_arrow

IDL will search for a file named either draw_arrow.pro or draw_arrow.sav,
beginning in the current working directory and then searching in each directory
specified by !PATH. When it finds a file whose name matches (in this case,
draw_arrow.sav), it will compile the routines in the file up to and including the
routine whose name matches the filename. IDL then executes the routine with the
matching name. See “Automatic Compilation” on page 30 for additional details.

Using RESTORE to Access SAVE Files

Use the RESTORE procedure to explicitly restore the entire contents of a SAVE file
that contains variable data or program files. Because calling a procedure with the
same name as a SAVE file allows IDL to automatically find and restore the SAVE
file, it isn’t always necessary to explicitly restore a .sav file using RESTORE. Cases
in which you must use RESTORE include the following:

• When you are restoring a SAVE file containing variable data.

• When your SAVE file contains multiple routines, and you need to first call a
routine that uses a different name than the .sav file. For example, if you have
a SAVE file named routines.sav that contains the ARROW and
BAR_PLOT procedures, you would need to restore routines.sav before
calling ARROW or BAR_PLOT.

Using RESTORE is more powerful and flexible than relying on IDL’s rules for
automatic compilation, for the following reasons:

• The restored SAVE file can contain IDL variable data

• If the restored SAVE file contains IDL routines, all routines contained in the
file will be restored, and none will be executed

• The restored SAVE file can have any filename and extension

• The restored SAVE file can be located in any directory
Executing SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 69
For example, in “Example: A SAVE File of a Simple Routine” on page 56, we
created two SAVE files: imagefile.sav and draw_arrow.sav. The
imagefile.sav file contains image variable data. To restore the image data, enter
the following at the IDL command line:

RESTORE, 'imagefile.sav'

IDL creates the variable image in the current scope using the saved variable data.

If the file you are attempting to restore is not located in your current working
directory, you will need to specify a path to the file. RESTORE does not search for
SAVE files in any other directory. For example, if draw_arrow.sav is located in
myappdir, restore it using the following statement:

RESTORE, 'myappdir/draw_arrow.sav'

Using the IDL_Savefile Object to Access SAVE Files

You can use the IDL_Savefile object class to gain information about the contents of a
SAVE file, and to selectively restore items from the save file. Once a routine has been
restored via calls the IDL_Savefile object, you can execute it simply by typing its
name at the IDL command prompt. For example, if an IDL program named
myroutine is stored in myroutine.sav, which is located in a directory that is not
in !PATH, entering the following at the IDL command line will restore the routine
and execute it:

obj = OBJ_NEW('IDL_Savefile', 'path/myroutine.sav')
obj->RESTORE, 'myroutine'
myroutine

where path is the full path to the myroutine.sav file. See “Getting Information
About SAVE Files” (Chapter 4, Using IDL) for additional details.
Application Programming Executing SAVE Files

70 Chapter 4: Creating SAVE Files of Programs and Data
Changes to IDL 5.4 SAVE Files

With IDL 5.4, IDL became 64-bit capable. The original IDL SAVE/RESTORE
format used 32-bit offsets. In order to support 64-bit memory access, the IDL
SAVE/RESTORE file format was modified to allow the use of 64-bit offsets within
the file, while retaining the ability to read old files that use the 32-bit offsets.

The SAVE command always begins reading any SAVE file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.

• In IDL versions capable of writing large files
(!VERSION.FILE_OFFSET_BITS EQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

• SAVE always starts reading any SAVE file using 32-bit offsets. If it sees the
64-bit offset command, it switches to 64-bit offsets for any commands
following that one.

This configuration is fully backward compatible, in that any IDL program can read
any SAVE file it has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
files written by newer IDL versions to sites where they are restored by older versions
of IDL. It is not generally reasonable to expect this sort of forward compatibility, and
it does not fit the usual definition of backwards compatibility. We have always
strived to maintain this compatibility. However, in IDL 5.4 this was not the case. The
following steps were taken in IDL 5.5 to minimize the problems caused by the IDL
5.4 save format:

• 64-bit offsets encoding has been improved. SAVE files written by IDL 5.5 and
later should be readable by any previous version of IDL, if the file data does
not exceed 2.1 GB in length.

• IDL 5.5 and later versions will retain the ability to read the 64-bit offset files
produced by IDL 5.4.x, thus ensuring backwards compatibility.

• SAVE files written by IDL 5.5 or later versions that contain file data exceeding
2.1GB in length are not readable by older versions of IDL, but will be readable
by IDL 5.5 and later versions of IDL that have !VERSION.MEMORY_BITS
equal to 64.

• The CONVERT_SR54 procedure, a part of the IDL 5.5 user library, can be
used to convert SAVE files written within IDL 5.4 into the newer IDL 5.5
Changes to IDL 5.4 SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 71
format. This allows existing data files to become readable by previous IDL
versions. The CONVERT_SR54 procedure is located in the
IDL_DIR/lib/obsolete directory.
Application Programming Changes to IDL 5.4 SAVE Files

72 Chapter 4: Creating SAVE Files of Programs and Data
Changes to IDL 5.4 SAVE Files Application Programming

Chapter 5

Creating Procedures
and Functions
The following topics are covered in this chapter:
Overview of Procedures and Functions 74
Defining a Procedure 75
Defining a Function 78
Automatic Compilation and Execution 79
Parameters . 81
Using Keyword Parameters 85
Determining if a Keyword is Set 86
Supplying Values for Missing Keywords . . 87

Supplying Values for Missing Arguments . 88
Keyword Inheritance 89
Entering Procedure Definitions 96
How IDL Resolves Routines 97
Parameter Passing Mechanism 98
Calling Mechanism 100
Calling Functions/Procedures Indirectly . 102
Application Programming 73

74 Chapter 5: Creating Procedures and Functions
Overview of Procedures and Functions

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the command prompt or from
other programs. When a procedure or function is finished, it executes a RETURN
statement that returns control to its caller. Functions always return an explicit result.

A procedure is called by a procedure call statement, while a function is called by a
function reference. For example, if myproABC is a procedure and myfuncXYZ is a
function, the calling syntax is:

; Call procedure with two parameters.
myproABC, A, 12

; Call function with one parameter. The result is stored
; in variable A.
A = myfuncXYZ(C/D)

Note
See Chapter 6, “Library Authoring” for information on naming procedures to avoid
conflicts with IDL routine names. It is important to implement and consistently use
a naming scheme from the earliest stages of code development.

Procedures and functions are collectively referred to as routines. An IDL program file
may contain one or many routines, which can be a mix of procedures and functions.
Overview of Procedures and Functions Application Programming

Chapter 5: Creating Procedures and Functions 75
Defining a Procedure

A sequence of one or more IDL statements can be given a name, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

The general format for the definition of a procedure is as follows:

PRO Name, Parameter1, ..., Parametern
; Statements defining procedure.
Statement1
Statement2
...

; End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that is in a directory in the IDL search path (!PATH)
and has the same name as the prefix of the .sav or .pro file, causes the procedure
to be read from the disk, compiled, and executed without interrupting program
execution.

Calling a Procedure

The syntax of the procedure call statement is as follows:

Procedure_Name, Parameter1, Parameter2, ..., Parametern

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:

• System procedures provided with IDL.

• User-written procedures written in IDL and compiled with the .RUN
command.

• User-written procedures that are compiled automatically because they reside in
directories in the search path. These procedures are compiled the first time
they are used. See “Automatic Compilation and Execution” on page 79.
Application Programming Defining a Procedure

76 Chapter 5: Creating Procedures and Functions
• Procedures written in IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

• Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Procedure Examples

Some procedures can be called without any parameters. For example:

IPLOT

This is a procedure call to launch the iPlot iTool. There are no explicit inputs or
outputs. You can also call iPlot with parameters including data and color
specifications:

data = RANDOMU(Seed,45)
IPLOT, data, COLOR=[255,0,0]

This opens the iPlot tool and passes it random plot data. The data parameter is an
argument and the COLOR parameter is a keyword. These elements are described in
more detail in “Parameters” on page 81.

You can also create a named program consisting of a procedure. For example,
suppose you have a file called hello_world.pro containing the following code:

PRO hello_world
PRINT, 'Hello World'

END

This IDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension .pro or the extension .sav.
When IDL searches for a user-defined procedure or function, it searches for files
consisting of the name of the procedure or function, followed by the .pro or .sav
extension. Procedures and functions can also accept arguments and keywords. Both
arguments and keywords allow the program that calls the routine to pass data in the
form of IDL variables or expressions to the routine.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hello_world, name, INCLUDE_NAME = include
 IF (KEYWORD_SET(include) && (N_ELEMENTS(name) NE 0)) THEN BEGIN
 PRINT, 'Hello World From '+ name
 ENDIF ELSE PRINT, 'Hello World'
END
Defining a Procedure Application Programming

Chapter 5: Creating Procedures and Functions 77
Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the name variable if a value was
supplied for the name argument. Enter the following procedure call at the command
line:

hello_world, name, /INCLUDE_NAME

IDL prints,

Hello World

Now define a string name and repeat the procedure call:

name = "Horton"
hello_world, name, /INCLUDE_NAME

IDL prints:

Hello World From Horton

This example uses the KEYWORD_SET and N_ELEMENTS functions in order to
handle the possibility of missing information in a procedure or function call. See
“Determining if a Keyword is Set” on page 86 for more information.
Application Programming Defining a Procedure

78 Chapter 5: Creating Procedures and Functions
Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of its caller. It has its own local variables and
execution environment. Referencing a function causes the program unit to be
executed. All functions return a function value which is given as a parameter in the
RETURN statement used to exit the function. Function names can be up to 128
characters long.

The general format of a function definition is as follows:

FUNCTION Name, Parameter1, ..., Parametern
Statement1
Statement2
...
...
RETURN, Expression

END

Function Example

To define a function called AVERAGE, which returns the average value of an array,
use the following statements:

FUNCTION AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS(arr)

END

Once the function AVERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRINT, AVERAGE(X^2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. To return the result in a variable, use a function call as follows:

vAvg = AVERAGE(X^2)

Parameters passed to functions are identified by their position or by a keyword. See
“Using Keyword Parameters” on page 85. If a function has no parameters, you must
specify empty parentheses in the function call.
Defining a Function Application Programming

Chapter 5: Creating Procedures and Functions 79
Automatic Compilation and Execution

IDL automatically compiles and executes a user-written function or procedure when
it is first referenced if:

1. The source code of the function is in the current working directory or in a
directory in the IDL search path defined by the system variable !PATH.

2. The name of the file containing the function is the same as the function name
suffixed by .pro or .sav. The suffix should be in lowercase letters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be lowercase letters.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation, or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For more information on how to access routines, see “Running Named Programs” on
page 28.

About Calling and Compiling Functions

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable !PATH, must be compiled before the first reference to the
function is encountered. This is necessary because the IDL compiler is unable to
distinguish between a reference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
statement:

A = XYZ(5)

it is impossible to tell by context alone if XYZ is an array or a function.
Application Programming Automatic Compilation and Execution

80 Chapter 5: Creating Procedures and Functions
Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [] vs. ()” on page 307 for additional
details.

When IDL encounters references that may be either a function call or a subscripted
variable, it searches the current directory, then the directories specified by !PATH, for
files with names that match the unknown function or variable name. If one or more
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, IDL
displays an error message.

There are several ways to avoid this problem:

• Compile the lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

• Place the function in a file with the same name as the function, and place that
file in one of the directories specified by !PATH.

• Use the FORWARD_FUNCTION definition statement to inform IDL that a
given name refers to a function rather than a variable. See
“FORWARD_FUNCTION” (IDL Reference Guide).

• Manually compile all functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.
Automatic Compilation and Execution Application Programming

Chapter 5: Creating Procedures and Functions 81
Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the following,

; Call procedure with two parameters.
myproABC, A, 12

; Call function with one parameter. The result is stored
; in variable A.
A = myfuncXYZ(C/D)

the actual parameters in the procedure call are the variable A and the constant 12,
while the actual parameter in the function call is the value of the expression (C/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
a number of places in other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters (Arguments)

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=”) that identifies which
parameter is being passed.

When calling a routine with a keyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEYWORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.
Application Programming Parameters

82 Chapter 5: Creating Procedures and Functions
For example, a procedure is defined with a keyword parameter named TEST.

PRO XYZ, A, B, TEST = T

The caller can supply a value for the formal (keyword) parameter T with the
following calls:

; Supply only the value of T. A and B are undefined inside the
; procedure.
XYZ, TEST = A

; The value of A is copied to formal parameter T (note the
; abbreviation for TEST), Q to A, and R to B.
XYZ, TE = A, Q, R

; Variable Q is copied to formal parameter A. B and T are undefined
; inside the procedure.
XYZ, Q
result = FUNCTION(Arg1, Arg2, KEYWORD = value)

Note
When supplying keyword parameters for a function, keywords are specified inside
the parentheses.

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, via a RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or a function can be called with fewer arguments than were defined in
the procedure or function. For example, if a procedure is defined with 10 parameters,
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
Parameters Application Programming

Chapter 5: Creating Procedures and Functions 83
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parameters in the calling list can be found
by using the system function N_PARAMS. Use the N_ELEMENTS function to
determine if a variable is defined.

Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. This function is useful in user-written procedures to determine if a created
value remains within the scope of the calling routine. ARG_PRESENT helps the
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i

If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

IF ARG_PRESENT(i) THEN BEGIN

Function Parameters Example

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTION GRAD, image
; Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

; Evaluate and return the result.
RETURN, ABS(image - SHIFT(image, 1, 0)) + $

ABS(image-SHIFT(image, 0, 1))

; End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within a module (i.e., they are not parameters and
are not contained in common blocks).
Application Programming Parameters

84 Chapter 5: Creating Procedures and Functions
The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

; Store gradient of B in A.
A = GRAD(B)

; Display gradient of IMAGE.
; Access image data and pass to GRAD function.
; Display the gradient.
file=FILEPATH('endocell.jpg', SUBDIRECTORY=['examples','data'])
READ_JPEG, file, image, /GRAYSCALE
result=GRAD(image)
IIMAGE, result
Parameters Application Programming

Chapter 5: Creating Procedures and Functions 85
Using Keyword Parameters

A short example of a function that exchanges two columns of a 4 × 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

; Function to swap columns of T. XYEXCH swaps columns 0 and 1,
; XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTION SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

; Swap columns 0 and 1 if keyword XYEXCH is set.
IF KEYWORD_SET(XY) THEN S=[0,1] $

; Check to see if xz is set.
ELSE IF KEYWORD_SET(XZ) THEN S=[0,2] $

; Check to see if yz is set.
ELSE IF KEYWORD_SET(YZ) THEN S=[1,2] $

; If nothing is set, return.
ELSE RETURN, T

; Copy matrix for result.
R = T

; Exchange two columns using matrix insertion operators and
; subscript ranges.

R[S[1], 0] = T[S[0], *]
R[S[0], 0] = T[S[1], *]

; Return result.
RETURN, R

END

Typical calls to SWAP are as follows:

Q = SWAP(!P.T, /XYEXCH)
Q = SWAP(Q, /XYEX)
Q = SWAP(INVERT(Z), YZ = 1)
Q = SWAP(Z, XYE = I EQ 0, XZE = I EQ 1, YZE = I EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable I.
Application Programming Using Keyword Parameters

86 Chapter 5: Creating Procedures and Functions
Determining if a Keyword is Set

The previous function example (in “Using Keyword Parameters” on page 85) uses the
system function KEYWORD_SET to determine if a keyword parameter has been
passed and if it is nonzero. This is similar to using the condition:

IF N_ELEMENTS(P) NE 0 THEN IF P THEN

to test if keywords that have a true/false value are both present and true. The
N_ELEMENTS function returns the number of elements contained in any expression
or variable. Scalars always have one element. The N_ELEMENTS function returns
zero if its parameter is an undefined variable. The result is always a longword scalar.
The following example determines if a variable is defined using N_ELEMENTS. It sets
the variable abc to zero if it is undefined; otherwise, the variable is not changed.

IF N_ELEMENTS(abc) EQ 0 THEN abc = 0

The KEYWORD_SET function returns a 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedure is
written which performs and returns the result of a computation. If the keyword PLOT
is present and nonzero, the procedure also plots its result as follows:

; Procedure definition.
PRO XYZ, result, PLOT = plot

; Compute result.
...

; Plot result if keyword parameter is set.
IF KEYWORD_SET(PLOT) THEN PLOT, result

END

A call to this procedure that produces a plot is shown in the following statement.

XYZ, R, /PLOT
Determining if a Keyword is Set Application Programming

Chapter 5: Creating Procedures and Functions 87
Supplying Values for Missing Keywords

N_ELEMENTS is frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. (See “Supplying
Values for Missing Arguments” on page 88.) An example of using N_ELEMENTS to
check for a keyword parameter is as follows:

; Display an image with a given zoom factor.
; If factor is omitted, use 4.
PRO ZOOM, image, FACTOR = factor

; Supply default for missing keyword parameter.
IF N_ELEMENTS(factor) EQ 0 THEN factor = 4

Note
If you use this method, the variable factor is defined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable factor would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of factor,
you could use an approach similar to the following:

IF N_ELEMENTS(factor) EQ 0 THEN zoomfactor = 4 $
ELSE zoomfactor = factor

You would then set the zoom factor internally using the zoomfactor variable,
leaving factor itself unchanged.
Application Programming Supplying Values for Missing Keywords

88 Chapter 5: Creating Procedures and Functions
Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function call. A frequent use is to call
N_PARAMS to determine if all arguments are present and if not, to supply default
values for missing parameters. For example:

; Print values of XX and YY. If XX is omitted, print
; values of YY versus element number.
PRO XPRINT, XX, YY

; Check number of arguments.
CASE N_PARAMS() OF

; Single-argument case.
1: BEGIN

; First argument is y values.
Y = XX

; Create vector of subscript indices.
X = INDGEN(N_ELEMENTS(Y))

END

; Two-argument case.
2: BEGIN

; Copy parameters to local arguments.
Y = YY & X = XX

END

; Print error message.
ELSE: MESSAGE, 'Wrong number of arguments'

ENDCASE

; Remainder of procedure.
...

END
Supplying Values for Missing Arguments Application Programming

Chapter 5: Creating Procedures and Functions 89
Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is simple, and
requires significantly less maintenance. Keyword inheritance is of particular value
when writing:

• Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routine in a small way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappers to be very simple, and benefit from
not having to specify all the details of the underlying routine’s interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

• Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makes it simple to
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of its internal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. The routine must declare that it accepts inherited keywords. This is done by
specifying either the _EXTRA or _REF_EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_REF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword Inheritance Mechanisms” on page 90.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance Mechanism” on page 92. Only one of these
two keywords can be specified for a given routine.
Application Programming Keyword Inheritance

90 Chapter 5: Creating Procedures and Functions
2. The routine passes the inherited keywords to a called routine, by including
either the _EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an
inherited keyword is not accepted by the called routine. _EXTRA causes such
keywords to be quietly ignored, while _STRICT_EXTRA causes IDL to issue
an error and stop execution. _EXTRA is the usual choice, while
_STRICT_EXTRA is used primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

• The mechanism used by a routine for inherited keywords is solely determined
by which keyword (_EXTRA or _REF_EXTRA) is used in the formal
parameter list for that routine. Hence, _REF_EXTRA is only used in the
formal parameter list of a routine, and never in a call to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. There is no need to
change any of the calls to the routine, just the formal parameter list of the
routine itself.

• Attempting to use both the _EXTRA and _REF_EXTRA keywords together in
the formal parameter list of a function or procedure will cause an error to be
issued. You can only use one or the other.

• Only the caller of a routine can dictate whether keywords that are not
understood by the called routine should be ignored (_EXTRA) or should
generate an error (_STRICT_EXTRA). For this reason, _STRICT_EXTRA is
only used in a call to a routine, and not in the formal parameter list for the
routine.

• Attempting to use both the _EXTRA and _STRICT_EXTRA keywords
together in a call to a function or procedure will cause an error to be issued.
You can only use one or the other.

Keyword Inheritance Mechanisms

As described above, there are two possible mechanisms used by IDL to pass inherited
keywords. The one used by a routine is determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to a routine by value by
adding the keyword parameter _EXTRA to the formal argument list of that routine.
Passing parameters by value means that you are giving the called routine a copy of
Keyword Inheritance Application Programming

Chapter 5: Creating Procedures and Functions 91
the value of the passed parameter, and not the original. As such, any changes made to
the value of such a keyword is not passed back to the caller.

When a routine is defined with the formal keyword parameter _EXTRA, and
keywords that are not recognized by that routine are passed to it in a call, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag is a copy of the value that was passed to that keyword. If no unrecognized
keywords are passed in a call, the value of the _EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can all be of use in
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _EXTRA structure:

PRO SOMEPROC, _EXTRA = ex
if (N_ELEMENTS(ex) NE 0) $

THEN ex = CREATE_STRUCT(’COLOR’, 12, ex) $
ELSE ex = { COLOR : 12 }

SOME_UNDERLYING_PROC, _EXTRA=ex
END

The use of N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.

_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that a routine accepts inherited keywords by reference, by adding the
keyword _REF_EXTRA to the formal argument list of the routine. When a routine is
defined with _REF_EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, as with any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine as the
value of the _REF_EXTRA keyword. The presence of a name in the _REF_EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in a function or procedure call (using either _EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in a call, the value of
Application Programming Keyword Inheritance

92 Chapter 5: Creating Procedures and Functions
the _EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especially useful when
writing object methods.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names via the _EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:

PRO SOMEPROC, _REF_EXTRA = ex
ONE, _EXTRA=['MOOSE', 'SQUIRREL']
TWO, _EXTRA='SQUIRREL'

END

If we call the SOMEPROC routine with three keywords:

SOMEPROC, MOOSE=moose, SQUIRREL=3, SPY=PTR_NEW(moose)

• it will pass the keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

• it will pass the keyword SQUIRREL and its value to procedure TWO,

• it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.

Choosing a Keyword Inheritance Mechanism

The two available keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine:

• If your routine needs to see the values of the inherited keywords, and you do
not need to pass modified values back to the caller, use _EXTRA (pass by
value).

• If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use _REF_EXTRA (pass by
reference).

• If your routine is an object method, _REF_EXTRA is most likely the correct
choice for your application.
Keyword Inheritance Application Programming

Chapter 5: Creating Procedures and Functions 93
• If either mechanism will serve your needs, as is often the case, then we
recommend _REF_EXTRA, which has a minor efficiency advantage over
_EXTRA, due to the fact that it does not have to construct an anonymous
structure and copy the original values into it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism is to create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such a wrapper, using both available inheritance mechanisms.

By Value

In most wrapper routines, there is no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST is a wrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _EXTRA = e

END

This wrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such a keyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e

END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be placed into an anonymous structure assigned to the variable
e. If there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:

TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable e, within TEST, contains an anonymous structure with the value:

{ LINESTYLE: 4, THICK: 5 }
Application Programming Keyword Inheritance

94 Chapter 5: Creating Procedures and Functions
These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into a routine via _EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifies a color index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (_EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
suffices to change the _EXTRA keyword to _REF_EXTRA in the formal parameter
list:

PRO TEST, a, b, _REF_EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e

END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, a string
array containing the inherited keyword names is assigned to the variable e. If there
are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:

TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable e, within TEST, contains an anonymous structure with the value:

[‘LINESTYLE‘, ‘THICK‘]

These inherited keywords are then passed from TEST to the PLOT routine using the
_EXTRA keyword. Note that keywords passed into a routine via _EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifies a color index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by _EXTRA) as the value of the extra keyword to a routine that
uses the by reference keyword inheritance mechanism (_REF_EXTRA). There is no
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be calling it. However, any
keyword values that are changed within PLOT will fail to be returned to the caller
due to the use of the by-value mechanism.
Keyword Inheritance Application Programming

Chapter 5: Creating Procedures and Functions 95
Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of a variable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and _REF_EXTRA, consider the following simple example procedures:

PRO HELP_BYVAL, _EXTRA = ex
HELP, _EXTRA = ex

END

PRO HELP_BYREF, _REF_EXTRA = ex
HELP, _EXTRA = ex

END

Both HELP_BYVAL and HELP_BYREF are simple wrappers to the HELP
procedure. The HELP procedure accepts a keyword named OUTPUT that passes
back a value to the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP_BYVAL, OUTPUT = out & HELP, out

IDL prints:

% At HELP_BYVAL 2 /dev/tty
% $MAIN$
EX UNDEFINED = <Undefined>
Compiled Procedures:
 $MAIN$ HELP_BYVAL

Compiled Functions:

OUT UNDEFINED = <Undefined>

This occurs because the HELP call within HELP_BYVAL is passed a variable that
cannot be used to return a value, due to the use of by value keyword inheritance. It
therefore reverts to the default of writing to the user’s screen, and no value is returned
to the caller for the OUTPUT keyword.

Now run HELP_BYREF:

HELP_BYREF, OUTPUT = out & HELP, out

IDL prints:

OUT STRING = Array[8]

HELP_BYREF returns the value of the HELP OUTPUT keyword as desired.
Application Programming Keyword Inheritance

96 Chapter 5: Creating Procedures and Functions
Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commands is as follows:

.RUN [File1 , Filen, ...]

.COMPILE [File1 , Filen, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE” (IDL Reference Guide).

To enter program text directly from the keyboard, simply enter .RUN at the
IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
a directly entered program. As long as IDL requires more text to complete a program
unit, it prompts with the “-”character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as a whole. See “Creating
$MAIN$ Programs” on page 22 for more information.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty line is not a
procedure or function definition statement, the program unit is assumed to be a main
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it is replaced by the new program unit.
Entering Procedure Definitions Application Programming

Chapter 5: Creating Procedures and Functions 97
How IDL Resolves Routines

When IDL encounters a call to a function or procedure, it must find the routine to
call. To do this, it goes through the following steps. If a given step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1. If the routine is known to be a built-in intrinsic routine (commonly referred to
as a system routine), then IDL calls that system routine.

2. If a user routine written in the IDL language with the desired name has already
been compiled, IDL calls that routine.

3. If a file with the name of the desired routine (and ending with the filename
suffix .pro) exists in the current working directory, IDL assumes that this file
contains the desired routine. It arranges to call a user routine, but does not
compile the file. The file will be compiled when IDL actually needs it. In other
words, it is compiled at run time when IDL actually attempts to call the
routine, not when the code for the call is compiled.

4. IDL searches the directories given by the !PATH system variable for a file with
the name of the desired routine ending with the filename suffix .pro. If such a
file exists, IDL assumes that this file contains the desired routine. It arranges to
call a user routine, but does not compile the file, as described in the previous
step.

5. If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 15, “Arrays” for a discussion of this ambiguity). In either case,
the result is not a callable routine.
Application Programming How IDL Resolves Routines

98 Chapter 5: Creating Procedures and Functions
Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It is important to recognize the distinction between these two
methods.

• Expressions, constants, system variables, and subscripted variable references
are passed by value.

• Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:

PRO ADD, A, B
A = A + B
RETURN

END

This procedure adds its second parameter to the first, returning the result in the first.
The call

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A

No error message is issued. Similarly, if ARR is an array, the call

ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARR[5]
ADD, TEMP, 4
ARR[5] = TEMP
Parameter Passing Mechanism Application Programming

Chapter 5: Creating Procedures and Functions 99
Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “Parameter
Passing with Structures” on page 343 for additional details.
Application Programming Parameter Passing Mechanism

100 Chapter 5: Creating Procedures and Functions
Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

2. The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

3. The function or procedure is executed until a RETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
a user-written function is passed back to the caller by specifying it as the value
of a RETURN statement. RETURN statements in procedures cannot specify a
return value.

4. All local variables in the procedure, those variables that are neither parameters
nor common variables, are deleted.

5. The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

6. Control resumes in the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., a program calling itself) is supported for both procedures and
functions.

Example

Here is an example of an IDL procedure that reads and plots the next vector from a
file. This example illustrates using common variables to store values between calls, as
local parameters are destroyed on exit. It assumes that the file containing the data is
open on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

; Read and plot the next record from file 1. If RECNO is specified,
; set the current record to its value and plot it.
PRO NXT, recno

; Save previous record number.
Calling Mechanism Application Programming

Chapter 5: Creating Procedures and Functions 101
COMMON NXT_COM, lastrec

; Set record number if parameter is present.
IF N_PARAMS(0) GE 1 THEN lastrec = recno

; Define LASTREC if this is first call.
IF N_ELEMENTS(lastrec) LE 0 THEN lastrec = 0

; Define file structure.
AA = ASSOC(1, FLTARR(512))

; Read and plot record.
PLOT, AA[lastrec]

; Increment record for next time.
lastrec = lastrec + 1

END

Once the user has opened the file, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.
Application Programming Calling Mechanism

102 Chapter 5: Creating Procedures and Functions
Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose names are contained in strings. The
CALL_METHOD routine can be used to indirectly call an object method whose
name is contained in a string. Although not as flexible as the EXECUTE function
(see “EXECUTE” (IDL Reference Guide)), the CALL_* routines are much faster,
and should be used in preference to EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SVDFIT, calls a function whose
name is passed to SVDFIT via a keyword parameter as a string. If the keyword
parameter is omitted, the function POLY is called.

; Function declaration.
FUNCTION SVDFIT,..., FUNCT = funct

...

; Use default name, POLY, for function if not specified.
IF N_ELEMENTS(FUNCT) EQ 0 THEN FUNCT = 'POLY'

; Make a string of the form "a = funct(x,m)", and execute it.
Z = EXECUTE('A = '+FUNCT+'(X,M)')

...

The above example is easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL_FUNCTION(FUNCT, X, M)
Calling Functions/Procedures Indirectly Application Programming

Chapter 6

Library Authoring
The following topics are covered in this chapter:
Overview of Library Authoring 104
Recognizing Potential Naming Conflicts . 105

Advice for Library Authors 108
Converting Existing Libraries 109
Application Programming 103

104 Chapter 6: Library Authoring
Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they
develop domain-specific programs and applications that implement knowledge far
beyond our level of expertise. User library code is often freely available, supported,
and documented. However, as the number of library authors and routines continues to
grow, it becomes increasingly important for authors to adhere to a routine naming
convention within their libraries that avoids conflicts with core IDL functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because this is often a gradual process, the importance of naming is
not obvious until there is a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveals
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by users in the IDL community. (See “How IDL Resolves
Routines” on page 97 for step-by-step routine resolution details.)

The fact that IDL system routines always take precedence over user routines provides
the following benefits:

• The IDL environment remains reliable and consistent — a call to FFT always
returns the IDL version of the FFT function.

• It eliminates a great deal of path searching, which translates into faster
execution speed.

In contrast, if user routines took precedence over system routines, a given installation
could radically alter the meaning of common and basic IDL constructs simply by
creating user routines with the names of IDL system routines. This would result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It is important
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

• “Recognizing Potential Naming Conflicts” on page 105

• “Advice for Library Authors” on page 108

• “Converting Existing Libraries” on page 109
Overview of Library Authoring Application Programming

Chapter 6: Library Authoring 105
Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searches for routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes a routine that is not part of the base release
of IDL, and places it in a local library. At some later date, a new version of IDL is
installed that contains a new IDL library routine with the same name as the user's
routine. Depending on the order of the directories in the user’s path, one of these two
routines is executed. If the user’s routine is used, IDL library code that calls the
routine will get the wrong version and fail in strange and mysterious ways. If the IDL
routine is used, the IDL library will be satisfied, but the user's library will get the
wrong version, also with bad results.

System Level Conflicts

The system level case is similar, but harder to work around. In this case, the user
creates a local routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaningless in this case because the search path is not
even consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seems
like a trivial issue, but names are very important. It is crucial to adopt and
consistently adhere to a routine naming strategy to avoid conflict. The core idea of
this convention (described in detail in “Advice for Library Authors” on page 108) is
to prefix all library routine names with a unique identifier, one indicative of your
organization or project. We reserve routine names that are generic, and those with an
“IDL” prefix on behalf of the entire IDL community. Prefixing your user library
routines significantly reduces the risk of namespace collisions with IDL routines.
Application Programming Recognizing Potential Naming Conflicts

106 Chapter 6: Library Authoring
As a library author, your decision to follow a routine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
allowing IDL system routines to always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note
For instructions on how to prefix an existing user library, see “Converting Existing
Libraries” on page 109.

Cross-Platform Naming of IDL .pro Files

When naming IDL .pro files used in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “:”
character is not allowed in a filename under Microsoft Windows.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
Under Unix, file names are case sensitive—file.pro is different from File.pro.

When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest course is to use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

IDL> command
IDL> COMMAND
IDL> CommanD

Automatic Compilation and Case Sensitivity

On UNIX platforms, where filename case matters, IDL looks for a lower-case
filename when you enter the name of a user-written routine at the IDL command
prompt. Thus, if you save your program file as myprogram.pro and enter the
following at the IDL command prompt:

IDL> MyProgram

IDL will compile the file myprogram.pro and attempt to execute a procedure
named myprogram.

If you save your program file as MyProgram.pro and enter the following at the IDL
command prompt:

IDL> MyProgram
Recognizing Potential Naming Conflicts Application Programming

Chapter 6: Library Authoring 107
IDL will not compile the file MyProgram.pro and will issue an error that looks like:

% Attempt to call undefined procedure/function: 'MYPROGRAM'.
% Execution halted at: $MAIN$

You can compile and run a program with a mixed- or upper-case file name on a
UNIX platform by using IDL’s .COMPILE or .RUN executive commands:

IDL> .COMPILE MyProgram
IDL> MyProgram

or, if MyProgram.pro contains a main-level program:

IDL> .RUN MyProgram

In general we recommend that you use lower-case file names on platforms where
case matters.
Application Programming Recognizing Potential Naming Conflicts

108 Chapter 6: Library Authoring
Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problems to the
desired level of quality, reusability, and robustness. Life is more difficult for an
author of a library of IDL routines. In addition to the challenges facing any
programmer, library authors face additional challenges:

• The structure and organization of the library needs to encourage reuse and
generality.

• Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

• Errors must be gracefully handled whenever possible. See Chapter 8,
“Debugging and Error-Handling” for more on error control.

• The most useful libraries are written to work correctly on a wide variety of
platforms, without requiring their users to be aware of the details.

• Documentation must be provided, or the library will not find users.

• Libraries must be able to co-exist with other code over which they have no
control. Authors must not alter the global environment in ways that cause
conflicts, and they must also take care to prefix the names of all routines,
common blocks, systems variables, and any other global resources they use.
This prevents a library from conflicting with other libraries on the same
system, and protects the library from changes to IDL that may occur in newer
releases.

Prefixing Routine Names

The use of a proper prefix minimizes the risk of a namespace collision as described in
“Recognizing Potential Naming Conflicts” on page 105. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” are reserved. New names of these
forms can and will appear without warning in new versions of IDL, and should be
avoided when naming new library routines.
Advice for Library Authors Application Programming

Chapter 6: Library Authoring 109
Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advice for Library Authors” on page 108. Such libraries are bound to experience an
occasional conflict with new versions of IDL. The best solution to avoid conflicts is
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library is likely to already have users. Assuming that non-prefixed
names were used in such libraries, it is not possible to simply change the names. Such
conversions require time to carry out, and once that has happened, it takes time for
users to adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1. Generate a list of all files containing routines to be renamed.

2. Using this list, build an IDL batch file that uses .COMPILE on each file.

3. Start a fresh IDL session, execute the batch file, and use HELP, /ROUTINES
to get a complete list of all compiled routines. Only IDL user library routines
(those .pro files shipped with the IDL distribution) should not contain a
prefix.

4. As you rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that calls the new version. Such wrappers are easy to
write in IDL, using the _REF_EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 89 for details.

5. Use the COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See COMPILE_OPT in
the IDL Reference Guide for more information on COMPILE_OPT. These
compatibility wrappers serve the following purposes:

• You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to change to calling the
new name. This enhances the stability of the library and gives you time to
do a careful job.

• Once you are finished, you can provide them to your customers as a
bridge, so that their old code continues to work.

• As you change the names of routines, use grep (or a similar file searching
tool) to locate uses of that name, and convert them to the new form as well.

6. Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the
Application Programming Converting Existing Libraries

110 Chapter 6: Library Authoring
COMPILE_OPT OBSOLETE directive, you can set the !WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveals no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappers in a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routines to your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. There is no backward
compatibility issue in this case, and they are not needed.

Although the one time hit of prefixing an existing library can consume some time and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raises the profile
of the library to the end user, raising their level of understanding and appreciation for
the work it does.
Converting Existing Libraries Application Programming

Chapter 7

Program Control
The following topics are covered in this chapter:
Overview of Program Control 112
Compound Statements 114
IF...THEN...ELSE 117
CASE . 119
SWITCH . 121
CASE Versus SWITCH 122

FOR...DO . 125
REPEAT...UNTIL 130
WHILE...DO . 131
Jump Statements . 133
Definition of True and False 136
Application Programming 111

112 Chapter 7: Program Control
Overview of Program Control

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include the
following.

Compound Statements

Use BEGIN and END to create a block of statements, which is simply a group of
statements that are the subject of a conditional or repetitive statement.

• BEGIN...END

Conditional Statements

Most useful applications have the ability to perform different actions in response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

• IF...THEN...ELSE

• CASE

• SWITCH

Loop Statements

Loop statements perform the same set of statements multiple times. Rather than
repeat a set of statements again and again, a loop can be used to perform the same set
of statements repeatedly.

• FOR...DO

• REPEAT...UNTIL

• WHILE...DO
Overview of Program Control Application Programming

Chapter 7: Program Control 113
Note
IDL’s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same calculation on
each element of an array, you could write a loop to iterate over each array element:

array = INDGEN(10)
FOR i = 0,9 DO BEGIN

array[i] = array[i] * 2
ENDFOR

This is much less efficient than using IDL’s built-in array capabilities:

array = INDGEN(10)
array = array * 2

See “Use Vector and Array Operations” on page 194 for details.

Jump Statements

Jump statements can modify the behavior of conditional and iterative statements.

• BREAK

• CONTINUE

• GOTO
Application Programming Overview of Program Control

114 Chapter 7: Program Control
Compound Statements

Many of the language constructs that we will discuss in this chapter evaluate an
expression, then perform an action based on whether the expression is true or false,
such as with the IF statement:

IF expression THEN statement

For example, we would say “If X equals 1, then set Y equal to 2” as follows:

IF (X EQ 1) THEN Y = 2

But what if we want to do more than one thing if X equals 1? For example, “If X
equals 1, set Y equal to 2 and print the value of Y.” If we wrote it as follows, then the
PRINT statement would always be executed, not just when X equals 1:

IF (X EQ 1) THEN Y = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container is called a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create a block of statements, which is simply
a group of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statements is composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

ENDIF
Compound Statements Application Programming

Chapter 7: Program Control 115
This is to ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN is used. The
following table lists the correct END identifiers to use with each type of statement.

Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Statement END
Identifier Example

ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
A=2

ENDELSE

FOR variable=init, limit DO
BEGIN

ENDFOR FOR i=1,5 DO BEGIN
PRINT, array[i]

ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
A=1

ENDIF

REPEAT BEGIN ENDREP REPEAT BEGIN
A = A * 2

ENDREP UNTIL A GT B

WHILE expression DO BEGIN ENDWHILE WHILE ~ EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

LABEL: BEGIN END LABEL1: BEGIN
PRINT, A

END

case_expression: BEGIN END CASE name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDSWITCH

Table 7-1: Types of END Identifiers
Application Programming Compound Statements

116 Chapter 7: Program Control
The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spaces to the right of
the previous level to make the program structure easier to read. (See “.RUN” (IDL
Reference Guide) for details on producing program listings with the IDL compiler.)
Compound Statements Application Programming

Chapter 7: Program Control 117
IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the IF statement is as follows:

IF expression THEN statement [ELSE statement]

or

IF expression THEN BEGIN
statements

ENDIF [ELSE BEGIN
statements

ENDELSE]

The expression after the “IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN” is executed. (See “Definition of True and False” on page 136 for details on
how the “truth” of an expression is determined.)

For example:

A = 2
IF A EQ 2 THEN PRINT, 'A is two'

Here, IDL prints “A is two”.

If the expression evaluates to a false value, the statement following the “ELSE”
clause is executed:

A = 3
IF A EQ 2 THEN PRINT, 'A is two' ELSE PRINT, 'A is not two'

Here, IDL prints “A is not two”.

Control passes immediately to the next statement if the condition is false and the
ELSE clause is not present.

Note
Another way to write an IF...THEN...ELSE statement is with a conditional
expression using the ?: operator. For more information, see “Working with
Conditional Expressions” on page 238.

Tip
Programs with vector and array expressions run faster than programs with scalars,
loops, and IF statements. See “Use Vector and Array Operations” on page 194 for a
discussion on increasing efficiency of these expressions.
Application Programming IF...THEN...ELSE

118 Chapter 7: Program Control
Using Statement Blocks with the IF Statement

The THEN and ELSE clauses can be in the form of a block (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 114). To ensure
proper nesting of blocks, you can use ENDIF and ENDELSE to terminate the block,
instead of using the generic END. Below is an example of the use of blocks within an
IF statement.

IF (I NE 0.0) THEN BEGIN
...

ENDIF ELSE BEGIN
...

ENDELSE

Nesting IF Statements

IF statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

...
IF PN THEN SN ELSE SX

If condition P1 is true, only statement S1 is executed; if condition P2 is true, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
is similar to the CASE statement except that the conditions are not necessarily
related.
IF...THEN...ELSE Application Programming

Chapter 7: Program Control 119
CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expression: statement
...
expression: statement

[ELSE: statement]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If a match is
found, the statement is executed and control resumes directly below the CASE
statement.

The ELSE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the CASE statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example — Case Statement Use

An example of the CASE statement follows:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'

ELSE: PRINT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. One is equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5
Application Programming CASE

120 Chapter 7: Program Control
(X GT 50) AND (X LE 100): Y = 13 * X + 4
(X LE 200): BEGIN

Y = 14 * X - 5
Z = X + Y

END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Tip
Each clause is tested in order, so it is most efficient to order the most frequently
selected clauses first.
CASE Application Programming

Chapter 7: Program Control 121
SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SWITCH Expression OF
Expression: Statement
...
Expression: Statement

[ELSE: Statement]
ENDSWITCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If a match
is found, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statements in the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The ELSE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.
Application Programming SWITCH

122 Chapter 7: Program Control
CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:

• Execution exits the CASE statement at the end of the matching statement. By
contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 133.) For example, we
can add a BREAK statement to the SWITCH example in the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWITCH x OF

1: PRINT, 'one'
2: BEGIN

PRINT, 'two'
BREAK

END
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

CASE SWITCH

x=2
CASE x OF

1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDCASE

x=2
SWITCH x OF

1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two

IDL Prints:

two
three
four

Table 7-2: CASE versus SWITCH
CASE Versus SWITCH Application Programming

Chapter 7: Program Control 123
IDL Prints:

two

• If there are no matches within a CASE statement and there is no ELSE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'

ELSE: PRINT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SWITCH name OF
'Larry': BEGIN

PRINT, 'Stooge 1'
BREAK

END
'Moe': BEGIN

PRINT, 'Stooge 2'
BREAK

END
'Curly': BEGIN

PRINT, 'Stooge 3'
BREAK

END
ELSE: PRINT, 'Not a Stooge'
ENDSWITCH

Clearly, this code can be more succinctly expressed using a CASE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF_XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmas to start on. It starts on the specified day,
and prints the presents for all previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. The first day of Christmas requires special
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1.
Application Programming CASE Versus SWITCH

124 Chapter 7: Program Control
PRO DAYS_OF_XMAS, day

IF (N_ELEMENTS(day) EQ 0) THEN DAY = 12
IF ((day LT 1) OR (day GT 12)) THEN day = 12
day_name = ['First', 'Second', 'Third', 'Fourth', 'Fifth', $

'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth',$
'Eleventh', 'Twelfth']

PRINT, 'On The ', day_name[day - 1], $

' Day Of Christmas My True Love Gave To Me:'

SWITCH day of
12: PRINT, ' Twelve Drummers Drumming'
11: PRINT, ' Eleven Pipers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, ' Nine Ladies Dancing'
8: PRINT, ' Eight Maids A-Milking'
7: PRINT, ' Seven Swans A-Swimming'
6: PRINT, ' Six Geese A-Laying'
5: PRINT, ' Five Gold Rings'
4: PRINT, ' Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEGIN

PRINT, ' Two Turtledoves'
PRINT, ' And a Partridge in a Pear Tree!'
BREAK

END
1: PRINT, ' A Partridge in a Pear Tree!'

ENDSWITCH
END

If we pass the value 3 to the DAYS_OF_XMAS procedure, we get the following
output. Achieving this behavior with CASE would be difficult.

On The Third Day Of Christmas My True Love Gave To Me:
Three French Hens
Two Turtledoves
And a Partridge in a Pear Tree!
CASE Versus SWITCH Application Programming

Chapter 7: Program Control 125
FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until a condition is
met. It is analogous to the DO statement in FORTRAN.

In IDL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed. See the following
topics for details:

• “FOR Statement with an Increment of One” on page 125

• “FOR Statement with Variable Increment” on page 128

• “Sequence of the FOR Statement” on page 129

Avoid Invariant Expressions

When using FOR loops, you can increase program efficiency by avoiding invariant
expressions. Expressions whose values do not change inside a loop should be moved
outside the loop. For example, in the loop:

FOR I = 0, N - 1 DO arr[I, 2*J-1] = ...,

the expression (2*J-1) is invariant and should be evaluated only once before the loop
is entered:

temp = 2*J-1
FOR I = 0, N-1 DO arr[I, temp] =

See Chapter 15, “Arrays” for details on working with arrays.

FOR Statement with an Increment of One

The FOR statement with an implicit increment of one is written as follows:

FOR Variable = Expression, Expression DO Statement

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variable is
incremented by 1 until the index variable is larger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.
Application Programming FOR...DO

126 Chapter 7: Program Control
Warning
The data type of the index variable is determined by the type of the initial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields −15,536 because of truncation. The loop is not
executed. The index variable’s initial value is larger than the limit variable. The
loop should be written as follows:

FOR I = 0L, 50000 DO

Note also that changing the data type of an index variable within a loop is not
allowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial data type (and so is
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:

FOR i = 0B, 240, 16 DO PRINT, i

The problem occurs because the variable i is initialized to a byte type with 0B. After
the index reaches the limit value 240B, i is incremented by 16, causing the value to
go to 256B, which is interpreted by IDL as 0B, because of the truncation effect. As
a result, the FOR loop “wraps around” and the index can never be exceeded.

Example — FOR Statement with Increment of One

A simple FOR statement:

FOR I = 1, 4 DO PRINT, I, I^2

This statement produces the following output:

1 1
2 4
FOR...DO Application Programming

Chapter 7: Program Control 127
3 9
4 16

The index variable I is first set to an integer variable with a value of one. The call to
the PRINT procedure is executed, then the index is incremented by one. This is
repeated until the value of I is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of a block structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM function is
provided by IDL.)

FOR K = 0, N - 1 DO BEGIN
C = A[K]
HIST(C) = HIST(C)+1

ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to a floating-point variable and steps through the values
(1.5, 2.5, ..., 10.5):

FOR X = 1.5, 10.5 DO S = S + SQRT(X)

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of the index variable is determined by the type of the first
expression after the “=” character.

Warning
Due to the inexact nature of IEEE floating-point numbers, using floating-point
indexing can cause “infinite loops” and other problems. This problem is also
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(f20.10)'

IDL prints the following approximations to the numbers we requested:
0.1000000015
0.0099999998
1.6000000238
1.7000000477

See “Accuracy and Floating Point Operations” on page 264 for more information
about floating-point numbers.
Application Programming FOR...DO

128 Chapter 7: Program Control
FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:

FOR Variable = Expression1, Expression2, Increment DO Statement

This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Example — FOR Statement with Variable Increment

The following examples demonstrate the second type of FOR statement.

;Decrement, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO ...

;Increment by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO ...

;Divide range from bottom to top by 4.
FOR mid = bottom, top, (top - bottom)/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FOR X = 0, 1, .1 DO

The variable X is first defined as an integer variable because the initial value
expression is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer type is 0. The correct form of the statement is:

FOR X = 0., 1, .1 DO

which defines X as a floating-point variable.
FOR...DO Application Programming

Chapter 7: Program Control 129
Sequence of the FOR Statement

The FOR statement performs the following steps:

1. The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variable is set to the
type of this expression.

2. The value of the second expression is evaluated, converted to the type of the
index variable, and saved in a temporary location. This value is called the limit
value.

3. The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, a value of 1 is assumed.

4. If the index variable is greater than the limit value (in the case of a positive
step value) the FOR statement is finished and control resumes at the next
statement. Similarly, in the case of a negative step value, if the index variable
is less than the limit value, control resumes after the FOR statement.

5. The statement or block following the DO is executed.

6. The step value is added to the index variable.

7. Steps 4, 5, and 6 are repeated until the test of Step 4 fails.
Application Programming FOR...DO

130 Chapter 7: Program Control
REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition is true. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once. (See “Definition of
True and False” on page 136 for details on how the “truth” of an expression is
determined.)

The syntax of the REPEAT statement is as follows:

REPEAT statement UNTIL expression

or

REPEAT BEGIN
 statements
ENDREP UNTIL expression

Examples — REPEAT...UNTIL

The following example finds the smallest power of 2 that is greater than B:

A = 1
B = 10
REPEAT A = A * 2 UNTIL A GT B

The subject statement can also be in the form of a block:

A = 1
B = 10
REPEAT BEGIN

A = A * 2
ENDREP UNTIL A GT B

The next example sorts the elements of ARR using the inefficient bubble sort
method. (A more efficient way to sort elements is to use IDL’s SORT function.)

;Sort array.
REPEAT BEGIN

;Set flag to true.
NOSWAP = 1
FOR I = 0, N - 2 DO IF arr[I] GT arr[I + 1]THEN BEGIN

;Swapped elements, clear flag.
NOSWAP = 0
T = arr[I] & arr[I] = arr[I + 1] & arr[I + 1] = T
ENDIF

;Keep going until nothing is moved.
ENDREP UNTIL NOSWAP
REPEAT...UNTIL Application Programming

Chapter 7: Program Control 131
WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remains true. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.
(See “Definition of True and False” on page 136 for details on how the “truth” of an
expression is determined.)

The syntax of the WHILE...DO statement is as follows:

WHILE expression DO statement

or

WHILE expression DO BEGIN
 statements
ENDWHILE

When the WHILE statement is executed, the conditional expression is tested, and if it
is true, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition is initially
false.

Examples — WHILE...DO

The following example reads data until the end-of-file is encountered:

WHILE ~ EOF(1) DO READF, 1, A, B, C

The subject statement can also be in the form of a block:

WHILE ~ EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:

array = [2, 3, 5, 6, 10]
i = 0 ;Initialize index
n = N_ELEMENTS(array)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:
Application Programming WHILE...DO

132 Chapter 7: Program Control
WHILE (array[i] LT 5) AND (i LT n) DO i = i + 1

PRINT, 'The first element >= 5 is element ', i

IDL Prints:

The first element >= 5 is element 2

Tip
Another way to accomplish the same thing is with the WHERE command, which is
used to find the subscripts of the points where ARR[I] is greater than or equal to X.

P = WHERE(arr GE X)
;Save first subscript:
I = P(0)
WHILE...DO Application Programming

Chapter 7: Program Control 133
Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit a loop, start the next iteration of a loop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well as the ON_ERROR and
ON_IOERROR procedures. The label field is simply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 alphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
I$QUIT: RETURN ;Comments are allowed.

BREAK

The BREAK statement provides a convenient way to immediately exit from a loop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This example illustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use a loop to find where in the array the
value 5 is located. If the value is found, we BREAK out of the loop because there is
no need to check the rest of the array:

Note
This example could be written more efficiently using the WHERE function. This
example is intended only to illustrate how BREAK might be used.

; Create a randomly-ordered array of integers
; from 0 to 9999:

array = SORT(RANDOMU(seed,10000))
n = N_ELEMENTS(array)

; Find where in array the value 5 in located:

Application Programming Jump Statements

134 Chapter 7: Program Control
FOR i = 0,n-1 DO BEGIN
 IF (array[i] EQ 5) THEN BREAK
ENDFOR

PRINT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we’re looking for (or resort to
using a GOTO statement):

FOR i = 0, n-1 DO BEGIN
 IF (array[i] EQ 5) THEN found=i
ENDFOR

PRINT, found

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from a loop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. This is in
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR I=1,10 DO BEGIN
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration

PRINT, I
ENDFOR
Jump Statements Application Programming

Chapter 7: Program Control 135
GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of a loop results in an error.

The syntax of the GOTO statement is as follows:

GOTO, Label

Warning
You must be careful in programming with GOTO statements. It is not difficult to
get into a loop that will never terminate, especially if there is not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMP1 is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1
PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of IF statements, as in the following statement:

IF A NE G THEN GOTO, MISTAKE
Application Programming Jump Statements

136 Chapter 7: Program Control
Definition of True and False

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates predicate
expressions in the following contexts:

• IF...THEN...ELSE statements

• ? : inline conditional expressions

• WHILE...DO statements

• REPEAT...UNTIL statements

The definition of true and false for the different data types is as follows:

If the LOGICAL_PREDICATE compile option is set:

See “COMPILE_OPT” (IDL Reference Guide) for additional details on the
LOGICAL_PREDICATE compilation option.

Data Type True False

Byte, integer, and
long

Odd integers Zero or even integers

Floating point and
complex

Non-zero values Zero

String Any string with non-
zero length

Null string (“ “)

Heap variables
(pointers and object
references)

Non-null values Null values

Table 7-3: Default Definitions of True and False

Data Type True False

Numerical values Non-zero values Zero

String or heap
variables

Non-null values Null values

Table 7-4: True and False Definitions with LOGICAL_PREDICATE
Definition of True and False Application Programming

Chapter 7: Program Control 137
In the following example, the logical statement for the condition is a conjunction of
two conditions:

IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than –40 and less than or equal to –20) are true,
the statement following the THEN is executed.
Application Programming Definition of True and False

138 Chapter 7: Program Control
Definition of True and False Application Programming

Chapter 8

Debugging and
Error-Handling
The following topics are covered in this chapter:
Debugging and Error-Handling Overview 140
What Happens When Execution Stops . . . 141
Working with Breakpoints 143
Stepping Through a Program 145
Monitoring Variable Values 146
Correcting Errors During Execution 148

Obtaining Traceback Information 149
Controlling and Recovering from Errors . 150
Creating Custom Error Messages 152
Notifying the User of Errors 154
Math Errors . 155
Application Programming 139

140 Chapter 8: Debugging and Error-Handling
Debugging and Error-Handling Overview

IDL provides several tooks to help find and handle errors in your code. This chapter
describes debugging and error-handling features that are intrinsic to IDL itself —
they are available at the IDL command prompt (either in an IDL terminal session or
in the IDL Workbench), or programmatically via IDL routines and statements.

Tip
The IDL Workbench provides additional debugging features that can speed
debugging of your IDL code. See Debugging Tools in the IDL Workbench online
documentation for a complete description.
Debugging and Error-Handling Overview Application Programming

../com.rsi.idl.doc.wb/Debugging_Tools.html

Chapter 8: Debugging and Error-Handling 141
What Happens When Execution Stops

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred. If you are using the IDL Workbench when execution is
interrupted, the code in which the error occurred is displayed in an editor window and
an indicator is placed next to the line that will be executed when processing resumes.
The routine being compiled need not already be shown in an editor window. If a
routine compiled with the .RUN, .RNEW, or .COMPILE executive commands contains
an error, the IDL Workbench will display the file automatically.

When execution stops, you can take the following steps:

• Correct the problem and continuing program execution (see “Correcting Errors
During Execution” on page 148)

• Anticipate and handle errors to avoid execution halt (“Controlling and
Recovering from Errors” on page 150)

To understand what is happening during program execution, consider setting
breakpoint and stepping through the code. See “Working with Breakpoints” on
page 143.

Example: Correcting Undefined Variable

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed. Start the IDL Workbench. Call the
BROKEN procedure by entering:

BROKEN

at the IDL command line. An error is reported in the console; if you are using the IDL
Workbench, an editor window displays the file BROKEN.PRO :

; $Id: broken.pro,v 1.1 1996/10/01 22:01:54 doug Exp $

PRO BROKEN
PRINT, i
PRINT, i*2
PRINT, i*3
PRINT, i*4

END
Application Programming What Happens When Execution Stops

142 Chapter 8: Debugging and Error-Handling
A “Variable is undefined” error has occurred. The line of code that first references the
undefined variable is noted in the error message and (if applicable) highlighted with
an arrow in the editor.

There are several ways to fix this error. We could edit the program file to explicitly
define the variable i, or we could change the program so that it accepts a parameter at
the command line. Instead, we’ll define the variable i on the fly and continue
execution of the program without making any changes to the program file. To define
the variable i and assign it the value 10, enter at the command line:

i = 10

Next, enter

.CONTINUE

at the command line, or select Run → Resume in the IDL Workbench.
What Happens When Execution Stops Application Programming

Chapter 8: Debugging and Error-Handling 143
Working with Breakpoints

A breakpoint is a marker in an IDL source code file that tells IDL to halt execution
temporarily, allowing you to inspect the state of program variables in the program
unit where the breakpoint occurred. Breakpoints allow you to control the flow of
execution of your IDL program, stopping and starting at will.

Note
While you can set and use breakpoints in an IDL terminal session using the
BREAKPOINT routine and various Executive Commands, breakpoints are vastly
more useful when working within the IDL Workbench.

To experiment with breakpoints, do the following:

1. In the IDL Workbench, type

.EDIT broken

at the IDL command prompt. This loads the file broken.pro into an editor
window.

2. Edit the first program line to read as follows and then save and compile the
program:

PRO BROKEN, i

This allows you to pass a value for i to the program.

3. Set a breakpoint in broken.pro by placing the cursor in the line that reads:

PRINT, i*2

and selecting Toggle Breakpoint from the Run menu or simply double-
clicking on the line. A blue breakpoint dot appears next to the line.

4. Now enter the following to execute the program:

BROKEN, 10

The Console view displays the following:

10
% Breakpoint at: BROKEN 10

and a current line indicator arrow stops at the breakpoint.

Note
When execution halts, you may see the Confirm Perspective Switch dialog.
Application Programming Working with Breakpoints

144 Chapter 8: Debugging and Error-Handling
5. Inspect the value of the variable i by typing

PRINT, i

at the command line, or by hovering the mouse pointer over the variable in the
editor window.
Working with Breakpoints Application Programming

Chapter 8: Debugging and Error-Handling 145
Stepping Through a Program

Once execution halts at a breakpoint, you can step through the program manually, or
continue execution automatically. When stepping through a main program, if the next
line calls another IDL procedure or function, you have three options with which to
handle execution of the nested program:

• Step Into executes statements in order by successive .STEP commands

• Step Over executes statements to the end of the called function, without
interactive capability

• Step Out to continue processing until the main program returns.

While you can step through code in an IDL terminal session using the .STEP,
.STEPOVER and .RETURN executive commands, these operations are easier and
more interactive when working within the IDL Workbench.To experiment with
stepping, do the following:

1. In the IDL Workbench, type

.EDIT broken

at the IDL command prompt. This loads the file broken.pro into an editor
window.

2. Set a breakpoint in broken.pro by placing the cursor in the line that reads:

PRINT, i*2

and selecting Toggle Breakpoint from the Run menu or simply double-
clicking on the line. A blue breakpoint dot appears next to the line.

3. Now enter the following to execute the program:

BROKEN, 10

Execution stops at the specified line.

4. To step through the program, select Step Over from the Run menu, or press
F6. Statements are executed one at a time. Alternately, select Resume from the
Run menu or press F8 to let IDL continue until it hits another breakpoint, an
error, or the end of the file.
Application Programming Stepping Through a Program

146 Chapter 8: Debugging and Error-Handling
Monitoring Variable Values

When execution halts, there are several ways to see the values of program variables.
These include:

• Check variable values from the command line — see “Showing Variable
Values During Execution” below

• Use the Variable Watch window — see “The Variables View” on page 147

• Recover “missing” variables — see “Disappearing Variables” on page 147

Showing Variable Values During Execution

When execution stops you can query the values of current variables in the program
scope using the PRINT and HELP routines. For instance, suppose you have created
the following program:

FUNCTION hello_who, who
 RETURN, 'Hello ' + who
END

PRO hello_main
 name = ''
 READ, name, PROMPT='Enter Name: '
 str = HELLO_WHO(name)
 PRINT, str
END

Place a breakpoint on the PRINT, str line and then compile and run the program.
Enter a name at the IDL command line when prompted. When execution halts, return
the value of the name variable by entering,

PRINT, name

The Console view shows the name you have entered.

Return information about the str variable by entering:

HELP, str

The Console view shows the variable name, data type and value. This information is
also available in the Variables view, described in the following section.
Monitoring Variable Values Application Programming

Chapter 8: Debugging and Error-Handling 147
Tip
You can also place PRINT and HELP statements in your program to see variable
values without pausing program execution. As these statements are encountered,
values are printed to the Console.

The Variables View

The Variables view window displays the values of variables in the current execution
context. If the calling context changes during execution — as when stepping into a
procedure or function — the variable table is replaced with a table appropriate to the
new context. See Variables view in the IDL Workbench online help for a complete
description.

Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety is that after the
error occurs, IDL’s context is inside the called procedure, not in the main level. All
variables in procedures and functions, with the exception of parameters and common
variables, are local in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL is best suited for use when an error is detected in a procedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HELP command can be used to see the current call stack (i.e., which program
unit IDL is in and which program unit called it). For more information, see “HELP”
(IDL Reference Guide).
Application Programming Monitoring Variable Values

../com.rsi.idl.doc.wb/Variables_View.html

148 Chapter 8: Debugging and Error-Handling
Correcting Errors During Execution

Sometimes it is possible to recover from an error by manually entering statements to
correct the problem. Possibilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

As an example, if an error occurs because an undefined variable is referenced, you
can simply define the variable at the command prompt and then continue execution
with .CONINUE. Of course, this is a temporary solution. You should still edit the
program file to fix the problem permanently.

See “Example: Correcting Undefined Variable” on page 141 for a simple example.
Correcting Errors During Execution Application Programming

Chapter 8: Debugging and Error-Handling 149
Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The SCOPE_TRACEBACK function returns a string array describing the
contents of the procedure stack. The first element of the resulting array contains
information for the IDL main program ($MAIN$). Each subsequent element contains
information for the next routine in the call stack. The final element contains the
information for the currently running routine. Each element of this array contains the
module name, source filename, and line number of the routine it describes.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

A = SCOPE_TRACEBACK()

; Print next to last element: caller of the current routine
PRINT, 'Called from: ', A[N_ELEMENTS(A)-2]

This results in a message of the following form:

Called from: DIST </usr/local/itt/idl/lib/dist.pro (27)>

SCOPE_TRACEBACK can also provide more detailed information for the call stack.
See “SCOPE_TRACEBACK” (IDL Reference Guide) for more information about the
function’s capabilities.

In the IDL Workbench, you can visually inspect the call stack using the Debug view.
Application Programming Obtaining Traceback Information

../com.rsi.idl.doc.wb/Debug_View.html

150 Chapter 8: Debugging and Error-Handling
Controlling and Recovering from Errors

IDL divides possible execution errors into three categories: input/output, math, and
all others. There are three main error-handling routines: CATCH, ON_ERROR, and
ON_IOERROR. CATCH is a generalized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
allows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.

Note
The !ERROR_STATE system variable is updated when errors occur. At the
beginning of an IDL session, !ERROR_STATE contains default information. To see
this information, you can either view !ERROR_STATE from the System field of the
Variable Watch Window (see “The Variables View” on page 147) or you can enter
PRINT, !ERROR_STATE at the Command Line. After an error has occurred, all of
the fields of !ERROR_STATE display their updated status. Refer to
“!ERROR_STATE” (IDL Reference Guide) for details.

You can also write code in such a manner as to anticipate and handle potential errors,
especially when you are writing your own routines. See the following topics in
Chapter 5, “Creating Procedures and Functions” for details:

• “Determining Variable Scope” on page 83

• “Determining if a Keyword is Set” on page 86

• “Supplying Values for Missing Keywords” on page 87

• “Supplying Values for Missing Arguments” on page 88

Interaction of CATCH, ON_ERROR, and
ON_IOERROR

Error handlers established by calls to CATCH supersede calls to ON_ERROR.
However, calls to ON_IOERROR made in the procedure that causes an I/O error
supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.
Controlling and Recovering from Errors Application Programming

Chapter 8: Debugging and Error-Handling 151
The following figure is a flow chart of how errors are handled in IDL.

Figure 8-1: Error Handling in IDL

Error or Exception is Generated

Is it an I/O error?

Is ON_IOERROR
routine in use?

Handle error as
indicated by
ON_IOERROR setting.

Is there an error handler
defined by the CATCH
routine?

Handle error with
CATCH-defined error
handler and continue
program execution.

Handle error as
indicated by setting of
ON_ERROR routine or
use default error handling.

Yes

No

No

Yes

No

Yes
Application Programming Controlling and Recovering from Errors

152 Chapter 8: Debugging and Error-Handling
Creating Custom Error Messages

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that sets the
!ERROR_STATE system variable. !ERROR_STATE.MSG is set to the string used as
an argument to MESSAGE.

The MESSAGE procedure is used by user procedures and functions to issue errors. It
has the form:

MESSAGE, Text

where Text is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message is issued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

As a side effect of issuing the error, appropriate fields of the system variable
!ERROR_STATE are set; the text of the error message is placed in
!ERROR_STATE.MSG, or in !ERROR_STATE.SYS_MSG for the operating
system’s component of the error message. See “!ERROR_STATE” (IDL Reference
Guide) for more information.

As an example, assume the statement:

MESSAGE, 'Unexpected value encountered.'

is executed in a procedure named CALC. IDL would print:

% CALC: Unexpected value encountered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. See
“MESSAGE” (IDL Reference Guide) for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_IOERROR to read from a file until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

; Open the data file.
OPENR, UNIT, 'DATA.DAT', /GET_LUN

; Arrange for jump to label EOD when an input/output error occurs.
ON_IOERROR, EOD

; Read every line of the file.
Creating Custom Error Messages Application Programming

Chapter 8: Debugging and Error-Handling 153
WHILE 1 DO READF, UNIT, LINE

; An error has occurred. Cancel the input/output error trap.
EOD: ON_IOERROR, NULL

; Close the file.
FREE_LUN, UNIT

; Reissue the error. !ERROR_STATE.MSG contains the appropriate
; text. The IOERROR keyword causes it to be issued as an
; input/output error. Use of NONAME prevents MESSAGE from tacking
; the name of the current routine to the beginning of the message
; string since !ERROR_STATE.MSG already contains it.
MESSAGE, !ERROR_STATE.MSG, /NONAME, /IOERROR

Message Blocks

IDL messages include text and formatting information which, when combined with
text supplied in the call to MESSAGE, provide information to the program’s user
about the error that occurred. For example, entering

MESSAGE, 'Howdy, folks'

at the IDL command line produces the following output:

% $MAIN$: Howdy, folks
% Execution halted at: $MAIN$

indicating that the message was issued from within the IDL $MAIN$ program.

A message block is a collection of messages that are loaded into IDL as a single unit.
At startup, IDL contains a single internal message block named IDL_MBLK_CORE,
which contains the standard messages required by the IDL system. By default,
MESSAGE throws the IDL_M_USER_ERR message from the IDL_MBLK_CORE
message block, producing output similar to that shown above.

Dynamically loadable modules (DLMs) usually define additional message blocks for
their own needs when they are loaded. In addition, if you wish to provide something
other than the default error message for your own IDL programs, you can define your
own message blocks and error messages. See “DEFINE_MSGBLK” and
“DEFINE_MSGBLK_FROM_FILE” (IDL Reference Guide) for additional details.
Specify the BLOCK and NAME keywords to the MESSAGE procedure to issue a
message from a message block you have defined.
Application Programming Creating Custom Error Messages

154 Chapter 8: Debugging and Error-Handling
Notifying the User of Errors

The DIALOG_MESSAGE function creates a modal (blocking) dialog box that can
be used to display information for the user. The dialog must be dismissed, by clicking
on one of its option buttons, before execution can continue.

See “DIALOG_MESSAGE” (IDL Reference Guide) for details or the MEMORY
routine “Examples” section in the IDL Reference Guide for an example of using
DIALOG_MESSAGE.
Notifying the User of Errors Application Programming

Chapter 8: Debugging and Error-Handling 155
Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems that
implement the IEEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values” on page 156.) Integer overflow and underflow is not
detected. Integer divide by zero is detected on all platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero that
it cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy and Floating Point
Operations” on page 264

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This status,
which is implemented as a longword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable !EXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

!EXCEPT has three possible values:

!EXCEPT=0

Do not report exceptions.

!EXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
Application Programming Math Errors

156 Chapter 8: Debugging and Error-Handling
!EXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Machines which implement the IEEE standard for binary floating-point arithmetic
have two special values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when a result is larger than the largest representation. NaN is the
result of an undefined computation such as zero divided by zero, taking the square-
root of a negative number, or the logarithm of a non-positive number. In many cases,
when IDL encounters the value NaN in a data set, it treats it as “missing data.” The
special values NaN and Infinity are also accessible in the read-only system variable
!VALUES. These special operands propagate throughout the evaluation process—the
result of any term involving these operands is one of these two special values.

Note
For the minimum (<) and maximum (>) operators with NaN operands, the result is
undefined and may not necessarily be the special value NaN. “Mathematical
Operators” on page 213 for details.

For example:

; Multiply NaN by 3
PRINT, 3 * !VALUES.F_NAN

IDL prints:

NaN

It is important to remember that the value NaN is literally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A = [1.0, 2.0, !VALUES.F_NAN, 3.0]
PRINT, A

IDL prints:

1.00000 2.00000 NaN 3.0000
Math Errors Application Programming

Chapter 8: Debugging and Error-Handling 157
If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL might generate an error (depending on the
hardware and operating system):

; Print the indices of A that are not equal to 1
PRINT, WHERE(A NE 1.0)

IDL prints:

1 2 3
% Program caused arithmetic error: Floating illegal operand

(Depending on your hardware and operating system, you may not see the floating-
point error.)

To avoid this problem, use the FINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRINT, WHERE(FINITE(A))

IDL prints the indices of the finite elements of A:

0 1 3

To then print the indices of the elements of A that are both finite and not equal to 1.0,
you could use the command:

good = WHERE(FINITE(A))
PRINT, good[WHERE(A[good] NE 1.0)]

IDL prints:

1 3

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use a command like:

; Print the indices of the elements of A that are not valid
; floating-point numbers.
PRINT, WHERE(~FINITE(A))

IDL prints:

2

Note that the special value Infinity can be compared to a floating point number. Thus,
if:

B = [1.0, 2.0, !VALUES.F_INFINITY]
PRINT, B

IDL prints:

1.00000 2.00000 Inf
Application Programming Math Errors

158 Chapter 8: Debugging and Error-Handling
and

PRINT, WHERE(B GT 1.0)

IDL prints:

1 2

You can also compare numbers directly with the special value Infinity:

PRINT, WHERE(B EQ !VALUES.F_INFINITY)

IDL prints:

2

Note
On Windows, using relational operators such as EQ and NE with the values infinity
or NaN (Not a Number) causes an “illegal operand” error. The FINITE function’s
INFINITY and NAN keywords can be used to perform comparisons involving
infinity and NaN values. For more information, see “FINITE” on page 825.

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the IEEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
statement:

;Perform exponentiation.
A = EXP(EXPRESSION)

;Print error message.
IF ~ FINITE(A) THEN PRINT, 'Overflow occurred'

If A is an array, use the statement:

IF TOTAL(FINITE(A)) NE N_ELEMENTS(A) THEN

Integer Conversions

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow is important, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflow—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.
Math Errors Application Programming

Chapter 8: Debugging and Error-Handling 159
When run on a Sun workstation, the program:

A = 2.0 ^ 31 + 2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithmetic error: Floating illegal operand

This result is incorrect.

Warning
No error message will appear if you attempt to convert a floating number whose
absolute value is between 215 and 231 - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231 - 1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow is usually not detected. Your programs
must guard explicitly against it.
Application Programming Math Errors

160 Chapter 8: Debugging and Error-Handling
Math Errors Application Programming

Chapter 9

Building Cross-
Platform Applications
The following topics are covered in this chapter:
Overview of Cross-Platform Issues 162
Which Operating System is Running? . . . 163
File and Path Specifications 164
Files and I/O . 166
Math Exceptions . 168
Responding to Screen Size and Colors . . . 169

Printing . 170
SAVE and RESTORE 171
Widgets in Cross-Platform Programs 172
Using External Code 175
IDL DataMiner Issues 176
Application Programming 161

162 Chapter 9: Building Cross-Platform Applications
Overview of Cross-Platform Issues

IDL is designed as a platform-independent environment for data analysis and
programming. Because of this, the vast majority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, there are differences between the computers
that make up a multi-platform environment. Operating systems supply resources in
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows and UNIX machines, there are some cases
where the discrepancies cannot be overcome. This chapter discusses aspects of IDL
that you may wish to consider when developing an application that will run on
multiple types of computer.

Note
This chapter is not an exhaustive list of differences between versions of IDL for
different platforms. Rather, it covers issues you may encounter when writing cross-
platform applications in IDL.
Overview of Cross-Platform Issues Application Programming

Chapter 9: Building Cross-Platform Applications 163
Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable !VERSION. For example, you could use an IDL CASE statement that looks
something like the following to execute code that pertains to a particular operating
system family:

CASE !VERSION.OS_FAMILY OF
'unix' : Code for Unix
'Windows' : Code for Windows

ENDCASE

Writing conditional IDL code based on platform information should be a last resort,
used only if you cannot accomplish the same task in a platform-independent manner.

Operating System Access

While IDL provides ways to interact with each operating system under which it runs,
it is not generally useful to use operating-system native functions in a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described above) and branch your code
accordingly.
Application Programming Which Operating System is Running?

164 Chapter 9: Building Cross-Platform Applications
File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used
by different operating systems; see “!PATH” (IDL Reference Guide) for further
details on path specification.

As a result of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific file
and path specification issues by using the FILEPATH, PATH_SEP, and
DIALOG_PICKFILE functions.

Choosing Files at Runtime

To allow users of your application to choose a file at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such as reading a file
name from a text field in a widget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to a file you know to be installed on the host, use the
FILEPATH function. By default, FILEPATH allows you to select files that are included
in the IDL distribution tree. Chances are, however, that a file you supply as part of your
own application is not included in the IDL tree. You can still use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

Operating
System

Directory
Separator

Path Element
Separator

UNIX / (forward slash) : (colon)

Windows \ (backward slash) ; (semicolon)

Table 9-1: Directory and Path Element Separator Characters
File and Path Specifications Application Programming

Chapter 9: Building Cross-Platform Applications 165
For example, suppose your application is installed in a subdirectory named MYAPP
of the root directory of the filesystem that contains the IDL distribution. You could
use the FILEPATH function and set the ROOT_DIR keyword to the root directory of
the filesystem, and use the SUBDIRECTORY keyword to select the MYAPP
directory. If you are looking for a file named myapp.dat, the FILEPATH command
looks like this:

file = FILEPATH('myapp.dat', ROOT_DIR=root, SUBDIR='MYAPP')

The problem that remains is how to specify the value of root properly on each
platform. This is one case where it is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE !VERSION.OS_FAMILY OF
'unix' : rootdir = '/'
'Windows' : rootdir = STRMID(!DIR, 0, 2)

ENDCASE
file = FILEPATH('myapp.dat', ROOT=rootdir, SUBDIR='MYAPP')

Note that the root directory under Unix is well defined, whereas the root directory on
a machine running Microsoft Windows must be determined by parsing the IDL
system variable !DIR. Under Windows, the root is assumed to be the drive letter of
the hard drive and the following colon — usually “C:”.

Figure 9-1: A Possible Directory Hierarchy for an IDL Application
Application Programming File and Path Specifications

166 Chapter 9: Building Cross-Platform Applications
Files and I/O

IDL’s file input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening a text file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII data to a file on a hard disk, IDL’s I/O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
data format files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writes files in
the proper way.

Before attempting to write a cross-platform IDL application that uses more than basic
file I/O, you should read and understand the sections in Chapter 18, “Files and
Input/Output” that apply to the platforms your application will support. The
following are a few topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which
numbers are stored beginning with the least significant byte. The following table lists
the processor types and operating systems IDL supports and their byte ordering
schemes:

Processor Type Operating System Byte Ordering

AMD Linux little-endian

Windows little-endian

Intel x86 Linux little-endian

Windows little-endian

Macintosh OS X little-endian

Motorola PowerPC Macintosh OS X big-endian

Sun SPARC Solaris big-endian

Table 9-2: Byte Ordering Schemes Used by Platforms that Support IDL
Files and I/O Application Programming

Chapter 9: Building Cross-Platform Applications 167
The IDL routines BYTEORDER and SWAP_ENDIAN allow you to convert numbers
from big endian format to little endian format and vice versa. It is often easier,
however, to use the XDR (for eXternal Data Representation) format to store data that
you know will be used by multiple platforms. XDR files write binary data in a
standard “canonical” representation; as a result, the files are slightly larger than pure
binary data files. XDR files can be read and written on any platform that supports
IDL. XDR is discussed in detail in “Portable Unformatted Input/Output” on
page 454.
Application Programming Files and I/O

168 Chapter 9: Building Cross-Platform Applications
Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL uses the IEEE floating-point standard on all supported systems. As a
result, IDL always substitutes the special floating-point values NaN and Infinity
when it detects a math error. (See “Special Floating-Point Values” on page 156 for
details on NaN and Infinity.)

For information on debugging math errors, see “Math Errors” on page 155.
Math Exceptions Application Programming

Chapter 9: Building Cross-Platform Applications 169
Responding to Screen Size and Colors

The usability of your application may depend on responding to settings on the user’s
system.

Finding Screen Size

Use the GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size allows your
application to handle different screen sizes gracefully.

Number of Colors Available

Use the N_COLORS and TABLE_SIZE fields of the !D system variable to determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of all the available colors for its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application is running
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays as well. If your application uses IDL’s color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVICE, DECOMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.
Application Programming Responding to Screen Size and Colors

170 Chapter 9: Building Cross-Platform Applications
Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presented via
IDL’s print dialogs. If your IDL application uses IDL’s printing dialogs, make sure
that your interface calls the dialog your user will expect for the platform in question.
Printing Application Programming

Chapter 9: Building Cross-Platform Applications 171
SAVE and RESTORE

If you distribute your application via IDL SAVE files, remember that files containing
IDL routines are not necessarily compatible between IDL releases. Always save your
original code and re-save when a new version of IDL is released. SAVE files
containing data are always compatible between releases of IDL.

Note
If you are restoring a file created with VAX IDL version 1, you must restore on a
machine running VMS.
Application Programming SAVE and RESTORE

172 Chapter 9: Building Cross-Platform Applications
Widgets in Cross-Platform Programs

IDL’s user interface toolkit is designed to provide a “native” look and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as a result, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependencies in the IDL widget toolkit.
Consult the descriptions of the individual DIALOG and WIDGET routines in the IDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE in an IDL application, Windows users will see the
Windows-native file selection dialog and Motif users will see the Motif file selection
dialog. Consult the descriptions of the individual DIALOG routines in the IDL
Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET_BASE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See “Iconizing, Layering, and Destroying Groups of Top-Level Bases”
under “WIDGET_BASE” (IDL Reference Guide) for details about the platform-
dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
As a result of the platform-specific appearance of each widget, attempting to position
individual widgets manually within a base will seldom give satisfactory results on all
platforms.
Widgets in Cross-Platform Programs Application Programming

Chapter 9: Building Cross-Platform Applications 173
Instead, insert widgets inside base widgets that have the ROW or COLUMN
keywords set, and let IDL determine the correct geometry for the current platform
automatically. You can gain a finer degree of control over the layout by placing
groups of widgets within sub-base widgets (that is, base widgets that are the children
of other base widgets). This allows you to control the column or row layout of small
groups of widgets within the larger base widget.

In particular, refrain from using the X/YSIZE and X/YOFFSET keywords in cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts Used in Widget Applications

You can specify the font used in a widget via the FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?” on
page 163. You can avoid the need for platform-dependent code by using the TrueType
fonts supplied with IDL; there may be a performance penalty when the fonts are
initially rendered. See Appendix H, “Fonts” (IDL Reference Guide) for details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to a widget on a Motif system. Resources specified via the
RESOURCE_NAME keyword will be quietly ignored on Windows systems. See
“RESOURCE_NAME” under “WIDGET_BASE” (IDL Reference Guide) for details.
In general, you should not expect to be able to duplicate the level of control available
via X Window System resources on other platforms.

WIDGET_STUB

On Motif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism is only available under Unix, and is thus not
suitable for use in cross-platform applications that will run under Microsoft
Windows. WIDGET_STUB is described in the External Development Guide.
Application Programming Widgets in Cross-Platform Programs

174 Chapter 9: Building Cross-Platform Applications
Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
all windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.
Widgets in Cross-Platform Programs Application Programming

Chapter 9: Building Cross-Platform Applications 175
Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program via CALL_EXTERNAL or LINKIMAGE or via the callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the
External Development Guide for details on writing and using external code along
with IDL.
Application Programming Using External Code

176 Chapter 9: Building Cross-Platform Applications
IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL’s Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
allow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.
IDL DataMiner Issues Application Programming

Chapter 10

Multithreading in IDL
This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.
The IDL Thread Pool 178
Controlling the IDL Thread Pool 181

Routines that Use the Thread Pool 187
Application Programming 177

178 Chapter 10: Multithreading in IDL
The IDL Thread Pool

On computer systems that have more than one central processing unit, multi-
threading can be used to increase the speed of numeric calculations by using multiple
system processors to simultaneously carry out different parts of the computation. In a
multithreaded environment, each thread handles a portion of the overall task; if
several threads can run in parallel, the computation can often be completed more
quickly than if the different portions of the task ran in series.

IDL’s thread pool — a pool of computation threads that are used as helpers to
accelerate numerical computations — allows for multithreading when multiple CPUs
are present. IDL automatically evaluates all computations performed by routines that
may benefit from multithreading to determine whether or not to use the thread pool in
the current computation. This decision is based on attributes such as the number of
data elements involved, the availability of multiple CPUs, and the availability of a
multithreaded implementation of the algorithm in use. You can alter the parameters
used by IDL to make this decision, either on a global basis for the duration of a single
IDL session, or for an individual computation.

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For a list of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 187.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL encounters a computation
that can use the thread pool and which would benefit from parallel execution, it
divides the task into sub-parts for each thread, enables the thread pool to do the
computation, waits until the thread pool completes, and then continues. Other than
the improved performance, the end result is virtually indistinguishable when
compared to the same computation performed in the standard single-threaded
manner.
The IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 179
Possible Drawbacks to the Use of the
IDL Thread Pool

There are instances when allowing IDL to use its default thread pool settings can lead
to undesired results. In some instances, a multithreaded implementation using the
thread pool may actually take longer to complete a given job than a single-threaded
implementation. If a computation uses the thread pool in an inappropriate situation,
there may be other undesirable effects. The following are some situations in which
the default thread pool settings may provide less than optimal results.

Computation of a Relatively Small Number of Data Elements

Use of the IDL thread pool requires a small fixed overhead when compared to a non-
threaded version of the same computation. Normally, computational speed increases
when multiple CPUs work in parallel, and the speed-up is much larger than the loss
due to thread pool overhead. However, if the computation does not include a large
enough number of data elements (each element being a data value of a particular data
type), the loss due to thread pool overhead can exceed the benefit and the overall
computation speed can be slower.

To prevent the use of the thread pool for computations that involve too few data
elements, IDL supports a minimum threshold value for thread pool computations.
The minimum threshold value is contained in the TPOOL_MIN_ELTS field of the
!CPU system variable. See the following sections for details on modifying this value.

Large Computation that Requires Virtual Memory Use

If a computation is too large to fit into physical memory, the threads in the thread
pool may cause page faults that will activate the virtual memory system. If more than
one thread encounters this situation simultaneously, the threads will compete with
each other for access to memory and performance will fall below that of a single-
threaded approach to the computation.

To prevent the use of the thread pool for computations that involve too many data
elements, IDL supports a maximum threshold value for thread pool computations.
The maximum threshold value is contained in the TPOOL_MAX_ELTS field of the
!CPU system variable. See the following sections for details on modifying this value.

Multiple Users Competing for CPU Resources

On a large multi-user system, an IDL application that uses the thread pool may
consume all available CPUs, thus affecting other users of the system by reducing
overall performance.
Application Programming The IDL Thread Pool

180 Chapter 10: Multithreading in IDL
To prevent the use of all system processors by routines that use the thread pool, IDL
allows you to specify explicitly the number of CPUs that should be used in
calculations that involve the thread pool. The number of processors to be used for
thread pool operations is contained in the TPOOL_NTHREADS field of the !CPU
system variable. See the following sections for details on modifying this value.

Note
To change the default number of threads used by IDL, set the
IDL_CPU_TPOOL_NTHREADS preference. For more information, see “!CPU
Settings Preferences” (Appendix E, IDL Reference Guide).

Sensitivity to Numerical Precision

Algorithms that are sensitive to the order of operations may produce different results
when performed by the thread pool. Such results are due to the use of finite precision
floating point types, and are equally correct within the precision of the data type.
The IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 181
Controlling the IDL Thread Pool

IDL allows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

• Viewing the Current Thread Pool Settings

• Using the Default Thread Pool Settings

• Changing Global Thread Pool Settings

• Changing Thread Pool Settings for a Specific Computation

• Disabling the Thread Pool

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For a list of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 187.

Viewing the Current Thread Pool Settings

The current values of the parameters that control IDL’s use of the thread pool for
computations are always available in the read-only !CPU system variable. !CPU is
initialized by IDL at startup with default values for the number of CPUs (threads) to
use, as well as the minimum and maximum number of data elements. To view the
settings, use the following command:

HELP, /STRUCTURE, !CPU

The values of the fields in the !CPU system variable are explained in “!CPU” (IDL
Reference Guide).

Using the Default Thread Pool Settings

If you have more than one processor on your system, if the routine you are using is
able to use the thread pool, and if the number of data elements in your computation
falls into the allowed range (neither too few nor too many), then IDL will employ the
thread pool in that calculation.

If the above requirements are met, IDL will automatically use the thread pool for the
computation. You do not need to do anything special to enable IDL’s multithreading
capabilities.
Application Programming Controlling the IDL Thread Pool

182 Chapter 10: Multithreading in IDL
Changing Global Thread Pool Settings

Unless they are overridden by thread pool keywords supplied at the time of
execution, the values contained in the !CPU system variable control IDL’s use of the
thread pool. !CPU is a “read-only” system variable, which means that you cannot
assign values to its structure fields directly, either at the command line or within a
program. However, you can set the default number of threads prior to starting IDL by
using the IDL_CPU_TPOOL_NTHREADS preference. See “!CPU Settings
Preferences” (Appendix E, IDL Reference Guide) for details. You can also change the
values of the !CPU system variable for the duration of the current IDL session by
using the CPU procedure.

The CPU procedure accepts the following keywords:

TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword changes the value returned by !CPU.TPOOL_MAX_ELTS.

TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword changes the value returned by !CPU.TPOOL_MIN_ELTS.

TPOOL_NTHREADS

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
!CPU.HW_NCPU threads, so that each thread will have the potential to run in
parallel with the others. Set this keyword equal to 0 (zero) to ensure that
!CPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

This keyword changes the value returned by !CPU.TPOOL.NTHREADS.
Controlling the IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 183
Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “Possible Drawbacks to the Use of the IDL Thread Pool” on
page 179 for a discussion of the circumstances under which using fewer than the
maximum number of CPUs makes sense.

For more information on the CPU procedure, see “CPU” (IDL Reference Guide).

Examples

The following examples illustrate use of the CPU procedure to modify IDL’s global
thread pool settings.

Note
The following examples are designed for systems with more than one processor.
The examples will generate correct results on single-processor systems, but may
run more slowly than the same operations performed without the thread pool.

Example 1

As a first example, imagine that we want to ensure that the thread pool is not used
unless there are at least 50,000 data elements. We set the minimum to 50,000 since
we know, for our system, that at least 50,000 floating point data elements are required
before the use of the thread pool will exceed the overhead required to use it.

In addition, we want to ensure that the thread pool is not used if a calculation involves
more than 1,000,000 data elements. We set the maximum to 1,000,000 since we
know that 1,000,000 floating point data elements will exceed the maximum amount
of memory available for the computation, requiring the use of virtual memory.

The following IDL statements use the CPU procedure to modify the minimum and
maximum number of elements used in thread pool computations, create an array of
floating-point values, and perform a computation on the array:

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))^2
Application Programming Controlling the IDL Thread Pool

184 Chapter 10: Multithreading in IDL
In this example, the thread pool will be used since we are performing a computation
on an array of 361 x 181 = 65,341 data elements, which falls between the minimum
and maximum thresholds. Note that we altered the global thread pool parameters in
such a way that the computation was allowed. The values set by the CPU procedure
will remain in effect, either until they are changed again by another call to CPU or
until the end of the IDL session. An alternative approach that does not change the
global defaults in shown in “Changing Thread Pool Settings for a Specific
Computation” on page 185.

Example 2

In this example, we will:

1. Save the current thread pool settings from the !CPU system variable.

2. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a floating point computation.

3. Perform several floating point computations.

4. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

5. Perform several double precision computations.

6. Restore the thread pool settings to their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool.

; Retrieve the current thread pool settings
threadpool = !CPU

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $

TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computations, using 2 threads
sineSquared = 1. - (COS(!DTOR*theta))^2
next computation
next computation
etc.

; Modify thread pool settings for new data type
CPU, TPOOL_MAX_ELTS = 50000, TPOOL_MIN_ELTS = 10000
Controlling the IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 185
; Create 65,341 elements of double precision data
theta = DINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))^2
next computation
next computation
etc.

;Return thread pool settings to their initial values
CPU, TPOOL_MAX_ELTS = threadpool.TPOOL_MAX_ELTS, $

TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

Again, in this example we altered the global thread pool parameters. In cases where
you plan to perform multiple computations that take advantage of the same thread
pool configuration, changing the global thread pool parameters is convenient. In
cases where only a single computation uses the specified thread pool configuration, it
is easier to use the thread pool keywords to the routine that performs the computation,
as described in the following section.

Changing Thread Pool Settings for a Specific
Computation

All routines that have been implemented to use the thread pool accept keywords that
allow you to override the thread pool settings stored in !CPU for a single invocation
of the routine. This allows you to modify the settings for a particular computation
without affecting the global default settings of your session. For a list of the routines
that have been implemented to use multithreading when possible, see “Routines that
Use the Thread Pool” on page 187. In the IDL Reference Guide, documentation for
routines that use the thread pool includes a section titled “Thread Pool Keywords.”

The thread pool keywords are:

TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on the maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword overrides the default value, given by !CPU.TPOOL_MAX_ELTS.
Application Programming Controlling the IDL Thread Pool

186 Chapter 10: Multithreading in IDL
TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword overrides the default value, given by !CPU.TPOOL_MIN_ELTS.

TPOOL_NOTHREAD

Set this keyword to explicitly prevent IDL from using the thread pool for the current
computation. If this keyword is set, IDL will use the non-threaded implementation of
the routine even if the current settings of the !CPU system variable would allow use
of the threaded implementation.

Example

We can use the TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to the
COS function to modify the example used in the previous section so that our changes
to the thread pool settings do not alter the global default.

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation and override session settings for maximum
; and minimum number of elements
sineSquared = 1. - (COS(!DTOR*theta, TPOOL_MAX_ELTS = 1000000, $

TPOOL_MIN_ELTS = 50000))^2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:

• Use the CPU procedure to alter the global thread pool parameters.

• Use the TPOOL_NOTHREAD keyword to a routine to disable the thread pool
for a specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threads to use to one:

CPU, TPOOL_NTHREADS = 1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(!DTOR*theta, /TPOOL_NOTHREAD))^2
Controlling the IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 187
Routines that Use the Thread Pool

Multithreading does not offer the possibility of increased execution speed for all IDL
routines. The operators and routines currently using the thread pool in IDL are listed
below, grouped by functional category.

Binary and Unary Operators:

Note
If an operator uses the thread pool, any compound assignment operator based on
that operator (+=, *=, etc.) also uses the thread pool.

Mathematical Routines:

– –- +

++ NOT AND

/ * EQ

NE GE LE

GT LT >

< OR XOR

^ MOD #

• ABS • ERRORF • MATRIX_MULTIPLY

• ACOS • EXP • PRODUCT

• ALOG • EXPINT • ROUND

• ALOG10 • FINITE • SIN

• ASIN • FLOOR • SINH

• ATAN • GAMMA • SQRT

• CEIL • GAUSSINT • TAN
Application Programming Routines that Use the Thread Pool

188 Chapter 10: Multithreading in IDL
Image Processing Routines:

Array Creation Routines:

Non-string Data Type Conversion Routines:

• CONJ • IMAGINARY • TANH

• COS • ISHFT • VOIGT

• COSH • LNGAMMA

• BYTSCL • INTERPOLATE

• CONVOL • POLY_2D

• FFT • TVSCL

• BINDGEN • LINDGEN

• BYTARR • L64INDGEN

• CINDGEN • MAKE_ARRAY

• DCINDGEN • REPLICATE

• DCOMPLEXARR • UINDGEN

• DINDGEN • ULINDGEN

• FINDGEN • UL64INDGEN

• INDGEN

• BYTE • LONG

• COMPLEX • LONG64

• DCOMPLEX • UINT

• DOUBLE • ULONG
Routines that Use the Thread Pool Application Programming

Chapter 10: Multithreading in IDL 189
Array Manipulation Routines:

Programming and IDL Control Routines:

• FIX • ULONG64

• FLOAT

• MAX • TOTAL

• MIN • WHERE

• REPLICATE_INPLACE

• BYTEORDER • LOGICAL_OR

• LOGICAL_AND • LOGICAL_TRUE
Application Programming Routines that Use the Thread Pool

190 Chapter 10: Multithreading in IDL
Routines that Use the Thread Pool Application Programming

Chapter 11

Writing Efficient IDL
Programs
The following topics are covered in this chapter:
Overview of Program Efficiency 192
Use Vector and Array Operations 194
Use System Functions and Procedures . . . 197

Virtual Memory . 198
The IDL Code Profiler 203
Application Programming 191

192 Chapter 11: Writing Efficient IDL Programs
Overview of Program Efficiency

This chapter presents ideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improve the efficiency of IDL programs. In IDL, complicated computations
can be specified at a high level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programs in IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

• Use array operations rather than loops wherever possible. Try to avoid loops
with high repetition counts. See “Use Vector and Array Operations” on
page 194.

• Use IDL system functions and procedures wherever possible. See “Use System
Functions and Procedures” on page 197.

• Access array data in machine address order. See “Access Large Arrays by
Memory Order” on page 199.

Attention also must be given to algorithm complexity and efficiency, as this is
usually the greatest determinant of resources used.

IDL Implementation

IDL programs are compiled into a low-level abstract machine code which is
interpretively executed. The dynamic nature of variables in IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of the time required for array operations is similar to that of vector
computers and array processors. There is an initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per element is shorter
in longer arrays because the cost of this initial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array
Overview of Program Efficiency Application Programming

Chapter 11: Writing Efficient IDL Programs 193
operations. When data are treated as scalars, IDL efficiency degrades by a factor of
30 or more.

Additional Programming Efficiency Resources

Also refer to the following topics, located in other sections of this manual, for
additional ways to improve the efficiency of your IDL program:

• “Efficiency and Expression Evaluation Order” on page 243 — describes how
to organize operations to increase execution speed

• “Defining and Using Constants” on page 257 — describes the importance of
using constants of the correct type

• “Avoid Invariant Expressions” on page 125 — describes the inefficiency of
invariant expression within loop statements
Application Programming Overview of Program Efficiency

194 Chapter 11: Writing Efficient IDL Programs
Use Vector and Array Operations

Programs with vector and array expressions run faster than programs with scalars,
loops, and IF statements. Whenever possible, vector and array data should be
processed with IDL array operations rather than scalar operations in a loop.

Example—Inverting an Image

Consider the problem of inverting a 512 × 512 image. This problem arises because
some image display devices consider the origin to be the lower-left corner of the
screen, while others recognize it as the upper-left corner.

Note
The following example is for demonstration only. The IDL system variable
!ORDER should be used to control the origin of image devices. The ORDER
keyword to the TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

;Temporarily save pixel image.
temp = image[I, J]

;Exchange pixel in same column from corresponding row at bottom
image[I, J] = image[I, 511 - J]

image[I, 511-J] = temp

ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process
arrays as a single entity:

FOR J = 0, 255 DO BEGIN

;Temporarily save current row.
temp = image[*, J]

;Exchange row with corresponding row at bottom.
image[*, J] = image[*, 511-J]

image[*, 511-J] = temp

ENDFOR
Use Vector and Array Operations Application Programming

Chapter 11: Writing Efficient IDL Programs 195
At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
image2 = BYTARR(512, 512, /NOZERO)

;Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

Even more efficient is the single line:

image2 = image[*, 511 - INDGEN(512)]

that reverses the array using subscript ranges and array-valued subscripts.

Finally, using the built-in ROTATE function is quickest of all:

image = ROTATE(image, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.

See Chapter 15, “Arrays” for complete details on working with arrays in IDL.

Example—Summing Elements

Consider the problem of adding all positive elements of array B to array A.

Using a loop will be slow:

FOR I = 0, (N-1) DO IF B[I] GT 0 THEN A[I] = A[I] + B[I]

Masking out negative elements using array operations will be faster:

A = A + (B GT 0) * B

Adding only the positive elements of B is faster still:

A = A + (B > 0)

When an IF statement appears in the middle of a loop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and WHERE

In this example, each element of C is set to the square-root of A if A[I] is positive;
otherwise, C[I] is set to minus the square-root of the absolute value of A[I].

Using a loop statement is slow:

FOR I=0,(N-1) DO IF A[I] LE 0 THEN $
C[I]=-SQRT(-A[I]) ELSE C[I]=SQRT(A[I])
Application Programming Use Vector and Array Operations

196 Chapter 11: Writing Efficient IDL Programs
Using an array expression is much faster:

C = ((A GT 0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) has the value 1 if A[I] is positive and has the value 0 if
A[I]is not. (A GT 0)* 2 - 1 is equal to +1 if A[I] is positive or -1 if A[I] is negative,
accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

;Get subscripts of negative elements.
negs = WHERE(A LT 0)
;Take root of absolute value.
C = SQRT(ABS(A))
;Negate elements in C corresponding to negative elements in A.
C[negs] = -C[negs]
Use Vector and Array Operations Application Programming

Chapter 11: Writing Efficient IDL Programs 197
Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation is to find the sum of the elements in an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each element.
sum = 0. & FOR I = J, K DO sum = sum + array[I]

;Efficient, simple way.
sum = TOTAL(array[J:K])

Similar savings result when finding the minimum and maximum elements in an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.
Application Programming Use System Functions and Procedures

198 Chapter 11: Writing Efficient IDL Programs
Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systems to avoid penalty. Virtual memory allows the computer to
execute programs that require more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this process is transparent to the user, it greatly affects the efficiency of the
program.

Note
In relatively modern computers, plentiful physical memory (hundreds of megabytes
for a single-use machine) is not uncommon. Remember, however, that IDL is
generally not the only consumer of memory on a system. Other applications, the
operating system itself, and other users on multi-user systems may consume large
amounts of physical and virtual memory. If your IDL program appears to be
inefficient or slow, inspect the system memory situation to determine whether
virtual memory is being used, and if so, whether there is enough of it.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually resides in
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory access time,
page faults become an important consideration.

When using IDL with large arrays, it is important to have access to sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parameters that
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See “Virtual Memory System Parameters” on
page 201. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.
Virtual Memory Application Programming

Chapter 11: Writing Efficient IDL Programs 199
Access Large Arrays by Memory Order

When an array is larger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to access it in memory
address order.

Consider the process of transposing a large array. Assume the array is a 512 × 512
byte image with a 100 kilobyte working set. The array requires 512 × 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. The first row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses almost equal to the size of the entire image. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written almost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 × 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:

FOR X = 0, 511 DO FOR Y = 0, 511 DO ARR[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FOR Y = 0, 511 DO FOR X = 0, 511 DO ARR[X, Y] = ...

This approach cuts computing time by a factor of at least 50.

Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especially if you have a small system), you may encounter the error
message

% Unable to allocate memory.
Application Programming Virtual Memory

200 Chapter 11: Writing Efficient IDL Programs
This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asks the
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

The first time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.

If you need to exit IDL, you first should use the SAVE procedure to save your
variables in an IDL save file. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP,/MEMORY command tells you how much virtual memory you have
allocated. For example, a 512 × 512 complex floating array requires 8 × 5122 bytes or
about 2 megabytes of memory because each complex element requires 8 bytes.
Deleting a variable containing a 512 × 512 complex array will increase the amount of
memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A = (B + C) * (E + F)

IDL first evaluates the expression B + C and creates a temporary array if either B or C
are arrays. In the same manner, another temporary array is created if either E or F are
arrays. Finally, the result is computed, the previous contents of A are deleted, and the
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays’ worth of data
is required in addition to normal variable storage.

It is a good idea to delete the allocation of a variable that contains an image and that
appears on the left side of an assignment statement, as shown in the following
program.

;Loop to process an image.
FOR I = ... DO BEGIN

;Processing steps.
...
Virtual Memory Application Programming

Chapter 11: Writing Efficient IDL Programs 201
;Delete old allocation for A.
A = 0

;Compute image expression and store.
A = Image_Expression

...

;End of loop.
ENDFOR

The purpose of the statement A=0 is to free the old memory allocation for the
variable A before computing the image expression in the next statement. Because the
old value of A is going to be replaced in the next statement, it makes sense to free A’s
allocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arrays is
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as a temporary variable and makes the argument undefined. In this way, you avoid
making a new copy of temporary results. For example, assume that A is a large array.
To add 1 to each element in A, you could enter:

A = A+1

However, this statement creates a new array for the result of the addition and assigns
the result to A before freeing the old allocation of A. Hence, the total storage required
for the operation is twice the size of A. The statement:

A = TEMPORARY(A) + 1

requires no additional space.

Virtual Memory System Parameters

The first step is to determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 × 512 images, each
complex image requires 2 megabytes. Suppose that during a typical session you need
to have twenty images stored in variables and require enough memory for ten images
to hold temporary results, resulting in a total of thirty images or 60 megabytes.
Rounding up to 80 megabytes gives a reasonable value for the amount of physical
and virtual memory that should be available to IDL.
Application Programming Virtual Memory

202 Chapter 11: Writing Efficient IDL Programs
UNIX Virtual Memory

For UNIX, The size of the swapping area(s) determines how much virtual memory
your process is allowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is a time-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatting the
disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to a regular file. This is a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Windows Virtual Memory

For Microsoft Windows, creation and management of virtual memory files (called
“paging files”) are handled more or less automatically. You can, however, adjust the
initial and maximum size of the paging file for a given disk. Consult your system
documentation for details and instructions on how to perform these operations.
Virtual Memory Application Programming

Chapter 11: Writing Efficient IDL Programs 203
The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within a file.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDL Workbench or by entering PROFILER at the Command Line. For more
information about the PROFILER procedure, see “PROFILER” (IDL Reference
Guide).

Note
Calling the Profiler from the Command Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for

Figure 11-1: Profile Dialog
Application Programming The IDL Code Profiler

204 Chapter 11: Writing Efficient IDL Programs
profiling. To select a module, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

All User Modules

Select this checkbox to select all the user modules for profiling.

System Modules

This field includes all IDL system procedures and functions.

All System Modules

Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for all the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. The
“Profile Report” dialog is dismissed, as it no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismiss the Profile dialog. Click “Help” to display Help
on this dialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDL Workbench. The
Profile Report dialog appears.

Fields in the Profiler Report Dialog

The fields in the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted alphabetically.

Note
Whether you enter a program at the command line or run a program contained in a
file, the PROFILER procedure reports the status of all the modules compiled and
executed either since profiling was first set or since the PROFILER was reset.

Modules

The name of the library, user, or system procedure or function.
The IDL Code Profiler Application Programming

Chapter 11: Writing Efficient IDL Programs 205
Typ

The type of module. System procedures or functions are associated with an “S”. User
or library functions or procedures are associated with a “U”.

Count

The number of times the procedure or function has been called.

Only(sec)

The time required, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg

Average of the Only(sec) field above.

+Children(sec)

The time required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg

Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDL Workbench. Click “Save” to save the report as a text
file. The Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile
Report dialog. The contents remain available after cancelling. Click “Help” to
display Help on this dialog.

Using the IDL Code Profiler

Open a new editor file by selecting “New” from the File menu.

Enter the following lines in the editor:

PRO prof_test
OPENR, 1, FILEPATH(’nyny.dat’, SUBDIR=[’examples’, ’data’])
a=ASSOC(1, BYTARR(768,512, /NOZERO))
b=a[0]
CLOSE, 1
TV, b

END
Application Programming The IDL Code Profiler

206 Chapter 11: Writing Efficient IDL Programs
Save the file as prof_test.pro by selecting “Save” from the File menu. The Save As
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compile all
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

For more information about the capabilities of either dialog, see “The Profile Dialog”
on page 203 and “The Profile Report Dialog” on page 204.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for all system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report
and run prof_test again.

Enter the following lines at the Command Line:

;Create a dataset using the library function DIST. Note that DIST
;is immediately compiled.

Figure 11-2: Profile Report Dialog
The IDL Code Profiler Application Programming

Chapter 11: Writing Efficient IDL Programs 207
A= DIST(500)

;Display the image.
TV, A

Return to the Profile dialog. You will note that the DIST function has been appended
to the User Module field, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog’s results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Line, you will notice that only the
count for TV increases in the profiler report. You must re-enter the statement calling
DIST at the Command Line; the already-compiled library function is executed again,
making it available for profiling.

Figure 11-3: Refreshing the Profile Report
Application Programming The IDL Code Profiler

208 Chapter 11: Writing Efficient IDL Programs
The IDL Code Profiler Application Programming

Part II: Components
of the IDL Language

Chapter 12

Expressions and
Operators
The following topics are covered in this chapter:
Overview of Expressions and Operators . . 212
Mathematical Operators 213
Minimum and Maximum Operators 220
Matrix Operators . 222
Logical Operators 224

Bitwise Operators 227
Relational Operators 231
Assignment and Compound Assignment . 234
Other Operators . 237
Operator Precedence 240
Application Programming 211

212 Chapter 12: Expressions and Operators
Overview of Expressions and Operators

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the values of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has a large number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (&&, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operators in themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PI) evaluates the variable A multiplied by the value of π, then
applies the trigonometric sine function. This result can be used as an operand to form
a more complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI) evaluates esin(aπ).
Overview of Expressions and Operators Application Programming

Chapter 12: Expressions and Operators 213
Mathematical Operators

IDL mathematical operators are described in the following table.

Note
Also see “Assignment and Compound Assignment” on page 234 for information on
= and op= and “Other Operators” on page 237 for information on the [], (), and ?:
operators.

Operator Description Example

+ Addition Store the sum of 3 and 6 in B:

B = 3 + 6

String Concatenation Store the string value of “John Doe” in B:

B = 'John' + ' ' + 'Doe'

++ Increment Adds one to the operand:

A = 3
A++
PRINT, A

IDL Prints:

4

Note - The increment operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 215.

– Subtraction Store the value of 5 subtracted from 9 in C:

C = 9 - 5

Negation Change the sign of C:

C = -C

Table 12-1: Mathematical Operators
Application Programming Mathematical Operators

214 Chapter 12: Expressions and Operators
-- Decrement Subtracts one from the operand:

A = 3
A--
PRINT, A

IDL Prints:

2

Note - The decrement operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 215.

* Multiplication Store the product of 2 and 5 in variable C:

C = 2 * 5

Pointer dereference If ptr is a valid pointer (created via the
PTR_NEW function), then *ptr is the value
held by the heap variable that ptr points to.
For more information on IDL pointers, see
Chapter 17, “Pointers” (Application
Programming).

/ Division Store result of 10.0 divided by 3.2 in variable
D:

D = 10.0/3.2

Operator Description Example

Table 12-1: Mathematical Operators (Continued)
Mathematical Operators Application Programming

Chapter 12: Expressions and Operators 215
Using Increment/Decrement

The increment (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

^ Exponentiation Store result of 2 raised to the 3rd power in
variable B:

B = 2^3

Note - How exponentiation is evaluated
depends upon whether the operands are real
or complex. See “Using Exponentiation” on
page 218 for details.

MOD Modulo I MOD J is equal to the remainder when I is
divided by J. The magnitude of the result is
less than that of J, and its sign agrees with that
of I. Print the value of 9 modulo 5:

PRINT, 9 MOD 5

IDL Prints:

4

Compute angle modulo 2p.

A =(ANGLE + B) MOD (2 * !PI)

Operator Description Example

Table 12-1: Mathematical Operators (Continued)
Application Programming Mathematical Operators

216 Chapter 12: Expressions and Operators
Note
The increment and decrement operators can only be applied to variable expressions
to which a value can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating this rule is to say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standalone statements
or within a larger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Increment/Decrement Statements

Increment and decrement operators can be used, along with a variable, as standalone
statements:

• A++ or ++A

• A-- or --A

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable is incremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B = 27
A = B++

In contrast, after executing the following statements, both A and B have a value of
26:

B = 27
A = --B
Mathematical Operators Application Programming

Chapter 12: Expressions and Operators 217
Efficiency of Prefix vs. Postfix Operations

When used as part of an expression, the prefix form of the increment and decrement
operators has an efficiency advantage over the postfix form. The reason for this is that
the postfix form requires IDL to make a copy of the data, while the prefix form does
not. The operations carried out by IDL to execute a prefix increment or decrement
operation are:

1. Fetch the target variable.

2. Increment or decrement the target variable in place (no copies are made).

3. Use the variable when evaluating the surrounding expression.

This is very efficient. In contrast, the postfix form requires IDL to make a copy of the
variable in order to use its old value in the surrounding expression following the
increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are:

1. Fetch the target variable.

2. Make a temporary copy of the variable.

3. Increment or decrement the original variable.

4. Use the temporary copy when evaluating the surrounding expression.

If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better
choice. The larger the data involved, the more important this becomes. It is not a
concern for small variables.

Order Of Side Effects

The way that the increment and decrement operators change the value of a variable in
addition to using its value in a surrounding expression is called a side effect. In most
cases, the side effects are desired, and cause no problems. Side effects can cause
problems, however, if the increment or decrement operator is applied to a variable
that appears more than once within a single statement or expression. Consider the
following statement (taken from The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie):

A[i] = i++

Which value of i is used to index A? Is it the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement
Application Programming Mathematical Operators

218 Chapter 12: Expressions and Operators
are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

B = 23
A = B++ + B

the value of A could be either 47 or 46, depending on which part of the expression is
evaluated first.

Note that this situation falls outside the rules of operator precedence — it is the order
in which the variables themselves are evalutated that affects the result. Let’s examine
the situation closely:

• Here the “old” value of B (23) is always used for the first occurrence of B in
the statement.

• If the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

• If the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. As a result, you should avoid writing code that
depends on a particular ordering of the side effects.

Using Exponentiation

The caret (^) is the exponentiation operator. A^B is equal to A raised to the B power.

For real numbers, A^B is evaluated as follows:

• If A is a real number and B is of integer type, repeated multiplication is
applied.

• If both A and B are real (non-integer), the formula AB = eBlnA is evaluated.

• A0 is defined as 1.

For complex numbers, A^B is evalutated as follows. The complex number A can be
represented as A = a + ib, where a is the real part, and ib is the imaginary part. In
polar form, we can represent the complex number as A = reiθ = r cosθ + ir sinθ,
where r cosθ is the real part, and ir sinθ is the imaginary part:

• If A is complex and B is real, the formula AB = (reiθ)B = rB (cosBθ + isinBθ) is
evaluated.
Mathematical Operators Application Programming

Chapter 12: Expressions and Operators 219
• If A is real and B is complex, the formula AB = eBlnA is evaluated.

• If both A and B are complex, the formula AB = eBlnA is evaluated, and the
natural logarithm is computed to be ln(A) = ln(reiθ) = ln(r) + iθ.
Application Programming Mathematical Operators

220 Chapter 12: Expressions and Operators
Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below.

Note
Negated values must be enclosed in parentheses in order for IDL to interpret them
correctly.

Operator Description Example

< Minimum operator.
The value of “A < B” is
equal to the smaller of A
or B.

Note - See also “Using
Minimum or Maximum
with Complex
Numbers” and “Using
Minimum or Maximum
with NaN Values”
below.

Set A equal to 3:

A = 5 < 3

Set A equal to -6. Use parentheses to avoid
a syntax error.

A = 5 < (-6)

Set all points in array ARR that are larger
than 100 to 100:

ARR = ARR < 100

Set X to the smallest of the three operands:

X = X0 < X1 < X2

> Maximum operator.
“A > B” is equal to the
larger of A or B.

Note - See also “Using
Minimum or Maximum
with Complex
Numbers” and “Using
Minimum or Maximum
with NaN Values”
below.

Use '>' to avoid taking the log of zero or
negative numbers:

C = ALOG(D > 1E - 6)

Plot positive points only. Negative points
are plotted as zero:

PLOT, ARR > 0

Table 12-2: Minimum and Maximum Operators
Minimum and Maximum Operators Application Programming

Chapter 12: Expressions and Operators 221
Using Minimum or Maximum with Complex Numbers

For complex numbers, the absolute value is used to determine which value is smaller
or larger. If both values have the same magnitude then the first value is returned.

Minimum Operator Examples

; Set A equal to 1+2i, since ABS(1+2i) is less than ABS(2-4i):
A = COMPLEX(1,2) < COMPLEX(2,-4)
; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i):
A = COMPLEX(1,-2) < COMPLEX(-2,1)

Maximum Operator Examples

; Set A equal to 2-4i, since ABS(2-4i) is greater than ABS(1+2i)
A = COMPLEX(1,2) > COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) > COMPLEX(-2,1)

Using Minimum or Maximum with NaN Values

Typically in IDL, the result of any operation involving the special value NaN is
simply NaN. For efficiency, IDL does not check the values of A and B for NaN
values before performing the minimum or maximum operation. If A or B contains a
NaN value, the result is undefined and can be either NaN or the other non-NaN value,
depending on the specific hardware and operating system. If you suspect that one of
your operands contains NaN values, you might want to use the FINITE function to
ensure that you return NaN values in the result. For example, if A and B are scalars:

A = !VALUES.F_NAN
B = 5

; Result is undefined and can either be 5 or NaN:
PRINT, A > B

; Result must be NaN if either operand is NaN:
PRINT, (FINITE(A) && FINITE(B)) ? (A > B) : !VALUES.F_NAN

This second method also avoids any floating-point math errors. If A and B are arrays,
the following method can be used:

C = REPLICATE(!VALUES.F_NAN, N_ELEMENTS(A))
good = WHERE(FINITE(A) and FINITE(B), ngood)
IF (ngood GT 0) THEN C[good] = A[good] > B[good]
Application Programming Minimum and Maximum Operators

222 Chapter 12: Expressions and Operators
Matrix Operators

IDL has two operators used to multiply arrays and matrices. For an example
illustrating the difference between the two, see “Multiplying Arrays” (Chapter 15,
Application Programming).

Operator Description Example

Computes array elements
by multiplying the
columns of the first array
by the rows of the second
array. The second array
must have the same
number of columns as the
first array has rows. The
resulting array has the
same number of columns
as the first array and the
same number of rows as
the second array.

Multiply a 3-column by 2-row array:

array1 = [[1, 2, 1], $
[2, -1, 2]]

Create a 2-column by 3-row array:

array2 = [[1, 3], [0, 1],$
[1, 1]]

PRINT, array1#array2

IDL prints:

7 -1 7
2 -1 2
3 1 3

Computes array elements
by multiplying the rows
of the first array by the
columns of the second
array. The second array
must have the same
number of rows as the
first array has columns.
The resulting array has
the same number of rows
as the first array and the
same number of columns
as the second array.

Create a 3-column by 2-row array:

array1 = [[1, 2, 1], [2, -1, 2]]

Create a 2-column by 3-row array:

array2 = [[1, 3], [0, 1], [1, 1]]
PRINT, array1##array2

IDL prints:

2 6
4 7

Table 12-3: Matrix Operators
Matrix Operators Application Programming

Chapter 12: Expressions and Operators 223
Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to use the MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.
Application Programming Matrix Operators

224 Chapter 12: Expressions and Operators
Logical Operators

There are three logical operators in IDL: &&, ||, and ~. When dealing with logical
operators, non-zero numerical values, non-null strings, and non-null heap variables
(pointers and object references) are considered true, everything else is false.

Note
Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1’s complement),
and for ! to be used for logical negation. This is not the case in IDL: ! is used to
reference system variables, the NOT operator performs bitwise negation, and ~
performs logical negation.

Operator Description Example

&& Logical AND

Returns 1 whenever both of its
operands are true; otherwise,
returns 0. Non-zero numerical
values, non-null strings, and
non-null heap variables (pointers
and object references) are
considered true, everything else
is false.

Operands must be scalars or
single-element arrays. The &&
operator short-circuits; the
second operand will not be
evaluated if the first is false. See
“Short-circuiting” on page 225
for details.

PRINT, 5 && 7

IDL Prints: 1

PRINT, 5 && 2

IDL Prints: 1

PRINT, 4 && 0
IDL Prints: 0

PRINT, "" && "sun"
IDL Prints: 0

Table 12-4: Logical Operators
Logical Operators Application Programming

Chapter 12: Expressions and Operators 225
Short-circuiting

The && and || logical operators are short-circuiting operators. This means that IDL
does not evaluate the second operand unless it is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, since it allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Op1 && Op2

IDL does not evaluate Op2 if Op1 is false, because it already knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Op1 || Op2

IDL does not evaluate Op2 if Op1 is true, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

|| Logical OR

Returns 1 whenever either of its
operands are true; otherwise,
returns 0. Uses the same test for
“truth” as the && operator.

Operands must be scalars or
single-element arrays. The ||
operator short-circuits; the
second operand will not be
evaluated if the first is true. See
“Short-circuiting” on page 225
for details.

IF ((5 GT 3) || (4 GT 5)) $
THEN PRINT, 'True'

IDL Prints:

True

~ Logical negation

Returns 1 when its operand is
false; otherwise, returns 0.
Uses the same test for “truth” as
the && operator.

PRINT, ~ [1, 2, 0]

IDL Prints:

0 0 1

Operator Description Example

Table 12-4: Logical Operators (Continued)
Application Programming Logical Operators

226 Chapter 12: Expressions and Operators
Additional Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
as follows:

;True if A is between 25 and 50. If A is an array, then the result
;is an array of zeros and ones.
(A LE 50) && (A GE 25)

;True if A is less than 25 or greater than 50. This is the inverse
;of the first.
(A GT 50) || (A LT 25)
Logical Operators Application Programming

Chapter 12: Expressions and Operators 227
Bitwise Operators

There are four bitwise operators in IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands
independently.

Operator Description Example

AND Bitwise AND

For integer, longword, and byte
operands, a bitwise AND
operation is performed. If the
operands are scalars, it returns a
scalar value. If either operand is
an array, it returns an array
containing one value for each
element of the shortest array
operand.

For operations on other types,
the result is equal to the second
operand if the first operand is not
equal to zero or the null string;
otherwise, the result is zero or
the null string.

Note - The bitwise AND
operator is not valid for heap
variable operands

The statement

5 AND 6 = 4

is represented in binary as follows:

0101 AND 0110 = 0100

PRINT, (5 GT 2) AND (4 GT 2)

IDL Prints: 1

PRINT, (5 GT 2) AND (4 GT 5)

IDL Prints: 0

PRINT, 5 AND 7

IDL Prints: 5

PRINT, 5 AND 2

IDL Prints: 0

PRINT, 4 AND 2

IDL Prints: 0

Table 12-5: Logical Operators
Application Programming Bitwise Operators

228 Chapter 12: Expressions and Operators
NOT Bitwise NOT

Returns the bitwise inverse of its
scalar or array operand (returns
scalar if operand is a scalar, or
returns an array containing one
value for each element of the
operand array).

For integer, longword, and byte
operands, NOT returns the
complement of each bit of the
operand. For floating-point
operands, the result is 1.0 if the
operand is zero; otherwise, the
result is zero.

Warning - Use caution when
using the return value from the
bitwise NOT operator as an
operand for the logical operators
&& and ||. See “Using the NOT
Operator” on page 230 for
additional discussion.

Note - Not valid for string or
complex operands.

The statement

NOT 4 = -5

is represented in binary as follows:

NOT 0100 = 1011

PRINT, NOT 1

IDL Prints:

-2

Note - Modern computers use the
“2s complement” representation
for negative signed integers. This
means that to arrive at the decimal
representation of a negative binary
number (a string of binary digits
with a one as the most significant
bit), you must take the
complement of each bit, add one,
convert to decimal, and prepend a
negative sign. For example, NOT
0 equals -1, NOT 1 equals -2, etc.

IF (NOT (5 GT 6)) THEN $
PRINT, 'True'

IDL Prints:

True

Operator Description Example

Table 12-5: Logical Operators (Continued)
Bitwise Operators Application Programming

Chapter 12: Expressions and Operators 229
OR Bitwise OR

Performs the logical “inclusive
or” operation on two scalar or
array operands (returning a
scalar value for scalar operands,
or returning an array containing
one value for each element of the
shortest array operand.

For integer or byte operands, a
bitwise inclusive OR is
performed. For floating- point
operands, returns the first
operand if it is non- zero, or the
2nd operand otherwise.

For integer operands, OR
performs a bitwise inclusive “or”
operation and returns the result.
The statement:

3 OR 5 = 7

is represented in binary as follows:

0011 OR 0101 = 0111

IF ((5 GT 3) OR $
 (4 GT 5)) THEN $
 PRINT, 'True'

IDL Prints:

True

XOR Bitwise exclusive XOR

XOR is only valid for byte,
integer, and longword operands.

Performs the logical “exclusive
or” operation on two scalar or
array operands (returning a
scalar value for scalar operands,
or returning an array containing
one value for each element of the
shortest array operand.

A bit in the result is set to 1 if the
corresponding bits in the
operands are different; if they
are equal, it is set to zero.

For integer operands, XOR sets a
bit in the result to 1 if the
corresponding bits in the operands
are different or to 0 if they are
equal. The statement:

3 XOR 5 = 6

is represented in binary as follows:

0011 XOR 0101 = 0110

IF ((5 GT 3) XOR (4 GT 5))
THEN $

PRINT, 'Different' $
ELSE PRINT, 'Same'

IDL Prints:

Different

Operator Description Example

Table 12-5: Logical Operators (Continued)
Application Programming Bitwise Operators

230 Chapter 12: Expressions and Operators
Using the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
always use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

IF ((NOT EOF(lun)) && device_ready) THEN statement

which wants to execute statement if the file specified by the variable lun has data
remaining, and the variable device_ready is non-zero. When EOF returns the
value 1, the expression NOT EOF(lun) yields -2, due to the bitwise nature of the
NOT operator. The && operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

IF ((~ EOF(lun)) && device_ready) THEN statement

Additional Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

; Displays the “negative” of an image contained in the array IMG.
TV, NOT IMG

; Adds the hexadecimal constant FF (255 in decimal) to the array
; ARR. This masks the lower 8-bits and zeros the upper bits.
ARR AND 'FF'X
Bitwise Operators Application Programming

Chapter 12: Expressions and Operators 231
Relational Operators

The IDL relational operators apply a relation to two operands and return a logical
value of true or false. The resulting logical value can be used as the predicate in IF,
WHILE or REPEAT statements. You can also combine Boolean operators with other
logical values to make more complex expressions.

Note
It is important to see “Definition of True and False” (Chapter 7, Application
Programming) for details on when a value is considered true or false.

The rules for evaluating relational expressions with operands of mixed modes are the
same as for arithmetic expressions. Each operand is promoted to the data type of the
operand with the greatest precedence or potential precision. (See “Data Type and
Structure of Expressions” on page 250 for details.) For example, in the relational
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression is true. The relational operators
return a value of 1 for true and 0 for false. The type of the result is always byte.

Note
When using EQ and NE with complex numbers, both the real and imaginary parts
must meet the condition of the relational operator. For example, the following
returns 0 (false):

PRINT, COMPLEX(1,2) EQ COMPLEX(1,-2)

When using GE, GT, LE, and LT with complex numbers, the absolute value (or
modulus) of the complex number is used for the comparison.

For more information on using relational operators, also see “Using Relational
Operators with Arrays” and “Relational Operators with Infinity and NaN Values” on
page 233.

Operator Description Example

EQ Equal to Returns true if its operands are equal;
otherwise, it returns false. The
following returns True:

IF (2 EQ 2.0) THEN PRINT, 'True'

Table 12-6: Relational Operators
Application Programming Relational Operators

232 Chapter 12: Expressions and Operators
NE Not equal to Returns true whenever the operands are
different. The following returns 1
(true):

PRINT, "sun" NE "fun"

GE Greater than or equal to Returns true if the operand on the left is
greater than or equal to the one on the
right. Relational operator are useful for
creating array masks:

A = ARRAY * (ARRAY GE 100)

See “Using Relational Operators with
Arrays” on page 233.

GT Greater than Returns true if the operand on the left is
greater than the operand on the right.
Determine if A is greater than B:

IF (A GT B) THEN PRINT, 'True'

Note - Strings are compared using the
ASCII collating sequence: “ “ is less
than “0” is less than “9” is less than “A”
is less than “Z” is less than “a” which is
less than “z”.

LE Less than or equal to Returns true if the operand on the left is
less than or equal to the operand on the
right. Determine if A is less than or
equal to B:

IF (A LE B) THEN PRINT, 'True'

LT Less than Returns true if the operand on the left is
less than the operand on the right.
Determine if A is less than B:

IF (A LT B) THEN PRINT, 'True'

Operator Description Example

Table 12-6: Relational Operators (Continued)
Relational Operators Application Programming

Chapter 12: Expressions and Operators 233
Note
You can use the NE and EQ operators to determine if two object references point to
the same heap variable. See “Object Equality and Inequality” (Chapter 1, Object
Programming) for examples.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression:

A = ARR * (ARR LE 100)

A is an array equal to ARR except that all points greater than 100 have been reduced to
zero. The expression (ARR LE 100) is an array that contains a 1 where the
corresponding element of ARR is less than or equal to 100, and zero otherwise. For
example, to print the number of positive elements in the array ARR:

PRINT, TOTAL(ARR GT 0)

The following command sets B equal to ARRAY whenever the corresponding
element of ARRAY is greater than or equal to 100. If the element is less than 100, the
corresponding element of B is set to zero.

B = ARRAY * (ARRAY GE 100)

Relational Operators with Infinity and NaN Values

On the Windows platform, using relational operators with the values infinity or NaN
(Not a Number) causes an “illegal operand” error. The FINITE function’s INFINITY
and NAN keywords can be used to perform comparisons involving infinity and NaN
values. For more information, see “FINITE” (IDL Reference Guide) and “Special
Floating-Point Values” on page 156.
Application Programming Relational Operators

234 Chapter 12: Expressions and Operators
Assignment and Compound Assignment

The assignment statement stores a value in a variable. Compound assignment
combines assignment with another operator.

Operator Description Examples

= Assignment

The value of the expression
on the right hand side of the
equal sign is stored in the
variable, subscript element, or
range on the left side. The old
value of the variable, if any, is
discarded, and the value of
the expression is stored in the
variable. The expression on
the right side can be of any
type or structure.

For more information on
assignment involving arrays
and ranges, see Chapter 15,
“Arrays”.

For information on
assignment involving objects,
see “Object Assignment”
(Chapter 1, Object
Programming).

Simple assignment examples:

A = 5

Assigns 5 to variable A:

B='Hello World'

Assign “Hello World” to variable B:

name = 'Mary'

The variable name becomes a scalar
string variable.

arr = FLTARR(100)

Make arr a 100-element, floating-
point array.

arr = arr[50:*]

Discard points 0 to 49 of arr. It is
now a 50-element array.

Table 12-7: Assignment and Compound Assignment
Assignment and Compound Assignment Application Programming

Chapter 12: Expressions and Operators 235
Compound Assignment Operators

In addition to the standard assignment statement, IDL supports the following
compound assignment operators:

See op= in previous table for examples.

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op is an IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression is any IDL
expression, produces the same result as the statement:

A = A op (expression)

op= Compound Assignment

where op is one of the
following operators: ##, #, *,
+, -, /, <, >, ^, AND, EQ, GE,
GT, LE, LT, MOD, NE, OR,
XOR

Provides succinct syntax for
expressions in which the same
variable would otherwise be
present on both sides of the
equal sign.

See “Compound Assignment
Operators” on page 235 for
details.

Applies the specified operation to
the target variable “in place,”
without making a copy of the
variable. For example,

A += 5

adds 5 to the value of the variable A.

A op= expression

is equivalent to:

A = TEMPORARY(A) op
(expression)

The following statements both add
100 to current value of A:

A = A + 100
A += 100

##= #= *= += -=

/= <= >= AND= EQ=

GE= GT= LE= LT= MOD=

NE= OR= XOR= ^=

Operator Description Examples

Table 12-7: Assignment and Compound Assignment (Continued)
Application Programming Assignment and Compound Assignment

236 Chapter 12: Expressions and Operators
The difference is that the statement using the compound operator makes more
efficient use of memory, because it performs the operation on the target variable A in
place. In contrast, the statement using the simple operators makes a copy of the
variable A, performs the operation on the copy, and then assigns the resulting value
back to A, temporarily using extra memory.

Note that the statement:

A op= expression

is identical to the IDL statement:

A = TEMPORARY(A) op (expression)

which uses the TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

The first statement assigns the value 23 to a variable named AAND. The second
statement performs the AND operation between A and 23, storing the result back into
the variable A.

Compound operators that do not involve IDL keywords (+=, for example) do not
require whitespace in order to be properly parsed by IDL, although such whitespace
is recommended for code readability. That is, the statements

A+= 23
A += 23

are identical, but the latter is more readable.
Assignment and Compound Assignment Application Programming

Chapter 12: Expressions and Operators 237
Other Operators

The following operators (on the [], (), ?: and -> operators) are used when working
with arrays, controlling the order of operations, creating conditional expressions, or
invoking an object method.

Operator Description Examples

[] Array concatenation

The expression [A,B] is an
array formed by
concatenating A and B,
which can be scalars or
arrays, along the first
dimension.

To concatenate second and
third levels, nest the brackets;
[[1,2],[3,4]] is a 2-element by
2-element array with the first
row containing 1 and 2 and
the second row containing 3
and 4. Operands must have
compatible dimensions; all
dimensions must be equal
except the dimension that is
to be concatenated, e.g.,
[2,INTARR(2,2)] are
incompatible.

See Chapter 15, “Arrays” for
more information.

Define C as three-point vector:

C = [0, 1, 3]

Add 5 to the end of C:

PRINT, [C, 5]
IDL Prints: 0 1 3 5

Insert -1 at the beginning of C:

PRINT, [-1, C]

IDL Prints: -1 0 1 3

Plot ARR2 appended to ARR1.

PLOT, [ARR1, ARR2]

Define a 3x3 matrix.

KER = [[1,2,1], [2,4,2], $
[1,2,1]]

Note - Array concatenation is a
relatively inefficient operation, and
should only be performed once for a
given set of data if possible.

Enclose array subscripts

Note - See “Array Subscript
Syntax: [] vs. ()” on
page 307 for additional
details.

A = [2, 1, 5]

Print the 3rd element in A:

PRINT, A[2]

IDL Prints: 5

Table 12-8: Other Operators
Application Programming Other Operators

238 Chapter 12: Expressions and Operators
Working with Conditional Expressions

The conditional expression—written with the ternary operator ?:—has the lowest
precedence of all the operators. It provides a way to write simple constructions of the
IF...THEN...ELSE statement in expression form. In the following example, Z
receives the larger of the values contained by A and B:

IF (A GT B) THEN Z = A ELSE Z = B

() Group expressions to control
order of evaluation or
enclose function parameter
lists

Note - See “Operator
Precedence” on page 240 for
details on order of evaluation

PRINT, 3 + 4 * 2 ^ 2 /2

IDL Prints: 11

PRINT, (3 + (4 * 2) ^ 2 / 2)

IDL Prints: 35

Enclose function argument lists:

SIN(ANG * PI/180.)

?: Conditional expression

Provides a way to write
simple constructions of the
IF...THEN...ELSE statement
in expression form.

See “Working with
Conditional Expressions”
below.

 For

value = expr1 ? expr2 : expr3

expr1 is evaluated first. If expr1 is
true, then value = expr2. If expr1 is
false, value = expr3.

A=6 & B=4

Set Z to the greater of A and B:

Z = (A GT B) ? A : B
PRINT, Z

IDL Prints: 6

-> Method invocation

Calls an object method. See
“Acting on Objects Using
Methods” (Chapter 1, Object
Programming) for more
information.

oWindow->Draw

where oWindow is an IDLgrWindow
object and Draw is the object method.

Operator Description Examples

Table 12-8: Other Operators (Continued)
Other Operators Application Programming

Chapter 12: Expressions and Operators 239
This statement can be written more concisely using a conditional expression:

Z = (A GT B) ? A : B

The general form of a conditional expression is:

expr1 ? expr2 : expr3

The expression expr1 is evaluated first. If expr1 is true, then the expression expr2 is
evaluated and set as the value of the conditional expression. If expr1 is false, expr3 is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3 is evaluated, based on the result of expr1. (See “Definition of True and False”
on page 136 for details on how the “truth” of an expression is determined.)

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around expr1. However, parentheses are often used in this situation, as
they enhance the readability of the expression.
Application Programming Other Operators

240 Chapter 12: Expressions and Operators
Operator Precedence

The following table lists IDL’s operator precedence. Operators with the highest
precedence are evaluated first. Operators with equal precedence are evaluated from
left to right.

Note
See “Efficiency and Expression Evaluation Order” on page 243 for information on
creating efficient statements.

Priority Operator

First (highest) () (parentheses, to group expressions)

[] (brackets, to concatenate arrays)

Second . (structure field dereference)

[] (brackets, to subscript an array)

() (parentheses, used in a function call)

Third * (pointer dereference)

^ (exponentiation)

++ (increment)

-- (decrement)

Fourth * (multiplication)

and ## (matrix multiplication)

/(division)

MOD (modulus)

Table 12-9: Operator Precedence
Operator Precedence Application Programming

Chapter 12: Expressions and Operators 241
Note
There is also a data type hierarchy that affects the result of mathematical operations.
See “Data Type and Structure of Expressions” on page 250 for details.

The effect of a given operator is based on both position and the rules of operator
precedence. This concept is shown by the following examples.

A = 4 + 5 * 2

Fifth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (bitwise negation)

~ (logical negation)

Sixth EQ (equality)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Seventh AND (bitwise AND)

OR (bitwise OR)

XOR (bitwise exclusive OR)

Eighth && (logical AND)

|| (logical OR)

Ninth ?: (conditional expression)

Priority Operator

Table 12-9: Operator Precedence (Continued)
Application Programming Operator Precedence

242 Chapter 12: Expressions and Operators
A is equal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A = (4 + 5) * 2

In this case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parentheses is evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A = 6 / 2 * 3

In this case, A equals 9, since the division operator is to the left of the multiplication
operator. The subexpression 6 / 2 is evaluated before the multiplication is done,
even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A = 6 / (2 * 3)

In this case, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Expression Value

A + 1 The sum of A and 1.

A < 2 + 1 The smaller of A or two, plus one.

A < 2 * 3 The smaller of A and six, since * has
higher precedence than <.

2 * SQRT(A) Twice the square root of A.

A + 'Thursday' The concatenation of the strings A
and “Thursday.” An error results if A
is not a string

Table 12-10: Examples of Expressions
Operator Precedence Application Programming

Chapter 12: Expressions and Operators 243
Efficiency and Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

; Scale A from 0 to 16.
B = A * 16. / MAX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations required is
twice the number of elements in A. A much faster way of computing the same result
is used in the following statement:

; Scale A from 0 to 16 using only one array operation.
B = A * (16./MAX(A))

or

; Operators of equal priority are evaluated from left to right.
; Only one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
statements:

A = RANDOMU(seed, 512, 512)
t1 = SYSTIME(1) & B = A*16./MAX(A) & t2 = SYSTIME(1)
PRINT, 'Time for inefficient calculation: ', t2-t1
t3 = SYSTIME(1) & B = 16./MAX(A)*A & t4 = SYSTIME(1)
PRINT, 'Time for efficient calculation: ', t4-t3
Application Programming Operator Precedence

244 Chapter 12: Expressions and Operators
Operator Precedence Application Programming

Chapter 13

Working with Data
in IDL
The following topics are covered in this chapter:
Data Types . 246
Data Type and Structure of Expressions . . 250
Date/Time Data . 253
Defining and Using Constants 257

Accuracy and Floating Point Operations . 264
Type Conversion Functions 267
Variables . 270
System Variables 272
Application Programming 245

246 Chapter 13: Working with Data in IDL
Data Types

The IDL language is dynamically typed. This means that an operation on a variable
can change that variable’s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision. For example, if an integer variable is added to a floating-point variable, the
result will be a floating-point variable. See “Data Type and Structure of Expressions”
on page 250

Note
See “Returning Type and Size Information” (Chapter 4, Using IDL) for information
on how to determine the data type of an array.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to a variable is determined either by the syntax used when
creating the variable, or as a result of some operation that changes the type of the
variable. IDL’s basic data types are discussed in more detail beginning with “Defining
and Using Constants” on page 257

Table 13-1 lists IDL’s basic data types, provides examples of how to explicitly create
a variable of each type, and list the routines used to create variables and arrays of
each type.

Data Type Description Creation Routines

Byte An 8-bit unsigned integer
ranging in value from 0 to
255. Pixels in images are
commonly represented as
byte data.

a = 5B

a = BYTE(5)

BYTE

BYTARR

Integer A 16-bit signed integer
ranging from −32,768 to
+32,767.

b = 0

b = 0S

b = FIX(0)

FIX

INTARR

Table 13-1: Data Types
Data Types Application Programming

Chapter 13: Working with Data in IDL 247
Unsigned
Integer

A 16-bit unsigned integer
ranging from 0 to 65535

c = 0U

c = UINT(0)

UINT

UINTARR

Long A 32-bit signed integer
ranging in value from
approximately minus two
billion to plus two billion.

d = 0L

d = LONG(0)

LONG

LONARR

Unsigned Long A 32-bit unsigned integer
ranging in value from 0 to
approximately four billion.

e = 0UL

e = ULONG(0)

ULONG

ULONARR

64-bit Long A 64-bit signed integer
ranging in value from –
9,223,372,036,854,775,808
to
+9,223,372,036,854,775,80
7.

f = 0LL

f = LONG64(0)

LONG64

LON64ARR

64-bit Unsigned
Long

A 64-bit unsigned integer
ranging in value from 0 to
18,446,744,073,709,551,61
5.

g = 0ULL

g = ULONG64(0)

ULONG64

ULON64ARR

Floating-point A 32-bit, single-precision,
floating-point number in
the range of ±1038, with
approximately six or seven
decimal places of
significance.

h = 0.0

h = FLOAT(0)

FLOAT

FLTARR

Double-
precision

A 64-bit, double-precision,
floating-point number in
the range of ±10308 with
approximately 14 decimal
places of significance.

i = 0.0D

i = DOUBLE(0)

DOUBLE

DBLARR

Data Type Description Creation Routines

Table 13-1: Data Types (Continued)
Application Programming Data Types

248 Chapter 13: Working with Data in IDL
Note
In previous versions of IDL prior to version 4, the combination of a double-
precision number and a complex number in an expression resulted in a single-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
results in a DCOMPLEX number.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, this is something you
should consider.

For more information on floating-point mathematics, see Chapter 9, “Mathematics”
(Using IDL). For information on your machine’s precision, see “MACHAR” (IDL
Reference Guide).

Complex A real-imaginary pair of
single-precision, floating-
point numbers. Complex
numbers are useful for
signal processing and
frequency domain filtering.

j = $
COMPLEX(1.0, 0.0)

j = COMPLEX(1,0)

COMPLEX

COMPLEXARR

Double-
precision
complex

A real-imaginary pair of
double-precision, floating-
point numbers.

k = $
DCOMPLEX(1.0, 0.0)

DCOMPLEX

DCOMPLEXARR

String A sequence of characters,
from 0 to 2147483647 (2.1
GB) characters in length,
which is interpreted as text.

l = 'Hello'

l = $
STRING([72B, 101B, $
108B, 108B, 111B])

STRING

STRARR

Data Type Description Creation Routines

Table 13-1: Data Types (Continued)
Data Types Application Programming

Chapter 13: Working with Data in IDL 249
Complex Data Types

• Structures: Aggregations of data of various types. Structures are discussed in
Chapter 16, “Structures”.

• Pointers: A reference to a dynamically-allocated heap variable. Pointers are
discussed in Chapter 17, “Pointers”.

• Object References: A reference to a special heap variable that contains an IDL
object structure. Object references are discussed in Chapter 13, “Creating
Custom Objects in IDL” (Object Programming).
Application Programming Data Types

250 Chapter 13: Working with Data in IDL
Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The structure of an
expression determines whether the expression can represent a single value or multiple
values. IDL expressions can be either scalars (with exactly one value) or arrays (with
one or more values). The data type and structure of an expression depend on the data
type and structure of its operands.

Tip
You can determine the data type of an expression by returning the type code of the
expression. See “Returning Type and Size Information” (Chapter 4, Using IDL) for
more information.

Hierarchy of IDL Data Types

Unlike many other languages, the data type and structure of most expressions in IDL
cannot be determined until the expression is evaluated. Because of this, care must be
taken when writing programs. For example, a variable can be a scalar byte variable at
one point in a program while at a later point the same variable can hold a complex
array. See “Expression Type” on page 251 for information on how the hierarchy of
data types affect the outcome of mathematical operations. See “Expression Structure”
on page 252 for information on how the results of scalar and array operations are
evaluated. The twelve atomic data types in decreasing order of precedence are as
follows:

Double-precision complex floating-point

Complex floating-point

Double-precision floating-point

Floating-point

Signed and unsigned 64-bit integer

Signed and unsigned longword (32-bit) integer

Signed and unsigned (16-bit) integer

Byte

String
Data Type and Structure of Expressions Application Programming

Chapter 13: Working with Data in IDL 251
Expression Type

IDL attempts to evaluate expressions containing operands of different data types in
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variable is first
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to a complex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of data types. See “Hierarchy of IDL Data
Types” on page 250 for the order of precedence.

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assume the variable A is an integer variable with a value
of 5. The following expressions yield the indicated results:

; Integer division is performed. The remainder is discarded.
A / 2 = 2

; The value of A is first converted to floating.
A / 2. = 2.5

; Integer division is done first because of operator precedence.
; Result is floating point.
A / 2 + 1. = 3.

; Division is done in floating, then the 1 is converted to floating
; and added.
A / 2. + 1 = 3.5

; Signed and unsigned integer operands have the same precedence, so
; the left-most operand determines the type of the result as signed
; integer.
A + 5U = 10

; As above, the left-most operand determines the result type
; between types with the same precedence
5U + A = 10U
Application Programming Data Type and Structure of Expressions

252 Chapter 13: Working with Data in IDL
Note
When other data types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 is first converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.

Expression Structure

IDL expressions can contain operands that are either scalars or arrays, just as they can
contain operands with different types. Conversion of variables between the scalar and
array forms is independent of data type conversion. An expression will yield an array
result if any of its operands is an array, as shown in the following table:

See “Operations on Array Expressions” on page 301 for more information on
working with arrays as operands in an expression.

Operands Result

Scalar : Scalar Scalar

Array : Array Array

Scalar : Array Array

Array : Scalar Array

Table 13-2: Structure of Expressions
Data Type and Structure of Expressions Application Programming

Chapter 13: Working with Data in IDL 253
Date/Time Data

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows a few examples of calendar dates and their
corresponding Julian dates.

Julian dates can also include fractional portions of a day, thereby incorporating hours,
minutes, and seconds. If the day fraction is included in a Julian date, it is represented
as a double-precision floating point value. The day fraction is computed as follows:

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
dates just as for any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0

January 2, 4713 B.C.E., at 12pm 1

January 1, 2000 at 12pm 2451545

Table 13-3: Example Julian Dates

dayFraction hour
24.d
------------ minute

1440.d
------------------ ondssec

86400.d
---------------------+ +=
Application Programming Date/Time Data

254 Chapter 13: Working with Data in IDL
Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision is typically limited by the data type of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

• Time values that require a high precision, and that span a range of a few days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

• Date values that do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of this format is 1 day.

• Date values where it is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian dates is limited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm:
julian = JULDAY(1,1,2000,12,15,0)

; Get machine characteristics:
machine = MACHAR(/DOUBLE)

; Multiply by floating-point precision:
precision = julian*machine.eps

; Convert to seconds:
PRINT, precision*86400d0
Date/Time Data Application Programming

Chapter 13: Working with Data in IDL 255
How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent value corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
size for a given date/time unit. Unlike the other array generation routines in IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time is
originally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for a full year:

date_time = TIMEGEN(12, UNIT = 'Months', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000. The results of the above call
to TIMEGEN can be output using either of the following methods:

1. Using the CALDAT procedure to convert the Julian dates to calendar dates:

CALDAT, date_time, month, day, year
FOR i = 0, (N_ELEMENTS(date_time) - 1) DO PRINT, $

month[i], day[i], year[i], $
FORMAT = '(i2.2, "/", i2.2, "/", i4)'

2. Using the calendar format codes:

PRINT, date_time, format = '(C(CMOI2.2, "/", CDI2.2, "/", CYI))'

The resulting calendar dates are printed out as follows:

03/01/2000
04/01/2000
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001
02/01/2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see the “TIMEGEN” (IDL Reference Guide).
Application Programming Date/Time Data

256 Chapter 13: Working with Data in IDL
Date/Time Data Examples

You can display date/time data on IDLgrAxis objects (through the TICKFORMAT
property) plots, contours, and surfaces by setting tick mark attributes. See
“Displaying Date/Time Data on Axis Objects” (Chapter 5, Object Programming) and
the routines LABEL_DATE and “CONTOUR” (IDL Reference Guide) routine for
examples.
Date/Time Data Application Programming

Chapter 13: Working with Data in IDL 257
Defining and Using Constants

The syntax of a constant determines its type. Efficiency is adversely affected when
the type of a constant must be converted during expression evaluation. Consider the
following expression:

A + 5

If the variable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

The type of a constant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A is a byte array, the result of the expression A + 5B is a
byte array, while A + 5 yields a 16-bit integer array.

This section discusses details of IDL data types including the following:

• “Integer Constants” below

• “Floating-Point and Double-Precision Constants” on page 260

• “Complex Constants” on page 262

• “String Constants” on page 262
Application Programming Defining and Using Constants

258 Chapter 13: Working with Data in IDL
Integer Constants

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B

Integer n or nS 12,12S,425,425S

Unsigned Integer nU or nUS 12U,12US

Long nL 12L, 94L

Unsigned Long nUL 12UL, 94UL

64-bit Long nLL 12LL, 94LL

Unsigned 64-bit
Long

nULL 12ULL, 94ULL

Hexadecimal Byte 'n'XB '2E'XB

Integer 'n'X or 'n'XS '0F'X, 'A2'XS

Unsigned Integer 'n'XU or 'n'XUS ’0F’XU, 'A2'XUS

Long 'n'XL 'FF'XL

Unsigned Long 'n'XUL ’FF’XUL

64-bit Integer 'n'XLL ’FF’XLL

Unsigned 64-bit
Integer

'n'XULL 'FF'XULL

Table 13-4: Integer Constants
Defining and Using Constants Application Programming

Chapter 13: Working with Data in IDL 259
Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.

Octal Byte "nB "12B

Integer "n "12

'n'O or 'n'OS '377'O, '234'OS

Unsigned Integer "nU "12U

'n'OU or 'n'OUS '377'OU, '234'OUS

Long "nL "12L

'n'OL '777777'OL

Unsigned Long "nUL "12UL

'n'OUL '777777'OUL

64-bit Long "nLL "12LL

'n'OLL '777777'OLL

Unsigned 64-bit "nULL "12ULL

Long 'n'OULL '777777'OULL

Type Absolute Value Range

Byte 0 – 255

Integer 0 – 32767

Unsigned Integer 0 – 65535

Long 0 – 231 - 1

Unsigned Long 0 – 232 - 1

Table 13-5: Absolute Value Range Of Integer Constants

Radix Type Form Examples

Table 13-4: Integer Constants (Continued)
Application Programming Defining and Using Constants

260 Chapter 13: Working with Data in IDL
Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it is too large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Floating-Point and Double-Precision Constants

Floating-point and double-precision constants can be expressed in either
conventional or scientific notation. Any numeric constant that includes a decimal
point is a floating-point or double-precision constant.

64-bit Long 0 – 263 - 1

Unsigned 64-bit Long 0 – 264 - 1

Unacceptable Reason Acceptable

256B Too large, limit is 255 255B

'123L Missing apostrophe '123'L

'03G'x Invalid character "129

'27'L No radix '27'OL

650XL No apostrophes '650'XL

"129 9 is an invalid octal digit "124

Table 13-6: Examples of Integer Constants

Type Absolute Value Range

Table 13-5: Absolute Value Range Of Integer Constants (Continued)
Defining and Using Constants Application Programming

Chapter 13: Working with Data in IDL 261
The syntax of floating-point and double-precision constants is shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for
example, E-2.

Double-precision constants are entered in the same manner, replacing the E with a D.
For example, 1.0D0, 1D, and 1.D each represent a double-precision numeral 1.

Note
The nE and nD forms are shorthand for nE0 and nD0, and are usually used to
indicate the type of the number, either single or double precision. When using these
forms in expressions, be sure to leave a space after the E or D if the next term has a
+ or - sign.

For example, the expression 1D+45 is evaluated as 1x1045 in double precision,
while 1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write this expression is 1D + x (note the spaces).

Form Example

n. 102.

.n .102

n.n 10.2

nE 10E

nEsx 10E5

n.Esx 10.E-3

.nEsx .1E+12

n.nEsx 2.3E12

Table 13-7: Syntax of Floating-Point Constants
Application Programming Defining and Using Constants

262 Chapter 13: Working with Data in IDL
Complex Constants

Complex constants contain a real and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follows:

COMPLEX(REAL_PART, IMAGINARY_PART)

or

COMPLEX(REAL_PART)

For example, COMPLEX(1,2) is a complex constant with a real part of one, and an
imaginary part of two. COMPLEX(1) is a complex constant with a real part of one
and a zero imaginary component. To extract the real part of a complex expression,
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
quotes (“). The value of the constant is simply the characters appearing between the
leading delimiter ('or “”) and the next occurrence of the same delimiter. A double
apostrophe ('') or quote (“”) is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g., 'Don''t' returns Don't. This syntax often can be
avoided by using a different delimiter; e.g., “Don't” instead of 'Don''t'. The
following table illustrates valid string constants.

Expression Resulting String

'Hi there' Hi there

"Hi there" Hi there

' ' Null String

"I'm happy" I’m happy

'I"m happy' I”m happy

'counter' counter

'129' 129

Table 13-8: Examples of Valid String Constants
Defining and Using Constants Application Programming

Chapter 13: Working with Data in IDL 263
The following table illustrates invalid string constants. In the last entry of the table,
"129" is interpreted as an illegal octal constant. This is because a quote character
followed by a digit from 0 to 7 represents an octal numeric constant, not a string, and
the character 9 is an illegal octal digit.

While an IDL string variable can hold up to 64 Kbytes of information, the buffer than
handles input at the IDL command prompt is limited to 255 characters. If for some
reason you need to create a string variable longer than 255 characters at the IDL
command prompt, split the variable into multiple sub-variables and combine them
with the “+” operator:

var = var1+var2+var3

This limit only affects string constants created at the IDL command prompt.

Note
See Chapter 14, “Strings” for details on working with strings.

String Value Unacceptable Reason

Hi there 'Hi there" Mismatched delimiters

Null String ' Missing delimiter

I’m happy 'I'm happy' Apostrophe in string

counter ''counter'' Double apostrophe is null string

129 "129" Illegal octal constant

Table 13-9: Examples of Invalid String Constants
Application Programming Defining and Using Constants

264 Chapter 13: Working with Data in IDL
Accuracy and Floating Point Operations

In a computer, real numbers are represented with finite precision. While in most
cases it is safe to assume that the result of an arithmetical operation done on your
computer is correct, it is important to remember that this finite-precision
representation leads to unavoidable errors, especially when floating-point numbers,
which are digital approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider the
following:

• Floating-point numbers must be made to fit in a space (a string of binary digits
in a computer’s memory register) that can only hold an integer and a scaling
factor.

• Floating-point numbers are represented by strings of a limited number of bits,
but represent numbers much larger or smaller than that number of digits can be
made to express.

In other words, floating-point values are finite-precision approximations of infinitely
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. This is the smallest number that, when added to 1.0, produces a floating-
point result that is different from 1.0.

A useful way of thinking about machine accuracy is to consider it to be the fractional
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit of the
floating-point mantissa—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissa is rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduces an
error at least equal to the machine accuracy into the result. This error is known as
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involving n arithmetic operations might have a total roundoff error
between SQRT(n) times the machine accuracy and n times the machine accuracy.
Accuracy and Floating Point Operations Application Programming

Chapter 13: Working with Data in IDL 265
Note that the machine accuracy is not the same as the smallest floating-point number
your computer can represent. To find these and other machine-dependent quantities
for your own computer, see MACHAR in the IDL Reference Guide.

Truncation Error

Another type of error is also present in some numerical algorithms. Truncation error
is the error introduced by the process of numerically approximating a continuous
function by evaluating it at a finite number of discrete points. Often, accuracy can be
increased (again at some cost of computation time) by increasing the number of
discrete points evaluated.

For example, consider the process of calculating

Obviously, the answer becomes more accurate as n approaches infinity. When
performing the actual computation, however, a cutoff value must be specified for n.
Increasing n reduces truncation error at the expense of computational effort.

Several IDL routines allow you to specify cutoff values in such cases (see, for
example, INT_2D of the IDL Reference Guide). When writing your own routines in
IDL, it is important to consider this trade-off between accuracy and computational
time.

 Routines for Mathematical Error Assessment

Below is a brief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in the IDL Reference
Guide.

See “Math Errors” on page 155 for more information.

CHECK_MATH Returns and clears accumulated math error status.

FINITE Returns True if its argument is finite.

MACHAR Determines and returns machine-specific parameters affecting
floating-point arithmetic.

Table 13-10: Mathematical Error Assessment Routines in IDL

ex 1 x x2

2!
----- x3

3!
----- … xn

n!
-----+ + + + +=
Application Programming Accuracy and Floating Point Operations

266 Chapter 13: Working with Data in IDL
Accuracy and Floating Point Operation References

Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch. Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
Accuracy and Floating Point Operations Application Programming

Chapter 13: Working with Data in IDL 267
Type Conversion Functions

IDL allows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output data in a mode compatible with
other programs, etc. For a list of type conversion functions, see “Type Conversion”
(IDL Quick Reference). Conversion functions operate on data of any structure:
scalars, vectors, or arrays, and variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

; Define A. Note that the value of A is outside the range
; of integers, and is automatically created as a longword
; integer by IDL.
A = 33000
;B is silently truncated.
B = FIX(A)
PRINT, B

IDL prints:

-32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See “Math Errors” on page 155, for more
information.

Converting Strings

When converting from a string argument, it is possible that the string does not contain
a valid number and no conversion is possible. The default action in such cases is to
print a warning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. The result of the BYTE function applied to a string or string array is a byte array
containing the ASCII codes of the characters of the string. Converting a byte array
Application Programming Type Conversion Functions

268 Chapter 13: Working with Data in IDL
with the STRING function yields a string array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TYPE keyword to the FIX function allows type conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TYPE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D

; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA

; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value: '
; Convert the user value to the type stored in typeA:
ConvUserVal = FIX(UserVal, TYPE=typeA)

PRINT, ConvUserVal
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results

FLOAT(1) 1.0

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

FIX(1.3, TYPE=5) 1.3000000

Table 13-11: Uses of Type Conversion Functions
Type Conversion Functions Application Programming

Chapter 13: Working with Data in IDL 269
BYTE(1.2) 1

BYTE(-1) 255b (Bytes are modulo 256)

BYTE(’01ABC’) [48b, 49b, 65b, 66b, 67b]

STRING([65B, 66B, 67B]) ’ABC’

FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Operation Results

Table 13-11: Uses of Type Conversion Functions (Continued)
Application Programming Type Conversion Functions

270 Chapter 13: Working with Data in IDL
Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL data types. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and a type.

Structure

A variable can contain a single value (a scalar) or a number of values of the same
type (an array) or data entities of potentially differing type and size (a structure).
Strings are considered as single values, and a string array contains a number of
variable-length strings.

In addition, a variable can associate an array structure with a file; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” (IDL
Reference Guide).

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When a variable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.
Variables Application Programming

Chapter 13: Working with Data in IDL 271
Variable Names

IDL variables are named by identifiers. Each identifier must begin with a letter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after the first 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptable variable names.

Tip
Use the IDL_VALIDNAME routine to determine whether a given string is
acceptable as an IDL variable name.

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or a reserved word (see “Reserved Words” (IDL Reference Guide)). Giving a
variable such a name results in a syntax error or in “hiding” the variable.

Unacceptable Reason Acceptable

EOF Conflicts with function name A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE

AB@ Illegal character ABC$DEF

ab cd Embedded space My_variable

Table 13-12: Unacceptable and Acceptable IDL Variable Names
Application Programming Variables

272 Chapter 13: Working with Data in IDL
System Variables

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSYSV
procedure.

System variables are discussed in Appendix D, “System Variables” (IDL Reference
Guide).
System Variables Application Programming

Chapter 14

Strings
The following topics are covered in this chapter:
Overview of Strings 274
String Operations . 275
Non-string and Non-scalar Arguments . . . 276
String Concatenation 277
Using STRING to Format Data 278
Byte Arguments and Strings 280
Case Folding . 282

Whitespace . 283
Finding the Length of a String 285
Substrings . 286
Splitting and Joining Strings 289
Comparing Strings 290
Non-Printing Characters 294
Learning About Regular Expressions . . . 295
Application Programming 273

274 Chapter 14: Strings
Overview of Strings

An IDL string is a sequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and there is no
need to declare the maximum length of a string prior to using it. As with any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

Note
This chapter covers operations on strings. For information about using the ‘ and
“characters to create valid strings, see “String Constants” on page 262.

A Note About the Examples

In some of the examples in this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

Executing the statement,

PRINT, '>' + trees + '< '

results in the following output:

>Beech< >Birch< >Mahogany< >Maple< >Oak< >Pine< >Walnut<
Overview of Strings Application Programming

Chapter 14: Strings 275
String Operations

IDL supports several basic string operations, as described below:

Operation Description

Concatenation The Addition operator, “+”, can be used to concatenate strings
together. See “String Concatenation” on page 277.

Formatting Data The STRING function is used to format data into a string. The
READS procedure can be used to read values from a string
into IDL variables. See “Using STRING to Format Data” on
page 278.

Case Folding The STRLOWCASE function returns a copy of its string
argument converted to lowercase. Similarly, the STRUPCASE
function converts its argument to uppercase. See “Case
Folding” on page 282.

White Space
Removal

The STRCOMPRESS and STRTRIM functions can be used to
eliminate unwanted white space (blanks or tabs) from their
string arguments. See “Whitespace” on page 283.

Length The STRLEN function returns the length of its string
argument. See “Finding the Length of a String” on page 285.

Substrings The STRPOS, STRPUT, and STRMID routines locate, insert,
and extract substrings from their string arguments. See
“Substrings” on page 286.

Splitting and
Joining Strings

The STRSPLIT function is used to break strings apart, and the
STRJOIN function can be used to and glue strings together.
See “Splitting and Joining Strings” on page 289

Comparing
Strings

The STRCMP, STRMATCH, and STREGEX functions
perform string comparisons. See “Comparing Strings” on
page 290.

Table 14-1: String Operations
Application Programming String Operations

276 Chapter 14: Strings
Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument — the string on which they act. If the argument is not of type string, IDL
converts it to type string using the same default formatting rules that are used by the
PRINT/PRINTF or STRING routines. The function then operates on the converted
result. Thus, the IDL statement,

PRINT, STRLEN(23)

returns the result

8

because the argument “23” is first converted to the string ' 23' that happens to
be a string of length 8.

If the argument is an array instead of a scalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $

'Pine', 'Walnut']

; Get an uppercase version of TREES.
A = STRUPCASE(trees)

; Show that the result is also an array.
HELP, A

; Display the original.
PRINT, trees

; Display the result.
PRINT, A

produce the following output:

A STRING = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut
BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptions in the IDL Reference Guide.
Non-string and Non-scalar Arguments Application Programming

Chapter 14: Strings 277
String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A = 'This is' + ' a concatenation example.'
PRINT, A

results in the following output:

This is a concatenation example.

Strings can also be broken across code lines:

Print, "This is a multi-line " $
+ "string concatenation example."

results in the following output:

This is a multiline string concatenation example.

The following IDL statements build a scalar string containing a comma-separated list
of the names found in the TREES string array:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $

'Pine', 'Walnut']

; Use REPLICATE to make an array with the correct number of commas
; and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

; Show the resulting list.
PRINT, names

Running the above statements results in the following output:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut
Application Programming String Concatenation

278 Chapter 14: Strings
Using STRING to Format Data

The STRING function has the following form:

S = STRING(Expression1, ..., Expressionn)

It converts its parameters to characters, returning the result as a string expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. As with PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
free format and explicitly formatted input/output (“Free Format I/O” on page 385) for
details of data formatting. For more information on the STRING function, see
“STRING” (IDL Reference Guide).

As a simple example, the following IDL statements:

; Produce a string array.
A = STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))

; Show its structure.
HELP, A

; Print the result.
FOR I = 0, (N_ELEMENTS(A)-1) DO PRINT, A[I]

produce the following output:

A STRING = Array(6)
The values are:

0
1
2
3
4

Note
When you use vector, TrueType, and some device fonts, text strings can include
embedded formatting commands that facilitate subscripting, superscripting, and
equation formatting. See “Embedded Formatting Commands” (Appendix H, IDL
Reference Guide).
Using STRING to Format Data Application Programming

Chapter 14: Strings 279
Reading Data from Strings

The READS procedure performs formatted input from a string variable and writes the
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS” (IDL Reference Guide) for more details.
Application Programming Using STRING to Format Data

280 Chapter 14: Strings
Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simply an
array of bytes that is treated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output below:

Hello

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Its first element is 72B which is the ASCII
code for “H,” the second is 101B which is an ASCII “e,” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte data in
the usual way.

As discussed in Chapter 18, “Files and Input/Output”, it is easier to read fixed-length
string data from binary files into byte variables instead of string variables. Therefore,
it is convenient to read the data into a byte array and use this special behavior of
STRING to convert the data into string form.

Another use for this feature is to build strings that contain nonprintable characters in
a way such that the character is not entered directly. This results in programs that are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
are implemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRINT, STRING([65B, 66B, 0B, 67B])

produces the following output:

AB

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.
Byte Arguments and Strings Application Programming

Chapter 14: Strings 281
Note
The BYTE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in a byte array containing
the same byte values as its string argument. For additional information about the
BYTE function, see “Type Conversion Functions” on page 267.
Application Programming Byte Arguments and Strings

282 Chapter 14: Strings
Case Folding

The STRLOWCASE and STRUPCASE functions are used to convert arguments to
lowercase or uppercase. Where String is the string to be converted, they have the
form:

S = STRLOWCASE(String)

S = STRUPCASE(String)

The following IDL statements generate a table of the contents of TREES showing
each name in its actual case, lowercase and uppercase:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $

'Pine', 'Walnut']

FOR I=0, 6 DO PRINT, trees[I], STRLOWCASE(trees[I]),$
STRUPCASE(trees[I]), FORMAT = '(A, T15, A, T30, A)'

The resulting output from running this statement is as follows:

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions:

; Create a string variable to hold the response.
answer = ''

; Ask the question.
READ, 'Answer yes or no: ', answer
IF (STRUPCASE(answer) EQ 'YES') THEN $

; Compare the response to the expected answer.
PRINT,'YES' ELSE PRINT, 'NO'

Beech beech BEECH

Birch birch BIRCH

Mahogany mahogany MAHOGANY

Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT
Case Folding Application Programming

Chapter 14: Strings 283
Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)

where String is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely
eliminated. For example,

; Create a string with undesirable white space. Such a string might
; be the result of reading user input with a READ statement.
A = ' This is a poorly spaced sentence. '

; Print the result of shrinking all white space to a single blank.
PRINT, '>', STRCOMPRESS(A), '<'

; Print the result of removing all white space.
PRINT '>', STRCOMPRESS(A, /REMOVE_ALL), '<'

results in the output:

> This is a poorly spaced sentence. <
>Thisisapoorlyspacedsentence.<

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S = STRTRIM(String[, Flag])

where String is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is 0 or is not present, trailing white space is
removed. If it is 1, leading white space is removed. Both trailing and leading white
space are removed if Flag is equal to 2. For example:

; Create a string with unwanted leading and trailing blanks.
Application Programming Whitespace

284 Chapter 14: Strings
A = ' This string has leading and trailing white space '

; Remove trailing white space.
PRINT, '>', STRTRIM(A), '<'

; Remove leading white space.
PRINT, '>', STRTRIM(A,1), '<'

; Remove both.
PRINT, '>', STRTRIM(A,2), '<'

Executing these statements produces the output below.

> This string has leading and trailing white space<
>This string has leading and trailing white space <
>This string has leading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

; Create a string with undesirable white space.
A = 'Yet another poorly spaced sentence. '

; Eliminate unwanted white space.
PRINT, '>' STRCOMPRESS(STRTRIM(A,2)), '<'

Executing these statements gives the result below:

>Yet another poorly spaced sentence.<
Whitespace Application Programming

Chapter 14: Strings 285
Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:

L = STRLEN(String)

where String is the string for which the length is required. For example, the following
statement

PRINT, STRLEN('This sentence has 31 characters')

results in the output

31

while the following IDL statement prints the lengths of all the names contained in the
array TREES.

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $

'Pine', 'Walnut']

PRINT, STRLEN(trees)

The resulting output is as follows:

 5 5 8 5 3 4 6
Application Programming Finding the Length of a String

286 Chapter 14: Strings
Substrings

IDL provides the STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

The STRPOS function is used to search for the first occurrence of a substring. It has
the form

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Animals

; The search string, "dog", appears three times.
animals = 'dog cat duck rabbit dog cat dog'

; Start searching in character position 0.
I = 0

; Number of occurrences found.
cnt = 0

; Search for an occurrence.
WHILE (I NE -1) DO BEGIN

I = STRPOS(animals, 'dog', I)

IF (I NE -1) THEN BEGIN
; Update counter.
cnt = cnt + 1

;I ncrement I so as not to count the same instance of 'dog'
; twice.
I = I + 1

ENDIF
ENDWHILE

; Print the result.
PRINT, 'Found ', cnt, " occurrences of 'dog'"
END
Substrings Application Programming

Chapter 14: Strings 287
Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
the last occurrence of a substring within a string. In the following example, we search
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where 0 is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedure is used to insert the contents of one string into another. It has
the form,

STRPUT, Destination, Source[, Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position is the first character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwrite is started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “CAT” in the
string “dog cat duck rabbit dog cat dog”:

animals = 'dog cat duck rabbit dog cat dog'
;The string to search, "dog", appears three times.

;While any occurrence of "dog" exists, replace it.
WHILE (((I = STRPOS(animals, 'dog'))) NE -1) DO $
STRPUT, animals, 'CAT', I

;Show the resulting string.
PRINT, animals
Application Programming Substrings

288 Chapter 14: Strings
Running the above statements produces the result below.

CAT cat duck rabbit CAT cat CAT

Extracting Substrings

The STRMID function is used for extracting substrings from a larger string. It has the
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,
First_Character is the starting position within Expression of the substring (the first
position is position 0), and Length is the length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

; String containing all the month names.
months = 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

; Extract each name in turn. The equation (I-1)*3 calculates the
; position within MONTH for each abbreviation
FOR I = 1, 12 DO PRINT, I, ' ', $
STRMID(months, (I - 1) * 3, 3)

The result of executing these statements is as follows:

1 JAN
2 FEB
3 MAR
4 APR
5 MAY
6 JUN
7 JUL
8 AUG
9 SEP
10 OCT
11 NOV
12 DEC
Substrings Application Programming

Chapter 14: Strings 289
Splitting and Joining Strings

The STRSPLIT function is used to break apart a string, and the STRJOIN function is
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:

Result = STRSPLIT(String [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or a regular expression, as implemented by the
STREGEX function.

The STRJOIN function uses the following syntax:

Result = STRJOIN(String [, Delimiter])

where String is the string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' ')

This code results in the following output:

Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space as in the above example, we could use a different delimiter as
follows:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' Kind ')

This code results in the following output:

Hello Kind World
Application Programming Splitting and Joining Strings

290 Chapter 14: Strings
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N
Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only the first N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(String1, String2 [, N])

where String1 and String2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOO” requires the following steps:

A = 'Moose'
B = 'mOO'

C=STRMID(A,0,3)

IF (STRLOWCASE(C) EQ STRLOWCASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:

A='Moose'
B='mOO'

IF (STRCMP(A,B,3, /FOLD_CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.
Comparing Strings Application Programming

Chapter 14: Strings 291
String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:

Result = STRMATCH(String, SearchString)

where String is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter words in a string array that begin with “f” or “F” and end
with “t” or “T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2: Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

Wildcard
Character Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 14-2: Wildcard Characters used by STRMATCH
Application Programming Comparing Strings

292 Chapter 14: Strings
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4: Find all words beginning with “f” and ending with “t” whose second
character is not the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]

This results in:

Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “o” in between. This would
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case is
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statement
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
Comparing Strings Application Programming

Chapter 14: Strings 293
• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which is a substring of “fate”.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which is why the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see “STREGEX” (IDL Reference Guide), and
for an introduction to regular expressions, see “Learning About Regular Expressions”
on page 295.
Application Programming Comparing Strings

294 Chapter 14: Strings
Non-Printing Characters

ASCII characters with value less than 32 or greater than 126 do not have printable
representations. Such characters can be included in string constants by specifying
their ASCII value as a byte argument to the STRING function.

For example, to represent the TAB character, use the expression

STRING(9B)

This syntax can be used when comparing strings or performing regular expression
matching. For example, to find the position of the first TAB character in a string:

pos = STREGEX(input_string, STRING(9b))

where input_string is a variable containing the string to be searched.

The following table lists the some ASCII characters you might commonly want to
represent as IDL strings.

For a complete list, consult a standard ASCII table.

Note
ASCII characters may have different effects (or no effect) on platforms that do not
support ASCII terminal commands.

ASCII Character Byte Value

Bell 7B

Backspace 8B

Horizontal Tab 9B

Linefeed 10B

Vertical Tab 11B

Formfeed 12B

Carriage Return 13B

Escape 27B

Table 14-3: Selected ASCII Characters
and Their Byte Values
Non-Printing Characters Application Programming

Chapter 14: Strings 295
Learning About Regular Expressions

Regular expressions are a very powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940’s, their mathematical
foundation was established during the 1950’s and 1960’s. Their use has a long history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressions is a very large one, complicated by the arbitrary
differences in the implementations found in various tools. Anything beyond an
extremely simplistic sketch is well beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as “Mastering Regular
Expressions”, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). The following is an abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
to right. The matching is considered to be “greedy”, because at any given point, it
will always match the longest possible substring. For example, if a regular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “meta characters”, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. '*').
Application Programming Learning About Regular Expressions

296 Chapter 14: Strings
The meta characters are described in the following table:

Character Description

. The period matches any character.

[] The open bracket character indicates a “bracket expression”,
which is discussed below. The close bracket character terminates
such an expression.

\ The backslash suppresses the special meaning of the character it
precedes, and turns it into an ordinary character. To insert a
backslash into your regular expression pattern, use a double
backslash ('\\').

() The open parenthesis indicates a “subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters below are used to specify repetition. The
repetition is applied to the character or expression directly to the
left of the repetition operator.

* Zero or more of the character or expression to the left. Hence, 'a*'
means “zero or more instances of 'a' ”.

+ One or more of the character or expression to the left. Hence, 'a+'
means “one or more instances of 'a'”.

? Zero or one of the character or expression to the left. Hence, 'a?'
will match 'a' or the empty string ''.

{} An interval qualifier allows you to specify exactly how many
instances of the character or expression to the left to match. If it
encloses a single unsigned integer length, it means to match
exactly that number of instances. Hence, 'a{3}' will match 'aaa'. If
it encloses 2 such integers separated by a comma, it specifies a
range of possible repetitions. For example, 'a{2,4}' will match
'aa', 'aaa', or 'aaaa'. Note that '{0,1}' is equivalent to '?'.

Table 14-4: Meta Characters
Learning About Regular Expressions Application Programming

Chapter 14: Strings 297
Subexpressions

Subexpressions are those parts of a regular expression enclosed in parentheses. There
are two reasons to use subexpressions:

• To apply a repetition operator to more than one character. For example,
'(fun){3}' matches 'funfunfun', while 'fun{3}' matches 'funnn'.

• To allow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of characters that can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial '^', if any).

There are several different forms of bracket expressions, including:

• Matching List — A matching list expression specifies a list that matches any
one of the characters in the list. For example, '[abc]' matches any of the
characters 'a', 'b', or 'c'.

• Non-Matching List — A non-matching list expression begins with a '^', and
specifies a list that matches any character not in the list. For example, '[^abc]'
matches any characters except 'a', 'b', or 'c'. The '^' only has this special
meaning when it occurs first in the list immediately after the opening '['.

| Alternation. This operator is used to indicate that one of several
possible choices can match. For example, '(a|b|c)z' will match any
of 'az', 'bz', or 'cz'.

^ $ Anchors. A '^' matches the beginning of a string, and '$' matches
the end. As we have seen above, regular expressions usually
match any possible substring. Anchors can be used to change this
and require a match to occur at the beginning or end of the string.
For example, '^abc' will only match strings that start with the
string 'abc'. '^abc$' will only match a string containing only 'abc'.

Character Description

Table 14-4: Meta Characters (Continued)
Application Programming Learning About Regular Expressions

298 Chapter 14: Strings
• Range Expression — A range expression consists of 2 characters separated
by a hyphen, and matches any characters lexically within the range indicated.
For example, '[A-Za-z]' will match any alphabetic character, upper or lower
case. Another way to get this effect is to specify '[a-z]' and use the
FOLD_CASE keyword to STREGEX.

Special Characters in Regular Expressions

Special (non-printing) characters are often represented in regular expressions using
backslash escape codes, such as \t to represent a TAB character or \n to represent a
newline character. IDL does not support these backslash codes in regular expressions.
See “Non-Printing Characters” on page 294 for information on how to represent
these special characters in regular expressions.
Learning About Regular Expressions Application Programming

Chapter 15

Arrays
The following topics are covered in this chapter:
Overview of Arrays 300
Understanding Array Subscripts 304
Assignment Operations and Arrays 308
Using Scalar Values as Subscripts 310
Using Arrays as Subscripts 312
Conditionally Altering Array Elements . . . 315

Subscript Ranges 317
Avoid Using Range Subscripts 321
Combining Subscripts 322
Manipulating Arrays 324
Columns, Rows, and Array Majority 330
Application Programming 299

300 Chapter 15: Arrays
Overview of Arrays

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. An array can be of any IDL data type; saying that an array is of a
particular type means that all elements of the array are of that data type. Array
subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

One-dimensional arrays are often called vectors. The following IDL statement creates
a vector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often called matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:

PRINT, array

IDL prints:

 1 2 3
 4 5 6

Arrays can have up to eight dimensions in IDL. The following IDL statement creates
a three-column by four-row by five-layer deep three-dimensional array. In this case,
we use the IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL is an array-oriented language. This means that any operation on an array is
performed on all elements of the array, without the need for the user to write an
explicit loop. The resulting code is easier to read and understand, and executes more
efficiently. For example, suppose you have a three-dimensional array and wish to
divide each element by two. A language that does not support array operations would
require you to write a loop to perform the division for each element; IDL can
accomplish the division in a single line of code:

array = array/2
Overview of Arrays Application Programming

Chapter 15: Arrays 301
Determining the Number of Array Elements

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of elements in
arrays or vectors is equal to the product of the dimensions. The N_ELEMENTS
function returns zero if its parameter is an undefined variable. The result is always a
longword scalar. For example, the following expression is equal to the mean of a
numeric vector or array.

array = FINDGEN(3, 4, 5)
PRINT, TOTAL(array) / N_ELEMENTS(array)

Operations on Array Expressions

Functions exist to create arrays of the data types IDL supports. (See “Array Creation”
(IDL Quick Reference) for a list of available routines.) The dimensions of the desired
array are the parameters to these functions. The result of FLTARR(5) is a floating-
point array with one dimension, a vector, with five elements initialized to zero.
FLTARR(50,100) is a two-dimensional array, a matrix, with 50 columns and 100
rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array are ignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array always yields an array of identical dimensions. When two arrays of
equal size (number of elements) but different dimensionality are operands, the result
is of the same dimensionality as the first operand. For example:

; Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, a row vector is added to a column vector and a row vector is
obtained because the operands are the same size. This causes the result to take the
dimensionality of the first operand. Here are some examples of expressions involving
arrays:

; An array in which each element is equal to the same element in
; ARR plus one. The result has the same dimensions as ARR. If ARR
; is byte or integer, the result is of integer type; otherwise, the
; result is the same type as ARR.
ARR + 1

; An array obtained by summing two arrays.
ARR1 + ARR2
Application Programming Overview of Arrays

302 Chapter 15: Arrays
; An array in which each element is set to twice the smaller of
; either the corresponding element of ARR or 100.
(ARR < 100) * 2

; An array in which each element is equal to the exponential of the
; same element of ARR divided by 10.
EXP(ARR/10.)

; An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. This way of writing the statement requires that each element of ARR be
operated on twice. If (3./MAX(ARR)) is evaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.

Array Subscripts

Subscripts are used to select individual elements of an array for retrieval or
modification. The subscript of an array element denotes the address of the element
within the array. In the simple case of a one-dimensional array (that is, an n-element
vector), elements are numbered starting at 0 with the first element, 1 for the second
element, and running to n − 1, the subscript of the last element.

The syntax of a subscript reference is:

Variable_Name [Subscript_ List]

or

(Array_Expression)[Subscript_List]

The Subscript_List is simply a list of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commas if there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts. Factors affecting the outcome of the expression
include whether the subscript appears on the right or left side of the assignment
operator, and the dimensionality of the subscript (scalar, array or range). See the
following topics for more information:

• See “Understanding Array Subscripts” on page 304 for important information
regarding the structure of an array and how subscripts are used to access
elements of the array
Overview of Arrays Application Programming

Chapter 15: Arrays 303
• See “Assignment Operations and Arrays” on page 308 for details on how to
manipulate arrays using subscripts and the assignment operator

• See “Manipulating Arrays” on page 324 for information on transposing and
multiplying multi-dimensional arrays

• “Columns, Rows, and Array Majority” on page 330 describes how a multi-
dimensional array is mapped in computer memory, and the ramifications of
this mapping when working with arrays in IDL
Application Programming Overview of Arrays

304 Chapter 15: Arrays
Understanding Array Subscripts

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elements to receive new values. The expression arr[12] denotes the
value of the 13th element of arr (because subscripts start at 0), while the statement
arr[12] = 5 stores the number 5 in the 13th element of arr without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. IDL’s notational convention is that for generic arrays and images, the first
subscript denotes the column and the second subscript denotes the row. In standard
mathematical representation (linear algebra, for example), the convention is reversed:
the first subscript denotes the row and the second subscript denotes the column.

If A is a 2-element by 3-element array (using [column, row] notation), the elements
are stored in memory as follows:

The elements are ordered in memory as: A0,0, A1,0, A0,1, A1,1, A0,2, A1,2. This
ordering is like Fortran. It is the opposite of the order used by C/C++. For more
information on how IDL arranges multidimensional data in memory, see “Columns,
Rows, and Array Majority” on page 330. For a discussion of how the ordering of such
data relates to IDL mathematics routines, see “Manipulating Arrays” on page 324.

Stored in Memory

A0,0 A1,0 Lowest memory address

A0,1 A1,1 .
.
.

A0,2 A1,2 Highest memory address

Table 15-1: Storage of IDL Array Elements in Memory
Understanding Array Subscripts Application Programming

Chapter 15: Arrays 305
Note
When comparing IDL’s memory layout to other languages, remember that those
languages usually use a mathematical [row, column] notation for array dimensions,
which is the reverse of the array notation used for the example above. See
“Columns, Rows, and Array Majority” on page 330 for more on comparing IDL’s
array layout to that of other languages.

Arrays that contain image data are usually displayed in graphics displays with row
zero at the bottom of the screen, matching the display’s coordinate system (although
this order can be reversed by setting the system variable !ORDER to a nonzero
value). Array data are printed to standard text output (such as the IDL output log or
console window) with the first row on top.

Arrays with multiple dimensions are addressed by specifying a subscript expression
for each dimension. A two-dimensional array with n columns and m rows, is
addressed with a subscript of the form [i, j], where 0 ≤ i < n and 0 ≤ j < m. The first
subscript, i, is the column index; the second subscript, j, is the row index. For
example, the following statements select and print the element in the first column of
the second row of array:

array = [[1, 2, 3], [4, 5, 6]]
PRINT, array[0,1]

IDL prints:

4

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points.

A0,0 A0,1

A0,1 A1,1

A0,2 A1,2

In the 2 by 3 element array, A, element A[2] is the same element as A[0, 1], and
A[5] is the same element as A[1, 2].

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension
minus 1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expression is
not integer, a longword integer copy is made and used to evaluate the subscript.
Application Programming Understanding Array Subscripts

306 Chapter 15: Arrays
Note
When floating-point numbers are converted to longword integers, they are
truncated, not rounded. Thus, specifying A[1.99] is the same as specifying A[1].

Extra Dimensions

When creating arrays, IDL eliminates all size 1, or “degenerate”, trailing dimensions.
Thus, the statements

A = INTARR(10, 1)
HELP, A

print the following:

A INT = Array[10]

This removal of superfluous dimensions is usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. Therefore,
IDL allows you to specify “extra” dimensions for an array as long as the extra
dimensions are all zero.

For example, consider a vector defined as follows:

arr = INDGEN(10)

The following are all valid references to the sixth element of arr:

X = arr[5]
X = arr[5, 0]
X = arr[5, 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

The REFORM function can be used to add degenerate trailing dimensions to an array
if desired. For example, the following statements create a 10 element integer vector,
and then alter the dimensions to be [10, 1]:

A = INTARR(10)
A = REFORM(A, 10, 1, /OVERWRITE)
Understanding Array Subscripts Application Programming

Chapter 15: Arrays 307
Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in a visually identical way to specify argument lists.
As a result, the IDL compiler was not able to distinguish between arrays and
functions by looking at the statement syntax. For example, the IDL statement

value = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to a function called fish.

To determine if it is compiling an array subscript or a function call, IDL checks its
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that function
with the argument specified. If IDL does not find a function with the correct name in
its table of known functions, it assumes that the unknown element is an array, and
attempts to return the value of the designated element of that array. This rule
generally gives the desired result, but it can be fooled into the wrong choice under
certain circumstances, much to the surprise of the unwary programmer.

For this reason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in this way is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and later:

value = fish[5]

sets value to the sixth element of an array named fish.

Due to the large amount of existing IDL code written in the older syntax, as well as
the ingrained habits of thousands of IDL users, IDL continues to allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

value = fish[5]

is unambiguous,

value = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
to version 5.0.

Since the older syntax has been used widely, you should not be surprised to see it
from time to time. However, square brackets are the preferred form, and should be
used for new code.
Application Programming Understanding Array Subscripts

308 Chapter 15: Arrays
Assignment Operations and Arrays

The following table shows the variations possible in expressions containing array and
scalar subscripts. The result of the assignment operation depends upon the
dimensionality of the subscript.

Note
A subscript structure can also be composed of a range of elements. If expression is
scalar, it is inserted into the subarray. If Variable[Range] and Array are the same
size, elements of Array specified by Range are inserted in Variable. It is illegal if
Variable[Range] and Array are different sizes. See “Subscript Ranges” on page 317
for complete details. For information on when you should not use subscript ranges,
see “Avoid Using Range Subscripts” on page 321.

Syntax Structure Description

Variable[ScalarSubscripts] =
ScalarExpression

Expression is stored in a single element of
Variable.

arrOne = [1, 2, 3, 4, 5]
arrOne[2] = 9
PRINT, arrOne
 1 2 9 4 5

Variable[ScalarSubscripts] =
ArrayExpression

Expression array is inserted in Variable
array beginning at point indicated by
subscript.

arrOne = [1, 2, 3, 4, 5]
arrTwo = [11, 12]
arrOne[1] = ArrTwo
PRINT, arrOne
 1 11 12 4 5

Note - An “out of range subscript” error will
occur if you attempt to insert arrTwo
elements into non-existent elements of
arrOne. For example arrOne[4] =
ArrTwo fails.

Table 15-2: Introduction to Subscript Expression Structures
Assignment Operations and Arrays Application Programming

Chapter 15: Arrays 309
Note
Array operations are much more efficient than loops. See “Use Vector and Array
Operations” on page 194 for details.

Variable[ArraySubscripts] =
ScalarExpression

Expression scalar is stored in designated
elements of Variable. Other array elements
are unchanged.

arrOne = [1, 2, 3, 4, 5]
arrOne[[2, 4]] = 0
PRINT, arrOne
 1 2 0 4 0

Note - Note the use of the double brackets.
Attempting to assign zeros to the 3rd and 5th
element of the array using
arrOne[2, 4] = 0
results in an error: “Attempt to
subscript ARRONE with <INT(4)> is
out of range.” IDL interprets this as
attempting to modify a single element in the
3rd column and 5th row, which does not
exist.

Variable[ArraySubscripts] =
ArrayExpression

Elements of Expression are stored in
designated elements of Variable.

arrOne = [1, 2, 3, 4, 5]
arrOne[[0, 2]] = [111,333]
PRINT, arrOne
 111 2 333 4 5

Note - Elements of the subscript array that
are negative, or greater than the highest
subscript of the subscripted array, are
clipped to the target array boundaries. For
example,
arrOne[[-1, 2]] = [111,333]
has the same result as arrOne[[0,2]]. See
“Clipping” on page 313 for details.

Syntax Structure Description

Table 15-2: Introduction to Subscript Expression Structures (Continued)
Application Programming Assignment Operations and Arrays

310 Chapter 15: Arrays
Using Scalar Values as Subscripts

Scalar quantities in IDL can be thought of as the first element of an array with one
dimension. They can be subscripted with a zero reflecting the first and only position.
Therefore,

; Assign the value of 5 to A.
A = 5

; Print the value of the first element of A.
PRINT, A[0]

IDL prints:

5

If we redefine the first element of A:

; Redefine the first element of A.
A[0] = 6

PRINT, A

IDL prints:

6

Note
You cannot subscript a variable that has not yet been defined. Thus, if the variable B
has not been previously defined, the statement:

B[0] = 9

will fail with the error “variable is undefined.”

Subscripting Arrays Using Scalar Values

The subscripted variable can have either a scalar or array subscript with the form:

Variable[Subscripts] = Scalar_Expression

If the subscript expression is a scalar value, a single element of the specified array is
set to the value of the scalar expression. The expression can be of any type and is
converted, if necessary, to the type of the variable. The variable on the left side must
be either an array or a file variable. Some examples of assigning scalar expressions to
subscripted variables are:

; Set element 100 of data to value.
Using Scalar Values as Subscripts Application Programming

Chapter 15: Arrays 311
data[99] = 1.234999

; Store string in an array. aName must be a string array or an
; error will result.
aName[index] = 'Joe'

; Set element [X, Y] of the 2-dimensional array image to the value
; contained in pixel.
image[X, Y] = pixel

If the subscript expression is an array, the scalar value is stored in the elements of the
array whose subscripts are elements of the subscript array. For example, the
following statement zeroes the four specified elements of data: data[3], data[5],
data[7] and data[9]:

data[[3, 5, 7, 9]] = 0

The subscript array is converted to integer type if necessary before use. Elements of
the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error is to use a negative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

When a subscripted variable reference appears in an expression, the values of the
selected array elements are extracted. For example, the following statements extract
the first two values from array by subscripting with a second array (indices) and
store the values in the variable new_array:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
indices = [0, 1]
new_array = array[indices]
PRINT, new_array

IDL prints:

1.0 2.0

See the following sections for more information on array subscripts and clipping.
Application Programming Using Scalar Values as Subscripts

312 Chapter 15: Arrays
Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the subscript array
selects an element in the subscripted array. When subscript arrays are used in
conjunction with subscript ranges (as discussed in “Combining Subscripts” on
page 322), more than one element may be selected for each element of the subscript
array.

If no subscript ranges are present, the length and dimensionality of the result is the
same as that of the subscript expression. The type of the result is the same as that of
the subscripted array. If only one subscript is present, all subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript array, the process can be described as follows:

Here, the vector V has n elements, and the subscript array S has m elements. The
result V[S] has the same dimensionality and number of elements as S. If the subscript
expression applied to the variable is an array and an array appears on the right side of
the statement:

Variable[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. Note the use of array subscripts (double
brackets). For example, the statement

B[[2, 4, 6]] = [4, 16, 36]

is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36

V S[]
VSi

if 0 Si n<≤

V0 if Si 0<

Vn 1– if Si n≥
⎩
⎪
⎪
⎨
⎪
⎪
⎧

= for 0 i m<≤
Using Arrays as Subscripts Application Programming

Chapter 15: Arrays 313
For another example, consider the statements:

A = [6, 5, 1, 8, 4, 3]
B = [0, 2, 4, 1]
C = A[B]
PRINT, C

This produces the following output:

6 1 4 5

The first element of C is 6 because that is the number in the 0 position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A is a 10 × n matrix, the element A[i, j] has the subscript i+10*j.

When there is an array expression on the right, it is inserted into the array appearing
on the left side of the equal sign starting at the point designated by the scalar
subscript. For example, the following creates intArr, a 5 column by 2 row integer
array of zeros. Insert array B into intArr beginning at the position designated by the
scalar subscript (note the use of single brackets).

A = INTARR(5,2)
B = [222, 333, 444]
A[1] = B
PRINT, A
0 222 333 444 0
0 0 0 0 0

Note
The subscript array is converted to longword type before use if necessary.
Regardless of structure, this subscript array is interpreted as a vector.

Clipping

If an element of the subscript array is less than or equal to zero, the first element of
the subscripted array is selected. If an element of the subscript array is greater than or
equal to the last subscript in the subscripted array, the last element is selected.

Note
Elements of the subscript array that are negative or larger than the highest subscript
are clipped to the target array boundaries. Note that a common error is to use a
negative scalar subscript (e.g., A[-1]). Using this type of subscript causes an error.
Negative array subscripts (e.g., A[[-1]]) do not cause errors.
Application Programming Using Arrays as Subscripts

314 Chapter 15: Arrays
This clipping of out of bounds elements can be disabled within a routine by using the
STRICTARRSUBS option to the COMPILE_OPT statement. (See the documentation
for “COMPILE_OPT” (IDL Reference Guide) for details.) If STRICTARRSUBS is in
force, then array subscripts that refer to out of bounds elements will instead cause
IDL to issue an error and stop execution, just as an out-of-range scalar subscript does.

Examples Using Arrays as Subscripts

One way to create a square n × n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

The expression INDGEN(N)*(N + 1) results in a vector containing the subscripts of
the diagonal elements [0, N+1, 2N+2, ..., (N-1)*(N+1)]. The following
statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1

Yet another way is to use two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts [[0,0], [1,1], ..., [n-1, n-1]].

Assume the variable A is a 10 by 10 array. Here, the subscripts of the diagonal
elements (A[0,0], A[1,1], ..., A[9, 9]) are equal to 0, 11, 22, …, 99. The
elements of the vector INDGEN(10)*11 also are equal to 0, 11, 22, ..., 99, so the
expression A[INDGEN(10) * 11] yields a 10-element vector containing to the
diagonal elements of A.
Using Arrays as Subscripts Application Programming

Chapter 15: Arrays 315
Conditionally Altering Array Elements

The WHERE function can be used to select array elements that meet certain
conditions. For example, the statement:

data[WHERE(data LT 0)] = -1

sets all negative elements of data to -1 without changing the positive elements. The
result of the function, WHERE(data LT 0), is a vector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.

Similarly, the WHERE function can be used to select elements of an array using
expressions similar to A[WHERE(A GT 0)], which results in a vector composed only
of the elements of A that are greater than 0.

The following statements create and display a 5x5 identity matrix, which consists of
ones along a diagonal, and zeros everywhere else:

A = FLTARR(5, 5)
A[INDGEN(5) * 6] = 1
PRINT, A

The following statement sets elements of A with values of zero or less to -1:

A[WHERE(A LE 0)] = -1
PRINT, A

In this example, assume that the vector data contains data elements and that a data
drop-out is denoted by a negative value. In addition, assume that there are never two
or more adjacent drop-outs. The following statements replace all drop-outs with the
average of the two adjacent good points:

; Subscript vector of drop-outs.
bad = WHERE(data LT 0)

; Replace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2

In this example, the following actions are performed:

• We use the LT (less than) operator to create an array, with the same
dimensions as data, that contains a 1 for every element of data that is less than
zero and a zero for every element of data that is zero or greater. We use this
“drop-out array” as a parameter for the WHERE function, which generates a
vector that contains the one-dimensional subscripts of the elements of the
drop-out array that are nonzero. The resulting vector, stored in the variable
bad, contains the subscripts of the elements of data that are less than zero.
Application Programming Conditionally Altering Array Elements

316 Chapter 15: Arrays
• The expression data[bad - 1] is a vector that contains the subscripts of the
points immediately preceding the drop-outs; while similarly, the expression
data[bad + 1] is a vector containing the subscripts of the points
immediately after the drop-outs.

• The average of these two vectors is stored in data[bad], the points that
originally contained drop-outs.

Note
Also see “Example—Using Array Operators and WHERE” on page 195 for an
additional example.
Conditionally Altering Array Elements Application Programming

Chapter 15: Arrays 317
Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges.

Note
Processing subscript ranges is inefficient. When possible, use an array or scalar
subscript instead of specifying a subscript range where the beginning and ending
subscripts are separated by the colon character. See “Avoid Using Range
Subscripts” on page 321 for details.

There are six types of subscript ranges:

Subscript
Format Description

[*] All elements of a dimension.

This form is used with multidimensional arrays to select all
elements along the dimension. For example, if arr is a 10-
column by 12-row array, arr[*, 11] is the last row of arr,
composed of elements [arr[0,11], arr[1,11], ...,
arr[9,11]], and is a 10-element row vector. Similarly,
arr[0, *] is the first column of arr, [arr[0,0],
arr[0,1],..., arr[0,11]], and its dimensions are 1
column by 12 rows.

[e0:e1] Subscript range from e0 to e1.

This denotes all elements whose subscripts range from the
expression e0 through e1 (e0 must not be greater than e1). For
example, if the variable vec is a 50-element vector,
vec[5:9] is a five-element vector composed of vec[5]
through vec[9].

Table 15-3: Subscript Range Forms
Application Programming Subscript Ranges

318 Chapter 15: Arrays
Multidimensional subarrays can be specified using any combination of the above
forms. For example, if arr is a 10x10 array, arr[*, 0:4] is made from all columns
of rows 0 to 4 of arr or a 10-column, 5-row array.

[e0:*] A range from given element to the last element of dimension.

This denotes all elements from a given element to the last
element of the dimension. If the variable vec is a 50-element
vector, vec[10:*] is a 40-element vector made from
vec[10] through vec[49].

[e0:e1:e2] Every e2th element in a range of subscripts from e0 to e1.

This denotes every e2th element within the range of subscripts
e0 through e1 (e0 must not be greater than e1). e2 is referred to
as the subscript stride. The stride value must be greater than or
equal to 1. If it is set to the value 1, the resulting subscript
expression is identical in meaning to [e0:e1], as described
above. For example, if the variable vec is a 50-element vector,
vec[5:13:2] is a five-element vector composed of vec[5],
vec[7], vec[9], vec[11], and vec[13].

[e0:*:e2] Every e2th element from element e0 to the end of dimension.

This denotes every e2th element from a given element to the
last element of the dimension, written as [e0:*:e2] where e2 is
referred to as the subscript stride. The stride value must be
greater than or equal to 1. If it is set to the value 1, the
resulting subscript expression is identical in meaning to [e0:*],
as described above. If the variable vec is a 50-element vector,
vec[10:*:4] is a 10-element vector made from every fourth
element between vec[10] through vec[49].

 [n] A simple subscript.

When used with multidimensional arrays, simple subscripts
specify only elements with subscripts equal to the given
subscript in that dimension.

Subscript
Format Description

Table 15-3: Subscript Range Forms (Continued)
Subscript Ranges Application Programming

Chapter 15: Arrays 319
Dimensionality of Subarrays

The dimensions of an extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensions is
equal to the number of subscripts and subscript ranges. The size of the n-th dimension
is equal to one if a simple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. If arr
is a 10-column by 12-row array, the expression arr[*,11] results in a row vector
with a single dimension. (The result of the expression is a 10-column by 1-row array;
the last dimension is degenerate and is removed.) On the other hand, the expression
arr[0, *] became a column vector with dimensions of [1, 12], showing that the
structure of columns is preserved because the dimension with a size of one does not
appear at the end.

To see this, enter the following statements in IDL:

arr = INDGEN(10,12)
HELP, arr
HELP, arr[*,11]
HELP, arr[0,*]

In the following examples, vec is a 50-element floating-point vector, and arr is a
10-column by 12-row integer array. Some typical subscript range expressions are as
follows:

vec = FINDGEN(50)
arr = INDGEN(10,12)

; Elements 5 through 10 of vec, a six-element vector.
vec[5:10]

; A three-element vector.
vec[I - 1:I + 1]

; The same vector.
[vec[I - 1], vec[I], vec[I + 1]]

; Elements from vec[4] to the end, a 46-element (50-4) vector.
vec[4:*]

; Values of the elements with even subscripts in vec.
vec[0:*:2]
Application Programming Subscript Ranges

320 Chapter 15: Arrays
; Values of the elements with odd subscripts in vec:
vec[1:*:2]

; The fourth column of arr, a 1 column by 12 row vector.
arr[3, *]

; The first row of arr, a 10-element row vector. Note, the last
; dimension was removed because it was degenerate.
[arr[3, 0], arr[3, 1], ..., arr[3, 11]]
arr[*, 0]

; The nine-point neighborhood surrounding arr[X,Y], a 3 by 3 array.
arr[X - 1:X + 1, Y - 1:Y + 1]

; Three columns of arr, a 3 by 12 subarray:
arr[3:5,*]

To insert the contents of an array called A into array B, starting at point B[13, 24], use
the following statement:

B[13, 24] = A

If A is a 5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:

B[100, 200] = B[200:300, 300:400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Assuming the variable B is a 512 × 512-byte array, some examples are as follows:

; Store 1 in every element of the i-th row.
array[*, I] = 1

; Store 1 in every element of the j-th column.
array[J, *] = 1

; Zero all the rows of columns 200 through 220 of array.
array[200:220, *] = 0

; Store the value 100 in all the elements of array.
array[*] = 100
Subscript Ranges Application Programming

Chapter 15: Arrays 321
Avoid Using Range Subscripts

It is possible to use range subscripts in an assignment statement, however, when
possible, you should avoid using range subscripts in favor of using scalar or array
subscripts. This type of assignment statement takes the following form:

Variable[Subscript_Range] = Expression

A subscript range specifies a beginning and ending subscripts, which are separated by
the colon character. An ending subscript equal to the size of the dimension minus one
can be written as *. For example, arr[I:J] denotes those points in the vector arr
with subscripts between I and J inclusive. I must be less than or equal to J and
greater than or equal to zero. J denotes the points in arr from arr[I] to the last
point and must be less than the size of the dimension arr [I:*]. See “Subscript
Ranges” on page 317 for more details on subscript ranges.

When possible, you should avoid using range subscripts in favor of using scalar or
array subscripts. In the following example, the array elements of X are inserted into
array A. The slow way uses subscript ranges, specifying the insertion of X array
elements into the 5th through 7th elements of A. The fast way uses a scalar subscript
specifying the first element (the 5th) to be replaced with the elements of A.

A = INTARR(10)
X = [1,1,1]
PRINT, 'A = ', A
; Slow way:
t = SYSTIME(1) & FOR i=0L,100000 DO A[4:6] = X &

PRINT,'Slow way: ', SYSTIME(1)-t
PRINT, 'A = ', A
; Correct way is 4 times faster!!:
t = SYSTIME(1) & FOR i=0L,100000 DO A[4] = X &

PRINT, 'Fast way: ', SYSTIME(1)-t
PRINT, 'A = ', A

IDL prints:

A = 0 0 0 0 0 0 0 0 0 0
Slow way: 0.47000003
A = 0 0 0 0 1 1 1 0 0 0
Fast way: 0.12100005
A = 0 0 0 0 1 1 1 0 0 0

The statement A[4] = X, where X is a three-element array, causes IDL to start at
index 4 of array A, and replace the next three elements in A with the elements in X.
Because of the way it is implemented in IDL, A[4] = X is much more efficient than
A[4:6] = X.
Application Programming Avoid Using Range Subscripts

322 Chapter 15: Arrays
Combining Subscripts

Subscript arrays can be combined with subscript ranges, simple scalar subscripts, and
other subscript arrays.

When IDL encounters a multidimensional subscript expression that contains one or
more subscript arrays, ranges, or scalars, it builds a subscript array by processing
each element in the subscript expression from left to right. The resulting subscript
array is then applied to the variable to be subscripted. As with other subscript
operations, trailing degenerate dimensions (those with a size of 1) are eliminated.

Subscript Ranges

When combining a subscript array with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elements in the corresponding subscript array or range.

For example, the expression A[[1, 3, 5], 7:9] is a nine-element, 3 × 3 array
composed of the following elements:

Each element of the three-element subscript array [1, 3, 5] is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of a two-
dimensional n × m array:

; Zero the first and last rows.
A[*, [0, M-1]] = 0

; Zero the first and last columns.
A[[0, N - 1], *] = 0

A1 7, A3 7, A5 7,

A1 8, A3 8, A5 8,

A1 9, A3 9, A5 9,
Combining Subscripts Application Programming

Chapter 15: Arrays 323
Other Subscript Arrays

When combining two subscript arrays, each element of the first subscript array is
combined with the corresponding element of the second subscript array. The two
subscript arrays must have the same number of elements. The resulting subscript
array has the same number of elements as its constituents. For example, the
expression A[[1, 3], [5, 9]] yields the elements A[1,5] and A[3,9].

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expression A[[1, 3, 5], 8] yields the three-
element vector composed of the elements A[1,8], A[3,8], and A[5,8]. The
second dimension of the result is 1 and is eliminated because it is degenerate. The
expression A[8, [1, 3, 5]] is the 1 × 3-column vector A[8,1], A[8,3], and
A[8,5], illustrating that leading dimensions are not eliminated.
Application Programming Combining Subscripts

324 Chapter 15: Arrays
Manipulating Arrays

IDL provides a variety of mechanisms for working with multidimensional data sets.
Understanding these mechanisms requires a familiarity with linear algebra and the
concept of a two-dimensional data set.

Note
There are two terms commonly used to refer to two-dimensional data sets: array
and matrix. People who work with images tend to call two-dimensional data sets
arrays, while mathematicians tend to call two-dimensional data sets matrices. The
terms are interchangeable, but the different conventions assumed by people who use
them may lead to confusion.

Consider a two-dimensional data set, with dimensions m and n. In a computer, the
data from this data set is stored in a unidimensional set of memory addresses; what
makes the data “two-dimensional” is the way the individual elements are indexed by
the software that accesses the data in memory. This topic is discussed in detail in
“Columns, Rows, and Array Majority” on page 330; if you are unsure of your
understanding of the process of mapping multidimensional data into unidimensional
computer memory, please read that section carefully.

There are two possible ways to depict a two-dimensional data set on paper — row by
row or column by column. For example, the standard mathematical representation of
an m x n data set is shown in Figure 15-1, with m rows and n columns:

Here, the first dimension (m) represents the row index, and the second dimension (n)
represents the column index. Thus, if the data set is represented using this notation,
the term Array[3,2] refers to an element that is four rows down from the top row
and three columns to the right of the leftmost row. (Note that indices are zero-based.)

Figure 15-1: An m x n Array Represented in Mathematical Notation

A0 0, A0 1, … A0 n 1–,

A1 0, A1 1, … A1 n 1–,

… … … …
Am 1– 0, Am 1– 1, … Am 1– n 1–,
Manipulating Arrays Application Programming

Chapter 15: Arrays 325
Figure 15-4 depicts the standard image-processing representation of the same data
set, with m columns and n rows:

Here, the first dimension (m) represents the column index, and the second dimension
(n) represents the row index. Thus, if the data set is represented using this notation,
the term Array[3,2] refers to an element that is four columns to the right of the
leftmost column and three rows down from the top row. This is the representation
used by IDL.

It is important to understand that these are two views of the same data; all that has
changed is the notational convention applied. Why is this notational convention
important? Because when reading or writing data in a two-dimensional data set,
performance improves if elements that are contiguous in the computer’s memory are
accessed consecutively. Incrementing the index of the first dimension by one shifts
one “slot” in computer memory, whereas incrementing the index of the second
dimension by one shifts a number of “slots” at least as large as the size of the first
dimension.

Note
The terms column-major and row-major are commonly used to define which
dimension of a two-dimensional array represents the column index and which
represents the row index. These terms are defined and discussed in detail in
“Columns, Rows, and Array Majority” on page 330.

Transposing Arrays

You should be aware that many numerical algorithms — especially those that are
written in a row-major language such as C or C++ — assume data is indexed (row,
column). Since IDL assumes data is indexed (column, row), it is important to keep

Figure 15-2: An m x n Array Represented in Image-processing Notation

A0 0, A1 0, … Am 1– 0,

A0 1, A1 1, … Am 1– 1,

… … … …
A0 n 1–, A1 n 1–, … Am 1– n 1–,
Application Programming Manipulating Arrays

326 Chapter 15: Arrays
this distinction in mind. In order to work with data indexed (row, column), you can
use IDL’s TRANSPOSE function to interchange the order of the indices.

Note that it is possible for an array to be indistinguishable from its transpose. In this
case the number of columns and rows are identical and there is a symmetry between
the rows of the array and the columns of its transpose. Arrays satisfying this
condition are said to be symmetric. When dealing with symmetric arrays the use of
the TRANSPOSE function is unnecessary, since AT = A.

Multiplying Arrays

IDL has two operators used to multiply arrays. To illustrate the difference between
the two operators, consider the following two arrays:

; A 3-column by 2-row array:
A = [[0, 1, 2],$

[3, 4, 5]]

; A 2-column by 3-row array:
B = [[0, 1],$

[2, 3],$
[4, 5]]

The # Operator

The # operator computes array elements by multiplying the columns of the first array
by the rows of the second array. The resulting array has the same number of columns
as the first array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.

For example, consider the arrays defined above:

We obtain the elements of A # B as follows:

A 0 1 2

3 4 5
B,

0 1

2 3

4 5

= =

A0 0, B0 0, A0 1, B1 0,+ A1 0, B0 0, A1 1, B1 0,+ A2 0, B0 0, A2 1, B1 0,+

A0 0, B0 1, A0 1, B1 1,+ A1 0, B0 1, A1 1, B1 1,+ A2 0, B0 1, A2 1, B1 1,+

A0 0, B0 2, A0 1, B1 2,+ A1 0, B0 2, A1 1, B1 2,+ A2 0, B0 2, A2 1, B1 2,+
Manipulating Arrays Application Programming

Chapter 15: Arrays 327
Or, using the actual values from the arrays:

Therefore, when we issue the following command:

PRINT, A#B

IDL prints:

3 4 5
9 14 19
15 24 33

Tip
If one or both of the arrays are also transposed, such as TRANSPOSE(A) # B, it is
more efficient to use the MATRIX_MULTIPLY function, which does the transpose
simultaneously with the multiplication.

Note on the Definition of Matrix Multiplication

While the definition of the IDL # operator may appear to be at odds with the standard
mathematical definition of matrix multiplication — namely, that the operator
multiplies each row of the first matrix by each column of the second matrix — this is
a case of slightly imprecise terminology. The confusion arises from the mappings of
the words “row” and “column” — which refer to elements in a two-dimensional
entity called an array or a matrix — to the one-dimensional vector of values stored in
computer memory. In reality, what the matrix multiplication operator does is
multiply the elements of the first dimension of the first array/matrix by the elements
of the second dimension of the second array/matrix. IDL’s convention is to consider
the first dimension to be the column and the second dimension to be the row, whereas
the standard mathematical convention considers the first dimension to be the row and
the second dimension to be the column. For a more complete discussion of this topic,
see “Columns, Rows, and Array Majority” on page 330.

The ## Operator

The ## operator computes array elements by multiplying the rows of the first array by
the columns of the second array. The resulting array has the same number of rows as
the first array and the same number of columns as the second array. The second array
must have the same number of rows as the first array has columns.

0() 0() 3() 1()+ 1() 0() 4() 1()+ 2() 0() 5() 1()+

0() 2() 3() 3()+ 1() 2() 4() 3()+ 2() 2() 5() 3()+

0() 4() 3() 5()+ 1() 4() 4() 5()+ 2() 4() 5() 5()+
Application Programming Manipulating Arrays

328 Chapter 15: Arrays
For example, consider the arrays defined above:

We obtain the elements of A ## B as follows:

Or, using the actual values from the arrays:

Therefore, when we issue the following command:

PRINT, A##B

IDL prints:

10 13
28 40

Multiplying Vectors

When using the # and ## operators to multiply vectors, note the following:

• For A # B, where A and B are vectors, IDL performs A # TRANSPOSE(B). In
this case, C = A # B is a matrix with Cij = Ai Bj. Mathematically, this is
equivalent to the outer product, usually denoted by A ⊗ B.

• For A ## B, where A and B are vectors, IDL performs TRANSPOSE(A) ## B.
In this case, C = A ## B is a matrix with Cij = Bi Aj.

• To compute the dot product, usually denoted by A ⋅ B, use
TRANSPOSE(A) # B.

A 0 1 2

3 4 5
B,

0 1

2 3

4 5

= =

A0 0, B0 0, A1 0, B0 1, A2 0, B0 2,+ + A0 0, B1 0, A1 0, B1 1, A2 0, B1 2,+ +

A0 1, B0 0, A1 1, B0.1 A2 1, B0 2,+ + A0 1, B1 0, A1 1, B1 1, A2 1, B1 2,+ +

0() 0() 1() 2() 2() 4()+ + 0() 1() 1() 3() 2() 5()+ +

3() 0() 4() 2() 5() 4()+ + 3() 1() 4() 3() 5() 5()+ +
Manipulating Arrays Application Programming

Chapter 15: Arrays 329
Notes on the # and ## Operators

Note the following with regard to the array multiplication operators:

• The # and ## operators are order specific.

• A # B = B ## A

• A # B = (BT # AT)T

Routines for Multiplying Arrays

The MATRIX_MULTIPLY and MATRIX_POWER routines are also available:

• MATRIX_MULTIPLY calculates the value of the # operator applied to two
(possibly transposed) arrays. See “MATRIX_MULTIPLY” (IDL Reference
Guide) for details.

• MATRIX_POWER computes the product of a matrix with itself. See
“MATRIX_POWER” (IDL Reference Guide) for details.

Note
Also see “Array Manipulation” (IDL Quick Reference) for a list of other array
manipulation routines.
Application Programming Manipulating Arrays

330 Chapter 15: Arrays
Columns, Rows, and Array Majority

Computer hardware does not directly support the concept of multidimensional arrays.
Computer memory is unidimensional, providing memory addresses that start at zero
and increase serially to the highest available location. Multidimensional arrays are
therefore a software concept: software (IDL in this case) maps the elements of a
multi-dimensional array into a contiguous linear span of memory addresses. There
are two ways that such an array can be represented in one-dimensional linear
memory. These two options, which are explained below, are commonly called row
major and column major. All programming languages that support multidimensional
arrays must choose one of these two possibilities. This choice is a fundamental
property of the language, and it affects how programs written in different languages
share data with each other.

Before describing the meaning of these terms and IDL’s relationship to them, it is
necessary to understand the conventions used when referring to the dimensions of an
array. For mnemonic reasons, people find it useful to associate higher level meanings
with the dimensions of multi-dimensional data. For example, a 2-D variable
containing measurements of ozone concentration on a uniform grid covering the earth
might associate latitude with the first dimension, and longitude with the second
dimension. Such associations help people understand and reason about their data, but
they are not fundamental properties of the language itself. It is important to realize
that no matter what meaning you attach to the dimensions of an array, IDL is only
aware of the number of dimensions and their size, and does not work directly in terms
of these higher order concepts. Another way of saying this is that arr[d1, d2]
addresses the same element of variable arr no matter what meaning you associate
with the two dimensions.

In the IDL world, there are two such conventions that are widely used:

• In image processing, the first dimension of an image array is the column, and
the second dimension is the row. IDL is widely used for image processing, and
has deep roots in this area. Hence, the dominant convention in IDL
documentation is to refer to the first dimension of an array as the column and
the second dimension as the row.

• In the standard mathematical notation used for linear algebra, the first
dimension of an array (or matrix) is the row, and the second dimension is the
column. Note that this is the exact opposite of the image processing
convention.
Columns, Rows, and Array Majority Application Programming

Chapter 15: Arrays 331
In computer science, the way array elements are mapped to memory is always
defined using the mathematical [row, column] notation. Much of the following
discussion utilizes the m x n array shown in Figure 15-3, with m rows and n columns:

Given such a 2-dimensional matrix, there are two ways that such an array can be
represented in 1-dimensional linear memory — either row by row (row major), or
column by column (column major):

• Contiguous First Dimension (Column Major): In this approach, all elements
of the first dimension (m in this case) are stored contiguously in memory. The
1-D linear address of element Ad1, d2 is therefore given by the formula
(d2*m + d1). As you move linearly through the memory of such an array,
the first (leftmost) dimension changes the fastest, with the second dimension
(n, in this case) incrementing every time you come to the end of the first
dimension:

A0,0, A1,0, …, Am-1,0, A0,1, A1,1, …, Am-1,1, …

Computer languages that map multidimensional arrays in this manner are
called column major, following the mathematical [row, column] notation. IDL
and Fortran are both examples of column-major languages.

• Contiguous Second Dimension (Row Major): In this approach, all elements
of the second dimension (n, in this case) are stored contiguously in memory.
The 1-D linear address of element Ad1, d2 is therefore given by the formula
(d1*n + d2). As you move linearly through the memory of such an array,
the second dimension changes the fastest, with the first dimension (m in this
case) incrementing every time you come to the end of the second dimension:

A0,0, A0,1, …, A0,n-1, A1,0, A1,1, …, A1,n-1, …

Computer languages that map multidimensional arrays in this manner are
known as row major. Examples of row-major languages include C and C++.

Figure 15-3: An m x n array represented in mathematical notation.

A0 0, A0 1, … A0 n 1–,

A1 0, A1 1, … A1 n 1–,

… … … …
Am 1– 0, Am 1– 1, … Am 1– n 1–,
Application Programming Columns, Rows, and Array Majority

332 Chapter 15: Arrays
The terms row major and column major are widely used to categorize programming
languages. It is important to understand that when programming languages are
discussed in this way, the mathematical convention — in which the first dimension
represents the row and the second dimension represents the column — is used. If you
use the image-processing convention — in which the first dimension represents the
column and the second dimension represents the row — you should be careful to
make note of the distinction.

Note
IDL users who are comfortable with the IDL image-processing-oriented array
notation [column, row] frequently follow the reasoning outlined above and
incorrectly conclude that IDL is a row-major language. The often-overlooked cause
of this mistake is that the standard definition of the terms row major and column
major assume the mathematical [row, column] notation. In such cases, it can be
helpful to look beyond the row/column terminology and think in terms of which
dimension is contiguous in memory.

Note that the m x n array discussed above could be represented with equal accuracy
as having m columns and n rows, as shown in Figure 15-4. This corresponds to the
image-processing [column, row] notation. It’s important to note that while the
representation shown is the transpose of the representation in Figure 15-3, the data
stored in the computer memory are identical. Only the two-dimensional
representation, which takes its form from the notational convention used, has
changed.

IDL’s choice of column-major array layout reflects its roots as an image processing
language. The fact that the elements of the first dimension are contiguous means that
the elements of each row of an image array (using [column, row] notation, as shown
in Figure 15-4) are contiguous. This is the order expected by most graphics hardware,
providing an efficiency advantage for languages that naturally store data that way.

Figure 15-4: An m x n array represented in image-processing notation.

A0 0, A1 0, … Am 1– 0,

A0 1, A1 1, … Am 1– 1,

… … … …
A0 n 1–, A1 n 1–, … Am 1– n 1–,
Columns, Rows, and Array Majority Application Programming

Chapter 15: Arrays 333
Also, this ordering minimizes virtual memory overhead, since images are accessed
linearly.

It should be clear that the higher-level meanings associated with array dimensions
(row, column, latitude, longitude, etc.) are nothing more than a human notational
device. In general, you can assign any meaning you wish to the dimensions of an
array, and as long as your use of those dimensions is consistent, you will get the
correct answer, regardless of the order in which IDL chooses to store the actual array
elements in computer memory. Thus, it is usually possible to ignore these issues.
There are times however, when understanding memory layout can be important:

Sharing Data With Other Languages — If binary data written by a row major
language is to be input and used by IDL, transposition of the data is usually required
first. Similarly, if IDL is writing binary data for use by a program written in a row
major language, transposition of the data before writing (or on input by the other
program) is often required.

Calling Code Written In Other Languages — When passing IDL data to code
written in a row major language via dynamic linking (CALL_EXTERNAL,
LINKIMAGE, DLMs), it is often necessary to transpose the data before passing it to
the called code, and to transpose the results.

Matrix Multiplication — Understanding the difference between the IDL # and ##
operators requires an understanding of array layout. For a discussion of how the
ordering of such data relates to IDL mathematics routines, see “Manipulating Arrays”
on page 324.

1-D Subscripting Of Multidimensional Array — IDL allows you to index
multidimensional arrays using a single 1-D subscript. For example, given a two
dimensional 5x7 array, ARRAY[2,3] and ARRAY[17] refer to the same array
element. Knowing this requires an understanding of the actual array layout in
memory (d2*m + d1, or 3*5+2, which yields 17).

Efficiency — Accessing memory in the wrong order can impose a severe
performance penalty if your data is larger than the physical memory in your
computer. Accessing elements of an array along the contiguous dimension minimizes
the amount of memory paging required by the virtual memory subsystem of your
computer hardware, and will therefore be the most efficient. Accessing memory
across the non-contiguous dimension can cause each such access to occur on a
different page of system memory. This forces the virtual memory subsystem into a
cycle in which it must continually force current pages of memory to disk in order to
make room for new pages, each of which is only momentarily accessed. This
inefficient use of virtual memory is commonly known as thrashing.
Application Programming Columns, Rows, and Array Majority

334 Chapter 15: Arrays
Columns, Rows, and Array Majority Application Programming

Chapter 16

Structures
The following topics are covered in this chapter:
Overview of Structures 336
Creating and Defining Structures 337
Structure References 340
Using HELP with Structures 342
Parameter Passing with Structures 343

Arrays of Structures 345
Structure Input/Output 347
Advanced Structure Usage 350
Automatic Structure Definition 352
Relaxed Structure Assignment 354
Application Programming 335

336 Chapter 16: Structures
Overview of Structures

IDL supports structures and arrays of structures. A structure is a collection of scalars,
arrays, or other structures contained in a variable. Structures are useful for
representing data in a natural form, transferring data to and from other programs, and
containing a group of related items of various types. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of named structure is defined by a unique structure name. The first
time a structure name is used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of a tag name and a tag definition that contains the type
and structure of the data contained in the field. A field is referred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field’s type, structure, and value. As with
structure definitions, a field definition is fixed and cannot be changed. The contents
of a field can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.
Overview of Structures Application Programming

Chapter 16: Structures 337
Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name1 : Tag_Definition1, ..., Tag_Namen : Tag_Definitionn}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Name1 : Tag_Definition1 , ..., Tag_Namen : Tag_Definitionn}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names may not be IDL Reserved Words, and must be unique within a given
structure, although the same tag name can be used in more than one structure.
Structure names and tag names follow the rules of IDL identifiers: they must begin
with a letter; following characters can be letters, digits, or the underscore or dollar
sign characters; and case is ignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to its tag
definition.

A named structure that has already been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Structure_Name }

The result of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only a template for that type of data.
Application Programming Creating and Defining Structures

338 Chapter 16: Structures
Also, when making a named structure that has already been defined, the tag names
need not be present:

{Structure_Name, expression1, ..., expressionn}

All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one as follows:

A = {one, data1a:0, data1b:0L }

we can define a second structure two that includes the tags from the one structure
with the following definition statement:

B = { two, INHERITS one, data2:0.0 }

This is the same as defining the structure two with the statement:

B = { two, data1a:0, data1b:0L, data2:0.0 }

Note that the fields of the one structure are included in the two structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag names in the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If a structure inherits tags from another structure that is not yet defined, IDL
will search for a routine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 352. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERITS specifier is used in a class
structure definition, it has the added effect of defining the inheriting object as a
subclass of the inherited class. For a discussion of object-oriented IDL programming,
see Chapter 13, “Creating Custom Objects in IDL” (Object Programming).
Creating and Defining Structures Application Programming

Chapter 16: Structures 339
Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for a star contains the
following information: star name, right ascension, declination, and an intensity
measured each month over the last 12 months. A structure for this information is
defined with the following IDL statement:

A = {star, name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

This structure definition is the basis for all examples in this chapter. The statement
above defines a structure type named star, which contains four fields. The tag names
are name, ra, dec, and inten. The first field, with the tag name, contains a scalar string
as given by its tag definition. The following two fields each contain floating-point
scalars. The fourth field, inten, contains a 12-element, floating-point array. Note that
the type of the constants, 0.0, is floating point. If the constants had been written as 0,
the fields ra and dec would contain short integers.

 The same structure is created as an anonymous structure by the statement:

A = {name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

or by using the CREATE_STRUCT function:

A = CREATE_STRUCT('name', '', 'ra', 0.0, 'dec', 0.0, $
'inten', FLTARR(12))
Application Programming Creating and Defining Structures

340 Chapter 16: Structures
Structure References

The basic syntax of a reference to a field within a structure is as follows:

Variable_Name.Tag_Name

Variable_Name must be a variable that contains a structure. Tag_Name is the name
of the field and must exist in the structure. If the field referred to by the tag name is
itself a structure, the Tag_Name can optionally be followed by one or more additional
tag names, as shown by the following example:

var.tag1.tag2

Each tag name, except possibly the last, must refer to a field that contains a structure.

Subscripted Structure References

A subscript specification can be appended to the variable or tag names if the variable
is an array of structures or if the field referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable_Name.Tag_Name[Subscripts]

Variable_Name[Subscripts].Tag_Name...

Variable_Name[Subscripts].Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If a variable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structures is referenced without a subscript but with
a tag name, the designated field in all array elements is affected. The complete syntax
of references to structures follows. (Optional items are enclosed in braces, {}.)

Structure_reference:= Variable_Name{[Subscripts]}.Tags

Tags:= {Tags.}Tag

Tag:= Tag_Name{[Subscripts]}

For example, all of the following are valid structure references:

A.B
A.B[N, M]
A[12].B
Structure References Application Programming

Chapter 16: Structures 341
A[3:5].B[*, N]
A[12].B.C[X, *]

The semantics of storing into a structure field using subscript ranges is slightly
different than that of simple arrays. This is because the structure of arrays in fields are
fixed. See “Storing Into Array Fields” on page 343 for details.

Examples of Structure References

The name of the star contained in A is referenced as A.NAME. The entire intensity
array is referred to as A.INTEN, while the n-th element of A.INTEN is A.INTEN[N].
The following are valid IDL statements using the STAR structure:

;Store a structure of type STAR into variable A. Define the values
;of all fields.
A = {star, name:'SIRIUS', ra:30., dec:40., inten:INDGEN(12)}

;Set name field. Other fields remain unchanged.
A.name = 'BETELGEUSE'

;Print name, right ascension, and declination.
PRINT, A.name, A.ra, A.dec

;Set Q to the value of the sixth element of A.inten. Q will be a
;floating-point scalar.
Q = A.inten[5]

;Set ra field to 23.21.
A.ra = 23.21

;Zero all 12 elements of intensity field. Because the type and size
;of A.inten are fixed by the structure definition, the semantics of
;assignment statements is different than with normal variables.
A.inten = 0

;Store fourth thru seventh elements of inten field in variable B.
B = A.inten[3:6]

;The integer 12 is converted to string and stored in the name field
;because the field is defined as a string.
A.name = 12

;Copy A to B. The entire structure is copied and B contains a STAR
;structure.
B = A
Application Programming Structure References

342 Chapter 16: Structures
Using HELP with Structures

Use the HELP,/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A

prints the following information:

** Structure STAR, 4 tags, length=40:
NAME STRING 'SIRIUS'
RA FLOAT 30.0000
DEC FLOAT 40.0000
INTEN INT Array(12)

Using HELP with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HELP with the STRUCTURE keyword
and no parameters prints a list of all defined, named structure types and their tag
names.
Using HELP with Structures Application Programming

Chapter 16: Structures 343
Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the
structure field A.name:

PRINT, A.name

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A.name is an expression and is passed by value. This works as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A.name

does not read into A.name but interprets its parameter as a prompt string. The proper
code to read into the field is as follows.

;Copy type and attributes to variable.
B = A.name

;Read into a simple variable.
READ, B

;Store result into field.
A.name = B

Storing Into Array Fields

As mentioned previously, the semantics of storing into structure array fields is
slightly different than storing into simple arrays. The main difference is that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not a range specification. Other differences occur
because the size and type of a field are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rules for
storing into array fields are as follows:

VAR.ARRAY_TAG = Scalar_Expression

All elements of VAR.tag are set to Scalar_Expression. For example:

;Set all 12 elements of A.inten to 100.
A.inten = 100
Application Programming Parameter Passing with Structures

344 Chapter 16: Structures
VAR.TAG = Array_Expression

Each element of Array_Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an error
results. If it contains fewer elements than VAR.TAG, the unmatched elements remain
unchanged. For example:

;Set A.inten to the 12 numbers 0, 1, 2,..., 11.
A.inten = FINDGEN(12)

;Set A.inten[0] to 1 and A.inten[1] to 2. The other elements
;remain unchanged.
A.inten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression

The value of the scalar expression is simply copied into the designated element of the
destination. If Subscript is an array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth element of A.inten to 100.
A.inten[5] = 100

;Set elements 2, 4, and 6 to 100.
A.inten[[2, 4, 6]] = 100

VAR.TAG[Subscript] = Array_Expression

Unless VAR.tag is an array of structures, the subscript must be an array. Each
element of Array_Expression is copied into the element given by the corresponding
element subscript. For example:

;Set elements 2, 4, and 6 to the values 5, 7, and 9 respectively.
A.inten[[2, 4, 6]] = [5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression

The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elements 8, 9, 10, and 11 to the value 5.
A.inten[8:*] = 5

VAR.TAG[Subscript_Range] = Array_Expression

Each element of the array expression is stored into the element designated by the
subscript range. The number of elements in the array expression must agree with the
size of the subscript range. For example:

;Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and 3,
;respectively.
A.inten[3:6] = FINDGEN(4)
Parameter Passing with Structures Application Programming

Chapter 16: Structures 345
Arrays of Structures

An array of structures is simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structures is to use the REPLICATE function.
The first parameter to REPLICATE is a reference to the structure of each element.
Using the example in “Examples of Structure References” on page 341 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLICATE({star}, 100)

Alternatively, since the variable A contains an instance of the structure STAR, then

cat = REPLICATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the following
statement:

cat = REPLICATE({star, name:'', ra:0.0, dec:0.0, $
inten:FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

;Set the name field of all 100 elements to "EMPTY."
cat.name = 'EMPTY'

;Set the i-th element of cat to the contents of the star structure.
cat[I] = {star, 'BETELGEUSE', 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into
;cat[99].ra
cat.ra = INDGEN(100)

;Prints name field of all 100 elements of cat, separated by commas
Application Programming Arrays of Structures

346 Chapter 16: Structures
;(the last field has a trailing comma).
PRINT, cat.name + ','

;Find index of star with name of SIRIUS.
I = WHERE(cat.name EQ 'SIRIUS')

;Extract intensity field from each entry. Q will be a 12 by 100
;floating-point array.
Q = cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

;Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2:8]

;Sort the array into ascending order by names. Store the result
;back into cat.
cat = cat(SORT(cat.name))

;Determine the monthly total intensity of all stars in array.
;monthly is now a 12-element array.
monthly = cat.inten # REPLICATE(1,100)
Arrays of Structures Application Programming

Chapter 16: Structures 347
Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate data type. The
entire structure is enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first example in this chapter,
results in the following output.

{SIRIUS 30.0000 40.0000 0 1 2 3 4 5 6 7 8 9 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default
formats. The length of string elements is determined by the format specification (i.e,
to read the next 10 characters into a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL data type, except strings, has a fixed length expressed in
bytes. This length (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is also the number of bytes read or written for each element. (For
more information, see “ASSOC” (IDL Reference Guide)).

All instances of structures contain an even number of bytes. On machines whose
native C compilers force short integers to begin on an even byte boundary, IDL begins
fields that are not of type byte on an even byte boundary. Thus, a “padding byte” may
appear (when using ASSOC for I/O) after a byte field to cause the following non-
byte-type field to begin on an even byte. A padding byte is never added before a byte
or byte array field.
Application Programming Structure Input/Output

348 Chapter 16: Structures
For example, the structure:

{example, t1:1b, t2:1}

occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t1 to cause the
integer field t2 to begin on an even-byte boundary. For more information, see
“ASSOC” (IDL Reference Guide).

Strings

Strings are exceptions to the above rules because the length of strings within
structures is not fixed. For example, one instance of the {star} structure can contain a
name field with a five-character name, while another instance of the same structure
can contain a 20-character name. When reading into a structure field that contains a
string, IDL reads the number of bytes given by the length of the string. If the string
field contains a 10-character string, 10 characters are read. If the data read contains a
null byte, the length of the string field is truncated, and the null and following
characters are discarded. When writing fields containing strings with the unformatted
procedure WRITEU, IDL writes each character of the string and does not append a
terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
able to read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem is using the STRING
function with a format specification that sets the length of all elements to some
maximum number. For example, it is easy to set the length of all name fields in the
cat array to 20 characters by using the following statement.

cat.name = STRING(cat.name, FORMAT = '(A20)')

This statement will truncate names longer than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in a format suitable to be read by C or FORTRAN programs.
Structure Input/Output Application Programming

Chapter 16: Structures 349
For example, to read into the cat array from a file in which each name field occupies
26 bytes, use the following statements.

;Make a 100-element array of {STAR} structures, storing a
;26-character string in each name field.
cat = REPLICATE({star, STRING(' ', FORMAT = '(A26)'), $

FLTARR(0., 0.12)}, 100)

;Read the structure. As mentioned above, 26 bytes will be read for
;each name field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.
READU, 1, cat
Application Programming Structure Input/Output

350 Chapter 16: Structures
Advanced Structure Usage

Facilities exist to process structures in a general way using tag numbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, as
follows:

Variable_Name.(Tag_Index)...

The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be a tag position. In
order for the IDL parser to understand that this is the case, you must enclose the
Tag_Index in parentheses. This is not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fields in a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the /LENGTH keyword.

Names of Structure Tags

The function TAG_NAMES(Structure) returns a string array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the
/STRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, from the keyboard with
;prompts.
PRO READ_STRUCTURE, S

;Get the names of the tags.
NAMES = TAG_NAMES(S)
;Loop for each field.
FOR I = 0, N_TAGS(S) - 1 DO BEGIN

;Define variable A of same type and structure as the i-th field.
A = S.(I)
Advanced Structure Usage Application Programming

Chapter 16: Structures 351
;Use HELP to print the attributes of the field. Prompt user with
;tag name of this field, and then read into variable A. S.(I) =
;A. Store back into structure from A.
HELP, S.(I)

READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR
END

Note
In the above procedure, the READ procedure reads into the variable A rather than
S.(I) because S.(I) is an expression, not a simple variable reference. Expressions
are passed by value; variables are passed by reference. The READ procedure
prompts the user with parameters passed by value and reads into parameters passed
by reference.
Application Programming Advanced Structure Usage

352 Chapter 16: Structures
Automatic Structure Definition

In versions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5 to
allow the automatic definition of named structures.

When IDL encounters a reference to an undefined named structure, it will
automatically search the directories specified in !PATH for a procedure named
Name__DEFINE, where Name is the actual name of the structure. If this procedure is
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro exists in the directories specified by
!PATH. A call to the HELP procedure produces the following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Attempt to call undefined procedure/function:'MYSTRUCT__DEFINE'.
% Structure type not defined: MYSTRUCT.
% Execution halted at: $MAIN$

Suppose now that we define a procedure named mystruct__define.pro as follows, and
place it in one of the directories specified by !PATH:

PRO mystruct__define
tmp = { mystruct, a:1.0, b:'string' }

END

With this structure definition routine available, the call to HELP produces the
following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Compiled module: MYSTRUCT__DEFINE.
** Structure MYSTRUCT, 2 tags, length=12:
 A FLOAT 0.00000
 B STRING ''
Automatic Structure Definition Application Programming

Chapter 16: Structures 353
Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either via automatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain values after creation.
Application Programming Automatic Structure Definition

354 Chapter 16: Structures
Relaxed Structure Assignment

The IDL “=” operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, as follows:

source = { SRC, A:FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A:INDGEN(2), C:20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT Array[2]>,SRC.
% Execution halted at: $MAIN$

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.
The STRUCT_ASSIGN procedure performs “relaxed structure assignment,” which is
a field-by-field copy of a structure to another structure. Fields are copied according to
the following rules:

1. Any fields found in the destination structure that are not found in the source
structure are “zeroed” (set to zero, the empty string, or a null pointer or object
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination structure
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their types
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements in
the field in the destination structure are zeroed. If a field in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSIGN, source, dest, /VERBOSE
Relaxed Structure Assignment Application Programming

Chapter 16: Structures 355
IDL prints:

% STRUCT_ASSIGN: SRC tag A is longer than destination.
The end will be clipped.

% STRUCT_ASSIGN: Destination lacks SRC tag B. Not copied.

If we check the variable dest, we see that it has the definition of the dest structure and
the data from the source structure:

HELP, dest, /STRUCTURE

IDL prints:

** Structure DEST, 2 tags, length=6:
 A INT Array[2]
 C INT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where this
type of structure definition is very useful is in restoring object structures into an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves data in structures. Your
application may use the IDL SAVE routine to save the data structures to disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
allows you to make relaxed assignments in such cases.

To see how this works, try the following exercise:

1. Start IDL, create a named structure, and use the SAVE procedure to save it to a
file:

mystruct = { STR, A:10, B:20L, C:'a string' }
SAVE, mystruct, FILE='test.dat'

2. Exit and restart IDL.

3. Create a new structure definition with the same name you used previously:

newstruct = { STR, A:20L, B:10.0, C:'a string', D:ptr_new() }
Application Programming Relaxed Structure Assignment

356 Chapter 16: Structures
4. Attempt to restore the variable mystruct from the test.dat file:

RESTORE, 'test.dat'

IDL prints:

% Wrong number of tags defined for structure: STR.
% RESTORE: Structure not restored due to conflict with

existing definition: STR.

5. Now use relaxed structure definition when restoring:

RESTORE, 'test.dat', /RELAXED_STRUCTURE_ASSIGNMENT

6. Check the contents of mystruct:

HELP, mystruct, /STRUCTURE

IDL prints:

** Structure STR, 4 tags, length=20:
 A LONG 10
 B FLOAT 20.0000
 C STRING 'a string'
 D POINTER <NullPointer>

The structure in the variable mystruct now uses the definition from the new version of
the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of a field has changed, the data type of the old data element has
been converted to the new data type. Fields in the new structure definition that do not
correspond to fields in the old definition contain “zero” values (zeroes for numeric
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).
Relaxed Structure Assignment Application Programming

Chapter 17

Pointers
The following topics are covered in this chapter:
Overview of Pointers 358
Heap Variables . 359
Creating Heap Variables 361
Saving and Restoring Heap Variables 362
Pointer Heap Variables 363
IDL Pointers . 364

Operations on Pointers 367
Dangling References 371
Heap Variable Leakage 372
Pointer Validity . 374
Freeing Pointers . 375
Pointer Examples 376
Application Programming 357

358 Chapter 17: Pointers
Overview of Pointers

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the
variable that actually holds the data must be separate from the lifetime of the tokens
that are used to access it.

Beginning with IDL version 5, IDL includes a new pointer data type to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it is important
to understand that they are not the same thing. IDL pointers are a high level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the examples/doc/language subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See “!PATH” (IDL
Reference Guide) for information on IDL’s path.
Overview of Pointers Application Programming

Chapter 17: Pointers 359
Heap Variables

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 13, “Creating
Custom Objects in IDL” (Object Programming) for more information on IDL
objects.) In IDL documentation of pointers and objects, heap variables accessible via
pointers are called pointer heap variables, and heap variables accessible via object
references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It is important to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved as well. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.
Application Programming Heap Variables

360 Chapter 17: Pointers
Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide a more complete and robust way of building
dynamic data structures, we recommend that you use pointers rather than handles
when developing new code. See Appendix I, “Obsolete Features” (IDL Reference
Guide) for a discussion of our policy on language features that have been
superseded in this manner.
Heap Variables Application Programming

Chapter 17: Pointers 361
Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 13, “Creating Custom Objects in
IDL” (Object Programming) for a discussion of object creation.) Copying a pointer
or object reference does not create a new heap variable. This is markedly different
from the way IDL handles “regular” variables. For example, with the statement:

A = 1.0

you create a new IDL floating-point variable with a value of 1.0. The following
statement:

B = A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:

C = PTR_NEW(2.0d)

the variable C contains not the double-precision floating-point value 2.0, but a
pointer to a heap variable that contains that value. Copying the variable C with the
following statement:

D = C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HELP command would reveal:

% At $MAIN$
A FLOAT = 1.00000
B FLOAT = 1.00000
C POINTER = <PtrHeapVar1>
D POINTER = <PtrHeapVar1>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in “Dereference” on page 367).

Destroying or redefining either C, D, or both variables would leave the contents of
the heap variable unchanged. When all pointers or references to a given heap variable
are destroyed, the heap variable still exists and holds whatever memory has been
allocated for it. See “Heap Variable Leakage” on page 372 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist, but
will be invalid. See “Dangling References” on page 371.
Application Programming Creating Heap Variables

362 Chapter 17: Pointers
Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. By default, when IDL saves a pointer or object reference in
a save file, it recursively saves the heap variables that are referenced by that pointer
or object reference. SAVE handles circular data structures correctly. You can build a
large, complicated, self-referential data structure, and then save the entire construct
with a call to SAVE to save the single pointer or object reference that points to the
head of the structure. For example, you can save a pointer to the root of a binary tree
and the entire tree will be saved.

The internal identifier of a given heap variable is dynamically allocated at run time,
and will differ between IDL sessions. As a result, the RESTORE operation maps all
saved pointers and object references to their new values in the current session.

In some cases, you may want to save the pointer or object reference, but not the heap
variable that are referenced by that pointer or object reference. You can specify that
the heap variable associated with a pointer or object reference not be saved using the
HEAP_NOSAVE procedure or the HEAP_SAVE function. See the documentation for
HEAP_SAVE for additional details.
Saving and Restoring Heap Variables Application Programming

Chapter 17: Pointers 363
Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 13, “Creating
Custom Objects in IDL” (Object Programming).
Application Programming Pointer Heap Variables

364 Chapter 17: Pointers
IDL Pointers

As illustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of a null pointer.

Null Pointers

The Null Pointer is a special pointer value that is guaranteed to never point at a valid
heap variable. It is used by IDL to initialize pointer variables when no other
initializing value is present. It is also a convenient value to use at the end nodes in
data structures such as trees and linked lists.

It is important to understand the difference between a null pointer and a pointer to an
undefined or invalid heap variable. The second case is a valid pointer to a heap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

;The variable A contains a null pointer.
A = PTR_NEW()
;The variable B contains a pointer to a heap variable with an
;undefined value.
B = PTR_NEW(/ALLOCATE_HEAP)

HELP, A, B, *B

IDL prints:

A POINTER = <NullPointer>
B POINTER = <PtrHeapVar1>
<PtrHeapVar1> UNDEFINED = <Undefined>

The primary difference is that it is possible to write a useful value into a pointer to an
undefined variable, but this is never possible with a null pointer. For example,
attempt to assign the value 34 to the null pointer:

*A = 34

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRINT, *B
IDL Pointers Application Programming

Chapter 17: Pointers 365
IDL prints:

 34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(0) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Use the PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptr1 = PTR_NEW(FINDGEN(10))

creates a new heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variable in ptr1.

Note that the argument to PTR_NEW can be of any IDL data type, and can include
any IDL expression, including calls to PTR_NEW itself. For example, the command:

ptr2 = PTR_NEW({name:'', next:PTR_NEW()})

creates a pointer to a heap variable that contains an anonymous structure with two
fields: the first field is a string, the second is a pointer. We will develop this idea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be a null pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See “PTR_NEW” (IDL Reference Guide) for further details.

The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2,2)

;Display the contents of the ptarray variable, and of the first
;array element.
HELP, ptarray, ptarray(0,0)
Application Programming IDL Pointers

366 Chapter 17: Pointers
IDL prints:

PTARR POINTER = Array(2, 2)
<Expression> POINTER = <NullPointer>

If you want each element of the array to point to a new heap variable (as opposed to
being a null pointer), use the ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See “PTRARR” (IDL Reference Guide) for further details.
IDL Pointers Application Programming

Chapter 17: Pointers 367
Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate data for the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and procedures in IDL do work with pointer
variables. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting
that the only I/O allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
This is merely a debugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variables is not
allowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of this type of I/O.

Assignment

Assignment works in the expected manner—assigning a pointer to a variable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW(FINDGEN(10))
B = A
HELP, A, B

A and B both point at the same heap variable and we see the output:

A POINTER = <PtrHeapVar1>
B POINTER = <PtrHeapVar1>

Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, which is * (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:

PRINT, *B
Application Programming Operations on Pointers

368 Chapter 17: Pointers
IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create a three-element pointer array, allocating a new heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE_HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR I = 0,2 DO *ptarr[I] = I

Note
The dereference operator is dereferencing only element I of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
at by the pointers in ptarr, you might be tempted to try the following:

PRINT, *ptarr

IDL prints:

% Expression must be a scalar in this context: PTARR.
% Execution halted at: $MAIN$

To print the contents of the heap variables, use the statement:

FOR I = 0, N_ELEMENTS(ptarr)-1 DO PRINT, *ptarr[I]

Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW(PTR_NEW(47))

assigns to A a pointer to a pointer to a heap variable containing the value 47.
Operations on Pointers Application Programming

Chapter 17: Pointers 369
To print this value, use the following statement:

PRINT, **A

Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new(20.0)}

you would use the following command to print the value of the heap variable pointed
at by the pointer in the pointer field:

PRINT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEW(struct)

you would use the following command to print the value of the heap variable pointed
at by the pointer field of the struct structure, which is pointed at by ptstruct:

PRINT, *(*pstruct).pointer

Note that you must dereference both the pointer to the structure and the pointer within
the structure.

Dereferencing the Null Pointer

It is an error to dereference the NULL pointer, an invalid pointer, or a non-pointer.
These cases all generate errors that stop IDL execution. For example:

PRINT, *45

IDL prints:

% Pointer type required in this context: <INT(45)>.
% Execution halted at: $MAIN$

For example:

A = PTR_NEW() & PRINT, *A

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAIN$

For example:

A = PTR_NEW(23) & PTR_FREE, A & PRINT, *A
Application Programming Operations on Pointers

370 Chapter 17: Pointers
IDL prints:

% Invalid pointer: A.

% Execution halted at: $MAIN$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to see if they point at the
same heap variable. For example:

;Make A a pointer to a heap variable containing 23.
A = PTR_NEW(23)

;B points at the same heap variable as A.
B = A

;C contains the null pointer.
C = PTR_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ PTR_NEW() & $
PRINT, 'C NE NULL:', C NE PTR_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Operations on Pointers Application Programming

Chapter 17: Pointers 371
Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference that
still refers to it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Print A and the value of the heap variable A points to.
PRINT, A, *A

IDL prints:

<PtrHeapVar13> 23

For example:

;Destroy the heap variable.
PTR_FREE, A

;Try to print again.
PRINT, A, *A

IDL prints:

% Invalid pointer: A.
% Execution halted at: $MAIN$

There are several possible approaches to avoiding such errors. The best option is to
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.
Application Programming Dangling References

372 Chapter 17: Pointers
Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.
For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is lost.
A = 0

Use the HEAP_VARIABLES keyword to the HELP procedure to view a list of heap
variables currently in memory:

HELP, /HEAP_VARIABLES

IDL prints:

<PtrHeapVar14> INT = 23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see
“PTR_VALID” (IDL Reference Guide)), or do manual “Garbage Collection” and use
the HEAP_GC command to destroy all inaccessible heap variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See “OBJ_VALID” (IDL Reference Guide) for more information.

The HEAP_GC procedure causes IDL to hunt for all unreferenced heap variables and
destroy them. It is important to understand that this is a potentially computationally
expensive operation, and should not be relied on by programmers as a way to avoid
writing careful code. Rather, the intent is to provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makes it possible to determine when variables have
leaked, and it provides some hint as to their origin.

Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such as large linked lists, a
Heap Variable Leakage Application Programming

Chapter 17: Pointers 373
potentially large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, is too slow to be
provided automatically by IDL, and careful programming can easily avoid this pitfall.
Furthermore, implementing a reference counted data structure on top of IDL pointers
is easy to do in those cases where it is useful, and such reference counting could take
advantage of its domain specific knowledge to do the job much faster than the
general case.

Another approach would be to write allocation and freeing routines—layered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the allocated pointers. Such a facility could offer the ability to allocate
pointers in named groups, and might provide a routine that frees all heap variables in
a given group. Such an operation would be very efficient, and is easier than reference
counting.
Application Programming Heap Variable Leakage

374 Chapter 17: Pointers
Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointers to
existing heap variables. If supplied with a single pointer as its argument,
PTR_VALID returns TRUE (1) if the pointer argument points at a valid heap
variable, or FALSE (0) otherwise. If supplied with an array of pointers, PTR_VALID
returns an array of TRUE and FALSE values corresponding to the input array. If no
argument is specified, PTR_VALID returns an array of pointers to all existing pointer
heap variables. For example:

;Create a new pointer and heap variable.
A = PTR_NEW(10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A points to a valid heap variable.

For example:

;Destroy the heap variable.
PTR_FREE, A

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A does not point to a valid heap variable.

See “PTR_VALID” (IDL Reference Guide) for further details.
Pointer Validity Application Programming

Chapter 17: Pointers 375
Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied as its arguments. Any memory used by the heap variable is released, and the
heap variable ceases to exist. PTR_FREE is the only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointers remain to reference it.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References” on page 371.

See “PTR_FREE” (IDL Reference Guide) for further details.

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When a valid pointer or object reference is
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In this way, all heap variables that
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releases them in a final pass. Pointers are
released as if the PTR_FREE procedure was called. Objects are released as with a call
to OBJ_DESTROY.

HEAP_FREE is recommended when:

• The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

• The data structures are opaque, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE” (IDL Reference Guide) for further details.
Application Programming Freeing Pointers

376 Chapter 17: Pointers
Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examples is to illustrate
simply and clearly how pointers are used. As such, they may not represent the “best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate a linked list. One
procedure reads string input from the keyboard and creates a list of pointers to heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of the linked list. A third procedure uses a modified
“bubble sort” algorithm to reorder the values so the strings are in alphabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing a list
element—an anonymous structure with two fields; one to hold the string data and one
to hold a pointer to the next list element. Any number of strings can be entered. When
the user is finished entering strings, the program can be exited by entering a period by
itself at the “Enter string:” prompt.

Example Code
The source code for this example can be found in the file ptr_read.pro in the
examples/doc/language subdirectory of the IDL distribution. Run the example
procedure by entering ptr_read at the IDL command prompt or view the file in an
IDL Editor window by entering .EDIT ptr_read.pro.

Run the PTR_READ program by entering the following command at the IDL prompt:

ptr_read, first

Type a string, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time a string is entered, PTR_READ creates
a new list element with that string as its value.

For example, you could enter the following three strings (used in the rest of this
example):
Pointer Examples Application Programming

javascript:doIDL("ptr_read")

javascript:doIDL(".edit ptr_read.pro")

Chapter 17: Pointers 377
Enter a list of names.
Enter a period (.) to stop list entry.
Enter string: wilma
Enter string: biff
Enter string: cosmo
Enter string: .

The following figure shows one way of visualizing the linked list that we’ve created.

Printing the Linked List

The next program in our example accepts the pointer to the first element of the linked
list and prints all the values in the list in order. To illustrate how the list is linked, we
will also print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

Example Code
The source code for this example can be found in the file ptr_print.pro in the
examples/doc/language subdirectory of the IDL distribution. Run the example
procedure by entering ptr_print at the IDL command prompt or view the file in
an IDL Editor window by entering .EDIT ptr_print.pro.

If we run the PTR_PRINT program with the list generated in the previous example:

IDL> ptr_print, first

IDL prints:

<PtrHeapVar1>, named wilma, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named biff, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named cosmo, has a pointer to: <NullPointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves the
values so that they are in alphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with

Table 17-1: One way of visualizing the linked list created by the PTR_READ
procedure

name:
wilma

next: name:
biff

next: name:
cosmo

next:
nullfirst:
Application Programming Pointer Examples

javascript:doIDL("ptr_print")
javascript:doIDL(".edit ptr_print.pro")

378 Chapter 17: Pointers
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of the list and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that this is not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL’s SORT
function.

Example Code
The source code for this example can be found in the file ptr_sort.pro in the
examples/doc/language subdirectory of the IDL distribution. Run the example
procedure by entering ptr_sort at the IDL command prompt or view the file in an
IDL Editor window by entering .EDIT ptr_sort.pro.

To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:

ptr_print, first

IDL prints:

<PtrHeapVar1>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named cosmo, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named wilma, has a pointer to: <NullPointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary
Trees

Two more-complicated example programs demonstrate the use of IDL pointers to
create and search a simple tree structure.

Example Code
These files, named idl_tree.pro and tree_example.pro, can be found in the
examples/doc/language subdirectory of the IDL distribution. Run these
example procedures by entering idl_tree or tree_example at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
idl_tree.pro or .EDIT tree_example.pro.

To run the tree examples, enter the following commands at the IDL prompt:

; Compile the routines in idl_tree. The example routine calls the
; routines defined in this file.
Pointer Examples Application Programming

javascript:doIDL("ptr_sort")
javascript:doIDL(".edit ptr_sort.pro")
javascript:doIDL("idl_tree")
javascript:doIDL(".edit idl_tree.pro")
javascript:doIDL(".edit idl_tree.pro")
javascript:doIDL("tree_example")
javascript:doIDL(".edit tree_example.pro")

Chapter 17: Pointers 379
.run idl_tree

; Run the tree_example.
tree_example

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time” and
“Data”. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and deletes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routines is beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.
Application Programming Pointer Examples

380 Chapter 17: Pointers
Pointer Examples Application Programming

Chapter 18

Files and Input/Output
The following topics are covered in this chapter:
Overview of File Access 382
Formatted and Unformatted Input/Output . 384
Opening Files . 387
Closing Files . 388
Understanding (LUNs) 389
Returning Information About a File Unit . 392
File Unit Manipulations 395
Reading and Writing Very Large Files . . . 397
Using Free Format Input/Output 399

Using Explicitly Formatted Input/Output 404
Format Codes . 409
Using Unformatted Input/Output 447
Portable Unformatted Input/Output 454
Associated Input/Output 459
File Manipulation Operations 465
Reading and Writing FORTRAN Data . . 466
Platform-Specific File I/O Information . . 470
Application Programming 381

382 Chapter 18: Files and Input/Output
Overview of File Access

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on data files by IDL, and there is no unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of programs
which read and write data using IDL, C, and FORTRAN.

The first section of this chapter provides a description for how IDL input/output
works. It is intentionally brief and is intended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhaps
the largest single difference between platforms is input/output. The majority of this
chapter covers information that is required in all of the environments IDL supports.
Operating system specific information is concentrated in the final sections of this
chapter.

About Opening Files

Before any file input or output can be performed, it is necessary to open a file. This is
done using either the OPENR (Open for Reading), OPENW (Open for Writing), or
OPENU (Open for Update) procedures. When a file is opened, it is associated with a
Logical Unit Number, or LUN. All file input and output routines in IDL use the LUN
rather than the filename, and most require that the LUN be explicitly specified. Once
a file is opened, several input/output routines are available for use. Each routine fills
a particular need – the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing input/output
on it. Three files are always open – in fact, the user is not allowed to close them.
These files are the standard input (usually the keyboard), the standard output
(usually the IDL log window), and the standard error output (usually the terminal
screen). These three files are associated with LUNs 0, -1, and -2, respectively.
Because these files are always open, there is no need to open them prior to using them
for input/output. The READ and PRINT procedures automatically use these files, so
basic formatted input/output is extremely simple.
Overview of File Access Application Programming

Chapter 18: Files and Input/Output 383
Simple I/O Examples

It is easy to use input/output using the default input and output files. The IDL
command:

PRINT, 'Hello World.'

causes IDL to print the line:

Hello World.

on the terminal screen. This happens because PRINT formats its arguments and prints
them to LUN -1, which is the standard output file. It is only slightly more
complicated to use other files. The following IDL statements show how the above
“Hello World” example could be sent to a file named hello.dat:

;Open LUN 1 for hello.dat with write access.
OPENW, 1, 'hello.dat'

;Do the output operation to the file.
PRINTF, 1, 'Hello World.'

;Close the file.
CLOSE, 1

Routines for Input/Output

See the categories under the functional heading “Input/Output” (IDL Quick
Reference) for a complete list of available routines.
Application Programming Overview of File Access

384 Chapter 18: Files and Input/Output
Formatted and Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly between
memory and the file. Formatted output converts the internal binary representation of
the data to ASCII characters which are written to the output file. Formatted input
reads characters from the input file and converts them to internal form. Formatted I/O
can be either “Free” format or “Explicit” format, as described below.

Advantages and Disadvantages of Unformatted I/O

Unformatted input/output is the simplest and most efficient form of input/output. It is
usually the most compact way to store data. Unformatted input/output is the least
portable form of input/output. Unformatted data files can only be moved easily to and
from computers that share the same internal data representation. It should be noted
that XDR (eXternal Data Representation) files, described in “Portable Unformatted
Input/Output” on page 454, can be used to produce portable binary data. Unformatted
input/output is not directly human readable, so you cannot type it out on a terminal
screen or edit it with a text editor.

Advantages and Disadvantages of Formatted I/O

Formatted input/output is very portable. It is a simple process to move formatted data
files to various computers, even computers running different operating systems, as
long as they all use the ASCII character set. (ASCII is the American Standard Code
for Information Interchange. It is the character set used by almost all current
computers, with the notable exception of large IBM mainframes.) Formatted files are
human readable and can be typed to the terminal screen or edited with a text editor.

However, formatted input/output is more computationally expensive than
unformatted input/output because of the need to convert between internal binary data
and ASCII text. Formatted data requires more space than unformatted to represent the
same information. Inaccuracies can result when converting data between text and the
internal representation.
Formatted and Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 385
Free Format I/O

With free format input/output, IDL uses default rules to format the data.

Advantages and Disadvantages of Free Format I/O

The user is free of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with a minimum of effort. However, the
default formats used are not always exactly what is required. In this case, explicit
formatting is necessary.

See “Using Free Format Input/Output” on page 399 for more information.

Explicit Format I/O

Explicit format I/O allows you to specify the exact format for input/output.

Advantages and Disadvantages of Explicit I/O

Explicit formatting allows a great deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used in
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codes are supported. In addition, IDL formats have been extended to provide many of
the capabilities found in the scanf () and printf () functions commonly found in the C
language runtime library.

However, there are some disadvantages to using Explicit I/O. Using explicitly
specified formats requires the user to specify more detail—they are, therefore, more
complicated to use than free format.

The type of input/output to use in a given situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestions are intended to give a rough idea of the issues involved, though there are
always exceptions:

• Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

• Data that need to be human readable should be written using formatted
input/output.
Application Programming Formatted and Unformatted Input/Output

386 Chapter 18: Files and Input/Output
• Data that need to be portable should be written using formatted input/output.
Another option is to use unformatted XDR files by specifying the XDR
keyword with the OPEN procedures. This is especially important if moving
between computers with markedly different internal binary data formats. XDR
is discussed in “Portable Unformatted Input/Output” on page 454.

• Free format input/output is easier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often a good choice for
small files where there is no strong reason to prefer one method over another.

• Special well-known complex file formats are usually supported directly with
special IDL routines (e.g. READ_JPEG for JPEG images).

See “Using Explicitly Formatted Input/Output” on page 404 for more information
and examples.
Formatted and Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 387
Opening Files

Before a file can be processed by IDL, it must be opened using one of the procedures
described in the following table. All open files are associated with a LUN (Logical
Unit Number) within IDL, and all input/output routines refer to files via this number.
For example, to open the file named data.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'

The OPENR/OPENU/OPENW procedures can be used with certain keywords to
modify their normal behavior. Some keywords are generally applicable, while others
only have effect under a given operating system. Some operating system specific
keywords are allowed (and ignored) under other operating systems in order to
facilitate writing portable routines.

Platform-Specific Keywords to the OPEN Procedure

Different computers and operating systems perform input/output in different ways.
See “OPENR/OPENU/OPENW” (IDL Reference Guide) for keywords to the OPEN
procedures that apply under UNIX or Microsoft Windows.

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opens a new file for input and output. If the named file already
exists, its old contents are overwritten.

OPENU Opens an existing file for input and output.

Table 18-1: IDL File Opening Commands
Application Programming Opening Files

388 Chapter 18: Files and Input/Output
Closing Files

After work involving the file is complete, it should be closed. Closing a file removes
the association between the file and its unit number, thus freeing the unit number for
use with a different file. There is usually an operating system-imposed limit on the
number of files a user may have open at once. Although this number is large enough
that it rarely causes problems, situations can occur where a file must be closed before
another file may be opened. In any event, it is good style to only keep needed files
open.

There are three ways to close a file:

• Use the CLOSE procedure.

• Use the FREE_LUN procedure on a LUN that has been allocated by
GET_LUN.

• Exit IDL. IDL closes all open files when it exits.

Calling the CLOSE procedure is the most common way to close a file unit. For
example, to close file unit number 1, use the following statement:

CLOSE, 1

In addition, if FREE_LUN is called with a file unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finally, all
open files are automatically closed when IDL exits.
Closing Files Application Programming

Chapter 18: Files and Input/Output 389
Understanding (LUNs)

IDL Logical Unit Numbers (LUNs) fall within the range −2 to 128. Some LUNs are
reserved for special functions as described below.

The Standard Input, Output, and Error LUNs

The three LUNs described below have special meanings that are operating system
dependent:

UNIX

Logical Unit Numbers 0, -1, and -2 are tied to stdin, stdout, and stderr, respectively.
This means that the normal UNIX file redirection and pipe operations work with IDL.
For example, the shell command

%idl < idl.inp >& idl.out &

will cause IDL to execute in the background, reading its input from the file idl.inp
and writing its output to the file idl.out. Any messages sent to stderr are also sent to
idl.out.

When using the IDL Workbench, Logical Unit Numbers 0, -1, and -2 are tied to stdin
(the command line), stdout (the log window), and stderr (the log window),
respectively.

Windows

Logical Unit Numbers 0, -1, and -2 are tied to stdin (the command line), stdout (the
log window), and stderr (the log window), respectively.

These special file units are described in more detail below.

File Unit 0

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:

READ, X

is equivalent to the following:

READF, 0, X
Application Programming Understanding (LUNs)

390 Chapter 18: Files and Input/Output
File Unit -1

This LUN represents the standard output stream, which is usually the terminal screen.
Therefore, the IDL statement:

PRINT, X

is equivalent to the following:

PRINTF, -1, X

File Unit -2

This LUN represents the standard error stream, which is usually the terminal screen.

File Units (1–99)

These are the file units for normal interactive use. When using IDL interactively, the
user arbitrarily selects the file units used. The file units from 1 to 99 are available for
this use.

File Units (100–128)

These are the file units managed by the GET_LUN and FREE_LUN procedures. If an
IDL procedure or function that uses files is written to explicitly use a given file unit,
there is a chance that it will conflict with other routines that use the same unit. It is
therefore necessary to avoid explicit file unit numbers when writing IDL procedures
and functions. The GET_LUN and FREE_LUN procedures provide a standard
mechanism for IDL routines to obtain unique file units. GET_LUN allocates a file
unit from a pool of free units in the range 100 to 128. This unit will not be allocated
again until it is released by a call to FREE_LUN. Meanwhile, it is available for the
exclusive use of the program that allocated it. A typical procedure that needs a file
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNIT, /GET_LUN

;Body of program goes here.
.
.
.

;Return file unit.
FREE_LUN, UNIT
Understanding (LUNs) Application Programming

Chapter 18: Files and Input/Output 391
;Since the file is still open, FREE_LUN will automatically call
;CLOSE.
END

Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LUN
to obtain file units. Furthermore, the file units between 100 and 128 should never be
used unless previously allocated by GET_LUN.
Application Programming Understanding (LUNs)

392 Chapter 18: Files and Input/Output
Returning Information About a File Unit

Information about currently open file units is available by using the FILES keyword
with the HELP procedure, or using the FSTAT function. If no arguments are
provided, information about all currently open user file units (units 1–128) is given.
For example, the following command can be used to get information about the three
special units (−2, −1, and 0):

HELP, /FILES, -2, -1, 0

This command results in output similar to the following:

Unit Attributes Name
-2 Write, New, Tty, Reserved <stderr>
-1 Write, New, Tty, Reserved <stdout>
0 Read, Tty, Reserved <stdin>

See “HELP” (IDL Reference Guide) for details.

Using FSTAT

The FSTAT function can be used to retrieve information about a file that is currently
open (that is, for which there is an IDL Logical Unit Number available). It returns a
structure expression of type FSTAT or FSTAT64 containing information about the
file. For example, to get detailed information about the standard input, use the
following command:

HELP, /STRUCTURES, FSTAT(0)

This displays the following information:

** Structure FSTAT, 17 tags, length=64:
UNIT LONG 0
NAME STRING '<stdin>'
OPEN BYTE 1
ISATTY BYTE 0
ISAGUI BYTE 1
INTERACTIVE BYTE 1
XDR BYTE 0
COMPRESS BYTE 0
READ BYTE 1
wWRITE BYTE 0
ATIME LONG64 0
CTIME LONG64 0
MTIME LONG64 0
TRANSFER_COUNT LONG 0
CUR_PTR LONG 0
Returning Information About a File Unit Application Programming

Chapter 18: Files and Input/Output 393
SIZE LONG 0
REC_LEN LONG 0

On some platforms, IDL can support files that are longer than 2^31-1 bytes in length.
If FSTAT is applied to such a file, it returns an expression of type FSTAT64 instead of
the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

The fields of the FSTAT and FSTAT64 structures provide various information about
the file, such as the size of the file, and the dates of last access, creation, and last
modification. For more information on the fields of the FSTAT and FSTAT64
structures, see “FSTAT” (IDL Reference Guide).

An Example Using FSTAT

The following IDL function can be used to read single-precision, floating-point data
from a stream file into a vector when the number of elements in the file is not known.
It uses the FSTAT function to get the size of the file in bytes and divides by four (the
size of a single-precision, floating-point value) to determine the number of values.

;READ_DATA reads all the floating point values from a stream file
;and returns the result as a floating-point vector.
FUNCTION READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /GET_LUN, unit, file

;Get file status.
status = FSTAT(unit)

;Make an array to hold the input data. The SIZE field of status
;gives the number of bytes in the file, and single-precision,
;floating-point values are four bytes each.
data = FLTARR(status.size / 4)

;Read the data.
READU, unit, data

;Deallocate the file unit. The file also will be closed.
FREE_LUN, unit

RETURN, data

END
Application Programming Returning Information About a File Unit

394 Chapter 18: Files and Input/Output
Assuming that a file named data.dat exists and contains 10 floating-point values,
the READ_DATA function could be used as follows:

;Read floating-point values from data.dat.
A = READ_DATA('data.dat')

;Show the result.
HELP, A

The following output is produced:

A FLOAT = Array(10)
Returning Information About a File Unit Application Programming

Chapter 18: Files and Input/Output 395
File Unit Manipulations

The following sections describe common tasks when working with file units.

Flushing File Units

For efficiency, IDL buffers its input/output in memory. Therefore, when data are
output, there is a window of time during which data are in memory and have not been
actually placed into the file. Normally, this behavior is transparent to the user (except
for the improved performance). The FLUSH routine exists for those rare occasions
where a program needs to be certain that the data has actually been written to the file
immediately. For example, use the statement,

FLUSH, 1

to flush file unit one.

See “FLUSH” (IDL Reference Guide) for details.

Positioning File Pointers

Each open file unit has a current file pointer associated with it. This file pointer
indicates the position in the file at which the next input/output operation will take
place. The file position is specified as the number of bytes from the start of the file.
The first position in the file is position zero. The following statement will rewind file
unit 1 to its start:

POINT_LUN, 1, 0

The following sequence of statements will position it at the end of the file:

tmp = FSTAT(1)
POINT_LUN, 1, tmp.size

POINT_LUN has the following operating-system specific behavior:

• UNIX: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that point.
The gap created is filled with zeroes.

• Windows: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that point.
Unlike UNIX, the gap created is filled with arbitrary data instead of zeroes.

See “POINT_LUN” (IDL Reference Guide) for details.
Application Programming File Unit Manipulations

396 Chapter 18: Files and Input/Output
Testing for End-Of-File

The EOF function is used to test a file unit to see if it is currently positioned at the
end of the file. It returns true (1) if the end-of-file condition is true and false (0)
otherwise.

For example, to read the contents of a file and print it on the screen, use the following
statements:

;Open file demo.doc for reading.
OPENR, 1, 'demo.doc'

;Create a variable of type string.
LINE = ''

;Read and print each line until the end of the file is encountered.
WHILE(~ EOF(1)) DO BEGIN READF,1,LINE & PRINT,LINE & END

;Done with the file.
CLOSE, 1

See “EOF” (IDL Reference Guide) for details.
File Unit Manipulations Application Programming

Chapter 18: Files and Input/Output 397
Reading and Writing Very Large Files

IDL on all platforms is able to read and write data from files up to 231-1 bytes in
length. On some platforms, it is also able to read and write data from files longer than
this limit.

To see if IDL on your platform supports large files, use the following:

PRINT, !VERSION.FILE_OFFSET_BITS

If IDL prints the number 64, the platform supports large files. For more information,
see “!VERSION” (IDL Reference Guide).

Warning
Macintosh systems that use the UNIX File System (UFS) rather than the default
Mac OS Extended Filesystem (HFS+) will not be able to access large files, even
though IDL itself will report the ability to do so. This is a limitation of the file
system, not of IDL.

When reading and writing to files smaller than this limit, there is no difference in
behavior between the platforms that can and those that cannot handle larger files. IDL
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) and
keywords, as before. However, when dealing with files that exceed this limit, IDL
uses signed 64-bit integers in order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW, 1, 'test.dat'

;Initial position should be 0.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

;Move the file pointer past the signed 32-bit boundary.
POINT_LUN, 1, '000000ffffffffff'x

;The position is now too large to represent as a longword.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

CLOSE, 1
Application Programming Reading and Writing Very Large Files

398 Chapter 18: Files and Input/Output
Executing these statements results in the following output:

POS LONG = 0
POS LONG64 = 1099511627775

Initially, the file position is 0, which fits easily into a 32-bit integer. Once the file
position exceeds the range of a signed 32-bit number, IDL automatically shifts to the
64-bit integer type.

Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood by
the IDL programmer:

• On any platform, the amount of data that IDL can transfer in a single operation
is limited by the amount of memory it can allocate. On most platforms, IDL is
a 32-bit program, and as such, can theoretically address up to 2^31-1 bytes of
memory (approximately 2.3GB). On these 32-bit platforms, reading, writing,
and processing data larger than this limit must be done in multiple operations.
Most systems do not have 2.3 GB of memory available, and other programs
running on the system also compete for the same memory, so the actual
memory available is likely to be considerably smaller.

To see if your platform is 32- or 64-bit, use the following:

PRINT, !VERSION.MEMORY_BITS

IF “32” is returned, your platform is 32-bit. If “64” is returned, your platform
is 64-bit. For more information, see “!VERSION” (IDL Reference Guide).

• The ability to read or write to very large files is constrained by the ability of
the underlying file system to support such files. Many platforms can only
support large files on certain file systems. For example, many platforms will
be unable to support these operations on NFS mounted file systems because
NFS version 3 and later must be in use on both client and server. Some
platforms can only support such operations on special large file systems, and
only if they are mounted using the appropriate mount options. Consult your
system documentation to determine the limitations present on your system and
the procedures for supporting very large file.
Reading and Writing Very Large Files Application Programming

Chapter 18: Files and Input/Output 399
Using Free Format Input/Output

Use of formatted data is most appropriate when the data must be in human readable
form, such as when it is to be prepared or modified with a text editor. Formatted data
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discussed,
the STRING function can be used to generate formatted output that is sent to a string
variable instead of a file. The READS procedure can be used to read formatted input
from a string variable.

The exact format of the character data may be specified to these routines by
providing a format string via the FORMAT keyword. If no format string is given,
default formats for each type of data are applied. This method of formatted
input/output is called free format. Free format input/output is suitable for most
applications involving formatted data. It is designed to provide input/output abilities
with a minimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output. The
default format for displaying structure data is to surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A:2, B:3, C:'A String' }

and then use default formatted output via the PRINT command:

PRINT, struct

IDL prints:

{ 2 3 A String}

You might suppose that default formatted input would recognize that the curly braces
are part of the formatting and ignore them. This is not the case, however. By default,
to read the third field in the structure (the string field) IDL will read from the “A” to
the end of the line, including the closing brace.

This behavior, while unsymmetric, seems to be the best choice for default behavior—
displaying the result of the PRINT statement on the computer screen. We recommend
that you use explicitly formatted input/output when reading and writing structures to
disk files, so as not to have to explicitly code around the possibility that your
structure may include strings.
Application Programming Using Free Format Input/Output

400 Chapter 18: Files and Input/Output
Free Format Input

The following rules are used by IDL to perform free format input:

1. Input is performed on scalar variables. Array and structure variables are treated
as collections of scalar variables. For example,

A = INTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable A.

2. If the current input line is empty and there are variables left requiring input,
read another line.

3. If the current input line is not empty but there are no variables left requiring
input, the remainder of the line is ignored.

4. Input data must be separated by commas or white space (tabs, spaces, or new
lines).

5. When reading into a variable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the input
into a value of the expected type. Decimal points are optional and exponential
(scientific) notation is allowed. If a floating-point datum is provided for an
integer variable, the value is truncated.

7. When reading into a variable of complex type, the real and imaginary parts are
separated by a comma and surrounded by parentheses. If only a single value is
provided, it is taken as the real part of the variable, and the imaginary part is
set to zero. For example:

;Create a complex variable.
A = COMPLEX(0)

;IDL prompts for input with a colon:
READ, A

;The user enters "(3,4)" and A is set to COMPLEX(3, 4).
:(3, 4)

;IDL prompts for input with a colon:
READ, A

;The user enters "50" and A is set to COMPLEX(50, 0).
:50
Using Free Format Input/Output Application Programming

Chapter 18: Files and Input/Output 401
Free Format Output

The following rules are used by IDL to perform free format output:

1. The format used to output numeric data is determined by the data type. The
formats used are summarized in the table below. The formats are specified in
the FORTRAN-like style used by IDL for explicitly formatted input/output.

2. The current output line is filled with characters until one of the following
happens:

A. There is no more data to output.

B. The output line is full. When output is to a file, the default line width is 80
columns (you can override this default by setting the WIDTH keyword to
the OPEN procedure). When the output is to the standard output, IDL uses
the current width of your tty or command log window.

C. An entire row is output in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” and
“}” characters.

Data Type Format

Byte I4

Int, UInt I8

Long, ULong I12

Float G13.6

Long64, ULong64 I22

Double G16.8

Complex '(', G13.6, ',', G13.6, ')'

Double-precision Complex '(', G16.8, ',', G16.8, ')'

String Output full string on current line.

Table 18-2: Formats Used for Free-Format Output
Application Programming Using Free Format Input/Output

402 Chapter 18: Files and Input/Output
Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statements
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure named "types" that contains seven of the basic
;IDL data types, as well as a floating-point array.
A = {TYPES, A:0B, B:0, C:0L, D:1.0, E:1D, $

F:COMPLEX(0), G: 'string', E:FLTARR(5)}

;Read free-formatted data from input
READ, A

;IDL prompts for input with a colon. We enter values for the first
;six numeric fields of A and the string.
: 1 2 3 4 5 (6,7) EIGHT

Notice that the complex value was specified as (6, 7). If the parentheses had been
omitted, the complex field of A would have received the value COMPLEX(6, 0), and
the 7 would have been input for the next field. When reading into a string variable,
IDL starts from the current point in the input and continues to the end of the line.
Thus, we do not enter values intended for the rest of the structure on this line.

;There are still fields of A that have not received data, so IDL
;prompts for another line of input.
: 9 10 11 12 13

;Show the result.
PRINT, A

Executing these statements results in the following output:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) eight

9.00000 10.0000 11.0000 12.0000 13.0000
}

When producing the output, IDL uses default rules for formatting the values and
attempts to place as many items as possible onto each line. Because the variable A is a
structure, braces {} are placed around the output. As noted above, when IDL reads
strings it continues to the end of the line. For this reason, it is usually convenient to
place string variables at the end of the list of variables to be input.
Using Free Format Input/Output Application Programming

Chapter 18: Files and Input/Output 403
For example, if S is a string variable and I is an integer:

;Read into the string first.
READ, S, I

;IDL prompts for input. We enter a string value followed by an
;integer.
: Hello World 34

;The entire previous line was placed into the string variable S,
;and I still requires input. IDL prompts for another line.
: 34
Application Programming Using Free Format Input/Output

404 Chapter 18: Files and Input/Output
Using Explicitly Formatted Input/Output

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The standard syntax of IDL format
strings is similar to that used in FORTRAN; a C printf()-style syntax is also
supported, as described in “C printf-Style Quoted String Format Code” on page 435.

Note
IDL uses the standard I/O function sprintf to do its formatting. Different
platforms implement this function in different ways, which may lead to slight
inconsistencies in the appearance of the output.

The format string specifies the format in which data is to be transferred as well as the
data conversion required to achieve that format. The format specification strings
supplied by the FORMAT keyword have the form:

FORMAT = '(q1f1s1f2s2 ... fnqn)'

where q, f, and s are described below.

Record Terminators

q is zero or more slash (/) record terminators. On output, each record terminator
causes the output to move to a new line. On input, each record terminator causes the
next line of input to be read.

Format Codes

f is a format code. Some format codes specify how data should be transferred while
others control some other function related to how input/output is handled. The code f
can also be a nested format specification enclosed in parentheses. This is called a
group specification and has the following form:

...[n](q1f1s1f2s2 ... fnqn) ...

A group specification consists of an optional repeat count n followed by a format
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specification:

FORMAT = '("Result: ", "<",I5,">", "<",I5,">")'

can be written more concisely using a group specification:

FORMAT = '("Result: ", 2("<",I5,">"))'
Using Explicitly Formatted Input/Output Application Programming

Chapter 18: Files and Input/Output 405
If the repeat count is 1 or is not given, the parentheses serve only to group format
codes for use in format reversion (discussed in the next section). Format codes and
their syntax are described in detail in “Format Codes” on page 409.

Field Separators

s is a field separator. A field separator consists of one or more commas (,) and/or
slash record terminators (/). The only restriction is that two commas cannot occur
side-by-side.

The arguments provided in a call to a formatted input/output routine are called the
argument list. The argument list specifies the data to be moved between memory and
the file. All data are handled in terms of basic IDL components. Thus, an array is
considered to be a collection of scalar data elements, and a structure is processed in
terms of its basic components. Complex scalar values are treated as two floating-
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rules to process explicitly formatted input/output:

1. Traverse the format string from left to right, processing each record terminator
and format code until an error occurs or no data is left in the argument list. The
comma field separator serves no purpose except to delimit the format codes.

2. It is an error to specify an argument list with a format string that does not
contain a format code that transfers data to or from the argument list because
an infinite loop would result.

3. When a slash record terminator (/) is encountered, the current record is
completed, and a new one is started. For output, this means that a new line is
started. For input, it means that the rest of the current input record is ignored,
and the next input record is read.
Application Programming Using Explicitly Formatted Input/Output

406 Chapter 18: Files and Input/Output
4. When a format code that does not transfer data to or from the argument list is
encountered, process it according to its meaning. The format codes that do not
transfer data to or from the argument list are summarized here.

5. When a format code that transfers data to or from the argument list is
encountered, it is matched up with the next datum in the argument list. The
format codes that transfer data to or from the argument list are summarized in
the following table.

Code Action

Quoted String On output, the contents of the string are written out. On input,
quoted strings are ignored.

: The colon format code in a format string terminates format
processing if no more items remain in the argument list. It has no
effect if data still remains on the list.

$ On output, if a $ format code is placed anywhere in the format
string, the new line implied by the closing parenthesis of the
format string is suppressed. On input, the $ format code is ignored.

nH FORTRAN-style Hollerith string. Hollerith strings are treated
exactly like quoted strings.

nX Skips n character positions.

Tn Tab. Sets the character position of the next item to the n-th
position in the current record.

TLn Tab Left. Specifies that the next character to be transferred to or
from the current record is the n-th character to the left of the
current position.

TRn Tab Right. Specifies that the next character to be transferred to or
from the current record is the n-th character to the right of the
current position.

Table 18-3: Format Codes That Do Not Transfer Data
Using Explicitly Formatted Input/Output Application Programming

Chapter 18: Files and Input/Output 407
6. On input, read data from the file and format it according to the format code. If
the data type of the input data does not agree with the data type of the variable
that is to receive the result, do the type conversion if possible; otherwise, issue
a type conversion error and stop.

7. On output, write the data according to the format code. If the data type does
not agree with the format code, do the type conversion prior to doing the
output if possible. If the type conversion is not possible, issue a type
conversion error and stop.

Code Action

A Transfer character data.

B Transfer binary data.

C() Transfer calendar (Julian date and/or time) data.

D Transfer double-precision, floating-point data.

E Transfer floating-point data using scientific (exponential) notation.

F Transfer floating-point data.

G Use F or E format depending on the magnitude of the value being
processed.

I Transfer integer data.

O Transfer octal data.

Q Obtain the number of characters in the input record remaining to
be transferred during a read operation. In an output statement, the
Q format code has no effect except that the corresponding
input/output list element is skipped.

Z Transfer Hexadecimal data.

Table 18-4: Format Codes That Transfer Data
Application Programming Using Explicitly Formatted Input/Output

408 Chapter 18: Files and Input/Output
8. If the last closing parenthesis of the format string is reached and there are no
data left on the argument list, then format processing terminates. If, however,
there are still data to be processed on the argument list, then part or all of the
format specification is reused. This process is called format reversion.

Format Reversion

In format reversion, the current record is terminated, a new one is initiated, and
format control reverts to the group repeat specification whose opening parenthesis
matches the next-to-last closing parenthesis of the format string. If the format does
not contain a group repeat specification, format control returns to the initial opening
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = '("The values are: ", 2("<", I1, ">"))', $
INDGEN(6)

results in the output

The values are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is as follows:

1. Output the string “The values are: ”.

2. Process the group specification and output the first two values. The end of the
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", I1, ">")
by format reversion.

3. Repeat Step 2 until no data remain. End the output record. Format processing
is complete.
Using Explicitly Formatted Input/Output Application Programming

Chapter 18: Files and Input/Output 409
Format Codes

Format codes specify either how data should be transferred or how input/output is
handled.

Syntax of Format Codes

The syntax of an IDL format code is:

[n]FC[+][-][width]

Where:

n is an optional repeat count (1 ≤ n) specifying the number of
times the format code should be processed. If n is not
specified, a repeat count of one is used.

FC is the format code. See “Available Format Codes”, below.

+ is an optional flag that specifies that positive numbers should
be output with a “+” prefix. The “+” flag is only valid for
numeric format codes. Normally, negative numbers are output
with a “-” prefix and positive numbers have no sign prefix.
Non-decimal numeric codes (B, O, and Z) allow the
specification of the “+” flag, but ignore it.

- is an optional flag that specifies that string or numeric values
should be output with the text left-justified. Normally, output
is right-justified.

width is an optional width specification. Width specifications and
default values are format-code specific, and are described in
detail along with the format code.

See “Padding and Natural Width Formatting”, below, for
additional information on how output values are formatted
based on the width parameter.
Application Programming Format Codes

410 Chapter 18: Files and Input/Output
Padding and Natural Width Formatting

The value being formatted may be shorter than the output width specified by the
width parameter. When this happens, IDL will adjust either the contents of the output
value or the width of the field, using the following mechanisms:

Whitespace Padding

By default, if the value being formatted uses fewer characters than specified by the
width parameter, IDL pads the value with whitespace characters on the left to create a
string of the specified width. For example, the following IDL statement

PRINT, FORMAT='(I12)', 300

produces the following output:

bbbbbbbbb300

where b represents a space character.

Zero Padding

For numeric format codes, if the first digit of the width parameter is a zero, IDL will
pad the value with zeroes rather than blanks. For example:

PRINT, FORMAT='(I08)', 300

produces the following output:

00000300

When padding values with zeroes, note the following:

1. If you specify the “-” flag to left-justify the output, specifying a leading zero in
the width parameter has no effect, since there are no unused spaces to the left
of the output value.

2. If you specify an explicit minimum width value (via the m width parameter)
for an integer format code, specifying a leading zero in the width parameter has
no effect, since the output value is already padded with zeroes on the left to
create an output value of the specified minimum width.

Natural Width Formatting

If the numeral zero is specified for the width parameter, IDL uses the “natural” width
for the value. The value is read or output using a default format without any leading
or trailing whitespace, in the style of the standard C library printf() function.
Format Codes Application Programming

Chapter 18: Files and Input/Output 411
Using a value of zero for the width parameter is useful when reading tables of data in
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99.845
23.723 200.02 141.93

Setting the format to:

FORMAT = '(3F0)'

ensures that the correct number of digits are read or output for each element.

Available Format Codes

IDL supports the following format codes:

Format Code Description

A Format Code (page 413) Transfers character values

: Format Code (page 414) Terminates processing

$ Format Code (page 415) Suppresses newlines in output

F, D, E, and G Format Codes (page 416) Transfer floating-point values

B, I, O, and Z Format Codes (page 419) Transfer integer values

Q Format Code (page 422) Returns the number of characters that
remain to be transferred during a read
operation

Quoted String and H Format Codes (page
423)

Output string values directly

T Format Code (page 424) Specifies the absolute position within
a record

TL Format Code (page 425) Moves the position with a record to
the left

TR and X Format Codes (page 426) Move the position within a record to
the right

Table 18-5: Format Codes
Application Programming Format Codes

412 Chapter 18: Files and Input/Output
Format Code Examples

For examples using different format codes, see:

• “Example: Reading Formatted Table Data” on page 441

• “Example: Reading Records With Multiple Array Elements” on page 443

C() Format Code (page 427) Transfers calendar data

C printf-Style Quoted String Format Code
(page 435)

Provides an alternative syntax for
specifying the format of an output
string

Format Code Description

Table 18-5: Format Codes (Continued)
Format Codes Application Programming

Chapter 18: Files and Input/Output 413
A Format Code

The A format code transfers character data.

The syntax is:

[n]A[-][w]

where the parameters “n” and “-” are as described in “Syntax of Format Codes” on
page 409 and the width specification is as follows:

For example, the IDL statement,

PRINT, FORMAT = '(A6)', '123456789'

generates the following output:

123456

w is an optional width (0 ≤ w) specifying the number of characters to be
transferred. If w is not specified, the entire string is transferred. On
output, if w is greater than the length of the string, the string is right
justified. On input, IDL strings have dynamic length, so w specifies the
resulting length of input string variables. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.
Application Programming A Format Code

414 Chapter 18: Files and Input/Output
: Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list.

The syntax is:

:

For example, the IDL statement,

PRINT, FORMAT = '(6(I1, :, ", "))', INDGEN(6)

will output the following comma-separated list of integer values:

0, 1, 2, 3, 4, 5

The use of the colon format code prevented a comma from being output following the
final item in the argument list.
: Format Code Application Programming

Chapter 18: Files and Input/Output 415
$ Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a “$” format code is found in the format
specification, this default newline is not output. The “$” format code is only used on
output; it is ignored during input formatting.

The syntax is:

$

One use for the “$” format code is in prompting for user input in programs that run in
a tty rather than in the graphical IDL Workbench. For example, the following simple
program show the difference between strings formatted with and without the “$”
format code. The first PRINT statement prompts the user for input without forcing
the user’s response to appear on a separate line from the prompt; the second PRINT
statement makes the user enter the response on a separate line.

IDL> .run
- PRO format_test
- name=''
- age=0
- PRINT, FORMAT='($, "Enter name")'
- READ, name
- PRINT, FORMAT='("Enter age")'
- READ, age
- PRINT, FORMAT='("You are ", I0, " years old, ", A0)', age, name
- END
% Compiled module: FORMAT_TEST.

Running the procedure looks like this:

IDL> format_test
Enter name: Pat
Enter age
: 29
You are 29 years old, Pat
IDL>

where the values in italics were entered by the user in response to the prompts.
Application Programming $ Format Code

416 Chapter 18: Files and Input/Output
F, D, E, and G Format Codes

The F, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file.

The syntax is:

[n]F[+][-][w][.d]
[n]D[+][-][w][.d]
[n]E[+][-][w][.d][Ee]
[n]G[+][-][w][.d][Ee]

where the parameters “n”, “+”, and “-” are as described in “Syntax of Format Codes”
on page 409 and the width specification is as follows:

On input, the F, D, E, and G format codes all transfer w characters from the external
field and assign them as a real value to the corresponding input/output argument list
datum.

The F and D format codes are used to output values using fixed-point notation. The
value is rounded to d decimal positions and right-justified into an external field that is
w characters wide. The value of w must be large enough to include a minus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, and d
digits to the right of the decimal point. The code D is identical to F (except for its
default values for w and d) and exists in IDL primarily for compatibility with
FORTRAN.

w is an optional width specification (0 ≤ w ≤ 255). The variable w specifies
the number of digits to be transferred. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

d is an optional width specification (1 ≤ d < w). For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the
G format code, d specifies the number of significant digits displayed.

e is an optional width (1 ≤ e ≤ 255) specifying the width of exponent part
of the field. IDL ignores this value—it is allowed for compatibility with
FORTRAN.
F, D, E, and G Format Codes Application Programming

Chapter 18: Files and Input/Output 417
The E format code is used for scientific (exponential) notation. The value is rounded
to d decimal positions and right-justified into an external field that is w characters
wide. The value of w must be large enough to include a minus sign when necessary,
at least one digit to the left of the decimal point, the decimal point, d digits to the right
of the decimal point, a plus or minus sign for the exponent, the character “e” or “E”,
and at least two characters for the exponent.

Note
IDL uses the standard C library function snprintf() to format numbers and their
exponents. As a result, different platforms may print different numbers of exponent
digits.

The G format code uses the F output style when reasonable and E for other values,
but displays exactly d significant digits rather than d digits following the decimal
point.

Overflow

On output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

Default Values of the w, d, and e Parameters

If w, d, or e are omitted, the values specified in the following table are used.

Format Code Examples

The following table shows the results of the application of various format codes to
given data values. Note that normally, the case of the format code is ignored by IDL.

Data Type w d e

Float, Complex 15 7 2 (3 for Windows)

Double 25 16 2 (3 for Windows)

All Other Types 25 16 2 (3 for Windows)

Table 18-6: Floating Format Defaults
Application Programming F, D, E, and G Format Codes

418 Chapter 18: Files and Input/Output
However, the case of the E and G format codes determines the case used to output the
exponent in scientific notation.

Format Internal Value Formatted Output

F 100.0 bbbb100.0000000

F 100.0D bbbbb100.0000000000000000

F10.0 100.0 bbbbbb100.

F10.1 100.0 bbbbb100.0

F10.4 100.0 bb100.0000

F2.1 100.0 **

e11.4 100.0 b1.0000e+02

1.0000e+002 (Windows)

Note that “e10.4” displays
“**********” under Windows
because the extra “0” added after the
“e” makes the string longer than 10
characters.

E11.4 100.0 b1.0000E+02

1.0000E+002 (Windows)

g10.4 100.0 bbbbb100.0

g10.4 10000000.0 b1.000e+07

1.000e+007 (Windows)

G10.4 10000000.0 b1.000E+07

1.000E+007 (Windows)

Table 18-7: Floating-Point Output Examples
(“b” represents a blank space)
F, D, E, and G Format Codes Application Programming

Chapter 18: Files and Input/Output 419
B, I, O, and Z Format Codes

The B, I, O, and Z format codes are used to transfer integer values to and from the
specified file. The B format code is used to output binary values, I is used for decimal
values, O is used for octal values, and Z is used for hexadecimal values.

The syntax is:

[n]B[-][w][.m]
[n]I[+][-][w][.m]
[n]O[-][w][.m]
[n]Z[-][w][.m]

where the parameters “n”, “+”, and “-” are as described in “Syntax of Format Codes”
on page 409 and the width specification is as follows:

Overflow

On output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

w is an optional width specification (0 ≤ w ≤ 255). The variable w specifies
the number of digits to be transferred. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Application Programming B, I, O, and Z Format Codes

420 Chapter 18: Files and Input/Output
Default Values of the w Parameter

The default values used by the I, O, and Z format codes if w is omitted are specified
in the following table:

The default values used by the B format code if w is omitted are specified in the
following table:

Data Type w

Byte, Int, UInt 7

Long, ULong, Float 12

Long64, ULong64 22

Double 23

All Other Types 12

Table 18-8: Integer Format Defaults
(I, O, and Z format codes)

Data Type w

Byte 8

Int, UInt 16

Long, ULong 32

Long64, ULong64 64

All Other Types 32

Table 18-9: Integer Format Defaults
(B format code)
B, I, O, and Z Format Codes Application Programming

Chapter 18: Files and Input/Output 421
Format Code Examples

The following table shows the results of the application of various format codes to
given data values. Note that normally, the case of the format code is ignored by IDL.
However, the case of the Z format codes determines the case used to output the
hexadecimal digits A-F.

Format Internal
Value Formatted Output

B 3000 bbbb101110111000

B15 3000 bbb101110111000

B14.14 3000 00101110111000

I 3000 bbb3000

I6.5 3000 b03000

I5.6 3000 *****

I2 3000 **

O 3000 bbb5670

O6.5 3000 b05670

O5.6 3000 *****

O2 3000 **

z 3000 bbbbbb8

Z 3000 bbbbBB8

Z6.5 3000 b00BB8

Z5.6 3000 *****

Z2 3000 **

Table 18-10: Integer Output Examples
(“b” represents a blank space)
Application Programming B, I, O, and Z Format Codes

422 Chapter 18: Files and Input/Output
Q Format Code

The Q format code returns the number of characters in the input record remaining to
be transferred during the current read operation. It is ignored during output
formatting.

The syntax is:

q

Format Q is useful for determining how many characters have been read on a line.
For example, the following IDL statements count the number of characters in file
demo.dat:

;Open file for reading.
OPENR, 1, "demo.dat"

;Create a longword integer to keep the count.
N = 0L

;Count the characters.
WHILE(~ EOF(1)) DO BEGIN

READF, 1, CUR, FORMAT = '(q)' & N = N + CUR
ENDWHILE

;Report the result.
PRINT, FORMAT = '("counted", N, "characters.")'

;Close file.
CLOSE, 1
Q Format Code Application Programming

Chapter 18: Files and Input/Output 423
Quoted String and H Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the output.
On input, they are ignored.

The syntax for a quoted string is:

"string" or 'string'

where string is the string to be output.

Note
Quoted strings must be enclosed in either single or double quotation marks; use the
type of quotation mark that is not used to enclose the entire format string.

For example, the IDL statement,

PRINT, FORMAT = '("Value: ", I0)', 23

results in the following output:

Value: 23

Note that it would have been equally correct to use double quotes around the entire
format string and single quotes around the quoted string “Value: ”.

Another way to specify a quoted string is with a Hollerith constant.

The syntax for a Hollerith constant is:

nHc1c2 c3 ... cn

where

For example, the following IDL statement,

PRINT, FORMAT = '(7HValue: , I0)', 23

results in the following output:

Value: 23

See “C printf-Style Quoted String Format Code” on page 435 for an alternate form of
the Quoted String Format Code that supports C printf-style capabilities.

n is the number of characters in the constant (1 ≤ n ≤ 255).

ci is the characters that make up the constant. The number of characters
must agree with the value provided for n.
Application Programming Quoted String and H Format Codes

424 Chapter 18: Files and Input/Output
T Format Code

The T format code specifies the absolute position in the current record.

The syntax is:

Tn

where

The T format code differs from the TL, TR, and X format codes primarily in that it
specifies an absolute position rather than an offset from the current position. For
example,

PRINT, FORMAT = '("First", 20X, "Last", T10, "Middle")'

produces the following output:

FirstbbbbMiddlebbbbbbbbbbLast

where “b” represents a blank space.

n is the absolute character position within the record to which the current
position should be set (1 ≤ n).
T Format Code Application Programming

Chapter 18: Files and Input/Output 425
TL Format Code

The TL format code moves the current position in the external record to the left.

The syntax is:

TLn

where

The TL format code is used to move backwards in the current record. It can be used
on input to read the same data twice or on output to position the output
nonsequentially. For example,

PRINT, FORMAT = '("First", 20X, "Last", TL15, "Middle")'

produces the following output:

FirstbbbbbbbbbMiddlebbbbbLast

where “b” represents a blank space.

n is the number of characters to move left from the current position (1 ≤ n).
If the value of n is greater than the current position, the current position is
moved to column one.
Application Programming TL Format Code

426 Chapter 18: Files and Input/Output
TR and X Format Codes

The TR and X format codes move the current position in the record to the right.

The syntax is:

TRn
nX

where

The TR or X format codes can be used to leave whitespace in the output or to skip
over unwanted data in the input. For example, either

PRINT, FORMAT = '("First", 15X, "Last")'

or

PRINT, FORMAT = '("First", TR15, "Last")'

results in the following output:

FirstbbbbbbbbbbbbbbbLast

where “b” represents a blank space.

These two format codes differ in one way. Using the X format code at the end of an
output record will not cause any characters to be written unless it is followed by
another format code that causes characters to be output. The TR format code always
writes characters in this situation. Thus,

PRINT, FORMAT = '("First", 15X)'

results in the following output:

First

whereas

PRINT, FORMAT = '("First", TR15)'

results in the following output:

Firstbbbbbbbbbbbbbbb

where “b” represents a blank space. The X code does not cause the blanks to be
output unless there is additional output following the blanks.

n is the number of characters to skip (1 ≤ n). On input, n characters in the
current input record will be passed over. On output, the current output
position is moved n characters to the right.
TR and X Format Codes Application Programming

Chapter 18: Files and Input/Output 427
C() Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data.

The syntax is:

[n]C([c0,c1,...,cx])

where the parameter “n” is as described in “Syntax of Format Codes” on page 409
and:

If no ci are provided, the data will be transferred using the standard 24-character
system format that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979

For input, this default is equivalent to:

C(CDwA, X, CMoA, X, CDI, X, CHI, X, CMI, X, CSI, CYI5)

For output, this default is equivalent to:

C(CDwA, X, CMoA, X, CDI2.2, X, CHI2.2, ":", CMI2.2, ":", CSI2.2,
CYI5)

Note
The C() format code represents an atomic data transfer. Nesting within the
parentheses is not allowed.

Note
For input using the calendar format codes, a small offset is added to each Julian date
to eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS*Julian, where Julian
is the integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10–10 (which corresponds to
5x10–5 seconds). This offset ensures that if the Julian date is converted back to
hour, minute, and second, then the hour, minute, and second will have the same
integer values as were originally input.

ci represents optional calendar format subcodes, or any of the standard
format codes that are allowed within a calendar specification, as
described below
Application Programming C() Format Code

428 Chapter 18: Files and Input/Output
Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

Calendar Format Subcodes

The following is a list of the subcodes allowed within the parenthesis of the C()
format code.

Note
The calendar format subcodes are based on the A, I, and F format codes, and share
the same options. See “Syntax of Format Codes” on page 409 for additional
information on the parameters not described explicitly in this section. Note that the
default values of the w and d parameters are different in the calendar format
subcodes than in the base A, I, and F format codes.

CMOA Subcodes

The CMOA subcodes transfers the month portion of a date as a string. The format for
an all upper case month string is:

CMOA[-][w]

The format for a capitalized month string is:

CMoA[-][w]

The format for an all lower case month string is:

CmoA[-][w]

where:

Note
The case of the ‘M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routine is explicitly set.

w is an optional width (0 ≤ w) specifying the number of characters of the
month name to be transferred. If w is not specified, three characters will
be transferred. See “Padding and Natural Width Formatting” on page 410
for additional details on the output width of a formatted value.
C() Format Code Application Programming

Chapter 18: Files and Input/Output 429
CMOI Subcode

The CMOI subcode transfers the month portion of a date as an integer. The format is
as follows:

CMOI[+][-][w][.m]

where:

CDI Subcode

The CDI subcode transfers the day portion of a date as an integer. The format is:

CDI[+][-][w][.m]

where:

w is an optional width (0 ≤ w ≤ 255) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.

w is an optional width (0 ≤ w ≤ 255) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Application Programming C() Format Code

430 Chapter 18: Files and Input/Output
CYI Subcode

The CYI subcode transfers the year portion of a date as an integer. The format is as
follows:

CYI[+][-][w][.m]

where:

CHI Subcodes

The CHI subcodes transfer the hour portion of a date as an integer. The format for a
24-hour based integer is:

CHI[+][-][w][.m]

The format for a 12 hour based integer is:

ChI[+][-][w][.m]

where:

w is an optional width (0 ≤ w ≤ 255) specifying the width of the field in
characters. The default width is 4. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.

w is an optional width (0 ≤ w ≤ 255) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
C() Format Code Application Programming

Chapter 18: Files and Input/Output 431
Note
For the ChI (12 hour format), the CAPA Subcodes may be used to specify A.M.
versus P.M. For CHI (24 hour format), the CAPA subcode is ignored."

CMI Subcode

The CMI subcode transfers the minute portion of a date as an integer. The format is:

CMI[+][-][w][.m]

where:

CSI Subcode

The CSI subcode transfers the seconds portion of a date as an integer. The format is:

CSI[+][-][w][.m]

where:

w is an optional width (0 ≤ w ≤ 255) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.

w is an optional width (0 ≤ w ≤ 255) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 255) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Application Programming C() Format Code

432 Chapter 18: Files and Input/Output
CSF Subcode

The CSF subcode transfers the seconds portion of a date as a floating-point value.
The format is:

CSF[+][-][w][.d]

where:

Overflow

The value of w must be large enough to include at least one digit to the left of the
decimal point, the decimal point, and d digits to the right of the decimal point. On
output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

CDWA Subcodes

The CDWA subcodes transfers the day of week portion of a data as a string. The
format for an all upper case day of week string is:

CDWA[-][w]

The format for a capitalized day of week string is:

CDwA[-][w]

The format for an all lower case day of week string is:

CdwA[-][w]

where:

w is an optional width specification (0 ≤ w ≤ 255). The variable w specifies
the number of characters in the external field; the default is 5. See
“Padding and Natural Width Formatting” on page 410 for additional
details on the output width of a formatted value.

d is an optional width specification (1 ≤ d < w). The variable d specifies the
number of positions after the decimal point; the default is 2.

w is an optional width (0 ≤ w), specifying the number of characters of the
day of week name to be transferred. If w is not specified, three characters
will be transferred. See “Padding and Natural Width Formatting” on
page 410 for additional details on the output width of a formatted value.
C() Format Code Application Programming

Chapter 18: Files and Input/Output 433
Note
The case of the ‘D’ and ‘W’ of these subcodes will be ignored on input, or if the
DAYS_OF_WEEK keyword for the current routine is explicitly set.

CAPA Subcodes

The CAPA subcodes transfers the A.M. or P.M. portion of a date as a string. The
format for an all-uppercase A.M. or P.M. string is:

CAPA[-][w]

The format for a capitalized A.M. or P.M. string is:

CApA[-][w]

The format for an all-lowercase A.M. or P.M. string is:

CapA[-][w]

where:

Note
The case of the first ‘A’ and ‘P’ of these subcodes will be ignored on input, or if the
AM_PM keyword for the current routine is explicitly set.

Note
The CAPA subcode is only used if the ChI (12 hour format) subcode is also being
used. The CAPA subcode is ignored if the CHI (24 hour format) subcode is being
used.

Standard Format Codes Allowed Within a Calendar
Specification

None of these subcodes are allowed outside of a C() format specifier. In addition to
the subcodes listed above, only quoted strings, “TL”, “TR”, and “X” format codes are
allowed inside of the C() format specifier.

Example:

To print the current date in the default format:

w is an optional width (0 ≤ w), specifying the number of characters of the
A.M. or P.M. string to be transferred. If w is not specified, two characters
will be transferred. See “Padding and Natural Width Formatting” on
page 410 for additional details on the output width of a formatted value.
Application Programming C() Format Code

434 Chapter 18: Files and Input/Output
PRINT, FORMAT='(C())', SYSTIME(/JULIAN)

The printed result should look something like:

Fri Aug 14 12:34:14 1998

Example:

To print the current date as a two-digit month value followed by a slash followed by a
two-digit day value:

PRINT, FORMAT='(C(CMOI,"/",CDI))',SYSTIME(/JULIAN)

The printed result should look something like:

8/14

Example:

To print the current time in hours, minutes, and floating-point seconds, all zero-filled
if necessary, and separated by colons:

PRINT, $
FORMAT='(C(CHI2.2,":",CMI2.2,":",CSF05.2))',SYSTIME(/JULIAN)

 The printed result should look something like:

09:59:07.00

Note that to do zero-filling for the floating-point seconds, it is necessary to specify a
leading 0 in the width to the CSF format code.
C() Format Code Application Programming

Chapter 18: Files and Input/Output 435
C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functions such as printf() and
snprintf(). Most programmers are very familiar with such formats. In this style,
text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and write in
common simple cases.

IDL supports the use of printf-style formats within format specifications, using a
special variant of the Quoted String Format Code (discussed in “Quoted String and H
Format Codes” on page 423) in which the opening quote starts with a % character
(e.g. %“ or %' rather than “ or '). The presence of this % before the opening quote
(with no whitespace between them) tells IDL that this is a printf-style quoted string
and not a standard quoted string.

As a simple example, consider the following IDL statement that uses normal quoted
string format codes:

PRINT, FORMAT='("I have ", I0, " monkeys, ", A, ".")', $
23, 'Scott'

Executing this statement yields the output:

I have 23 monkeys, Scott.

Using a printf-style quoted string format code instead, this statement could be
written:

PRINT, FORMAT='(%"I have %d monkeys, %s.")', 23, 'Scott'

These two statements are completely equivalent in their action. In fact, IDL compiles
both into an identical internal representation before processing them.

The printf-style quoted string format codes can be freely mixed with any other
format code, so hybrid formats like the following are allowed:

PRINT, $
FORMAT='(%"I have %d monkeys, %s,", " and ", I0, " parrots.")',$
23, 'Scott', 5

This generates the output:

I have 23 monkeys, Scott, and 5 parrots.
Application Programming C printf-Style Quoted String Format Code

436 Chapter 18: Files and Input/Output
Supported “%” Formats

The following table lists the % format codes allowed within a printf-style quoted
string format code, as well as their correspondence to the standard format codes that
do the same thing. In addition to the format codes described in the table, the special
sequence %% causes a single % character to be written to the output. This % is
treated as a regular character instead of as a format code specifier. Finally, the flags
and the width padding options described in “Syntax of Format Codes” on page 409
are also available when using printf-style format codes.

Printf-Style Normal-Style
Normal Style Described

in Section

%[w.d]e or %[w.d]E e[w.d] or E[w.d] “F, D, E, and G Format
Codes” on page 416

%[w]b or %[w]B

%[w.m]b or %[w.m]B

B[w]

B[w.m]

“B, I, O, and Z Format
Codes” on page 419

%[w]d or %[w]D

%[w.m]D or %[w.m]D

%[w]i or %[w]I

%[w.m]i or %[w.m]I

I[w]

I[w.m]

I[w]

I[w.m]

“B, I, O, and Z Format
Codes” on page 419

%[w]f or %[w]F

%[w.d]f or %[w.d]F

F[w]

F[w.d]

“F, D, E, and G Format
Codes” on page 416

%[w]g or %[w]G

%[w.d]g or %[w.d]G

g[w] or G[w]

g[w.d] or G[w.d]

“F, D, E, and G Format
Codes” on page 416

%[w]o or %[w]O

%[w.m]o or %[w.m]O

O[w]

O[w.m]

“B, I, O, and Z Format
Codes” on page 419

%[w]s or %[w]S A[w] “A Format Code” on
page 413

%[w]x or %[w]X

%[w.m]x or %[w.m]X

%[w]z or %[w]Z

%[w.m]z or %[w.m]Z

Z[w]

Z[w.m]

Z[w]

Z[w.m]

“B, I, O, and Z Format
Codes” on page 419

Table 18-11: Supported “%” Formats
C printf-Style Quoted String Format Code Application Programming

Chapter 18: Files and Input/Output 437
As indicated in the above table, there is a one to one correspondence between each
printf-style % format code and one of the normal format codes documented earlier
in this chapter. When reading this table, please keep the following considerations in
mind:

• The %d (or %D) format is identical to the %i (or %I) format. Note that %D
does not correspond to the normal-style D format.

• The w, d, m, and e parameters listed as optional parameters (i.e. between the
square brackets, []) are the same values documented for the normal-style
format codes, and behave identically to them.

• The default value for the w parameters for printf-style formatting is 0,
meaning that printf-style output produces “natural” width by default. For
example, a %d format code corresponds to a normal format code of I0 (not I,
which would use the default value for w based on the data type). Similarly, a
%e format code corresponds to a normal format code of e0 (not e).

• The E and G format codes allow the following styles for compatibility with
FORTRAN:

E[w.dEe] or e[w.dEe]
G[w.dEe] or g[w.dEe]

These styles are not available using the printf-style format codes. In other
words, the following formats are not allowed:

%[w.dEe]E or %[w.dEe]e
%[w.dEe]G or %[w.dEe]g

• Normal-style format codes allow repetition counts (e.g., 5I0). The
printf-style format codes do not allow this. Instead, each printf-style
format code has an implicit repetition count of 1.

• Like normal format codes (but unlike the C language printf() function),
printf-style format codes are allowed to be upper or lower case (e.g. %d and
%D mean the same thing). Whether or not case has an influence on the
resulting output depends on the specific format code. The specific behavior is
the same as with the normal-style version for each code.
Application Programming C printf-Style Quoted String Format Code

438 Chapter 18: Files and Input/Output
Supported “\” Character Escapes

The C programming language allows “escape sequences” that start with the backslash
character, \, to appear within strings. These escapes are used in several ways:

1. To specify characters that have no printed representation. For example, \n
means linefeed, and \r means carriage return.

2. To remove any special meaning that a character might normally have. For
example, \" allows you to create a string containing a double-quote character
even though double-quote normally delimits a string. Note that backslash can
also be used to escape itself, so "\\" corresponds to a string containing a single
backslash character.

3. To introduce arbitrary characters into a string using octal or hexadecimal
notation. For example, if the hexadecimal value b1 represents the ± character
in the current font, then the following statement:

print, format='(%"I have \xb1%d monkeys")', 5

results in the following output:

I have ±5 monkeys

Although IDL does not normally support backslash escapes within strings, the
escapes described in the following table are allowed within printf-style quoted
string format codes. If a character not specified in this table is preceded by a
backslash, the backslash is removed and the character is inserted into the output
without any special interpretation. This means that \" puts a single " character into the
output and that " does not terminate the string constant. Another useful example is
that \% causes a single % character to be placed into the output without starting a
format code. Hence, \% and %% mean the same thing: a single % character with no
special meaning.

Escape
Sequence ASCII code

\a BEL (7B)

\b Backspace (8B)

\f Formfeed (12B)

\n Linefeed (10B)

Table 18-12: Supported “\” Character Escapes
C printf-Style Quoted String Format Code Application Programming

Chapter 18: Files and Input/Output 439
Note
Case is ignored in escape sequences: either “\n” or “\N” specifies a linefeed
character.

Differences Between C printf() and IDL printf-Style Formats

IDL’s printf-style quoted string format code is very similar to a simplified C
language printf() format string. However, there are important differences that an
experienced C programmer should be aware of:

• The IDL PRINT and PRINTF procedures implicitly add an end-of-line
character to the end of the line (unless suppressed by use of the $ format code).
Hence, the use of \n at the end of the format string to end the line is neither
necessary nor recommended.

• Only the % format sequences listed in the table under “Supported “%”
Formats” on page 436 are understood by IDL. Most C printf functions
accept more codes than these, but those codes are not necessary in IDL.

For example, the C printf/scanf functions require the use of the %u format
code to indicate an unsigned value, and also use type modifiers (h, l, ll) to
indicate the size of the data being processed. IDL uses the type of the
arguments being substituted into the format to determine this information.
Therefore, the u, h, l, and ll codes are not required in IDL and are not accepted.

• The % and \ sequences in IDL printf-style strings are case-insensitive. C
printf is case-sensitive (e.g. \n and \N do not both mean the linefeed
character as they do in IDL).

\r Carriage Return (13B)

\t Horizontal Tab (9B)

\v Vertical Tab (11B)

\ooo Octal value ooo (Octal value of 1-3 digits)

\xhh Hexadecimal value hh (Hex value of 1-2 digits)

Escape
Sequence ASCII code

Table 18-12: Supported “\” Character Escapes (Continued)
Application Programming C printf-Style Quoted String Format Code

440 Chapter 18: Files and Input/Output
• The C printf function allows the use of %n$d notation to specify that
arguments should be substituted into the format string in a different order than
they are listed. IDL does not support this.

• The C printf function allows the use of %*d notation to indicate that the
field width will be supplied by the next argument, and the argument following
that supplies the actual value. IDL does not support this.

• IDL printf-style formats allow %z for hexadecimal output as well as %x.
The C printf() function does not understand %z. This deviation from the
usual implementation is allowed by IDL because IDL programmers are used to
treating Z as the hexadecimal format code.

• IDL printf-style formats allow %b for binary output. The C printf()
function does not understand %b.
C printf-Style Quoted String Format Code Application Programming

Chapter 18: Files and Input/Output 441
Example: Reading Formatted Table Data

IDL explicitly formatted input/output has the power and flexibility to handle almost
any kind of formatted data. A common use of explicitly formatted input/output
involves reading and writing tables of data. Consider a data file containing employee
data records. Each employee has a name (String, 32 columns) and the number of
years they have been employed (Integer, 3 columns) on the first line. The next two
lines contain each employee’s monthly salary for the last twelve months. A sample
file named employee.dat with this format might look like the following:

Bullwinkle 10
1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0
Boris 11
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
Natasha 10
950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11
1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

The following IDL statements read data with the above format and produce a
summary of the contents of the file:

;Open data file for input.
OPENR, 1, 'employee.dat'

;Create variables to hold the name, number of years, and monthly
;salary.
name = '' & years = 0 & salary = FLTARR(12)

;Output a heading for the summary.
PRINT, FORMAT='("Name", 28X, "Years", 4X, "Yearly Salary")'

;Note: The actual dashed line is longer than is shown here.
PRINT, '========'

;Loop over each employee.
WHILE (~ EOF(1)) DO BEGIN

;Read the data on the next employee.
READF, 1, $
FORMAT = '(A32,I3,2(/,6F10.2))', name, years, salary
Application Programming Example: Reading Formatted Table Data

442 Chapter 18: Files and Input/Output
;Output the employee information. Use TOTAL to sum the monthly
;salaries to get the yearly salary.

PRINT, FORMAT='(A32,I5,5X,F10.2)', name, years, TOTAL(salary)

ENDWHILE

CLOSE, 1

The output from executing these statements on employee.dat is as follows:

Name Years Yearly Salary
==
Bullwinkle 10 32501.09
Borris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50
Example: Reading Formatted Table Data Application Programming

Chapter 18: Files and Input/Output 443
Example: Reading Records With Multiple Array
Elements

Frequently, data are written to files with each record containing single elements of
more than one array. One example might be a file consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing a
value for each of the four variables. Because IDL has no equivalent of the FORTRAN
implied DO list, special procedures must be used to read or write this type of file.

The first approach, which is the simplest, may be used only if all of the variables have
the same data type. An array is created with as many columns as there are variables
and as many rows as there are elements. The data are read into this array, the array is
transposed storing each variable as a row, and each row is extracted and stored into a
variable which becomes a vector. For example, the FORTRAN program which writes
the data and the IDL program which reads the data are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE(1,'(4(1x,g15.5))')

(ALT(I),PRES(I),TEMP(I),VELO(I),I=1,100)

IDL Read:

;Open file for input.
OPENR, 1, 'test'

;Define variable (NVARS by NOBS).
A = FLTARR(4,100)

;Read the data.
READF, 1, A

;Transpose so that columns become rows.
A = TRANSPOSE(A)

;Extract the variables.
ALT = A[*, 0]
PRES = A[*, 1]
TEMP = A[*, 2]
VELO = A[*, 3]
Application Programming Example: Reading Records With Multiple Array Elements

444 Chapter 18: Files and Input/Output
Note that this same example may be written without the implied DO list, writing all
elements for each variable contiguously and simplifying matters considerably:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE (1,'(4(1x,G15.5))') ALT,PRES,TEMP,VELO

IDL Read:

;Define variables.
ALT = FLTARR(100)
PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'
READF, 1, ALT, PRES, TEMP, VELO

A different approach must be taken when the columns contain different data types or
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writing a
loop to read each line into the scalars, and then storing the scalar values into each
array. For example, assume that a fifth variable, the name of an observer which is of
string type, is added to the variable list. The FORTRAN output routine and IDL input
routine are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
CHARACTER * 10 OBS(100)
OPEN (UNIT = 1, STATUS = 'NEW', FILE = 'TEST')
WRITE (1,'(4(1X,G15.5),2X,A)')

(ALT(I),PRES(I),TEMP(I),VELO(I),OBS(I),I=1,100)

IDL Read:

;Access file. Read files containing from 1 to 200 records.
OPENR, 1, 'test'

;Define vector, make it large enough for the biggest case.
ALT = FLTARR(200)

;Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

;Define string array.
OBS = STRARR(200)

;Define scalar string.
Example: Reading Records With Multiple Array Elements Application Programming

Chapter 18: Files and Input/Output 445
OBSS = ''

;Initialize counter.
I = 0

WHILE ~ EOF(1) DO BEGIN
;Read scalars.
READF, 1, $

FORMAT = '(4(1X, G15.5), 2X, A10)', $
ALTS, PRESS, TEMPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
VELO[I] = VELOS & OBS[I] = OBSS

;Increment counter and check for too many records.
IF I LT 199 THEN I = I + 1 ELSE STOP, 'Too many records'

ENDWHILE

If desired, after the file has been read and the number of observations is known, the
arrays may be truncated to the correct length using a series of statements similar to
the following:

ALT = ALT[0:I-1]

The above statement represents a worst case example. Reading is greatly simplified
by writing data of the same type contiguously and by knowing the size of the file.
One frequently used technique is to write the number of observations into the first
record so that when reading the data the size is known.
Application Programming Example: Reading Records With Multiple Array Elements

446 Chapter 18: Files and Input/Output
Warning
It might be tempting to implement a loop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR I = 0, 99 DO READF, 1, ALT[I], PRES[I], TEMP[I], VELO[I]

This statement is incorrect. Subscripted elements (including ranges) are temporary
expressions passed as values to procedures and functions (READF in this example).
Parameters passed by value do not pass results back to the caller. The proper
approach is to read the data into scalars and assign the values to the individual array
elements as follows:

A = 0. & P = 0. & T = 0. & V = 0.
FOR I = 0, 99 DO BEGIN

READF, 1, A, P, T, V
ALT[I] = A & PRES[I] = P & TEMP[I] = T & VELO[I] = V

ENDFOR
Example: Reading Records With Multiple Array Elements Application Programming

Chapter 18: Files and Input/Output 447
Using Unformatted Input/Output

Unformatted input/output involves the direct transfer of data between a file and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency is important and portability is not an issue. It is
faster and requires less space than formatted input/output. IDL provides three
procedures for performing unformatted input/output:

READU

Reads unformatted data from the specified file unit.

WRITEU

Writes unformatted data to the specified file unit.

ASSOC

Maps an array structure to a logical file unit, providing efficient and convenient direct
access to data.

This section discusses READU and WRITEU, while ASSOC is discussed in
“Associated Input/Output” on page 459. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit, Var1, ..., Varn
WRITEU, Unit, Var1, ..., Varn

where

Unit — The logical file unit with which the input/output operation will be performed.

Vari — One or more IDL variables (or expressions in the case of output).

The WRITEU procedure writes the contents of its arguments directly to the file, and
READU reads exactly the number of bytes required by the size of its arguments. Both
cases directly transfer binary data with no interpretation or formatting.

Unformatted Input/Output of String Variables

Strings are the only basic IDL data type that do not have a fixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it is always possible to know the length of the
Application Programming Using Unformatted Input/Output

448 Chapter 18: Files and Input/Output
other types, string variables are a special case. IDL uses the following rules to
determine the number of characters to transfer:

Input

Input enough bytes to fill the original length of the string. The length of the resulting
string is truncated if the string contains a null byte.

Output

Output the number of bytes contained in the string. This number is the same number
returned by the STRLEN function and does not include a terminating null byte.

Note that these rules imply that when reading into a string variable from a file, you
must know the length of the original string so as to be able to initialize the destination
string to the correct length. For example, the following IDL statements produce the
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, 0

;Prepare a nine-character string.
A = ' '

;Read back in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

produce the following, because the receiving variable A was not long enough:

Hello Wor

The only solution to this problem is to know the length of the string being input. The
following IDL statements demonstrate a useful “trick” for initializing strings to a
known length:

;Open a file.
OPENW, 1, 'temp.tmp'
Using Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 449
;Write an 11-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, 0

;Create a string of the desired length initialized with blanks.
;REPLICATE creates a byte array of 11 elements, each element
;initialized to 32, which is the ASCII code for a blank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 blanks.
A = STRING(REPLICATE(32B,11))

;Read in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

This example takes advantage of the special way in which the BYTE and STRING
functions convert between byte arrays and strings. See the description of the BYTE
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data
with IDL

The following C program produces a file containing employee records. Each record
stores the first name of each employee, the number of years he has been employed,
and his salary history for the last 12 months.

#include <stdio.h>

main()
{

static struct rec {
char name[32]; /* Employee's name */
int years; /* # of years with company */
float salary[12]; /* Salary for last 12 months */

} employees[] = {
{ {'B','u','l','l','w','i','n','k','l','e'}, 10,

{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000.0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} },{

{'B','o','r','r','i','s'}, 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,

200.0, 100.0, 100.0, 50.0, 60.0, 0.25} },
Application Programming Using Unformatted Input/Output

450 Chapter 18: Files and Input/Output
{ {'N','a','t','a','s','h','a'}, 10,
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,

2600.0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} },
{ {'R','o','c','k','y'}, 11,

{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,
5000.0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}

};

FILE *outfile;

outfile = fopen("data.dat", "w");
(void) fwrite(employees, sizeof(employees), 1, outfile);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the employee records. The
following IDL statements can be used to read and print this file:

;Create a string with 32 characters so that the proper number of
;characters will be input from the file. REPLICATE is used to
;create a byte array of 32 elements, each containing the ASCII code
;for a space (32). STRING turns this byte array into a string
;containing 32 blanks.
STR32 = STRING(REPLICATE(32B, 32))

;Create an array of four employee records to receive the input
;data.
A = REPLICATE({EMPLOYEES, NAME:STR32, YEARS:0L, $

SALARY:FLTARR(12)}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'

;Read the data.
READU, 1, A

CLOSE, 1

;Show the results.
PRINT, A
Using Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 451
Executing these IDL statements produces the following output:

{ Bullwinkle 10
1000.00 9000.97 1100.00 0.00000 0.00000 2000.00
5000.00 3000.00 1000.12 3500.00 6000.00 900.000
}{Borris 11
400.000 500.000 1300.10 350.000 745.000 3000.00
200.000 100.000 100.000 50.0000 60.0000 0.250000
}{ Natasha 10
950.000 1050.00 1350.00 410.000 797.000 200.360
2600.00 2000.00 1500.00 2000.00 1000.00 400.000
}{ Rocky 11
1000.00 9000.00 1100.00 0.00000 0.00000 2000.37
5000.00 3000.00 1000.01 3500.00 6000.00 900.120
}

Example: Reading IDL-Generated Unformatted Data
with C

The following IDL program creates an unformatted data file containing a 5 x 5 array
of floating-point values:

;Open a file for output.
OPENW, 1, 'data.dat'

;Write 5x5 array with each element set to its 1-dimensional index.
WRITEU, 1, FINDGEN(5, 5)

CLOSE, 1

This file can be read and printed by the following C program:

#include <stdio.h>

main()
{

float data[5][5];
FILE *infile; int i, j;
infile = fopen("data.dat", "r");
(void) fread(data, sizeof(data), 1, infile);
(void) fclose(infile);
for (i = 0; i < 5; i++) {

for (j = 0; j < 5; j++) {
printf("%8.1f", data[i][j]);
printf("\n");

}
}

}

Application Programming Using Unformatted Input/Output

452 Chapter 18: Files and Input/Output
Running this program gives the following output:

0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0
10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows how to
read such an image and display it using IDL. In the interest of keeping the example
brief, a number of simplifications are made, no error checking is performed, and only
8-bit deep rasterfiles are handled. See the READ_SRF procedure (the file
read_srf.pro in the lib subdirectory of the IDL distribution) for a complete
example. The format used for rasterfiles is documented in the C header file
/usr/include/rasterfile.h. That file provides the following information:

Each file starts with a fixed header that describes the image. In C, this header is
defined as follows:

struct rasterfile{
int ras_magic; /* magic number */
int ras_width; /* width (pixels) of image */
int ras_height; /* height (pixels) of image */
int ras_depth; /* depth (1, 8, or 24 bits) */
int ras_length; /* length (bytes) of image */
int ras_type; /* type of file */
int ras_maptype; /* type of colormap */
int ras_maplength; /* length(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image data
follows directly after the color map.

The following IDL statements read an 8-bit deep image from the file ras.dat:

;Define IDL structure that matches the Sun-defined rasterfile
;structure. A C int variable on a Sun corresponds to an IDL LONG
;int.
h = {rasterfile, magic:0L, width:0L, height:0L, depth: 0L,$

length:0L, type:0L, maptype:0L, maplength:0L}

;Open the file, allocating a file unit at the same time.
OPENR, unit, file, /GET_LUN

;Read the header information.
READU, unit, h
Using Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 453
;Is there a color map?
IF ((h.maptype EQ 1) AND (h.maplength NE 0)) THEN BEGIN

;Calculate length of each vector.
maplen = h.maplength/3

;Create three byte vectors to hold the color map.
r=(g=(b=BYTARR(maplen, /NOZERO)))

;Read the color map.
READU, unit, r, g, b

ENDIF

;Create a byte array to hold image.
image = BYTARR(h.width, h.height, /NOZERO)

;Read the image.
READU, unit, image

;Free the previously-allocated Logical Unit Number and close the
;file.
FREE_LUN, unit
Application Programming Using Unformatted Input/Output

454 Chapter 18: Files and Input/Output
Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differences in the way various machines represent binary
data. However, it is possible to produce binary files that are portable by specifying
the XDR keyword with the OPEN procedures. XDR (for eXternal Data
Representation) is a scheme under which all binary data is written using a standard
“canonical” representation. All machines supporting XDR understand this standard
representation and have the ability to convert between it and their own internal
representation.

XDR represents a compromise between the extremes of unformatted and formatted
input/output:

• It is not as efficient as purely unformatted input/output because it does involve
the overhead of converting between the external and internal binary
representations.

• It is still much more efficient than formatted input/output because conversion
to and from ASCII characters is much more involved than converting between
binary representations.

• It is much more portable than purely unformatted data, although it is still
limited to those machines that support XDR. However, XDR is freely available
and can be moved to any system.

XDR Considerations

The primary differences in the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

• To use XDR, you must specify the XDR keyword when opening the file.

• The only input/output data transfer routines that can be used with a file opened
for XDR are READU and WRITEU.

• XDR converts between the internal and standard external binary
representations for data instead of simply using the machine’s internal
representation.

• Since XDR adds extra “bookkeeping” information to data stored in the file and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using XDR.
Portable Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 455
• OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at a time. Thus, using these
procedures with the XDR keyword results in a file open for output only.
OPENR works in the usual way.

• The length of strings is saved and restored along with the string. This means
that you do not have to initialize a string of the correct length before reading a
string from the XDR file. (This is necessary with normal unformatted
input/output and is described in “Using Unformatted Input/Output” on
page 447).

• For efficiency reasons, byte arrays are transferred as a single unit; therefore,
byte variables must be initialized to the correct number of elements for the data
to be input, or an error will occur. For example, given the statements,

;Open a file for XDR output.
OPENW, /XDR, 1, 'data.dat'

;Write a 10-element byte array.
WRITEU, 1, BINDGEN(10)

;Close the file and re-open it for input.
CLOSE, 1 & OPENR, /XDR, 1, 'data.dat'

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:

% READU: Error encountered reading from file unit: 1.

Instead, it is necessary to read the entire byte array back in one operation using
a statement such as:

;Read the whole array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.

IDL XDR Conventions for Programmers

IDL uses certain conventions for reading and writing XDR files. If your only use of
XDR is through IDL, you do not need to be concerned about these conventions
because IDL takes care of it for you. However, programmers who want to create IDL-
Application Programming Portable Unformatted Input/Output

456 Chapter 18: Files and Input/Output
compatible XDR files from other languages need to know the actual XDR routines
used by IDL for various data types. The following table summarizes this information.

The routines used for type COMPLEX, DCOMPLEX, and STRING are not primitive
XDR routines. Their definitions are as follows:

bool_t xdr_complex(xdrs, p)
XDR *xdrs;
struct complex { float r, i} *p;

{
return(xdr_float(xdrs, (char *) &p->r) &&

xdr_float(xdrs, (char *) &p->i));
}
bool_t xdr_dcomplex(xdrs, p)

XDR *xdrs;
struct dcomplex { double r, i} *p;

{
return(xdr_double(xdrs, (char *) &p->r) &&

xdr_double(xdrs, (char *) &p->i));
}
bool_t xdr_counted_string(xdrs, p)

XDR *xdrs;

Data Type XDR routine

Byte xdr_bytes()

Integer xdr_short()

Long xdr_long()

Float xdr_float()

Double xdr_double()

Complex xdr_complex()

String xdr_counted_string()

Double Complex xdr_dcomplex()

Unsigned Integer xdr_u_short()

Unsigned Long xdr_u_long()

64-bit Integer xdr_long_long_t()

Unsigned 64-bit Integer xdr_u_long_long_t()

Table 18-13: XDR Routines Used by IDL
Portable Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 457
char **p;
{

int input = (xdrs->x_op == XDR_DECODE);
short length;

/* If writing, obtain the length */
if (!input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short(xdrs, (char *) &length)) return(FALSE);

/* If reading, obtain room for the string */
if (input)
{

*p = malloc((unsigned) (length + 1));
p[length] = '\0'; / Null termination */

}
/* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);

}

Example: Reading C-Generated XDR Data with IDL

The following C program produces a file containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#include <stdio.h>
#include <rpc/rpc.h>
[xdr_complex() and xdr_counted_string() included here]

main()
{

static struct { /* Output data */
unsigned char c;
short s;
long l;
float f;
double d;
struct complex { float r, i } cmp;
char *str;

}
data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int c_len = sizeof(unsigned char); /* Length of a char */
char *c_data = (char *) &data.c; /* Addr of byte field */
FILE *outfile; /* stdio stream ptr */
XDR xdrs; /* XDR handle */

/* Open stdio stream and XDR handle */
Application Programming Portable Unformatted Input/Output

458 Chapter 18: Files and Input/Output
outfile = fopen("data.dat", "w");
xdrstdio_create(&xdrs, outfile, XDR_ENCODE);

/* Output the data */
(void) xdr_bytes(&xdrs, &c_data, &c_len, c_len);
(void) xdr_short(&xdrs, (char *) &data.s);
(void) xdr_long(&xdrs, (char *) &data.l);
(void) xdr_float(&xdrs, (char *) &data.f);
(void) xdr_double(&xdrs, (char *) &data.d);
(void) xdr_complex(&xdrs, (char *) &data.cmp);
(void) xdr_counted_string(&xdrs, &data.str);

/* Close XDR handle and stdio stream */
xdr_destroy(&xdrs);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data. The
following IDL statements can be used to read this file and print its contents:

;Create structure containing correct types.
DATA={S, C:0B, S:0, L:0L, F:0.0, D:0.0D, CMP:COMPLEX(0), STR:''}

;Open the file for input.
OPENR, /XDR, 1, 'data.dat'

;Read the data.
READU, 1, DATA

;Close the file.
CLOSE, 1

;Show the results.
PRINT, DATA

Executing these IDL statements produces the output:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine.
Sun users should consult their Network Programming manual.
Portable Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 459
Associated Input/Output

Unformatted data stored in files often consists of a repetitive series of arrays or
structures. A common example is a series of images. IDL-associated file variables
offer a convenient and efficient way to access such data.

An associated variable is a variable that maps the structure of an IDL array or
structure variable onto the contents of a file. The file is treated as an array of these
repeating units of data. The first array or structure in the file has an index of zero, the
second has index one, and so on. Such variables do not keep data in memory like a
normal variable. Instead, when an associated variable is subscripted with the index of
the desired array or structure within the file, IDL performs the input/output operation
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays or
structures), associated file variables offer the following advantages over READU and
WRITEU for unformatted input/output:

• Input/output occurs when an associated file variable is subscripted. Thus, it is
possible to perform input/output within an expression without a separate
input/output statement.

• The size of the data set is limited primarily by the maximum possible size of
the file containing the data instead of the maximum memory available. Data
sets too large for memory can be accessed.

• There is no need to declare the maximum number of arrays or structures
contained in the file.

• Associated variables offer transparent access to data. Direct access to any
element in the file is rapid and simple—there is no need to calculate offsets
into the file and/or position the file pointer prior to performing the input/output
operation.

An associated file variable is created by assigning the result of the ASSOC function
to a variable. See “ASSOC” (IDL Reference Guide) for details.

Example of Using Associated Input/Output

Assume that a file named data.dat exists, and that this file contains a series of 10 x 20
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to the file:

;Open the file.
OPENU, 1, 'data.dat'
Application Programming Associated Input/Output

460 Chapter 18: Files and Input/Output
;Make a file variable. Using the NOZERO keyword with FLTARR
;increases efficiency.
A = ASSOC(1, FLTARR(10, 20, /NOZERO))

The order of these two statements is not important—it would be equally valid to call
ASSOC first, and then open the file. This is because the association is between the
variable and the logical file unit, not the file itself. It is also legitimate to close the
file, open a new file using the same LUN, and then use the associated variable
without first executing a new ASSOC. Naturally, an error occurs if the file is not
open when the file variable is subscripted in an expression or if the file is open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with a file opened for read-only access).

As a result of executing the two statements above, the variable A is now an associated
file variable. Executing the statement,

HELP, A

gives the following response:

A FLOAT = File<data.dat> Array(10, 20)

The associated variable A maps the structure of a 10 x 20, floating-point array onto
the contents of the file data.dat. Thus, the response from the HELP procedure shows
it as having the structure of a two-dimensional array. An associated file variable only
performs input/output to the file when it is subscripted. Thus, the following two IDL
statements do not cause input/output to happen:

B = A

This assignment does not transfer data from the file to variable B because A is not
subscripted. Instead, B becomes an associated file variable with the same structure,
and to the same logical file unit, as A.

B = 23

This assignment does not result in the value 23 being transferred to the file because
variable B (which became a file variable in the previous statement) is not subscripted.
Instead, B becomes a scalar integer variable containing the value 23. It is no longer
an associated file variable.

Reading Data from Associated Files

Once a variable has been associated with a file, data are read from the file whenever
the associated variable appears in an expression with a subscript. The position of the
array or structure read from the file is given by the value of the subscript. The
Associated Input/Output Application Programming

Chapter 18: Files and Input/Output 461
following IDL statements assume that the associated file variable A is defined as in
the previous section, and give some examples of using file variables:

;Copy the contents of the first array into normal variable Z. Z is
;now a 10 x 20, floating-point array.
Z = A[0]

;Form the sum of the first 10 arrays. (Z was initialized in the
;previous statement to the value of the first array. This statement
;adds the following nine to it.) Note the use of the compound
;operator += to avoid creating a new copy of Z each time we add a
;new array.
FOR I = 1, 9 DO Z += A[I]

;Read fourth array and plot it.
PLOT, A[3]

;Subtract array four from array five, and plot the result. The
;result of the subtraction is then discarded.
PLOT, A[5] - A[4]

Writing Data to Associated Files

When a subscripted associated variable appears on the left side of an assignment
statement, the expression on the right side is written into the file at the given array
position:

;Sets sixth record to zero.
A[5] = FLTARR(10, 20)

;Write ARR into sixth record after any necessary type conversions.
A[5] = ARR

;Averages records J and J+1, and writes the result into record J.
A[J] = (A[J] + A[J + 1])/2

Multiple Subscripts With Associated File Variables

Usually, when subscripts are used with associated file variables, only a single
subscript is present, specifying an array within the associated file. This is the most
efficient way to access associated file variables. However, IDL allows you to specify
individual elements within the selected array using multiple subscripts. When
multiple subscripts are present with an associated file variable, the rightmost
subscript selects the array within the file, and the other subscripts specify the specific
element within that array.
Application Programming Associated Input/Output

462 Chapter 18: Files and Input/Output
For example, consider the following statement using the variable A defined above:

Z = A[0,0,1]

This statement assigns the value of element [0,0] of the second array within the file to
the variable Z. The rightmost subscript is interpreted as the subscript of the array
within the file, causing IDL to read the entire array into memory. This resulting array
expression is then further subscripted by the remaining subscripts.

Similarly, the statement:

A[2,3,4] = 45

assigns the value 45 to element [2,3] of the fifth array within the file. When a file
variable is referenced, the last (and possibly only) subscript denoting the element
within that array must be a simple subscript. Other subscripts and subscript ranges,
except the last, have the same meaning as when used with normal array variables.

An implicit extraction of an element or subarray in a data record can also be
performed. For example:

; Variable A associates the file open on unit 1 with the records of
;200-element, floating-point vectors.
A = ASSOC(1, FLTARR(200))

; Then, X is set to the first 100 points of record number 2, the
; third record of the file.
X = A[0:99, 2]

; Set the 24th point of record 16 to 12.
A[23, 16] = 12

; Increment points 10 to 199 of record 12. Points 0 to 9 of the
; record remain unchanged.
A[10, 12] = A[10:*, 12]+1

Note
Although the ability to directly refer to array elements within an associated file can
be convenient, it can also be very slow because every access to an array element
causes the entire array to be transferred to or from memory. Unless only one
operation on the array is required, it is faster to assign the contents of the array to a
normal variable by subscripting the file variable with a single subscript, and then
access the individual array elements within the normal variable as needed. If you
make changes to the value of the normal variable that should be reflected in the file,
a final assignment to the associated variable, indexed with a single subscript, can be
used to update the file and complete the operation.
Associated Input/Output Application Programming

Chapter 18: Files and Input/Output 463
Files with Multiple Structures

The same file may be associated with a number of different structures. Assume a
number of 128 x 128-byte images are contained on a file. The statement,

ROW = ASSOC(1, BYTARR(128))

will map the file into rows of 128 bytes each. ROW[3] is the fourth row of the first
image, while ROW[128] is the first row of the second image. The statement,

IMAGE = ASSOC(1, BYTARR(128, 128))

maps the file into entire images; IMAGE[4] will be the fifth image.

Offset Parameter

The Offset parameter to ASSOC specifies the position in the file at which the first
array starts. This parameter is useful when a file contains a header followed by data
records. For example, if a file uses the first 1,024 bytes of the file to contain header
information, followed by 512 x 512-byte images, the statement,

IMAGE = ASSOC(1, BYTARR(512, 512), 1024)

sets the variable IMAGE to access the images while skipping the header.

Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the block
size of the filesystem holding the file. Common values are powers of 2, such as 512,
2K (2048), 4K (4096), or 8K (8192) bytes. For example, on a disk with 512-byte
blocks, one benchmark program required approximately one-eighth of the time
required to read a 512 x 512-byte image that started and ended on a block boundary,
as compared to a similar program that read an image that was not stored on even
block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to the file. Therefore, if a record is to be accessed more than a
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to the file if
necessary.
Application Programming Associated Input/Output

464 Chapter 18: Files and Input/Output
Unformatted Data from UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extra long word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. This is true even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
is given in “Using Unformatted Input/Output” on page 447.
Associated Input/Output Application Programming

Chapter 18: Files and Input/Output 465
File Manipulation Operations

IDL provides a variety of routines that allow you to retrieve information about and
manipulate files and directories. See the following topics:

• Chapter 3, “Importing and Writing Data into Variables” (Using IDL) describes
various methods of accessing files

• “General File Access” (IDL Quick Reference) provides a complete list of
routines that allow you to access, locate, modify, and get information about
files

Working with UNIX Links

On UNIX platforms, you can create file links, both regular (hard) and symbolic. A
hard link is a directory entry that references a file. UNIX allows multiple such links
to exist simultaneously, meaning that a given file can be referenced by multiple
names. The following limitations on hard links are enforced by the operating system:

• Hard links may not span file systems, as hard linking is only possible within a
single file system.

• Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical Unix file
system. Such loops will confuse many system utilities, and can even cause file
system damage.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of
the file to which it is linked. Symbolic links may span file systems and may refer to
directories.

Use the FILE_LINK procedure to create hard and soft links on UNIX systems. See
“FILE_LINK” (IDL Reference Guide) for details.

Use the FILE_READLINK procedure to retrieve the path to a file referenced by a
UNIX symbolic link. See “FILE_READLINK” (IDL Reference Guide) for details.

Use the FILE_SAME function to determine whether two file names refer to the same
underlying file. See “FILE_SAME” (IDL Reference Guide) for details.
Application Programming File Manipulation Operations

466 Chapter 18: Files and Input/Output
Reading and Writing FORTRAN Data

The standard FORTRAN unformatted sequential file input/output mechanism
performs file input and output by reading and writing blocks of data from (or to) a file
as logical records. To read data, the FORTRAN program asks for the next logical
record from an open file; the operating system is then responsible for determining
how much data should be retrieved from the file. This system works well for
operating systems like VMS, which organize files into records and can thus keep
track of where logical blocks of data begin and end.

In contrast, the UNIX and Microsoft Windows operating systems supported by IDL
treat files as an uninterrupted stream of bytes. In order to reconcile the FORTRAN
need for logical records with these stream files, FORTRAN compilers for UNIX and
Microsoft Windows provide a mechanism to add a longword integer count of the
number of bytes in each logical record. This mechanism allows FORTRAN-
generated data files that treat data as a series of logical records to be read on
platforms that use stream files.

The F77_UNFORMATTED keyword to the OPEN procedures informs IDL that the
file contains unformatted data demarcated by logical record identifiers. When a file is
opened with this keyword, IDL interprets the longword counts properly and is able to
read the logical records. Similarly, IDL can write data using the logical record format
using the F77_UNFORMATTED keyword.

Use the F77_UNFORMATTED keyword if your IDL program is reading data that
contain embedded longword logical record separators, or if your program is writing
data that will be read by a FORTRAN program that reads unformatted sequential
files.

Note
On 64-bit machines, some Fortran compilers will insert record markers that are 64-
bit integers instead of the standard 32-bit integers. When reading FORTRAN data,
IDL will attempt to recognize the presence of 64-bit record markers and switch to
the appropriate format. When writing unformatted Fortran files, IDL will continue
to use 32-bit record markers.

Note
Direct-access FORTRAN I/O does not write data using logical records, but simply
transfers binary data to or from the file.
Reading and Writing FORTRAN Data Application Programming

Chapter 18: Files and Input/Output 467
Reading Data from a FORTRAN File

The following FORTRAN program, when run on a UNIX or Microsoft Windows
system (that is, an operating system that uses stream files), produces a file containing
a five-column by three-row array of floating-point values with each element set to its
one-dimensional subscript:

PROGRAM ftn2idl

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="ftn2idl.dat", FORM="unformatted")
DO 100 j = 1, 3
DO 100 i = 1, 5

data(i,j) = ((j - 1) * 5) + (i - 1)
print *, data(i,j)

100 CONTINUE
WRITE(1) data
END

Running this program creates the file ftn2idl.dat containing the unformatted array.
The following IDL statements can be used to read this file and print out its contents:

;Create an array to contain the fortran array.
data = FLTARR(5,3)

;Open the fortran-generated file. The F77_UNFORMATTED keyword is
;necessary so that IDL will know that the file contains unformatted
;data produced by a UNIX FORTRAN program.
OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;Read the data in a single input operation.
READU, lun, data

;Release the logical unit number and close the fortran file.
FREE_LUN, lun

;Print the result.
PRINT, data

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000

Because unformatted data produced by FORTRAN unformatted WRITE statements
on an operating system that uses stream files are interspersed with extra information
Application Programming Reading and Writing FORTRAN Data

468 Chapter 18: Files and Input/Output
before and after each logical record, it is important that the IDL program read the data
in the same way that the FORTRAN program wrote it. For example, consider the
following attempt to read the above data file one row at a time:

;Create an array to contain one row of the FORTRAN array.
data = FLTARR(5, /NOZERO)

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;One row at a time.
FOR I = 0, 4 DO BEGIN

;Read a row of data.
READU, lun, data

;Print the row.
PRINT, data

ENDFOR

;Close the file.
FREE_LUN, lun

Executing these IDL statements produces the output:

0.00000 1.00000 2.00000 3.00000 4.00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.dat6
% Execution halted at $MAIN$(0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program as if it were written in five separate records. IDL hit the end of the file after
reading the first five values of the first record.

Writing Data to a FORTRAN File

The following IDL statements create a five-column by three-row array of floating-
point values with each element set to its one-dimensional subscript, and writes the
array to a data file suitable for reading by a FORTRAN program:

;Create the array.
data = FINDGEN(5,3)

;Open a file for writing. Note that the F77_UNFORMATTED keyword is
;necessary to tell IDL to write the data in a format readable by a
;FORTRAN program.
OPENW, lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORMATTED

;Write the data.
WRITEU, lun, data
Reading and Writing FORTRAN Data Application Programming

Chapter 18: Files and Input/Output 469
;Close the file.
FREE_LUN, lun

The following FORTRAN program reads the data file created by IDL:

PROGRAM idl2ftn

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="idl2ftn.dat", FORM="unformatted")
READ(1) data

DO 100 j = 1, 3
DO 100 i = 1, 5

PRINT *, data(i,j)
100 CONTINUE

END
Application Programming Reading and Writing FORTRAN Data

470 Chapter 18: Files and Input/Output
Platform-Specific File I/O Information

Special considerations for file access on UNIX and Windows platforms are covered
in the following sections:

UNIX-Specific Information

Under UNIX, a file is read or written as an uninterrupted stream of bytes — there is
no record structure at the operating system level. (By convention, records of text are
simply terminated by the linefeed character, which is referred to as “newline.”) It is
possible to move the current file pointer to any arbitrary position in the file and to
begin reading or writing data at that point. This simplicity and generality form a
system in which any type of file can be manipulated easily using a small set of file
operations.

Windows-Specific Information

Under Microsoft Windows, a file is read or written as an uninterrupted stream of
bytes — there is no record structure at the operating system level. Lines in a
Windows text file are terminated by the character sequence CR LF (carriage return,
line feed).

The Microsoft C runtime library considers a file to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs.
Programmers familiar with this situation may be concerned about how IDL handles
read and write operations. IDL is not affected by this quirk of the C runtime library,
and no special action is required to work around it. Read/write operations are handled
the same in Windows as in Unix: when IDL performs a formatted I/O operation, it
reads/writes the CR/LF line termination. When it performs a binary operation, it
simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
keywords to the OPEN procedures were provided to allow the user to change IDL’s
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.
Platform-Specific File I/O Information Application Programming

Chapter 19

Using Language
Catalogs
The following topics are covered in this chapter:
What Is a Language Catalog? 472
Creating a Language Catalog File 473

Using the IDLffLangCat Class 476
Widget Example . 479
Application Programming 471

472 Chapter 19: Using Language Catalogs
What Is a Language Catalog?

A language catalog is a set of text strings in a particular language, created as key
name/value pairs. Applications can use these catalogs to fill in the names of menu
items, buttons, and other elements of a user interface, for example. The use of
different language catalogs, then, can support an application’s internationalization:
for example, letting a user decide what language to use for installing and running the
application.

There are two main advantages of using a language catalog in a separate file, rather
than having these strings embedded in the application:

• The strings do not consume memory until the application loads them

• You can edit the catalog to add new languages and new strings without directly
involving the application

In addition, because the language catalogs are in XML format, you can easily read
and edit the files in any text editor.

Implementing language catalog functionality requires two parts:

• The creation of a language catalog (.cat) file, which contains the name/value
pairs in the desired languages. See “Creating a Language Catalog File” on
page 473 for information on requirements for a language catalog file’s
structure.

• The creation of an IDLffLangCat object, which provides access and use of the
keys in the catalog file. See “Using the IDLffLangCat Class” on page 476 for
information on creating and using a language catalog object.
What Is a Language Catalog? Application Programming

Chapter 19: Using Language Catalogs 473
Creating a Language Catalog File

A language catalog (.cat) file contains the XML that defines the text strings as key
name/value pairs within a single <IDLffLangCat> tag. The tag can contain four
optional attributes, as described in Table 19-1.

Note
You cannot perform queries on VERSION, DATE, and AUTHOR. These attributes are
more like XML comments on the tag; they are informational only.

Note
For more information on XML, see “About XML” on page 484.

The following XML snippet, extracted from the iTools menu catalog file that comes
with the IDL installation, illustrates the basic file structure:

<IDLffLangCat APPLICATION="itools menu" VERSION="1.0"
AUTHOR="ITT">
<LANGUAGE NAME="English">

<KEY NAME="Menu:File">File</KEY>
<KEY NAME="Menu:File:New">New</KEY>
<KEY NAME="Menu:File:Open">Open...</KEY>

</LANGUAGE>
</IDLffLangCat>

The <IDLffLangCat> tag can contain any number of LANGUAGE tags. Each
LANGUAGE tag must have a NAME attribute denoting the language contained therein.

Each LANGUAGE tag can contain any number of KEY tags. Each KEY tag must have a
NAME attribute denoting the name of the key.

Attribute Description

APPLICATION Name of the application that will use the
keys in the file

VERSION Version of IDLffLangCat for which the
file was created

DATE Date of the file’s creation or last
modification, as desired

AUTHOR Author of the file

Table 19-1: IDLffLangCat Tag Attributes
Application Programming Creating a Language Catalog File

474 Chapter 19: Using Language Catalogs
Note
All text between the open and close KEY tags will be part of the string returned by
the query, including any line feeds, carriage returns, and spaces.

The catalog file can contain keys for one or more languages. Whether there is a single
catalog file containing multiple languages, or multiple catalog files, each containing a
single language, is personal preference.

By keeping each language separate in the tag definition, you can easily cut and paste
an entire block and then change the strings of one language to another language while
keeping all the keys intact. This technique also allows for the possibility of having
different languages in separate files. Note that the keys in any one language need not
match those of another language (although in most cases they will).

Note
IDL supports catalog files written in 8-bit strings (which can be encoded for
languages using special marks; see below). Also, you must have the corresponding
fonts installed on your machine before you can use a particular language.

Note
If your language has accent marks such as those in French, you might need to
modify the catalog file to support those encodings. In general, you should use the
encoding appropriate for your catalog’s language. For more information, see
“IDLffLangCat” (IDL Reference Guide).

Storing and Loading Language Catalog Files

The catalog files included with IDL are in the /resource/langcat directory of the
IDL installation and end in a.cat extension. These files contain the English keys for
iTools menus, dialogs, and messages and are provided to support the use of
applications using iTools functionality in other languages. All catalog files must end
with the .cat extension if APP_NAME is used to locate the files.

You can create custom catalog files and place them in a location of your choice. You
typically use a full path to access these catalog files through the creation of an
IDLffLangCat object (see “Using the IDLffLangCat Class” on page 476 for more
information).

You can specify a catalog either by giving the full path of the catalog file or files, or
by providing an application name or names and, optionally, an application path or
paths. If no path is specified, only the current directory is searched. For all
Creating a Language Catalog File Application Programming

Chapter 19: Using Language Catalogs 475
application paths, all .cat files found in any of the directories listed are searched for
all given applications.

On a similar note, if IDL finds a duplicate key name while loading keys, IDL will use
the string corresponding to the last key found with the given name.
Application Programming Creating a Language Catalog File

476 Chapter 19: Using Language Catalogs
Using the IDLffLangCat Class

You use the IDLffLangCat class to find and load an XML language catalog. The
class also provides methods for retrieving text strings by matching key names.

Creating a Language Catalog Object

The IDL installation comes with an English language catalog for the iTools menu,
called itoolsmenu_eng.cat, in the /resource/langcat directory of the IDL
installation. To load the keys in this file:

oLangCat = OBJ_NEW('IDLffLangCat', 'ENGLISH', $
APP_NAME='itools menu', $
APP_PATH=FILEPATH('', $

SUBDIRECTORY=['resource','langcat','itools']), /VERBOSE)

This command searches the given directory for language catalog keys in English that
match the application of ‘itools menu.’ In fact, if there are any other language catalog
files, besides itoolsmenu_eng.cat, containing keys whose LANGUAGE value is
‘ENGLISH’ and APPLICATION value is ‘itools menu,’ the object adds those keys as
well. The matches must be exact in that ‘itools menu2,’ for example, is not a match;
however, the matching is not case-sensitive (i.e., ’ENGLISH’ and ‘English’ are both
matches for LANGUAGE).

Note
Whenever the object encounters a key (or language) that already exists, the key (or
language) is overwritten with the new value.

The VERBOSE flag on the command sends all catalog-loading messages to the IDL
Workbench output window. This list contains details resulting from the object’s
initialization (the names and numbers of keys loaded, keys overwritten, etc.).

Adding Application Keys

You might want to add keys for a different application to an existing language catalog
object. To do so:

retval = oLangCat->AppendCatalog(APP_NAME='itools ui', $
APP_PATH=FILEPATH('', $
SUBDIRECTORY=['resource','langcat','itools']))

This command searches the given directory for keys matching an APPLICATION
value of ‘itools ui’ and appends them to oLangCat. The method returns a value
indicating success or failure of the operation.
Using the IDLffLangCat Class Application Programming

Chapter 19: Using Language Catalogs 477
Getting and Setting Languages

To return the available languages in a language catalog object:

oLangCat->GetProperty, AVAILABLE_LANGUAGES=availLangs

This command stores the list of available languages as a string array in availLangs.

To set the current language of a language catalog object (the language used for query
searches and matching):

oLangCat->SetProperty, LANGUAGE='English'

You can use these two methods for getting and setting other properties of a language
catalog object. For the list of available object properties, see “IDLffLangCat
Properties” in the IDL Reference Guide manual.

Comparisons such as those done with the Query method (see “Performing Queries”
on page 477) are case insensitive, but the values returned by the GetProperty method
are exactly as the last encountered value. The exception is that all key names are
returned in uppercase. For example, if File 1 has LANGUAGE='English' and File 2
has LANGUAGE='engLISh', then 'engLISh' will be returned, although only one
ENGLISH language exists in the current catalog.

Performing Queries

To populate the text fields of a widget or other interface object, for example, you can
query a language catalog object for key values it contains. IDL performs the search
on the NAME attribute of the keys; matches are not case-sensitive.

keyVal = oLangCat->Query('Menu:File:New', $
DEFAULT_STRING='Key not found')

This command searches oLangCat for keys with the NAME value of
‘Menu:File:New’ and returns the match in keyVal. If oLangCat finds a match in the
current language, keyVal will hold that value string. If a given key does not exist in
the current language, the default language is queried (if one exists). If there are still
no matches, the default string is returned.

You can use more than one key in a query by passing an array of strings to the Query
method (e.g., ['Menu:File:New','Menu:File:Open']). Similarly, you can
supply an array of strings for the DEFAULT_STRING keyword. In such a case, only
those values in the array whose indices match the missing keys will be returned. If
you do not specify DEFAULT_STRING, a null string will be returned instead.
Application Programming Using the IDLffLangCat Class

478 Chapter 19: Using Language Catalogs
Destroying a Language Catalog Object

You can destroy a catalog object as you would any other IDL object, as follows:

OBJ_DESTROY, oLangCat

Destroying a language catalog object does not affect any files from which the object
drew its keys.
Using the IDLffLangCat Class Application Programming

Chapter 19: Using Language Catalogs 479
Widget Example

This example creates a widget with two buttons whose text strings change between
two languages, depending on the selection from a drop-down list.

The following language catalogs are two separate files (as denoted by the
<IDLffLangCat> tag for each) and should be placed on your system as such.

<?xml version="1.0"?>
<!-- $Id: myButtonsText.eng.cat,v 1.1 2004 rsiDoc Exp $ -->
<IDLffLangCat APPLICATION="myOpenButtons" VERSION="1.0"

AUTHOR="ITT">
<LANGUAGE NAME="English">

<KEY NAME="Button:OpenFile">Open File</KEY>
<KEY NAME="Button:OpenFolder">Open Folder</KEY>

</LANGUAGE>
</IDLffLangCat>

<?xml version="1.0"?>
<!-- $Id: myButtonsText.fr.cat,v 1.1 2004 rsiDoc Exp $ -->
<IDLffLangCat APPLICATION="myOpenButtons" VERSION="1.0"

AUTHOR="ITT">
<LANGUAGE NAME="French">

<KEY NAME="Button:OpenFile">Ouvrir le Fichier</KEY>
<KEY NAME="Button:OpenFolder">Ouvrir le Dossier</KEY>

</LANGUAGE>
</IDLffLangCat>

To use the following code, save it in a .pro file. You do not have to run it from the
same directory containing the language catalog files.

; Routine to change the language of the button labels.
PRO button_language_change, pstate

vLangString = (*pstate).vlang

; Access the language catalog to retrieve string values.
oLangCat = OBJ_NEW('IDLffLangCat', vLangString, $

APP_NAME='myOpenButtons' , APP_PATH=(*pstate).vpath)
; Access and store language-specific strings in the structure.
strOpenFile = oLangCat->Query('Button:OpenFile')
strOpenFolder = oLangCat->Query('Button:OpenFolder')
WIDGET_CONTROL, (*pstate).pb1, SET_VALUE=strOpenFile
WIDGET_CONTROL, (*pstate).pb2, SET_VALUE=strOpenFolder

END

; Event handler for 'Open File' button.
PRO button_file, event

sFile = DIALOG_PICKFILE(TITLE='Select image file')
Application Programming Widget Example

480 Chapter 19: Using Language Catalogs
END

; Event handler for 'Open Folder' button.
PRO button_folder, event

sFolder = DIALOG_PICKFILE(/DIRECTORY, $
TITLE='Choose the directory in which to store the data')

END

; Event handler for 'Language' droplist.
PRO button_language_event, event

WIDGET_CONTROL, event.top, GET_UVALUE = pstate
; Access user's language selection and store it in the pointer.
IF event.index EQ 0 THEN (*pstate).vlang = 'English'
IF event.index EQ 1 THEN (*pstate).vlang = 'French'
; Call the procedure to change the button text.
button_language_change, pstate

END

; Widget-creation procedure
PRO button_language

; Prompt for path to catalog files
vpath=dialog_pickfile(TITLE='Select directory that ' + $

'contains *.cat files', /DIRECTORY)
IF vpath EQ '' THEN return

; Create a top level base. Not specifying tab mode uses default
; value of zero (do not allow widgets to receive or lose focus).
tlb = WIDGET_BASE(/COLUMN, TITLE = "Language Change", $

XSIZE=220, /BASE_ALIGN_CENTER)
; Create the button widgets.
bbase = WIDGET_BASE(tlb, /COLUMN)
pb1 = WIDGET_BUTTON(bbase, VALUE='Open File', $

UVALUE='openFile', XSIZE=105, EVENT_PRO='button_file')
pb2 = WIDGET_BUTTON(bbase, VALUE='Open Folder', $

UVALUE='openFolder', XSIZE=105, EVENT_PRO='button_folder')
; Create a drop-down list indicating available catalogs.
vLangList = ['English', 'French']
langDrop = WIDGET_DROPLIST(tlb, VALUE=vLangList, $

TITLE='Language')
; Draw the widgets and activate events.
WIDGET_CONTROL, tlb, /REALIZE

; Create the state structure.
state = { $

pb1:pb1, $
pb2:pb2, $
vlang:'', $
vpath:vpath $

}

Widget Example Application Programming

Chapter 19: Using Language Catalogs 481
pstate = PTR_NEW(state, /NO_COPY)
WIDGET_CONTROL, tlb, SET_UVALUE=pstate
XMANAGER, 'button_language', tlb

; Clean up pointers.
PTR_FREE, pstate

END
Application Programming Widget Example

482 Chapter 19: Using Language Catalogs
Widget Example Application Programming

Chapter 20

Using the XML Parser
Object Class
The following topics are covered in this chapter:
About XML . 484
Using the XML Parser 486
Example: Reading Data Into an Array . . . 491

Example: Reading Data Into Structures . . 498
Building Complex Data Structures 505
Application Programming 483

484 Chapter 20: Using the XML Parser Object Class
About XML

XML (eXtensible Markup Language) provides a set of rules for defining semantic
tags that can describe virtually any type of data in a text file. Data stored in XML-
format files is both human- and machine-readable, and is often relatively easy to
interpret either visually or programmatically. The structure of data stored in an XML
file is described by either a Document Type Definition (DTD) or an XML schema,
which can either be included in the file itself or referenced from an external network
location.

The IDL parsers support the following encodings: UTF-8, USASCII, ISO8859-1,
UTF-16, UTF-16BE, UTF-16LE, UCS-4, UCS-4BE, UCS-4LE, WINDOWS-1252,
IBM1140, IBM037, and IBM1047.

Note
IDL can parse XML documents that are stored using any of the above encodings.
When an IDL application reads string data from the XML document using either the
SAX or DOM parser, the string data is transcoded from the document's encoding
into the encoding appropriate for IDL string variables. In order to read the string
data correctly, the XML string data must be mappable into an IDL string. The IDL
XML parsers may return an empty string if the XML string data cannot be
converted into an IDL string.

Since IDL strings use 1-byte characters, the XML strings must be transcodable into
strings that use 1 byte per character. Further, they must be transcodable into strings
that use the current character encoding. For example, on Windows, the current
character encoding is often ISO8859-1. On OS X, it might be UTF-8. On most Unix
platforms, the encoding is often 7-bit USASCII as selected by the C locale.
Therefore, it might be possible for IDL to read strings from XML files that contain
special 8-bit characters on the Windows and OS X platforms. It might not be
possible to read these strings on Unix platforms because USASCII is a 7-bit
encoding.

It is beyond the scope of this manual to describe XML in detail. Numerous third-
party books and electronic resources are available. The following texts may be
useful:

• http://www.w3.org — information about many web standards, including
XML related technologies.

• http://www.w3schools.com — tutorials on all manner of XML-related
topics.
About XML Application Programming

http://www.w3.org
http://www.w3schools.com

Chapter 20: Using the XML Parser Object Class 485
• http://www.saxproject.org — information about the Simple API for
XML, the event-based XML parsing technology used by IDL.

• Brownell, David. SAX2. O'Reilly & Associates, 2002. ISBN: 0-596-00237-8.

• Harold, Eliotte Rusty. XML Bible. IDG Books Worldwide, 1999. ISBN:
0-7645-3236-7

About XML Parsers

There are two basic types of parsers for XML data:

• Tree-based parsers

• Event-based parsers.

Tree-Based Parsers

Tree-based parsers map an XML document into a tree structure in memory, allowing
you to select elements by navigating through the tree. This type of parser is generally
based on the Document Object Model (DOM) and the tree is often referred to as a
DOM tree. The IDLffXMLDOM object classes implement a tree-based parser; for
more information, see Chapter 21, “Using the XML DOM Object Classes”.

Tree-based parsers are especially useful when the XML data file being parsed is
relatively small. Having access to the entire data set at one time can be convenient
and makes processing data based on multiple data values stored in the tree easy.
However, if the tree structure is larger than will fit in physical memory or if the data
must be converted into a new (local) data structure before use, then tree-based parsers
can be slow and cumbersome.

Event-Based Parsers

Event-based parsers read the XML document sequentially and report parsing events
(such as the start or end of an element) as they occur, without building an internal
representation of the data structure. The most common examples of event-based
XML parsers use the Simple API for XML (SAX), and are often referred to as a SAX
parsers.

Event-based parsers allow the programmer to write callback routines that perform an
appropriate action in response to an event reported by the parser. Using an event-
based parser, you can parse very large data files and create application-specific data
structures. The IDLffXMLSAX object class implements an event-based parser based
on the SAX version 2 API.
Application Programming About XML

http://www.saxproject.org

486 Chapter 20: Using the XML Parser Object Class
Using the XML Parser

IDL’s XML parser object class (IDLffXMLSAX) implements a SAX 2 event-based
parser. The object’s methods are a set of callback routines that are called
automatically when the parser encounters different constituents of an XML
document. For example, when the parser encounters the beginning of an XML
element, it calls the StartElement method. When the StartElement method
returns, the parser continues.

The IDLffXMLSAX object’s methods are completely generic. As provided, they do
nothing with the items encountered in the XML file. To use the parser object to read
data from an XML file, you must write a subclass of the IDLffXMLSAX class,
overriding the superclass’s methods to accomplish your objectives. This requirement
that you subclass the object makes the IDLffXMLSAX class unlike any other object
class supplied by IDL.

For a detailed discussion of IDL object classes, subclassing, and method overriding,
see Chapter 13, “Creating Custom Objects in IDL” (Object Programming). For a
description of the parser object class and its methods, see “IDLffXMLSAX” (IDL
Reference Guide).

Subclassing the IDLffXMLSAX Object Class

Writing a subclass of the IDLffXMLSAX object class is similar to writing a subclass
of any of IDL’s other object classes. The basic steps are:

1. Define a class structure for your subclass, inheriting from the IDLffXMLSAX
object class.

2. Write methods to override the IDLffXMLSAX object class methods as
necessary.

3. Write additional methods required for your application.

4. Create a class definition routine for your XML parser object.

Let’s look at these steps individually:

Define a Class Structure

Every object class has a unique class structure that defines the instance data contained
in the object. (See “Creating an Object Class Structure” (Chapter 13, Object
Programming) for details.) When writing your own parser object (a subclass of the
IDLffXMLSAX object), you must first determine what instance data you need your
parser object to contain, and define a class structure accordingly.
Using the XML Parser Application Programming

Chapter 20: Using the XML Parser Object Class 487
Note
Your parser object’s class structure must inherit from the IDLffXMLSAX class
structure. See “Inheritance” (Chapter 13, Object Programming) for details.

For example, suppose you want to use your parser to extract an array of data from an
XML file. You might choose to define your class structure to include an IDL pointer
that will contain the data array. For this case, your class structure definition might
look something like

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

Within your subclass’s methods, this data structure will always be available via the
implicit self argument (see “Creating Custom Object Method Routines” (Chapter
13, Object Programming) for details). Setting the value of self.ptr within a
method routine sets the instance data of the object.

In most cases, your class structure definition will be included in a routine that does
Automatic Structure Definition (see “Automatic Class Structure Definition” (Chapter
13, Object Programming) for details).

Override Superclass Methods

For your XML parser to do any work, you must override the generic methods of the
IDLffXMLSAX object class. Overriding a method is as simple as defining a method
routine with the same name as the superclass’s method. When your parser encounters
an item in the parsed XML file that triggers one of the IDLffXMLSAX methods, it
will look first for a method of the same name in the definition of your subclass of the
IDLffXMLSAX object class. See “Method Overriding” (Chapter 13, Object
Programming) for details.

For example, suppose you want your parser to print out the element name of each
XML element it encounters to IDL’s output. You could override the StartElement
method of the IDLffXMLSAX class as follows:

PRO myParser::StartElement, URI, Local, Name

PRINT, Name

END

Note
The new method must take the same parameters as the overridden method.

When your parser encounters the beginning of an XML element, it will look for a
method named StartElement and call that method with the parameters specified
Application Programming Using the XML Parser

488 Chapter 20: Using the XML Parser Object Class
for the IDLffXMLSAX::StartElement method. Since your subclass’s StartElement
method is found before the superclass’s StartElement method, your method is used.

Note
You do not necessarily need to override all of the IDLffXMLSAX object methods.
Depending on your application, it may be sufficient to override four or five of the
superclass’s methods. See the parser definitions later in this chapter for examples.

Overriding the IDLffXMLSAX methods is the heart of writing your own XML
parser. To write an efficient parser, you will need detailed knowledge of the structure
of the XML file you want to parse.

See “Example: Reading Data Into an Array” on page 491 and “Example: Reading
Data Into Structures” on page 498 for examples of how to work with parsed XML
data and return the data in IDL variables.

Write Additional Methods

Depending on your application, you may need to write additional object methods to
work with the instance data retrieved from the parsed XML file. Like the overridden
object methods, any new methods you write have access to the object’s instance data
via the implicit self parameter.

Create a Class Definition Routine

If you combine your class definition routine with your class’s method routines in a
file, you can use IDL’s Automatic Structure Definition feature to automatically
compile the class routines when an instance of your class is created via the
OBJ_NEW function. Keep the following in mind when creating the .pro file that
will contain the definition of your class structure and method routines:

• The routine that creates your class structure should be named with the
characters “__define” appended to the end of the class name. For example, if
your parser object class is named “myParser” and its class structure is the one
described in “Define a Class Structure” on page 486, the routine definition
would be:

PRO myParser__define

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

END

• The .pro file should be named after the class structure definition routine. In
this case, the name would be myParser__define.pro.
Using the XML Parser Application Programming

Chapter 20: Using the XML Parser Object Class 489
• The class structure definition routine should be the last routine in the .pro file.

Using Your Parser

Once you have written the class definition routine for your parser, you are ready to
parse an XML file. The process is straightforward:

1. Create an instance of your parser object.

2. Call the ParseFile method on your object instance with the name of an XML
file as the parameter.

For example, if your parser object is named myParser and the object class definition
file is named myParser__define.pro, you could use the following IDL
statements:

xmlFile = OBJ_NEW('myParser')
xmlFile->ParseFile, 'data.xml'

The first statement creates a new XML parser based on your class definition and
places a reference to the parser object in the variable xmlFile. The second statement
calls the ParseFile method on that object with the filename data.xml.

What happens next depends on your application. If your object definition stores
values from the parsed file in the object’s instance data, you will need some way to
retrieve the values into IDL variables that are accessible outside the object. See
“Example: Reading Data Into an Array” on page 491 and “Example: Reading Data
Into Structures” on page 498 for examples that return data variables that are
accessible to other routines.

Validation

An XML document is said to be valid if it adheres to a set of constraints set forth in
either a Document Type Definition (DTD) or an XML schema. Both DTDs and
schemas define which elements can be included in an XML file and what values
those elements can assume. XML schemas are a newer technology that is designed to
replace and be more robust than DTDs. In working with existing XML files, you are
likely to encounter both types of validation mechanisms.

Ensuring that a file contains valid XML helps in writing an efficient parsing
mechanism. For example, if your validation method specifies that element B can only
occur inside element A, and the XML document you are parsing is known to be valid,
then your parser can assume that if it encounters element B it is inside element A.
Application Programming Using the XML Parser

490 Chapter 20: Using the XML Parser Object Class
The IDLffXMLSAX parser object can check an XML document using either
validation mechanism, depending on whether a DTD or a schema definition is
present. By default, if either is present, the parser will attempt to validate the XML
document. See SCHEMA_CHECKING and VALIDATION_MODE under
“IDLffXMLSAX Properties” (IDL Reference Guide) for details.
Using the XML Parser Application Programming

Chapter 20: Using the XML Parser Object Class 491
Example: Reading Data Into an Array

This example subclasses the IDLffXMLSAX parser object class to create an object
class named xml_to_array. The xml_to_array object class is designed to read
numerical values from an XML file with the following structure:

<array>
<number>0</number>
<number>1</number>
...

</array>

and place those values into an IDL array variable.

Note
This example is a very simple example. It is designed to illustrate how an event-
based XML parser is constructed using the IDLffXMLSAX object class. An
application that reads real data from an XML file will most likely be quite a bit
more complicated.

Creating the xml_to_array Object Class

In order to read the XML file and return an array variable, we will need to create an
object class definition that inherits from the IDLffXMLSAX object class, and
override the following superclass methods: Init, Cleanup, StartDocument,
Characters, StartElement, and EndElement. Since this example does not
retrieve data using any of the other IDLffXMLSAX methods, we do not need to
override those methods. In addition, we will create a new method that allows us to
retrieve the array data from the object instance data.

Example Code
This example is included in the file xml_to_array__define.pro in the
examples/doc/file_io subdirectory of the IDL distribution. Run the example
procedure by entering xml_to_array__define at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
xml_to_array__define.pro.

Object Class Definition

The following routine is the definition of the xml_to_array object class:

PRO xml_to_array__define
Application Programming Example: Reading Data Into an Array

javascript:doIDL("xml_to_array__define")
javascript:doIDL(".edit xml_to_array__define.pro")
javascript:doIDL(".edit xml_to_array__define.pro")

492 Chapter 20: Using the XML Parser Object Class
void = {xml_to_array, $
INHERITS IDLffXMLSAX, $
charBuffer:'', $
pArray:PTR_NEW()}

END

The following items should be considered when defining this class structure:

• The structure definition uses the INHERITS keyword to inherit the object class
structure and methods of the IDLffXMLSAX object.

• The charBuffer structure field is set equal to an empty string.

• The pArray structure field is set equal to an IDL pointer. We will use this
pointer to store the numerical array data we retrieve.

• The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.

Why do we store the array data in a pointer variable? Because the fields of a named
structure (xml_to_array, in this case) must always contain the same type of data as
when that structure was defined. Since we want to be able to add values to the data
array as we parse the XML file, we will need to extend the array with each new value.
If we began by defining the size of the array in the structure variable, we would not
be able to extend the array. By holding the data array in a pointer, we can extend the
array without changing the format of the xml_to_array object class structure.

Note
Although we describe this routine first here, the xml_to_array__define routine
must be the last routine in the xml_to_array__define.pro file.

Init Method

The Init method is called when the an xml_to_array parser object is created by a
call to OBJ_NEW. The following routine is the definition of the Init method:

FUNCTION xml_to_array::Init
self.pArray = PTR_NEW(/ALLOCATE_HEAP)
RETURN, self->IDLffxmlsax::Init()

END
Example: Reading Data Into an Array Application Programming

Chapter 20: Using the XML Parser Object Class 493
We do two things in this method:

• We initialize the pointer in the pArray field of the class structure variable.

Note
Within a method, we can refer to the class structure variable with the implicit
parameter self. Remember that self is actually a reference to the
xml_to_array object instance.

• The return value from this function is the return value of the superclass’s Init
method, called on the self object reference.

Note
The initialization task (setting the value of the pArray field) is performed before
calling the superclass’s Init method.

See “IDLffXMLSAX::Init” (IDL Reference Guide) for details on the method we are
overriding.

Cleanup Method

The Cleanup method is called when the xml_to_array parser object is destroyed
by a call to OBJ_DESTROY. The following routine is the definition of the Cleanup
method:

PRO xml_to_array::Cleanup

IF (PTR_VALID(self.pArray)) THEN PTR_FREE, self.pArray

self->IDLffXMLSAX::Cleanup

END

Here, we release the pArray pointer, if it exists, and call the superclass cleanup
method.

See “IDLffXMLSAX::Cleanup” (IDL Reference Guide) for details on the method we
are overriding.

Characters Method

The Characters method is called when the xml_to_array parser encounters
character data inside an element. The following routine is the definition of the
Characters method:

PRO xml_to_array::characters, data
Application Programming Example: Reading Data Into an Array

494 Chapter 20: Using the XML Parser Object Class
self.charBuffer = self.charBuffer + data

END

As it parses the character data in an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLffXMLSAX::Characters” (IDL Reference Guide) for details on the method
we are overriding.

StartDocument Method

The StartDocument method is called when the xml_to_array parser encounters
the beginning of the XML document. The following routine is the definition of the
StartDocument method:

PRO xml_to_array::StartDocument

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
void = TEMPORARY(*self.pArray)

END

Here, we check to see if the array pointed at by the pArray pointer contains any data.
Since we are just beginning to parse the XML document at this point, it should not
contain any data. If data is present, we reinitialize the array using the TEMPORARY
function.

Note
Since pArray is a pointer, we must use dereferencing syntax to refer to the array.

See “IDLffXMLSAX::StartDocument” (IDL Reference Guide) for details on the
method we are overriding.

StartElement Method

The StartElement method is called when the xml_to_array parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_array::startElement, URI, local, strName, attr, value

CASE strName OF
"array": BEGIN

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
void = TEMPORARY(*self.pArray);; clear out memory

END
Example: Reading Data Into an Array Application Programming

Chapter 20: Using the XML Parser Object Class 495
"number" : BEGIN
self.charBuffer = ''

END
ENDCASE

END

Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

• If the element is an <array> element, we check to see if the array pointed at
by the pArray pointer is empty. Since we are just beginning to read the array
data at this point, there should be no data. If data already exists, we reinitialize
the array using the TEMPORARY function.

• If the element is a <number> element, we reinitialize the charBuffer field.
Since we are just beginning to read the number data, nothing should be in the
buffer.

See “IDLffXMLSAX::StartElement” (IDL Reference Guide) for details on the
method we are overriding.

EndElement Method

The EndElement method is called when the xml_to_array parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_array::EndElement, URI, Local, strName

CASE strName OF
"array":
"number": BEGIN

idata = FIX(self.charBuffer);
IF (N_ELEMENTS(*self.pArray) EQ 0) THEN $

*self.pArray = iData $
ELSE $

*self.pArray = [*self.pArray,iData]
END

ENDCASE

END

As with the StartElement method, we first check the name of the element we have
encountered, and use a CASE statement to branch based on the element name:

• If the element is an <array> element, we do nothing.
Application Programming Example: Reading Data Into an Array

496 Chapter 20: Using the XML Parser Object Class
• If the element is a <number> element, we must get the data stored in the
charBuffer field of the instance data structure and place it in the array:

• First, we convert the string data in the charBuffer into an IDL integer.

• Next, we check to see if the array pointed at by pArray is empty. If it is
empty, we simply set the array equal to the data value we retrieved from
the charBuffer.

• If the array pointed at by pArray is not empty, we redefine the array to
include the new data retrieved from the charBuffer.

See “IDLffXMLSAX::EndElement” (IDL Reference Guide) for details on the method
we are overriding.

Note
In both the StartElement and EndElement methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file’s DTD or schema (in this case, the only elements are
<array> and <number>). We do not need an ELSE clause in the CASE statement.
If an unknown element is found in the XML file, the parser will report a validation
error.

GetArray Method

The GetArray method allows us to retrieve the array data stored in the pArray
pointer variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_array::GetArray

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
RETURN, *self.pArray $

ELSE RETURN , -1

END

Here, we check to see whether the array pointed at by pArray contains any data. If it
does contain data, we return the array. If the array contains no data, we return the
value -1.
Example: Reading Data Into an Array Application Programming

Chapter 20: Using the XML Parser Object Class 497
Using the xml_to_array Parser

To see the xml_to_array parser in action, you can parse the file num_array.xml,
found in the examples/data subdirectory of the IDL distribution. This
num_array.xml file contains the fragment of XML like the one shown in the
beginning of this section, and includes 20 extra <number> elements. The
num_array.xml file also includes a DTD describing the structure of the file.

Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_array')
xmlFile = FILEPATH('num_array.xml', $

SUBDIRECTORY = ['examples', 'data'])
xmlObj->ParseFile, xmlFile
myArray = xmlObj->GetArray()
OBJ_DESTROY, xmlObj
HELP, myArray
PRINT, myArray

IDL prints:

MYARRAY INT = Array[20]
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19
Application Programming Example: Reading Data Into an Array

498 Chapter 20: Using the XML Parser Object Class
Example: Reading Data Into Structures

This example subclasses the IDLffXMLSAX parser object class to create an object
class named xml_to_struct. The xml_to_struct object class is designed to read
data from an XML file with the following structure:

<Solar_System>
 <Planet NAME='Mercury'>
 <Orbit UNITS='kilometers' TYPE='ulong64'>579100000</Orbit>
 <Period UNITS='days' TYPE='float'>87.97</Period>
 <Satellites TYPE='int'>0</Satellites>
 </Planet>

...
</Solar_System>

and place those values into an IDL array containing one structure variable for each
<Planet> element. We use a structure variable for each <Planet> element so we
can capture data of several data types in a single place.

Note
While this example is more complicated than the previous example, it is still rather
simple. It is designed to illustrate a method whereby more complex XML data
structures can be represented in IDL.

Creating the xml_to_struct Object Class

To read the XML file and return a structure variable, we will need to create an object
class definition that inherits from the IDLffXMLSAX object class, and override the
following superclass methods: Init, Characters, StartElement, and
EndElement. Since this example does not retrieve data using any of the other
IDLffXMLSAX methods, we do not need to override those methods. In addition, we
will create a new method that allows us to retrieve the structure data from the object
instance data.

Notice that the elements of the XML data file include attributes. While we will
retrieve and use some of the attribute data from the file, we will ignore some of it.

Note
When parsing an XML data file, you can pick and choose the data you wish to pull
into IDL. This ability to selectively retrieve data from the XML file is one of the
great advantages of an event-based parser over a tree-based parser.
Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 499
Example Code
This example is included in the file xml_to_struct__define.pro in the
examples/doc/file_io subdirectory of the IDL distribution. Run the example
procedure by entering xml_to_struct__define at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
xml_to_struct__define.pro.

Object Class Definition

The following routine is the definition of the xml_to_struct object class:

PRO xml_to_struct__define

void = {PLANET, NAME: "", Orbit: 0ull, period:0.0, Moons:0}
void = {xml_to_struct, $

INHERITS IDLffXMLSAX, $
CharBuffer:"", $
planetNum:0, $
currentPlanet:{PLANET}, $
Planets : MAKE_ARRAY(9, VALUE = {PLANET})}

END

The following items should be considered when defining this class structure:

• Before creating the object class structure, we define a structure named
PLANET. We will use the PLANET structure to store data from the
<Planet> elements of the XML file.

• The object class structure definition uses the INHERITS keyword to inherit the
object class structure and methods of the IDLffXMLSAX object.

• The charBuffer structure field is set equal to a string value. We will use this
field to accumulate character data stored in XML elements.

• The planetNum structure field is set equal to an integer value. We will use
this field to keep track of which array element we are currently populating.

• The currentPlanet structure field is set equal to a PLANET structure.

• The Planets structure field is set equal to a nine-element array of PLANET
structures.

• The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.
Application Programming Example: Reading Data Into Structures

javascript:doIDL("xml_to_struct__define")
javascript:doIDL(".edit xml_to_struct__define.pro")
javascript:doIDL(".edit xml_to_struct__define.pro")

500 Chapter 20: Using the XML Parser Object Class
We have explicitly defined our Planets structure field as a nine-element array of
PLANET structures, which we can do because we know exactly how many
<Planet> elements will be read from our XML file. Specifying the exact size of the
data array in the class structure definition is very efficient (since we create the array
only once) and eliminates the need to free the pointer in the Cleanup method.
However, it has the following consequences:

• We must explicitly keep track of the index of the array element we are
populating, and increment it after we have finished with a given element (see
the EndElement method below).

• We must know in advance how many elements the array will hold. If the size
of the final array is unknown, it is more efficient to use a pointer to an array, as
we did in the previous example, and allow the array to grow as elements are
added. See “Building Complex Data Structures” on page 505 for additional
discussion of ways to configure the instance data structure.

Note
Although we describe this routine here first, the xml_to_struct__define
routine must be the last routine in the xml_to_struct__define.pro file.

Init Method

The Init method is called when the an xml_to_struct parser object is created by
a call to OBJ_NEW. The following routine is the definition of the Init method:

FUNCTION xml_to_struct::Init

self.planetNum = 0
RETURN, self->IDLffXMLSAX::Init()

END

We do two things in this method:

• We initialize the planetNum field with the value of zero. We will increment
this value as we populate the Planets array.

Note
Within a method, we can refer to the class structure variable with the implicit
parameter self. Remember self is actually a reference to the
xml_to_struct object instance.

• The return value from this function is the return value of the superclass’s Init
method, called on the self object reference.
Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 501
Note
We perform our own initialization task (setting the value of the planetNum field)
before calling the superclass’s Init method.

See “IDLffXMLSAX::Init” (IDL Reference Guide) for details on the method we are
overriding.

Characters Method

The Characters method is called when the xml_to_struct parser encounters
character data inside an element. The following routine is the definition of the
Characters method:

PRO xml_to_struct::characters, data

self.charBuffer = self.charBuffer + data

END

As it parses the character data in an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLffXMLSAX::Characters” (IDL Reference Guide) for details on the method
we are overriding.

StartElement Method

The StartElement method is called when the xml_to_struct parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_struct::startElement, URI, local, strName, attrName,
attrValue

CASE strName OF
"Solar_System": ; Do nothing
"Planet" : BEGIN

self.currentPlanet = {PLANET, "", 0ull, 0.0, 0}
self.currentPlanet.Name = attrValue[0]

END
"Orbit" : self.charBuffer = ''
"Period" : self.charBuffer = ''
"Moons" : self.charBuffer = ''

ENDCASE

END
Application Programming Example: Reading Data Into Structures

502 Chapter 20: Using the XML Parser Object Class
Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

• If the element is a <Solar_System> element, we do nothing.

• If the element is a <Planet> element, we do the following things:

• Set the value of the currentPlanet field of the self instance data
structure equal to a PLANET structure, setting the values of the structure
fields to zero values.

• Set the value of the Name field of the PLANET structure held in the
currentPlanet field equal to the value of the Name attribute of the
element. This field contains the name of the planet whose data we are
reading.

• If the element is an <Orbit>, <Period>, or <Moons> element, we reinitialize
the value of the charBuffer field of the self instance data structure.

See “IDLffXMLSAX::StartElement” (IDL Reference Guide) for details on the
method we are overriding.

EndElement Method

The EndElement method is called when the xml_to_struct parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_struct::EndElement, URI, Local, strName

CASE strName of
"Solar_System":
"Planet": BEGIN

self.Planets[self.planetNum] = self.currentPlanet
self.planetNum = self.planetNum + 1

END
"Orbit" : self.currentPlanet.Orbit = self.charBuffer
"Period" : self.currentPlanet.Period = self.charBuffer
"Moons" : self.currentPlanet.Moons= self.charBuffer

ENDCASE

END
Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 503
As with the StartElement method, we first check the name of the element we have
encountered, and use a CASE statement to branch based on the element name:

• If the element is a <Solar_System> element, we do nothing.

• If the element is a <Planet> element, we set the element of the Planets
array specified by planetNum equal to the PLANET structure contained in
currentPlanet. Then, we increment the planetNum counter.

• If the element is an <Orbit>, <Period>, or <Satellites> element, we
place the value in the charBuffer field into the appropriate field within the
PLANET structure contained in currentPlanet.

See “IDLffXMLSAX::EndElement” (IDL Reference Guide) for details on the method
we are overriding.

Note
In both the StartElement and EndElement methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file’s DTD or schema. We do not need an ELSE clause in the
CASE statement. If an unknown element is found in the XML file, the parser will
report a validation error.

GetArray Method

The GetArray method allows us to retrieve the array of structures stored in the
Planets variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_struct::GetArray

IF (self.planetNum EQ 0) THEN $
RETURN, -1 $

ELSE RETURN, self.Planets[0:self.planetNum-1]

END

Here, we check to see whether the planetNum counter has been incremented. If it
has been incremented, we return as the number of array elements specified by the
counter. If the counter has not been incremented (indicating that no data has been
stored in the array), we return the value -1.
Application Programming Example: Reading Data Into Structures

504 Chapter 20: Using the XML Parser Object Class
Using the xml_to_struct Parser

To see the xml_to_struct parser in action, you can parse the file planets.xml,
found in the examples/data subdirectory of the IDL distribution. The
planets.xml file contains the fragment of XML like the one shown at the
beginning of this section, and includes a <Planet> element for each planet in the
solar system. The planets.xml file also includes a DTD describing the structure of
the file.

Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_struct')
xmlFile = FILEPATH('planets.xml', $

SUBDIRECTORY = ['examples', 'data'])
xmlObj->ParseFile, xmlFile
planets = xmlObj->GetArray()
OBJ_DESTROY, xmlObj

The variable planets now holds an array of PLANET structures, one for each
planet. To print the number of moons for each planet, you could use the following
IDL statement:

FOR i = 0, (N_ELEMENTS(planets.Name) - 1) DO $
PRINT, planets[i].Name, planets[i].Moons, $
FORMAT = '(A7, " has ", I2, " moons")'

IDL prints:

Mercury has 0 moons
Venus has 0 moons
Earth has 1 moons
Mars has 2 moons
Jupiter has 16 moons
Saturn has 18 moons
Uranus has 21 moons
Neptune has 8 moons
Pluto has 1 moons

To view all the information about the planet Mars, you could use the following IDL
statement:

HELP, planets[3], /STRUCTURE

IDL prints:

** Structure PLANET, 4 tags, length=32, data length=26:
NAME STRING 'Mars'
ORBIT ULONG64 227940000
PERIOD FLOAT 686.980
MOONS INT 2
Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 505
Building Complex Data Structures

Few limitations exist regarding the complexity of the data structures that can be
represented in an XML data file. Writing a parser to read data from such complex
structures into IDL can be a challenge. If you are designing a parser to read a very
complex or deeply nested XML file, keep the following concepts in mind.

Use Dynamically Sized Arrays if Necessary

If you don’t know the final size of your data array, or if the size of the array will
change, store the data array in an IDL pointer in the instance data structure. This
technique allows you to change the size of the data array without changing the
definition of the instance data structure. The downside of extending the data array in
this manner is performance. Each time the array is extended, IDL must hold two
copies of the entire array in memory. If the array becomes large, this duplication can
cause performance problems.

In “Example: Reading Data Into an Array” on page 491, we extended our data array
as we added each element despite the fact that we knew the number of data elements.
We used a pointer to illustrate the technique, and to make it clear that if you use
pointers to store your instance data, you must free the pointers in your subclass’s
Cleanup method.

Use Fixed-Size Arrays When Possible

If you will be building a large data array, and you know in advance how many
elements it will contain, create the array when defining the class data structure and
use array indexing to place data in the appropriate elements. Using a fixed-size array
eliminates the need to copy the full array each time it is extended, and can lead to
noticeable performance improvements when large arrays are involved.

In “Example: Reading Data Into Structures” on page 498, we illustrated the
technique of using a pre-defined array to store our instance data.

Using Nested Structures

If your data structure is complex, you may be inclined to represent your data as a set
of nested IDL structure variables. While nesting structure variables can help you
create a data structure that emulates the structure of your XML file, deeply nested
structures can make your code more difficult to create and maintain. Consider storing
data in several arrays of structures rather than a single, deeply-nested structure.

If you have a good reason to create nested structures, and also need to extend them
dynamically, you should use the CREATE_STRUCT function.
Application Programming Building Complex Data Structures

506 Chapter 20: Using the XML Parser Object Class
The same caveats apply to extending a structure with CREATE_STRUCT as apply to
extending an array. With large datasets, the process of duplicating the structures may
cause performance problems.
Building Complex Data Structures Application Programming

Chapter 21

Using the XML DOM
Object Classes
The following topics are covered in this chapter:
About the Document Object Model 508
About the XML DOM Object Classes . . . 511

Using the XML DOM Classes 518
Tree-Walking Example 524
Application Programming 507

508 Chapter 21: Using the XML DOM Object Classes
About the Document Object Model

The Document Object Model (DOM) describes the content of XML data in the form
of a document object, which contains other objects that describe the various data
elements of the XML document. The DOM also specifies an interface for interacting
with the objects in the model. This is the interface exposed to the IDL user.

Note
For more information on XML, see “About XML” on page 484.

When to Use the DOM

There are two basic types of parsers for XML data: object-based and event-based.
The DOM is object-based and as such has advantages in certain situations over an
event-based parser such as SAX. In general, use the DOM:

• To access an XML document in any order (SAX must parse in file order)

• To write to a file (SAX does not support modifying or creating XML data)

For more information on the difference between the two parsers, see “About XML
Parsers” on page 485.

About the DOM Structure

Here is an example of an XML file that is used in an application to define a weather-
monitoring plug-in component:

<?xml version="1.0" encoding="UTF-8"?>
<plugin type="tab-iframe">

<name>Weather.com Radar Image [DEN]</name>
<description>600 mile Doppler radar image for DEN</description>
<version>1.0</version>
<tab>

<icon>weather.gif</icon>
<tooltip>DEN Doppler radar image</tooltip>

</tab>
</plugin>

The contents of this file constitute an XML document. When you want to work with
this data, you can use IDL to load the file, parse it, and store it in memory in DOM
format. The sample file listed above is stored in the DOM structure as shown in
Figure 21-1.
About the Document Object Model Application Programming

Chapter 21: Using the XML DOM Object Classes 509
The DOM structure is a tree of nodes, where each node is represented as a box in the
figure. The type of each node is in boldface. The contents of the node are in normal
type.

Note that whitespace and newline characters can appear in this tree as text nodes, but
are omitted in this picture for clarity. It is important to keep this in mind when
exploring the DOM tree. There are parsing options available that can prevent the
creation of ignorable-whitespace nodes (see “Working with Whitespace” on
page 522).

The attribute node (Attr) is not actually a child of the element node, but is still
associated with it, as indicated by the dotted line.

Figure 21-1: XML DOM Tree Structure: Plug-in Example

Document

Element
plugin

Element
name

Element
description

Element
version

Element
tab

Text
1.0

Text
600 mile...

Text
Weather.com...

Text
DEN Doppler...

Text
weather.gif

Element
tooltip

Element
icon

Attr
type, tab-iframe
Application Programming About the Document Object Model

510 Chapter 21: Using the XML DOM Object Classes
How IDL Uses the DOM Structure

To access the XML data in the structure, you need to create a set of IDL objects that
correspond to the portion of the DOM tree in which you are interested. You use the
following process to create the DOM tree and the corresponding IDL objects:

1. Create an IDLffXMLDOMDocument object.

2. Load the XML file. This step parses the XML data from the file and creates the
DOM tree in memory.

3. Use the IDLffXMLDOMDocument object to create IDLffXMLDOM objects
that essentially mirror portions of the DOM tree, as shown in Figure 21-2.

You then use the IDLffXMLDOM objects to access the actual XML data contained
in the DOM tree.

The creation and destruction of the IDL objects do not alter the DOM structure. There
are explicit methods for modifying the DOM structure. The IDL objects are merely
access objects that are used to manipulate the DOM tree nodes.

Figure 21-2: The DOM and IDL Trees

Document

Element

Element Element

CommentText

Document

DOM object tree
(parsed from XML data

loaded into memory)

IDL object tree
(created from object classes

after loading XML data)

Element

ElementElement

CommentText

Attr Attr
About the Document Object Model Application Programming

Chapter 21: Using the XML DOM Object Classes 511
About the XML DOM Object Classes

The IDL XML DOM support is provided by a set of IDL object classes, all starting
with IDLffXMLDOM. These classes provide access to the XML document via the
DOM. The IDLffXMLDOM objects do not in themselves maintain a copy of the
document data. Instead, they provide access to the data stored in the DOM document
structure.

IDLffXMLDOMNode Class Hierarchy

One of the key object classes is IDLffXMLDOMNode. Because it is an abstract class,
you will never create an instance of this class. The node is the basic DOM data
structure used to map each DOM data element. The nodes are organized in a classic
tree structure, according to the layout of the data in the document.

The following classes are derived from IDLffXMLDOMNode, where each class is
named IDLffXML<node type> (e.g., IDLffXMLDOMAttr):
Application Programming About the XML DOM Object Classes

512 Chapter 21: Using the XML DOM Object Classes
These classes represent the data that can be stored in an XML document. Except for
the IDLffXMLDOMDocument class, you do not instantiate any of them directly. To
begin working with the IDL XML DOM interface, you use the OBJ_NEW function
to create an IDLffXMLDOMDocument object. You then use this object to browse
and modify the document. This document object also creates objects using the
derived classes to give you access to the various parts of the document.

Figure 21-3: The IDLffXMLDOMNode Class Hierarchy

Node

Attr

CharacterData

Document

DocumentFragment

DocumentType

Element

Entity

EntityReference

Notation

ProcessingInstruction

Comment

Text CDATASection
About the XML DOM Object Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 513
For example:

oChild = oMyDOMDocument->GetFirstChild()

creates an IDL object of one of the node types, depending on what the first child in
your document actually is. The newly created IDL object refers to the first child node
of the document and does not modify the document in any way.

You then use the oChild object’s methods to get data from the node, modify the
node, or find another node.

Because of the class hierarchy, all the methods in a superclass are available to its
subclasses. For example, to determine which methods are available for use by an
object of the IDLffXMLDOMText class, you would have to look at the methods
belonging to the IDLffXMLDOMText, IDLffXMLDOMCharacterData, and
IDLffXMLDOMNode classes.

Note
The IDLffXMLDOMCharacterData class is a special abstract class that provides
character-handling facilities for its subclasses. You will never create an instance of
this class.

IDLffXMLDOM Object Helper Classes

IDL provides a set of other classes to assist you in navigating the DOM tree. These
classes are:

• IDLffXMLDOMNodeIterator — navigates in a depth-first, document-order
traversal.

• IDLffXMLDOMTreeWalker — navigates in a tree-walking traversal.

• IDLffXMLDOMNodeList — contains a list of children of a node. You can
create node lists using the GetElementsByTagName and GetChildNodes
methods, for example.

• IDLffXMLDOMNamedNodeMap — contains a list of attributes from an
element node that are looked up by attribute name.

The IDLffXMLDOMNodeIterator and IDLffXMLDOMTreeWalker classes do not
contain lists used in tree traversal. Instead, they each operate by creating a node
object for accessing a DOM node and then destroying that node object as the iterator
or walker is moved to another DOM node. Conceptually, both node iterators and tree
walkers are “current” node pointers into the DOM tree. For more information, see the
classes’ respective documentation in the IDL Reference Guide.
Application Programming About the XML DOM Object Classes

514 Chapter 21: Using the XML DOM Object Classes
The IDLffXMLDOMNodeList and IDLffXMLDOMNamedNodeMap classes
contain nodes that are subclasses of IDLffXMLDOMNode. Node lists and named
node maps are active collections of nodes that are updated as the DOM tree is
modified. That is, they are not static snapshots of a DOM tree in a given state; the list
contents are modified as the DOM tree is modified. While this dynamic update is
useful because you do not have to take specific action to update a list after modifying
the tree, it can be confusing in some situations.

Suppose you want to delete all the children of an element node. The following code
seems to make sense:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=0, n-1 DO $

oDeleted = oElement->RemoveChild(oList->Item(i))

This approach does not work as expected because after the first child is deleted, the
list is updated so it contains one fewer object, and the indexes of all remaining objects
are decremented by one. As the loop continues, some items are not deleted, and
eventually an error occurs when the loop index i exceeds the length of the shortened
list.

The following code performs the intended deletion, by changing the parameter to the
Item method from i to 0:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=0, n-1 DO $

oDeleted = oElement->RemoveChild(oList->Item(0))

This code works because each time the first child is deleted, the list is automatically
updated to place another object in the first position.

The following approach might be more appealing:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=n-1, 0, -1 DO $

oDeleted = oElement->RemoveChild(oList->Item(i))

This code works because it deletes items from the end of the list, rather than from the
beginning.

IDL Node Ownership

Whenever you create an IDLffXMLDOM node object with a method such as
IDLffXMLDOMNode::GetFirstChild, you are also creating an ownership
relationship between the created node object and the node object that created it.
About the XML DOM Object Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 515
Working from the previous plug-in example (see “About the DOM Structure” on
page 508), suppose that you have an object reference, oName, to an instance of the
IDLffXMLDOMElement class that refers to the first child of the plug-in node:

oName = oDocument->GetFirstChild()

Using oName, you can issue the following call:

oDescription = oName->GetNextSibling()

The description and name DOM nodes are siblings of each other in the DOM tree, as
shown in Figure 21-2. The IDL object oDescription refers to the description node
in the DOM tree, and the IDL object oName refers to the name node in the DOM tree.
However, the oDescription object is owned by the oName object because oName
created oDescription.

You might understand this relationship better by realizing that the parent/sibling
relationships in the DOM tree reflect the DOM tree structure and that the ownership
relationships among the IDL access objects are due to the creation of the IDL access
objects. Because oName created oDescription, oName destroys oDescription
when oName is destroyed, even though they refer to siblings in the DOM tree. Bear in
mind that destroying these access objects does not affect the DOM tree itself.

This parent relationship among IDLffXMLDOM objects is useful for cleaning them
up. Because all of the objects that might have been created during the exploration of a
DOM tree are all ultimately descendants of an IDLffXMLDOMDocument node,
simply destroying the document object is sufficient to clean up all the nodes. Unless
you are concerned with cleaning up some access objects at a particular time (to save
memory, for example), you can simply wait to clean them all up when you are
finished with the data by destroying the IDLffXMLDOMDocument node.

To reduce memory requirements, you can destroy node objects that are no longer
needed. For example, if you wanted to explore all the children of a given element
oElement, you might use the following code:

oFirstChild = oElement->GetFirstChild()
oChild = oFirstChild
WHILE OBJ_VALID(oChild) DO BEGIN

PRINT, oChild->GetNodeValue()
oChild = oChild->GetNextSibling()

ENDWHILE
OBJ_DESTROY, oFirstChild

This approach works well because all the node objects created during the exploration
of the children by the GetNextSibling method are destroyed when oFirstChild is
destroyed. While it would seem that objects “lost” to the reassignment of oChild
would not be accessible for destruction, the chain of oChild objects keeps track of
Application Programming About the XML DOM Object Classes

516 Chapter 21: Using the XML DOM Object Classes
them and destroys them all when the head of the chain, saved in oFirstChild, is
destroyed.

Trying to destroy node objects inside the loop as follows does not work as expected:

oChild = oElement->GetFirstChild()
WHILE OBJ_VALID(oChild) DO BEGIN

PRINT, oChild->GetNodeValue()
oNext = oChild->GetNextSibling()
OBJ_DESTROY, oChild
OChild = oNext

ENDWHILE

This code fails because when oChild is destroyed for the first time, it also destroys
oNext, causing the loop to exit after the first iteration.

If there is a very large number of children, waiting until the end of the loop to destroy
the list might be too inefficient. Using a node list, as in the following code, is an
alternative:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=0, n-1 DO BEGIN

oChild = oList->Item(i)
PRINT, oChild->GetNodeValue()
OBJ_DESTROY, oChild

ENDFOR
OBJ_DESTROY, oList

Although oList requires some space to maintain the list, there is only one valid node
connected to oChild in memory each time through the loop.

You can change the node deletion policy so that nodes created by a node are not
deleted when the node is destroyed. This change lets the following code work
properly:

oDocument->SetProperty, NODE_DESTRUCTION_POLICY=1
oChild = oElement->GetFirstChild()
WHILE OBJ_VALID(oChild) DO BEGIN

PRINT, oChild->GetNodeValue()
oNext = oChild->GetNextSibling()
OBJ_DESTROY, oChild
oChild = oNext

ENDWHILE

Now, the OBJ_DESTROY call no longer destroys the object to which oNext refers,
and the loop proceeds as expected.
About the XML DOM Object Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 517
Saving and Restoring IDLffXMLDOM Objects

IDL does not save IDLffXMLDOM objects in a SAVE file. If you restore a SAVE file
that contains object references to IDLffXMLDOM objects, the object references are
restored, but are set to null object references.

The IDLffXMLDOM objects are not saved because they contain state information for
the external Xerces library. This state information is not available to IDL and cannot
be restored. The contents of the XML file might also have changed, which would also
make any saved state invalid.

It is recommended that applications either complete any DOM operations before
saving their data in a SAVE file or reload the DOM document as part of restoring
their state.
Application Programming About the XML DOM Object Classes

518 Chapter 21: Using the XML DOM Object Classes
Using the XML DOM Classes

Continuing from the weather plug-in example (see “About the DOM Structure” on
page 508), this section describes how to use the IDL XLM DOM object classes,
namely how to do the following actions:

• Load an XML document

• Read XML data from a document

• Modify existing XML data

• Create new XML data

• Destroy IDLffXMLDOM objects

Loading an XML Document

Although the DOM tree structure is in memory after the XML file is loaded, you
cannot directly access the data from IDL until you have created IDLffXMLDOM
objects to access them. The DOM loads and parses the XML data into a tree
structure, but you need to create a document object to access that data through a
mirroring IDL tree structure.

To prepare the interface, load the document:

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oDocument->Load, FILENAME='sample.xml'

This code causes the DOM tree structure to be formed in memory. You could also
perform the same action in one line:

oDocument = OBJ_NEW('IDLffXMLDOMDocument', FILENAME='sample.xml')

Be aware that either of these examples will discard an existing DOM tree referenced
by oDocument. You can load and reload an XML file as often as desired, but each
loading action will overwrite, not add to, the existing tree and remove its objects from
memory.

Tip
You can read from and write to IDL variables rather than disk files, see
“IDLffXMLDOMDocument::Init” (IDL Reference Guide) for more details.
Using the XML DOM Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 519
Reading XML Data

Suppose that you want to print the name of the plug-in. The plug-in element node is
the first and only child of the document node. A document node can have only one
element child node, which represents the containing element for the entire document
(for comparison, consider that an HTML file has only one <HTML></HTML> pair).
The name of the element node is the first element child of the plug-in element. There
may be several ways to locate a desired piece of data using the IDL XML DOM
classes. The following example illustrates one way to find the plug-in name.

First, access the first child of the document, which is the plug-in element:

oPlugin = oDocument->GetFirstChild()

The GetFirstChild method creates an IDLffXMLDOMElement node object and
returns its object reference, which is stored in oPlugin.

Next, ask the plug-in for a list of all of its child element nodes. The oPlugin object
creates an IDLffXMLDOMNodeList object and places all the child element nodes in
the list. You could have asked for only the name element, but by asking for them all,
you will have the other elements in the list in case you need to look at them later.

oNodeList = oPlugin->GetElementsByTagName('*')

You know from the design of the XML data, perhaps as defined in a DTD, that the
name element must always be the first child of a plug-in element. You can access the
name as follows:

oName = oNodeList->Item(0)

You also know that the name element can only contain a text node. Getting access to
the text node lets you print the data that you want.

oNameText = oName->GetFirstChild()
PRINT, oNameText->GetNodeValue()

This command prints out:

Weather.com Radar Image [DEN]

Note that the oPlugin and the oName objects are of type IDLffXMLDOMElement,
and the oNameText object is of type IDLffXMLDOMText. The oName and
oNameText objects are created by the GetFirstChild and Item methods, using the
object class that is appropriate for the type of data in the DOM tree. You used the
GetElementsByTagName method to get the child elements of the plug-in, without
having to sort through the whitespace text nodes that are present.

At this point, you have four IDL objects in addition to the root document object that
give you access to only the portion of the DOM tree to which these objects
Application Programming Using the XML DOM Classes

520 Chapter 21: Using the XML DOM Object Classes
correspond. You can create additional objects to explore other parts of the tree and
destroy objects for parts that you are no longer interested in.

Modifying Existing Data

You can also modify XML data and write the result back out to a file.

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oDocument->Load, FILENAME='sample.xml'
oPlugin = oDocument->GetFirstChild()
oNodeList = oPlugin->GetElementsByTagName('*')
oName = oNodeList->Item(0)
oNameText = oName->GetFirstChild()
oNameText->SetNodeValue, 'Weather.com Radar Image [PDX]'
oDocument->Save, FILENAME='sample2.xml'
OBJ_DESTROY, oDocument

This code modifies the name node to change the airport to Portland, Oregon, and
writes the modified XML to a new file. Please note that if you save to an existing file
(e.g., using sample.xml instead of sample2.xml at the end of this example), the
current XML data will replace the file entirely.

Creating New Data

You can create an IDLffXMLDOMDocument object and start adding nodes to it
without loading a file.

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oElement = oDocument->CreateElement('myElement')
oVoid = oDocument->AppendChild(oElement)
oDocument->Save, FILENAME='new.xml'
OBJ_DESTROY, oDocument

This code creates the following XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<myElement/>

Note that <myElement/> is XML shorthand for <myElement></myElement>.

Destroying IDLffXMLDOM Objects

Suppose that you are done with the name node and want to look at the description.

OBJ_DESTROY, oName
oDesc = oNodeList->Item(1)
oDescText = oDesc->GetFirstChild()
PRINT, oDescText->GetNodeValue()
Using the XML DOM Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 521
This code destroys the oName object and oNameText with it because it was created
by oName’s GetFirstChild method. This automatic destruction cleans up all the
objects that you might have created from the oName node. You can then fetch the
description element from the node list and print its name in the same manner. The
name node is still in the node list and can be fetched again from the node list with the
Item method, if needed.

Finally,

OBJ_DESTROY, oDocument

destroys the top-level object that you originally created with the OBJ_NEW function
and also destroys any other objects that were created directly or indirectly from the
oDocument object.

You can write the first code sample above more compactly because of the ability of
the IDLffXMLDOMDocument object to clean up all the objects it and its children
created:

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oDocument->Load, FILENAME='sample.xml'
PRINT, ((((oDocument->GetFirstChild())-> $

GetElementsByTagName('name'))-> $
Item(0))->GetFirstChild())->GetNodeValue()

OBJ_DESTROY, oDocument

Under normal circumstances, the three object references created by the calls to the
GetFirstChild and GetElementsByTagName methods would be lost because the
object references to these three objects were not stored in IDL user variables.
However, these objects are cleaned up by the document object when it is destroyed.

For additional information, see “Orphan Nodes” on page 523.

Please note:

• In general, you should not use the OBJ_NEW function to create any
IDLffXMLDOM objects except for the top-level document object. Use the
methods such as GetFirstChild to create the objects.

• You can destroy objects obtained from the various methods (e.g.,
GetFirstChild) at any time by the OBJ_DESTROY procedure.

• Objects destroyed by the OBJ_DESTROY procedure also destroy objects that
they created.

• Destroying objects does not modify the DOM structure. That is, destroying
any of the IDLffXMLDOM objects does not modify the data in the DOM tree.
There are explicit methods for modifying DOM tree data. Destroying
Application Programming Using the XML DOM Classes

522 Chapter 21: Using the XML DOM Object Classes
IDLffXMLDOM objects only removes your ability to access the DOM tree
data.

Working with Whitespace

The XML parser is very particular about whitespace because all characters in an
XML document define the content of that document. Whitespace consists of spaces,
tabs, and newline characters, all of which are commonly used to format documents to
make them easier to work with. In many cases, this whitespace is unimportant with
respect to the document content. It is there only for presentation and does not affect
the actual data stored in the XML document. However, in some cases, for example
with CDATA or text node information, the whitespace might be important.

When whitespace is not important, IDL can treat it as ignorable. In many
circumstances, you might want the parser to skip over this ignorable whitespace and
not place it in the DOM tree so that you do not need to deal with it when visiting
nodes in the DOM tree.

For example, the following two XML fragments produce different DOM trees when
parsed with the default parser settings:

<stateList>
<state>Colorado</state>

</stateList>

<stateList><state>Colorado</state></stateList>

In the first fragment, the stateList element has two child nodes that the second
fragment does not. They are text nodes containing whitespace, a newline, and some
tabs or spaces.

For the parser to distinguish between non-ignorable and ignorable whitespace, there
must be a DTD associated with the XML document, and it must be used to validate
the document during parsing. This implies that a VALIDATION_MODE of 1 or 2
must be used when loading the XML document with the
IDLffXMLDOMDocument::Load method.

Once validation is established, you can either:

• Tell the parser not to include ignorable text nodes in the DOM tree by
setting the EXCLUDE_IGNORABLE_WHITESPACE keyword in the
IDLffXMLDOMDocument::Load method. If you select this option, the
DOM trees for each of the above two fragments are the same.

• Check each text node in the DOM tree with the
IDLffXMLDOMText::IsIgnorableWhitespace method.
Using the XML DOM Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 523
Orphan Nodes

You can remove nodes from the DOM tree by using the
IDLffXMLDOMNode::RemoveChild and IDLffXMLDOMNode::ReplaceChild
methods. When these nodes are removed from the tree, they are owned by the DOM
document directly and have no parent (since they are not in the tree anymore).
Similarly, when these methods are used, the IDLffXMLDOM objects' ownership is
changed as well because the IDL tree (made by creating the document interface and
adding nodes) must mirror the underlying DOM tree.

If you issue the following command:

oMyRemovedChild = oMyElement->RemoveChild(oMyChild)

oMyChild is no longer owned by oMyElement and becomes owned by the
document object to which all these nodes belong. Here, oMyRemovedChild and
oMyChild are actually object references to the same object. The function method
syntax provides a convenient way to create a new object reference variable with a
new name that reflects the new status of the removed object, and you can use either
name to access the orphaned node.

After removal, the orphan node is loosely associated with the document via the
ownership relationship and would not be included in the output if the DOM tree were
written to a file. You can insert the node back into the DOM tree with an InsertBefore
or AppendChild method.

If the document that contains orphan nodes is destroyed, the orphan nodes are lost.
More specifically, DOM tree orphan nodes are not written out to a file if they are
orphans at the time that the IDLffXMLDOMDocument::Save method is used to save
the tree, and the IDL node objects referring to the orphans are destroyed when the
document object is destroyed.
Application Programming Using the XML DOM Classes

524 Chapter 21: Using the XML DOM Object Classes
Tree-Walking Example

The following code traverses a DOM tree using pre-order traversal.

PRO sample_recurse, oNode, indent

; "Visit" the node by printing its name and value
PRINT, indent GT 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $

oNode->GetNodeName(), ':', oNode->GetNodeValue()

; Visit children
oSibling = oNode->GetFirstChild()
WHILE OBJ_VALID(oSibling) DO BEGIN

SAMPLE_RECURSE, oSibling, indent+3
oSibling = oSibling->GetNextSibling()

ENDWHILE
END

PRO sample
oDoc = OBJ_NEW('IDLffXMLDOMDocument')
oDoc->Load, FILENAME="sample.xml"
SAMPLE_RECURSE, oDoc, 0
OBJ_DESTROY, oDoc

END

This program generates the following output for the plug-in file (see “About the
DOM Structure” on page 508):

#document:
plugin:

#text:

name:
#text:Weather.com Radar Image [DEN]

#text:

description:
#text:600 mile Doppler radar image for DEN

#text:

version:
#text:1.0

#text:

tab:
#text:

icon:
Tree-Walking Example Application Programming

Chapter 21: Using the XML DOM Object Classes 525
#text:weather.gif
#text:

tooltip:
#text:DEN Doppler radar image

#text:

#text:

The program above created an IDLffXMLDOM object for every node it encountered
and did not destroy them until the document was destroyed. Another approach,
illustrated in the program below, cleans up the nodes as it proceeds:

PRO sample_recurse2, oNode, indent
;; "Visit" the node by printing its name and value
PRINT, indent gt 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $

oNode->GetNodeName(), ':', oNode->GetNodeValue()

;; Visit children
oNodeList = oNode->GetChildNodes()
n = oNodeList->GetLength()
for i=0, n-1 do $

SAMPLE_RECURSE2, oNodeList->Item(i), indent+3
OBJ_DESTROY, oNodeList

END

PRO sample2
oDoc = OBJ_NEW('IDLffXMLDOMDocument')
oDoc->Load, FILENAME="sample.xml"
SAMPLE_RECURSE2, oDoc, 0
OBJ_DESTROY, oDoc

END

Please note that document and text nodes do not have node names, so the
GetNodeName method always returns ‘#document’ and ‘#text,’ respectively.
Application Programming Tree-Walking Example

526 Chapter 21: Using the XML DOM Object Classes
Tree-Walking Example Application Programming

Part III: Creating
Applications in IDL

Chapter 22

Providing Online Help
For Your Application
The following topics are covered in this chapter:
Overview of Creating Application Help . . 532
Providing Help Within the User Interface . 533
Displaying Text Files 536
Using an External Viewer 537

About IDL’s Online Help System 538
Using Other Online Help Viewers 539
Using the IDL Assistant Help System . . . 545
Application Programming 531

532 Chapter 22: Providing Online Help For Your Application
Overview of Creating Application Help

IDL gives you the ability to display help information for your applications, routines,
etc. using a variety of mechanisms:

• Using tooltips, status bars, and text widgets to display small amounts of help
information within an application’s interface.

• Using the XDISPLAYFILE procedure to display text files in an IDL window
separate from your application.

• Using the SPAWN procedure to display a file in an external editor or viewer.

• Using IDL’s own online help facilities, via the ONLINE_HELP procedure, to
display Windows Help files, Adobe Portable Document Format files, or
HTML files.

These techniques vary in complexity, cost, and level of integration with IDL and your
own application. The following sections describe each option in detail.
Overview of Creating Application Help Application Programming

Chapter 22: Providing Online Help For Your Application 533
Providing Help Within the User Interface

There are numerous ways to supply help and feedback to users of a widget
application without the need to display a help file in an external window. The
following techniques can augment, if not necessarily replace, a more complete online
help file.

Tooltips

Tooltips are short text strings that appear when the mouse cursor is positioned over a
button or draw widget for a few seconds. Often a tooltip is enough to remind a user of
the function of a button, eliminating the need for the user to consult more extensive
documentation.

Tooltips are created by specifying a text string as the value of the TOOLTIP keyword
to the WIDGET_BUTTON function:

DoneButton = WIDGET_BUTTON(base, VALUE='Done', $
TOOLTIP='Click here to close the application')

Note
Draw widgets can also display tooltips.

Status Lines

You can give users feedback about the status of an operation or the function of an
interface element by updating a status line included in your widget interface. Status
lines are generally located at the bottom of the interface, and can be updated as the

Figure 22-1: A Tooltip
Application Programming Providing Help Within the User Interface

534 Chapter 22: Providing Online Help For Your Application
user moves the mouse cursor over interface elements or as the status of the
application changes.

The following example demonstrates how a status line can be updated as the mouse
cursor moves over a set of buttons. Similar code could update the value of the label
widget as other events occur. To view the results, paste the code into an IDL editor
window and save it as label_update.pro, then compile and run.

; Event-handler routine
PRO label_update_event, ev

; If the event is a tracking event, update the label widget.
IF (TAG_NAMES(ev, /STRUCTURE) EQ 'WIDGET_TRACKING') THEN BEGIN

WIDGET_CONTROL, ev.TOP, GET_UVALUE=label
WIDGET_CONTROL, ev.ID, GET_VALUE=val, GET_UVALUE=uval
WIDGET_CONTROL, label, SET_VALUE=uval
WIDGET_CONTROL, label, SET_VALUE=uval

ENDIF

; If the event is a button event, and comes from Button 2,
; then destroy the application.
IF (TAG_NAMES(ev, /STRUCTURE) EQ 'WIDGET_BUTTON') THEN BEGIN

WIDGET_CONTROL, ev.ID, GET_VALUE=val
IF (val EQ 'Button 2') THEN WIDGET_CONTROL, ev.TOP, /DESTROY

ENDIF

END

; Widget creation routine
PRO label_update

base=WIDGET_BASE(/COLUMN, XSIZE=200)

; Set the button widgets to generate tracking events, so we
; know when the mouse cursor is over them.
b1 = WIDGET_BUTTON(base, VALUE='Button 1', $

Figure 22-2: A status line.
Providing Help Within the User Interface Application Programming

Chapter 22: Providing Online Help For Your Application 535
UVALUE='Button One does nothing', /TRACKING_EVENTS)
b2 = WIDGET_BUTTON(base, VALUE='Button 2', $

UVALUE='Button Two closes the application', /TRACKING_EVENTS)
label = WIDGET_LABEL(base, XSIZE=190, /SUNKEN_FRAME)

; Set the user value of the base widget equal to the widget ID
; of the label widget.
WIDGET_CONTROL, base, SET_UVALUE=label

; Realise the widgets and call XMANAGER.
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'label_update', base

END

Text Widgets

To display larger amounts of text than will fit conveniently in a status line, you can
include a text widget in your application’s interface. The process of updating the text
widget’s value depending on user actions is similar to the process described in the
status line example, above.

To display larger blocks of text that would not fit conveniently within the body of
your application’s interface, consider using the XDISPLAYFILE procedure as
described in “Displaying Text Files” on page 536.
Application Programming Providing Help Within the User Interface

536 Chapter 22: Providing Online Help For Your Application
Displaying Text Files

The IDL XDISPLAYFILE procedure displays an ASCII text file using a predefined
widget interface. To see an example, enter the following statement at the IDL
command prompt:

XDISPLAYFILE, FILEPATH('relnotes.txt')

This command displays the current release notes file for your IDL installation in a
widget interface.

To display your own text file, create a “Help” button of some sort in your widget
interface and configure the button’s event handling procedure to call
XDISPLAYFILE with the full path to the text file.

See “XDISPLAYFILE” (IDL Reference Guide) for more details.

Note
By default, the XDISPLAYFILE window exists separately from your application,
and will not be closed when your application exits. To ensure that the
XDISPLAYFILE window closes when your application exits, set the value of the
GROUP keyword equal to the widget ID of your application’s top-level base. See
“Using Multiple Widget Hierarchies” (Chapter 3, Widget Application
Programming) for a discussion of widget grouping.
Displaying Text Files Application Programming

Chapter 22: Providing Online Help For Your Application 537
Using an External Viewer

If you are certain that a specific viewing application is present on the system on
which your application will run, you can use the IDL SPAWN procedure to display a
help file using that application.

Note that you must have some fairly explicit information about the system on which
your application will run to use this technique. You must know:

• that the application you wish to use is installed on the system, and

• the full path to the application’s executable file.

(If your application is complex enough to have an installation program or procedure,
you might be able to query the user for the path to the external viewer at installation
time.)

Note
If you want to display HTML or Portable Document Format (PDF) files, see “Using
Other Online Help Viewers” on page 539.

For example, suppose you know that your application will run on a Windows system,
you could open a text file in the Notepad application, which is always located in the
Windows system directory and can be invoked without specifying a full path:

SPAWN, 'notepad.exe D:/myapp/myfile.txt', /NOSHELL, /NOWAIT

For more information, see “SPAWN” (IDL Reference Guide).
Application Programming Using an External Viewer

538 Chapter 22: Providing Online Help For Your Application
About IDL’s Online Help System

Beginning with IDL version 7.0, IDL’s context-sensitive online help system is built
on the user assistance infrastructure provided by the Eclipse framework on which the
IDL Workbench is built. Help content for IDL is provided in a set of help plugins —
.jar archives that contain HTML help content files and XML documents that
control how the content is presented.

IDL’s online help system is described in detail from a user’s point of view in Using
IDL Help — located, appropriately enough, in the IDL online help system.

In IDL 7.0, it is not possible for IDL developers to write help content to be displayed
in IDL’s own help system. We hope to provide this capability to IDL developers in a
future release. In the meantime, see “Using Other Online Help Viewers” on page 539
for options on providing help for your IDL applications.
About IDL’s Online Help System Application Programming

../com.rsi.idl.doc.wb/Using_IDL_Help.html
../com.rsi.idl.doc.wb/Using_IDL_Help.html

Chapter 22: Providing Online Help For Your Application 539
Using Other Online Help Viewers

You can use the ONLINE_HELP procedure to display help files in several formats.
The type of help file or files you choose to create will depend on the platforms on
which your IDL application will be used, and on your own preferences.

• IDL Assistant Help Systems

• Microsoft Windows Help

• Portable Document Format Files

• HTML Files

IDL Assistant Help Systems

IDL versions 6.2 through 6.4 used a cross-platform help viewer — IDL Assistant —
based on the help viewer used by the Qt development toolkit from Trolltech.
Although the IDL Assistant help viewer has been replaced as IDL’s default help
viewer in version 7.0, it is still included in IDL distributions as an option for user-
created help systems.

The process of creating help systems for that use the IDL Assistant is somewhat
complex. See “Using the IDL Assistant Help System” on page 545 for complete
details.

Microsoft Windows Help

There are currently two Windows online help formats in wide use: WinHelp and
HTML Help. WinHelp is the older of the two, and many applications still provide
help in this format, which can be distinguished by the file extension “.hlp”.
HTML Help is the newer format, and provides (among other things) the ability to
include links to documents in various formats, both local and network-based.
HTML Help files use the file extension “.chm”. Viewers for both types of online
help are included in all relatively current versions of Windows, and IDL’s
ONLINE_HELP procedure will invoke the correct viewer for either type of file.

Creating Windows Help Files

Microsoft Windows help files are relatively easy to create. Files in a specified format
(the Rich Text Format, (RTF) for WinHelp, or a wider variety of formats for HTML
Help) are compiled with a help compiler from Microsoft. The help compiler is part of
the Windows Software Developer’s Kit, and is now included in several Microsoft
programming products, including the Visual C++ development environment. The
Application Programming Using Other Online Help Viewers

540 Chapter 22: Providing Online Help For Your Application
help compiler may also be available from the Microsoft Web site or other Microsoft
online software libraries at little or no cost.

It is beyond the scope of this manual to discuss the preparation and compilation of
Windows help files. Microsoft provides useful information about its help-system
products as part of the Microsoft Developer’s Network; try searching the MSDN site
at http://msdn.microsoft.com with the search term “HTML Help” or
“WinHelp”. There are also numerous third-party books on creating Windows help
systems available.

Calling Windows Help Files

To call a Windows help file of either type from within IDL, use the ONLINE_HELP
procedure. Specify the name of your help file using the BOOK keyword, and
optionally specify a search term in the Value argument. Alternatively, you can
specify a context number in the Value argument and include the CONTEXT
keyword. See “ONLINE_HELP” (IDL Reference Guide) for details.

Depending on where your application and its help files are installed, you may also
need to specify the full path to the file and the FULL_PATH keyword.

Example 1

Suppose you have created an HTML Help file named myapp.chm to accompany
your IDL application. Use the following call to open the HTML Help viewer and load
the search term “controls” into the Index dialog:

ONLINE_HELP, 'controls', BOOK='path\myapp.chm', /FULL_PATH

where path is the full path to the file myapp.chm.

Example 2

Suppose you have created a WinHelp file named myapp.hlp and placed it in the
Help subdirectory of your IDL installation. If you know that the context number of
the topic you wish to display is 250, use the following call to open the WinHelp
viewer to the correct topic:

ONLINE_HELP, 250, BOOK='myapp', /CONTEXT

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: .chm (Windows only), .hlp (Windows
only), .pdf, .html, .htm. See “Paths for Help Files” on page 561 for details on
setting the help path.
Using Other Online Help Viewers Application Programming

Chapter 22: Providing Online Help For Your Application 541
Cross-Platform Issues

Windows help files (of either format) are viewable only on Microsoft Windows
platforms. If your IDL application will be available on UNIX platforms as well as
Microsoft Windows platforms, you have several options:

• Create help content suitable for use by the cross-platform IDL Assistant help
viewer. See “About IDL’s Online Help System” on page 538 for details on
creating help content that will display in IDL Assistant.

• Create separate help files (one in Windows Help format, one in PDF or HTML
format) and issue the appropriate call to ONLINE_HELP based on the current
platform. If you name the files with the same base name (but with different file
extensions), IDL will automatically select the correct file for the platform.

• Create a single help file in PDF or HTML format, and caution your users that
they must have a the appropriate viewing application installed in order to use
your help file. In addition, UNIX users must ensure that the viewing
application is properly configured for use by IDL, as described in “Displaying
HTML and PDF Files under UNIX” under “ONLINE_HELP” (IDL Reference
Guide).

Portable Document Format Files

You can use the ONLINE_HELP procedure to display a PDF file on any system that
has a PDF-display application installed.

Note
IDL launches a stand-alone version of the PDF viewing application. Files are not
displayed in the Windows help viewer or any other browser application.

Creating PDF Files

To create PDF files for use with IDL’s online help system, you will need an
application that allows you to author PDF files or convert files in other formats to
PDF. Most commonly, source files are created with a text-editor, word-processor, or
other document-production program, printed to a PostScript file, and run through a
program that distills the PostScript into PDF. Adobe’s commercial Acrobat package
includes the Acrobat Distiller, which provides a convenient GUI interface to the
distillation process. Other third-party software to distill PostScript files into PDF is
also available; GhostScript (www.ghostscript.com) is one freely available
alternative.
Application Programming Using Other Online Help Viewers

542 Chapter 22: Providing Online Help For Your Application
It is beyond the scope of this manual to discuss creation of PDF files in detail; consult
the documentation for your PDF authoring system or distilling software for details.

Calling PDF Files

To call a PDF help file from within IDL, use the ONLINE_HELP procedure. Specify
the name of your PDF file using the BOOK keyword. Depending on where your
application and its help files are installed, you may also need to specify the full path
to the file and the FULL_PATH keyword.

See “ONLINE_HELP” (IDL Reference Guide) for details.

Example 1

Suppose you have created a PDF file named myapp.pdf to accompany your IDL
application. Use the following call to open the PDF viewer and display the first page
of the file:

ONLINE_HELP, BOOK='path\myapp.pdf', /FULL_PATH

where path is the full path to the file myapp.pdf.

Example 2

If the myapp.pdf file is located in one of the directories included in IDL’s
!HELP_PATH system variable, you do not need to include either the .pdf extension
or the FULL_PATH keyword:

ONLINE_HELP, BOOK='myapp'

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: .chm (Windows only), .hlp (Windows
only), .pdf, .html, .htm. See “Paths for Help Files” on page 561 for details on
setting the help path.

Cross-Platform Issues

If you intend to use PDF files to supply online help for your cross-platform
application, you should caution your users that they must have a the appropriate PDF
viewing application installed in order to use your help file. In addition, UNIX users
must ensure that the viewing application is properly configured for use by IDL, as
described in “Displaying HTML and PDF Files under UNIX” under
“ONLINE_HELP” (IDL Reference Guide).
Using Other Online Help Viewers Application Programming

Chapter 22: Providing Online Help For Your Application 543
HTML Files

You can use the ONLINE_HELP procedure to display an HTML file on any system
that has a Web-browser installed. On UNIX systems, the browser’s executable file
must also be in a directory included in the PATH environment variable.

Creating HTML Files

It is beyond the scope of this manual to discuss HTML authoring in detail. Use any
technique you are comfortable with to create HTML files for display in a normal
Web browser.

Note
You can use the MK_HTML_HELP procedure to create HTML-formatted
documentation for your application from standard IDL documentation headers. See
“MK_HTML_HELP” (IDL Reference Guide) for details.

Calling HTML Files

To call an HTML file from within IDL, use the ONLINE_HELP procedure. Specify
the name of your HTML file using the BOOK keyword. Depending on where your
application and its help files are installed, you may also need to specify the full path
to the file and the FULL_PATH keyword.

See “ONLINE_HELP” (IDL Reference Guide) for details.

Example 1

Suppose you have created an HTML file named myapp.html to accompany your
IDL application. Use the following call to open the default Web browser and display
the file, positioned to the HTML anchor tag anchor1:

ONLINE_HELP, 'anchor1', BOOK='path\myapp.html', /FULL_PATH

where path is the full path to the file myapp.html.

Example 2

If the myapp.html file is located in one of the directories included in IDL’s
!HELP_PATH system variable, you do not need to include the .html extension or
the FULL_PATH keyword:

ONLINE_HELP, BOOK='myapp'

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
Application Programming Using Other Online Help Viewers

544 Chapter 22: Providing Online Help For Your Application
following file extensions, in this order: .chm (Windows only), .hlp (Windows
only), .pdf, .html, .htm. See “Paths for Help Files” on page 561 for details on
setting the help path.

Cross-Platform Issues

If you intend to use HTML files to supply online help for your cross-platform
application, keep the following things in mind:

• IDL does not require that a Web browser be installed. While it is unlikely that
you will encounter systems that do not include a Web browser, you may wish
to inform your users in advance that your application uses a Web browser to
supply help.

• On UNIX systems, it may be necessary to modify IDL’s default HTML
browser configuration script to use a locally-preferred browser. See
“Displaying HTML and PDF Files under UNIX” under “ONLINE_HELP”
(IDL Reference Guide) for details.

• Different browsers contain different display engines, and may display HTML
in different ways. This is especially true if you use features that have only
recently been added to the HTML specification. Check for display issues using
as many browsers as you reasonably can.
Using Other Online Help Viewers Application Programming

Chapter 22: Providing Online Help For Your Application 545
Using the IDL Assistant Help System

IDL versions 6.2 through 6.4 used a cross-platform help viewer — IDL Assistant —
based on the help viewer used by the Qt development toolkit from Trolltech.
Although the IDL Assistant help viewer has been replaced as IDL’s default help
viewer in version 7.0, it is still included in IDL distributions as an option for user-
created help systems.

This section discusses the following topics relating to creating help systems for the
IDL Assistant help viewer:

• “Using the IDL Assistant Help Viewer” on page 545

• “Format of an IDL Assistant Help System” on page 552

• “Creating Help Content” on page 552

• “Creating an Assistant Document Profile” on page 553

• “Optional Help System Files” on page 559

• “Displaying Help Topics” on page 560

• “Paths for Help Files” on page 561

Using the IDL Assistant Help Viewer

This section describes how to use the IDL Assistant application. For information on
creating help content that uses the IDL Assistant for your own IDL applications, see
the sections that follow.

The Main Window

The IDL Assistant main window contains the text of the current topic. Within the
main window you can:

• Follow hypertext links to other topics, or to sections within the current topic

• Navigate to the next or preceding topic using arrows at the top of the topic
screen

• Display multiple topics simultaneously using the tabbed interface

• Create new tabs and close existing tabs using icons to the right and left of the
tabs
Application Programming Using the IDL Assistant Help System

546 Chapter 22: Providing Online Help For Your Application
• Perform common tasks including display of the next/previous topic, tab
management, text sizing, copying text to the clipboard, and finding text within
the topic using the context menu

The Sidebar

The IDL Assistant sidebar provides four tabs that allow you to navigate through the
specified documentation set. All of the tabs provide a context menu that allows you to
open the selected topic the current tab, a new tab, or a new window.

The Contents Tab

The Contents tab displays a hierarchical listing of the contents of the various books
in the specified documentation set.

The Index Tab

The Index tab provides a keyword index of the contents of the specified
documentation set. Enter a text string in the Look For: field to see keywords that
match the string.

The Search Tab

The Search tab allows you to search the text of the specified documentation set for
words or phrases. Text matching your search string is highlighted when a topic is
displayed in the main window.

Tip
Words or phrases entered in the Search tab are not case sensitive.

To search for words, enter one or more strings in the Searching for: field, separated
by spaces and click Search. IDL Assistant displays a list of topics that contain all of
the words you entered.

To search for a phrase, enclose the phrase in single or double quote marks.

The list of topics containing the search words or phrase is displayed as a list ranked
roughly according to the number of occurrences of the words or phrases, with the
topics containing the largest number of occurrences listed given higher rankings.

Allowed Characters

The following characters are allowed in the Search tab:

• Letters (upper- and lower-case)

• Numbers (0-9)
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 547
• Quote marks (single ('), double (“), backwards (`))

• Exclamation marks (!), colons (:), and periods (.)

• Spaces

• Hyphens (-)

• Underscores (_)

• Asterisk (*) as a wildcard matching one or more unspecified characters

Note
The * character cannot be used within quotes or at the beginning of a string.

All other characters are disallowed; you cannot enter them in the Searching for:
field.

Warning
Searches that contain single-character strings (such as “a” or “8”) are not allowed
and will return no results. This is true even when the single character is combined
with a punctuation character such as a hyphen. For example, searching for the string
“8-bit” will return no results.

Examples

The Bookmarks Tab

The Bookmarks tab allows you to save links to specific topics in the IDL
documentation set for easy reference.

convol List all topics that contain the word “convol”

convol* List all topics that contain a word beginning with “convol”

base widget List all topics that contain the word “base” and the word
“widget”

"base widget" List all topics that contain the phrase “base widget”
Application Programming Using the IDL Assistant Help System

548 Chapter 22: Providing Online Help For Your Application
The Menu Bar

The IDL Assistant menu bar runs across the top of the IDL Assistant window, and
provides access to the features listed below. Keyboard shortcuts to invoke various
menu items are listed in the menus themselves.

Menu Item Function

File New Window Open a new IDL Assistant window.

Add Tab Open a new tab displaying the same topic as the
currently selected tab.

Close Tab Close the currently selected tab.

Print Print the contents of the currently selected tab. See
“Printing” on page 551 for details.

Close Close the current IDL Assistant window.

Exit Close all IDL Assistant windows.

Edit Copy Copy text selected in the main window to the
system clipboard.

Find in Text... Search for a text string in the currently displayed
topic.

Find Next Find the next instance of the text string in the
currently displayed topic.

Find Previous Find the previous instance of the text string in the
currently displayed topic.

Settings... Display the Settings dialog. See “Settings” on
page 551 for details.

Table 22-1: IDL Assistant Menus
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 549
View Zoom in Increase the text size in the main window. See
“Text Zoom” on page 550 for important notes.

Zoom out Decrease the text size in the main window. See
“Text Zoom” on page 550 for important notes.

Views... Control display of the Sidebar and Standard
toolbar.

Note - The Line Up feature realigns the toolbar if
it has been moved.

Go Previous Display the current tab’s previous topic.

Next Display the current tab’s next topic.

Home Display the IDL online help Home page.

Next Tab Select the tab to the right of the current tab, if any.

Previous Tab Select the tab to the left of the current tab, if any.

Bookmark Add
Bookmark

Create a bookmark for the currently selected topic.

Bookmark list Existing bookmarks are displayed at the bottom of
this menu.

Help IDL Assistant
Manual

Display this help topic.

About
IDL Assistant

Display information about IDL Assistant.

What’s This? Display context-sensitive pop-up help about some
portions of the IDL Assistant interface.

Menu Item Function

Table 22-1: IDL Assistant Menus
Application Programming Using the IDL Assistant Help System

550 Chapter 22: Providing Online Help For Your Application
The Tool Bar

The IDL Assistant tool bar provides quick access to a subset of the features available
via the menubar.

Text Zoom

Select Zoom in or Zoom out from the View menu to change the size of the text in the
IDL Assistant main window.

The smoothness of the text zoom operation depends on the ability of the operating
system to provide fonts of the appropriate size for the zoomed text. On platforms that
provide robust font-management mechanisms, the Zoom operations will work
smoothly. On platforms that provide more limited font support, a single Zoom
operation may, depending on the current text size and font support, change the text
size for only some text elements in the main window, or none at all. In these cases,
repeated applications of the Zoom operations may change the text size.

Icon Name Function

Previous Display the current tab’s previous topic.

Next Display the current tab’s next topic.

Home Display the IDL online help Home page.

Copy Copy text selected in the main window to the system
clipboard.

Find in Text Search for a text string in the currently displayed
topic.

Print Print the contents of the currently selected tab. See
“Printing” on page 551 for details.

Zoom in Increase the text size in the main window. See “Text
Zoom” on page 550 for important notes.

Zoom out Decrease the text size in the main window. See “Text
Zoom” on page 550 for important notes.

What’s this? Display context-sensitive pop-up help about some
portions of the IDL Assistant interface.

Table 22-2: IDL Assistant Toolbar
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 551
If you find that the text zooming feature does not work adequately with the default
fonts, try changing the fonts used by IDL Assistant (see “Settings” on page 551 for
details.) On platforms that use a set of fixed-size fonts, choosing a font with a larger
number of available sizes will allow smoother text zooming.

Printing

Select Print from the File menu or toolbar to display a platform-native Print dialog
that allows you to select a printer on which to print.

Note
Currently, the only text range option available is All. Printing all will print the
entire contents of the topic currently displayed in the main window.

Tip
The quality of the printed output from IDL Assistant depends on the platform and
printer in use. For high-quality printed output, consider printing from the PDF
version of the document you are viewing.

Settings

Select Settings from the Edit menu to display a tabbed dialog that allows you to
control several IDL Assistant settings.

General Tab

The General tab allows you to select fonts for text display in the main window. By
default, the Font is set to Helvetica, and the Fixed Font is set to Courier.

Tip
Depending on the configuration of your system, you may be able to select alternate
fonts that provide better appearance or smoother zooming behavior than the
defaults. This is especially true on UNIX systems that have a limited set of fonts
available. Trying different font settings may improve both the legibility of the text
and the ability to zoom in the IDL Assistant viewer.

The General tab also allows you to select a color for hyperlinks and specify whether
the links should be underlined. Depending on your platform, changing these values
may not produce the effect you expect.
Application Programming Using the IDL Assistant Help System

552 Chapter 22: Providing Online Help For Your Application
Web Tab

The Web tab allows you to define the web browser that should be invoked when you
click on a hyperlink that refers to a web site rather than to a file in the IDL
documentation set.

The Web tab also allows you to specify an HTML file that should be displayed when
you select Home from the Go menu or click the Home toolbar icon.

PDF Tab

The PDF tab allows you to define a Portable Document Format (Adobe Acrobat) file
browser that should be invoked when you click on a hyperlink that refers to a PDF
file.

Note
If you choose to define your PDF file browser as Adobe Acrobat, you must use
version 7 or later.

Format of an IDL Assistant Help System

The IDL Assistant help viewer displays basic HTML-format files that use a subset of
the tags defined by the HTML 3.2 specification. The help viewer does not handle
Cascading Style Sheets, Javascript, or frames. Basic HTML tables are supported, but
some table features defined in HTML 3.2 — notably the <CAPTION> tag and explicit
control of table column widths — are not supported.

An IDL Assistant help system consists of:

• HTML content files and image files that are referenced by the HTML files via
the tag. See “Creating Help Content” below.

• An Assistant Document Profile (.adp) file that defines both the hierarchical
structure of the documentation (the table of contents) and its keyword index.
See “Creating an Assistant Document Profile” on page 553.

• Several optional files, described in “Optional Help System Files” on page 559.

Creating Help Content

You can create HTML-format help content using any text editor or HTML authoring
tool. Make sure that HTML files you intend to display in the IDL Assistant help
viewer do not incorporate Javascript, JScript, ActiveX elements, or frames.
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 553
HTML Formatting

You can use most of the text formatting tags supported by the HTML 3.2 format in
files intended for display in the IDL Assistant help viewer. If you include Cascading
Style Sheet information, it will be quietly ignored by the help viewer.

Directory Structure and File Naming

Place all of the HTML content files for your help system in the same directory that
contains your .adp file. You are free to choose any file naming convention you
prefer for your help system’s HTML files. Note, however, that IDL will interpret the
Value argument to the ONLINE_HELP procedure as the name of an HTML file in
the same directory as your .adp file. See “ONLINE_HELP” (IDL Reference Guide)
for additional details related to how IDL interprets the Value argument.

Image Files

Image files referenced by your help system’s HTML files can be in PNG, GIF, or
JPEG format. Image files do not need to be in the same directory as the HTML
content files for your help system; by convention, image files are stored in a
subdirectory of the content directory.

Creating an Assistant Document Profile

The .adp file is an XML-format file that defines properties of your help system,
constructs a hierarchical table of contents, and provides keyword index terms for
your help topics.

You must ensure that your help system’s .adp file is a valid XML file. This means
that each element must contain values for all required attributes and must be properly
closed. If the structure of the .adp file is not valid, IDL Assistant will fail to load the
information in the .adp file, and no table of contents or index will be available for
your help system.

The following is a very simple example of an .adp file that defines the help system
properties and a single help topic with two keyword index terms:

<!DOCTYPE DCF>
<assistantconfig version="3.3.0">

<profile>
<property name="name">MyApp Version 1.2</property>
<property name="title">My Help System</property>
<property name="startpage">home.html</property>
<property name="aboutmenutext">About My App</property>
<property name="abouturl">about_my_app.txt</property>
Application Programming Using the IDL Assistant Help System

554 Chapter 22: Providing Online Help For Your Application
<property name="assistantdocs">.</property>
</profile>
<DCF ref="my_home.html" title="My Help">

<section ref="Topic1.html" title="Topic1">
<keyword ref="Topic1.html">Index one</keyword>
<keyword ref="Topic1.html#anchor">Index two</keyword>

</section>
</DCF>

</assistantconfig>

The individual XML elements that make up an .adp file are described below.

<!DOCTYPE> Element

The .adp file must begin with an XML <!DOCTYPE> element that defines the file as
being of type “DCF.” The first line of an .adp file must always be:

<!DOCTYPE DCF>

Element Value

Elements of this type do not contain an element value, and do not need to be closed.

<assistantconfig> Element

All of the content of the .adp file is enclosed in an <assistantconfig> element.

Element Value

Elements of this type contain <profile> and <DCF> elements.

version Attribute

When creating content for the IDL Assistant help viewer, set the version attribute
to the value “3.3.0”:

<assistantconfig version="3.3.0">

<profile> Element

The <profile> element contains a set of <property> elements that define values
used by the entire help system. The allowed attribute values are described in the
<property> Element section, below.

Element Value

Elements of this type contain <property> elements.
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 555
<property> Element

Each <property> element defines a value used to configure the help viewer
application.

Element Value

The element value is a text string. Each element must include a name attribute with
one of the attribute values listed below.

name

The value of a <property> element with the name attribute set equal to “name” is
the identifier for the help system. IDL Assistant will use this value when creating
index, full-text search, and bookmark filenames for your help system. For example,
the following <property> element defines the name of the help system as “MyApp
Version 1.2”:

<property name="name">MyApp Version 1.2</property>

title

The value of a <property> element with the name attribute set equal to “title” is
string displayed in the title bar of the IDL Assistant help viewer application window.
For example, the following <property> element defines the title as “My Help
System”:

<property name="title">My Help System</property>

startpage

The value of a <property> element with the name attribute set equal to “startpage”
is a URL (relative to the .adp file) to the HTML file that will be displayed when a
user clicks the IDL Assistant Home button or selects Home from the Go menu. For
example, the following <property> element defines the start page as “home.html”:

<property name="startpage">home.html</property>

Note
When the ONLINE_HELP procedure opens a help system, if no HTML file is
specified for display via the Value argument, the help viewer will attempt to open a
file named home.html in the same directory as the .adp file. As a result, in most
cases the value of the <property> element with the name attribute set equal to
“startpage” should be home.html.
Application Programming Using the IDL Assistant Help System

556 Chapter 22: Providing Online Help For Your Application
aboutmenutext

The value of a <property> element with the name attribute set equal to
“aboutmenutext” defines a string that will be included as a menu item in the
IDL Assistant Help menu. Selecting the menu item displays the contents of the file
defined by a <property> element with the name attribute set equal to “abouturl” in
a modal dialog. For example, the following <property> element defines the Help
menu item string as “About My App”:

<property name="aboutmenutext">About My App</property>

This element is optional. If no <property> element with the name attribute set
equal to “aboutmenutext” exists, the menu item is not displayed in the IDL Assistant
Help menu.

abouturl

The value of a <property> element with the name attribute set equal to “abouturl”
is a URL (relative to the .adp file) to a text or HTML file that will be displayed in a
modal dialog when the user selects the menu item defined by a <property> element
with the name attribute set equal to “aboutmenutext”. For example, the following
<property> element defines the “About My App” menu item URL as
“about_my_app.txt”:

<property name="abouturl">about_my_app.txt</property>

This element is optional. If no <property> element with the name attribute set
equal to “aboutmenutext” exists, there is no need to define this element.

Warning
The “about” dialog is intended to display a small block of text. Some basic HTML
text formatting is allowed, including font face, style, and point size. There is no
explicit control over the size or configuration of the dialog.

assistantdocs

The value of a <property> element with the name attribute set equal to
“assistantdocs” is the path to the directory that contains the file assistant.html,
which contains information on the use of the IDL Assistant help viewer. The path can
be either absolute or relative to the directory that contains the .adp file. This file is
displayed when the user selects IDL Assistant Manual from the Help menu.

The assistant.html file used by IDL Assistant itself is located in the
help/online_help subdirectory of the IDL distribution. If you know the relative
path from your .adp file to this location, you can include it in the <property>
element and users of your help system will be able to display the “help on help”
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 557
content from the IDL online help system. If you do not know the relative path
(perhaps because you do not know where users of your application will install it), you
may wish to create your own assistant.html file containing “help on help”
information.

Note
The file must be named assistant.html. The <property> element contains
only the path to the directory that contains this file.

For example, suppose you know that your application (along with its help system)
will only be installed on UNIX systems that have IDL installed in the default location
(/usr/local/itt). You could set the value of the <property> element as follows
to allow your users to view the “help on help” topic from the IDL online help system:

<property name="assistantdocs">
/usr/local/itt/idl/help/online_help

</property>

Similarly, if you choose to create your own assistant.html file and place it
alongside your other help system content, you could set the value of the <property>
element as follows:

<property name="assistantdocs">.</property>

<DCF> Element

A <DCF> element represents a single “book” in the help system, and encloses all of
the <section> elements that make up the book. In the IDL Assistant help viewer, a
<DCF> element is represented by a collapsible book icon in the Contents tab.
Clicking on the book icon displays the topic associated with the <DCF> element in the
main help window and either displays or collapses the hierarchy contained within the
element in the Contents tab.

Element Value

Elements of this type contain <section> elements.

ref Attribute

The ref attribute of a <DCF> element specifies the path to the HTML file that will be
displayed in the main window when the user clicks on the book icon in the Contents
tab.

The path to the HTML file should be relative to the .adp file. You can optionally
include an HTML anchor tag after the file name.
Application Programming Using the IDL Assistant Help System

558 Chapter 22: Providing Online Help For Your Application
title Attribute

The title attribute of a <DCF> element specifies the text that will be displayed next
to the book icon for the element in the Contents tab.

For example, the following <DCF> element specifies that the book icon for the
enclosed group of topics will be titled “What’s New” and will display the file
whatsnew.html positioned to the HTML anchor tag anchor1:

<DCF ref="./whatsnew.html#anchor1" title="What's New">

<section> Element

A <section> element represents a single topic in the help system. Topic titles are
displayed in the table of contents. <section> elements can be nested; the hierarchy
defined by the nested section elements is reflected in the Table of Contents display.

Clicking on the section title displays the topic associated with the <section>
element in the main help window and either displays or collapses the hierarchy
contained within the element in the Contents tab.

Element Value

Elements of this type contain <section> and <keyword> elements.

ref Attribute

The ref attribute of a <section> element specifies the path to the HTML file that
will be displayed in the main window when the user clicks on the topic title in the
Contents tab.

The path to the HTML file should be relative to the .adp file. You can optionally
include an HTML anchor tag after the file name.

title Attribute

The title attribute of a <section> element specifies the text that will be displayed
as the section title in the Contents tab.

For example, the following nested <section> elements define three topics
“contained” by the topic titled “Chapter 1”:

<section ref="chap1.html" title="Chapter 1">
<section ref="chap1a.html#anchor1" title="Subhead 1"></section>
<section ref="chap1b.html#anchor1" title="Subhead 2"></section>
<section ref="chap1b.html#anchor2" title="Subhead 3"></section>

</section>
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 559
<keyword> Element

A <keyword> element defines an entry in the help system’s keyword index.
Keyword index entries are displayed in the Index tab.

Element Value

The element value is a text string that contains the keyword index entry text.

The keyword index may be hierarchical. If a <keyword> element’s value string
includes the colon character, the text will be treated as a multi-level index entry.
Thus, the value

top level entry:subentry1

would be displayed in the Index tab as

top level entry
subentry1

When the <keyword> element values are displayed in the Index tab, they are
alphabetized by level. All of the top-level entries are alphabetized, and each top-level
entry’s subentries are then alphabetized.

ref Attribute

The ref attribute of a <keyword> element specifies the path to the HTML file that
will be displayed in the main window when the user clicks on the entry in the Index
tab.

The path to the HTML file should be relative to the .adp file. You can optionally
include an HTML anchor tag after the file name.

For example, the following <keyword> element defines an index entry with the title
“Thingamajig” that corresponds to the HTML anchor thingamajig in the HTML
file myroutines1.html:

<keyword ref="myroutines1.html#thingamajig">Thingamajig</keyword>

Optional Help System Files

The files described in this section are not required for your help system to function,
but may be useful.

About file

The “about” file is displayed when the user chooses the “about” entry from the
IDL Assistant Help menu, if it exists. If you choose to create this file, it can be either
Application Programming Using the IDL Assistant Help System

560 Chapter 22: Providing Online Help For Your Application
a text file or an HTML file containing basic HTML tags. See “aboutmenutext” and
“abouturl” under “<property> Element” on page 555 for details.

TopicNotFound.html

The TopicNotFound.html file is displayed when the Value argument to the
ONLINE_HELP procedure is supplied, but the specified file is not found. See
“Displaying Help Topics” below for additional information.

Displaying Help Topics

To display a topic within your help system, use the ONLINE_HELP procedure,
specifying name of your .adp file as the value of the BOOK keyword. For example,
if your .adp file is named myapp.adp, and you have placed the help system in a
directory that is included in IDL’s help path, you would use the following
ONLINE_HELP command:

ONLINE_HELP, BOOK="myapp.adp"

See “Paths for Help Files” on page 561 for more on setting IDL’s help path.
Alternatively, if you know the full path to the .adp file, you could use an
ONLINE_HELP command like the following:

ONLINE_HELP, BOOK="/usr/local/myapp/help/myapp.adp", /FULL_PATH

In most cases, it is more appropriate to set IDL’s help path to include your help
system when your application runs, as described in “Adding a Directory to the Help
Path at Runtime” on page 562.

To display a specific topic from your help system, include the Value argument to the
ONLINE_HELP procedure:

ONLINE_HELP, "InterestingTopic", BOOK="myapp.adp"

When IDL executes this command, it will do the following things:

1. Attempt to locate the myapp.adp file in a directory contained in IDL’s help
path. If it cannot locate the .adp file, ONLINE_HELP exits with an error.

2. Look in the directory that contains myapp.adp for a file named
INTERESTINGTOPIC with the extension .html or .HTML. If IDL finds this
file, it is displayed in the help viewer’s main pane, and the search ends.

3. Look in the directory that contains myapp.adp for a file named
InterestingTopic with the extension .html. If IDL finds this file, it is
displayed in the help viewer’s main pane, and the search ends.
Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 561
4. If neither version of the file specified by the Value argument is found, IDL
attempts to display a topic named TopicNotFound.html in the help viewer’s
main pane. This file explains to the user that there is no file that matches the
Value argument.

In general, your end-users should never see the TopicNotFound.html file,
because you have control over the strings placed in the Value argument to the
ONLINE_HELP procedure. If the possiblity that your end-users might supply
a Value argument for a file that does not exist in your help system, create a
TopicNotFound.html file and include it with your help system.

Paths for Help Files

You can specify the search path for help files via the !HELP_PATH system variable.
Placing your help files in a directory included in the help path means that you do not
need to include the full path in your call to the ONLINE_HELP procedure; supplying
the name of the help file is enough.

Note
IDL searches the directories specified by !HELP_PATH and chooses the first
instance of a file that matches the name you specify via the BOOK keyword to
ONLINE_HELP. If no file extension is included in the value of the BOOK
keyword, IDL will search each directory in !HELP_PATH until it finds a matching
file with one of the following file extensions, in this order: .adp, .chm (Windows
only), .hlp (Windows only), .pdf, .html, .htm. You can override this behavior
by explicitly specifying the desired file extension.

By default, !HELP_PATH contains the help subdirectory of the main IDL directory.
To change the default value of !HELP_PATH, change the value of the
IDL_HELP_PATH preference.

To change the value of !HELP_PATH during a single IDL session, simply assign a
new value to the system variable. For example, to add a directory of your choice to
the end of the default help path, you could use the following command:

!HELP_PATH=!HELP_PATH+'mypath'

where mypath is a valid path string, including the appropriate path element separator
character for your platform.
Application Programming Using the IDL Assistant Help System

562 Chapter 22: Providing Online Help For Your Application
Adding a Directory to the Help Path at Runtime

If you distribute your application to users who install it on their own systems, you
have no way of knowing in advance how to set the value of !HELP_PATH.

Suppose you have an application named myapp, installed in an unknown location
your end-user’s computer. The help system for myapp is located in a subdirectory of
your application’s directory named help. Including the following block of code in
myapp.pro would be one way to determine the location of your help system at
runtime, and set the !HELP_PATH system variable accordingly.

myapp_info = ROUTINE_INFO('myapp', /SOURCE)
myapp_path = FILE_DIRNAME(myapp_info.path)
myapp_help_path = myapp_path + PATH_SEP() + 'help'
!HELP_PATH = !HELP_PATH + PATH_SEP(/SEARCH_PATH) + myapp_help_path

Once the help path is set in this manner, you can simply provide the name of the
.adp file for your help system as the value of the BOOK keyword to the
ONLINE_HELP procedure.
Using the IDL Assistant Help System Application Programming

Chapter 23

Distributing Runtime
Mode Applications
This chapter describes the process of creating IDL runtime applications for distribution.
What Is an IDL Runtime Mode Application? 564
Limitations of Runtime Applications 567
Steps to Distribute a Runtime Application 568
Preferences for Runtime Applications 569
Runtime Licensing . 573
Embedded Licensing . 577
Creating an Application Distribution 578
Starting a Runtime Application . 579
Installing Your Application . 582
Application Programming 563

564 Chapter 23: Distributing Runtime Mode Applications
What Is an IDL Runtime Mode Application?

An IDL runtime mode application is a program or set of programs written to use
IDL’s data analysis and display capabilities in a stand-alone mode, without access to
the IDL Workbench, the IDL command line, or the ability to compile IDL .pro files.
All IDL code for a runtime mode application must be pre-compiled and provided in
the binary SAVE file format. If a runtime mode application presents a user interface,
it must be exposed via the IDL widget toolkit or iTools functionality, since no access
to the IDL command line or command output log is provided to the user.

Runtime mode applications are generally intended for users who do not have an IDL
development license, although users who do have a development license can execute
runtime mode applications as well. Typically, a runtime mode application is
distributed along with an IDL distribution hierarchy containing all of the files
necessary to run the application. (The exception is an application written to be run in
the IDL Virtual Machine, which is installed separately from the IDL application
itself.)

Note
IDL applications written to run with an IDL development license — one that allows
the application to compile .pro files and access to the IDL command line — can,
of course, be distributed to other IDL users. Distributing applications that run with
an IDL development license can be as simple as providing the application files to
the end user along with instructions describing how to install the files and configure
the application.

This chapter describes the process of packaging an application written entirely in IDL
so that it can be distributed to end users who do not have an IDL development
license. The following chapters describe the process of packaging an application to
run in the IDL Virtual Machine and packaging a Callable IDL application. Much of
the information in these chapters is relevant whether or not your application end users
have an IDL development license, but the assumption is that your end user will not
have such a license.
What Is an IDL Runtime Mode Application? Application Programming

Chapter 23: Distributing Runtime Mode Applications 565
Types of IDL Runtime Applications

IDL applications can be written in IDL itself and distributed in IDL SAVE files, or
they can be written in another programming language and distributed in a compiled
binary format. IDL applications fall into the following two broad categories:

• Native IDL applications — A native IDL application is written entirely in
IDL and saved in a SAVE file or series of SAVE files that can be restored and
run by an IDL distribution.

The process of creating applications written in IDL is the topic of this manual.
This chapter describes the steps necessary to create and distribute an IDL
application that uses a runtime or embedded license. Chapter 24, “Distributing
Virtual Machine Applications” describes the steps necessary to package and
distribute an IDL application that runs in the IDL Virtual Machine.

• Callable IDL applications — A Callable IDL application is written in another
programming language, such as C or C++, and calls IDL as a subroutine. The
process of creating Callable IDL applications is covered in the External
Development Guide. Chapter 25, “Distributing Callable IDL Applications”
describes the steps necessary to package and distribute a Callable IDL
application.

Licensing Options for IDL Runtime Applications

When you have an application that uses IDL and you want to distribute it to users
who do not have an IDL development license, you have the following choices:

• Ask your users to install the free IDL Virtual Machine and run your application
in the Virtual Machine

• Purchase a runtime or embedded license from IDL that enables you to bundle
IDL with your application

• If your end user has an existing runtime license for another application, your
application can run using that license

Free Runtime License (IDL Virtual Machine)

The IDL Virtual Machine is a runtime version of IDL that can execute IDL SAVE
files without an IDL license. Users install the IDL Virtual Machine with the IDL
Installer available on an IDL distribution CD-ROM or from the IDL download Web
site.

See Chapter 24, “Distributing Virtual Machine Applications” for additional details.
Application Programming What Is an IDL Runtime Mode Application?

566 Chapter 23: Distributing Runtime Mode Applications
Purchased Runtime and Embedded Licenses

You can purchase runtime mode licenses from IDL. Runtime mode licenses provide a
way for you to include a licensed IDL installation with your IDL application or
Callable IDL application. There are two types of runtime mode licenses available:
runtime licenses and embedded licenses.

When you distribute a licensed version of IDL with your application, you provide
your users with IDL functionality, but do not provide access to the IDL command
line, the IDL Workbench, or the ability to compile IDL .pro files. Runtime and
embedded licenses are appropriate for:

• Vertical-market packages developed in IDL but which appear to the user as
stand-alone applications

• Software designed for use by operators or technicians who do not need
programmatic access to IDL’s full range of analytical tools

• Situations in which the you do not want end users to be able to modify
functions written in the IDL language

• Organizations with existing investments in IDL code, where some mixture of
distributable and development IDL licenses may be cost-effective

If your users need access to the full scope of IDL’s features or advanced analytical
tools outside the scope of your application, you might choose to distribute your
application with an IDL development license. Contact your sales representative to
purchase copies that you can distribute.

Runtime Licensing

A runtime license enables a single user to run IDL SAVE files or Callable IDL
applications. Runtime licenses require that you have some advance information about
your users’s computer. Runtime licenses come in two varieties:

• Node-locked licenses that can be installed only on a single machine

• Floating licenses that can be installed on any machine

See “Runtime Licensing” on page 573 for details.

Embedded Licensing

An embedded license allows you to build license information into IDL SAVE files or
Callable IDL applications. Embedded licenses do not require you to have advance
information about your users’ computers. See “Embedded Licensing” on page 577
for details.
What Is an IDL Runtime Mode Application? Application Programming

Chapter 23: Distributing Runtime Mode Applications 567
Limitations of Runtime Applications

IDL applications that run without an IDL development license — whether native IDL
or Callable IDL — do not have access to the IDL compiler and thus cannot compile
IDL source code from .pro files. As a result, operations that require the compiler
will not execute when a development license is not present. In addition, if you are
writing an IDL application to be distributed to users who do not have a development
IDL license, you should be aware of the following limitations.

Note
Since runtime applications do not provide access to the IDL command line, startup
files are not executed. See “Understanding When Startup Files are Not Executed”
for details.

Error Handling

Because the ON_ERROR procedure has the potential to force the IDL interpreter into
an idle state when an error is encountered, use the CATCH procedure instead if your
application will be distributed to users without a development IDL license.

Working Directory of Runtime Applications

When a SAVE file is executed with a runtime or embedded license, IDL’s current
working directory will be the directory that contains the SAVE file.

IDL Help

Support for the IDL 7.0 help system is not included in a runtime distribution by
default. This means that applications that use the ONLINE_HELP procedure to
display IDL help topics will fail unless you explicitly include the required support. If
you use the MAKE_RT procedure to create a runtime distribution, you can use the
IDL_HELP keyword to include the necessary files. See Chapter 22, “Providing
Online Help For Your Application” (Application Programming) for additional
discussion of the IDL 7.0 help system.

Support for the IDL Assistant help viewer (IDL’s standard help viewer for releases
6.2 thorugh 6.4) is not included in a runtime distribution by default. If your
application uses an IDL Assistant help system (that is, if it includes a .adp file), you
will need to explicitly include the IDL Assistant help viewer. If you use the
MAKE_RT procedure to create a runtime distribution, you can use the
IDL_ASSISTANT keyword to include the necessary files.
Application Programming Limitations of Runtime Applications

568 Chapter 23: Distributing Runtime Mode Applications
Steps to Distribute a Runtime Application

To create and distribute an IDL runtime application, do the following:

1. Create your application using an IDL development license. Test the
application using the type of license you expect your end user to have.

2. If your application uses Callable IDL, see Chapter 25, “Distributing Callable
IDL Applications” for information on creating a runtime distribution.

3. Decide on a licensing mechanism for your application. (For an overview of
licensing mechanisms, see “Licensing Options for IDL Runtime Applications”
on page 565.) If you choose to distribute an application that will run in the free
IDL Virtual Machine, see Chapter 24, “Distributing Virtual Machine
Applications” for information on creating a runtime distribution.

4. Obtain licenses for your application from IDL. See “Runtime Licensing” on
page 573 or “Embedded Licensing” on page 577 for details.

5. Create an application distribution as described in “Creating an Application
Distribution” on page 578.

6. Create invocation and use instructions for your application. See “Starting a
Runtime Application” on page 579 for additional information.

7. Create an installer, if desired, and installation instructions for your application.
See “Installing Your Application” on page 582 for additional information.
Steps to Distribute a Runtime Application Application Programming

Chapter 23: Distributing Runtime Mode Applications 569
Preferences for Runtime Applications

IDL’s preference system allows developers, administrators, and individual users to
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

Note
Before attempting to use preferences to customize the runtime IDL environment,
you should have a clear understanding of how IDL loads and uses preference
values. See Appendix E, “IDL System Preferences” (IDL Reference Guide) for a
detailed discussion of the preference system.

Preference Etiquette

IDL’s preference system routines PREF_SET and PREF_COMMIT provide
programmatic control over the values of preferences saved in an individual user’s
preferences file. In general, as an application author, you should not use these
routines in IDL code. Since preference values set in the user preference file persist
between sessions, changes made by your application using these routines will affect
your end user’s IDL environment even when he or she is running other applications.

Preference files loaded at application startup provide a much more user-friendly
mechanism for specifying preference values that apply only to your application. To
use this mechanism, create a preference file that contains the preference values you
wish to have in effect when your application runs, and include the name of the
preference file in the command that launches your application via the -pref
command-line option. (See “Command Line Options for IDL Startup” (Chapter 1,
Using IDL) for details.)

Loading Preference Values at Application Startup

IDL provides the following mechanisms for loading preference values when an IDL
application starts:

• Specifying a preference file via the -pref command line option.

• Providing an idl.pref file located in the same directory as the IDL DLL file
(Windows only).

• Specifying individual preference values specified as command line options.
Application Programming Preferences for Runtime Applications

570 Chapter 23: Distributing Runtime Mode Applications
• Specifying individual preference values via the values of corresponding
system environment variables.

• Modifying the idl.pref file in the resource/pref subdirectory of the
application distribution. This method is only useful if you are distributing an
IDL distribution to support your application — you should not modify an
existing idl.pref file in your end user’s installed IDL distribution.

Note
These mechanisms change the value of the specified preference or preferences for
the current IDL session only. Values are not written to the user’s preference file.

Specifying Preferences at the Command Line

Of these options the first — specifying a preference file via the -pref command line
option — is the most general and user-friendly. By specifying the values for
preferences used by your application in a separate, application-specific preferences
file, you can both control IDL’s runtime environment and provide your end users
with a mechanism to tune the IDL environment themselves. If one of your end users
can achieve better performance using a different preference value, all that user needs
to do is alter the value in the preference file loaded at startup.

Providing an idl.pref File (Windows Only)

The second option — providing an idl.pref file in the same directory as the IDL
DLL — is only available under Microsoft Windows.

There are three Windows-only runtime preferences:

• IDL_WINRT_FILE allows you to specify the name of a save file to be run
when IDL starts up

• IDL_WINRT_FILE_TYPE allows you to specify the licensing mode of a
runtime application

• IDL_WINRT_ICON allows you to specify the name of an icon file to use with
a runtime application

These preferences are honored only when the idlrt.exe executable is in use. Their
values are described in detail in “Windows Runtime Preferences” (Appendix E, IDL
Reference Guide).
Preferences for Runtime Applications Application Programming

Chapter 23: Distributing Runtime Mode Applications 571
Specifying Individual Preference Files

Specifying individual preference values at the command line provides little
advantage over specifying the name of a preference file, but may be useful if the
number of preferences to be specified is small.

Using Environment Variables

The technique of using environment variables to specify preference values can be
useful, but should be used with caution. Setting an environment variable provides a
relatively easy way for your end users to override your preference settings without
the need to modify the preference file you distribute. Depending on how the value of
an environment variable is specified, however, the value may persist between
invocations of your application. As a result, end users might experience unexpected
behavior in other IDL applications (or in IDL itself) if an environment variable
specified for your applications is in effect when the other applications are run.

Modifying the Default Preferences File

You should only modify the resource/pref/idl.pref file if you are creating
and distributing your own runtime application distribution.

See Appendix E, “IDL System Preferences” (IDL Reference Guide) for a detailed
discussion of these options.

Examples

Suppose you have created an IDL runtime application named myapp that performs
numerous CPU-intensive calculations that could potentially use multiple CPUs on a
multiprocessor system. If you want to ensure that your application uses at most two
CPUs, you could include the following setting in a preference file named
myapp.pref:

IDL_CPU_TPOOL_NTHREADS : 2

On UNIX platforms, you could then invoke your runtime application with a
command line something like the following:

idl -rt=/myapp/myapp.sav -pref=/myapp/myapp.pref

On Windows platforms, you could create a preference file containing the following:

IDL_CPU_TPOOL_NTHREADS : 2
IDL_WINRT_FILETYPE: 0
IDL_WINRT_ICON: c:\myapp\myapp.ico
Application Programming Preferences for Runtime Applications

572 Chapter 23: Distributing Runtime Mode Applications
These preference values specify the maximum number of CPUs, the need for a
runtime license for your application, and the application icon. If you name the
preferences file idl.pref and place it in the bin/bin.platform subdirectory of
your application distribution (where platform is your platform-specific bin
directory), IDL will load the preferences when a user double-clicks on the application
icon.
Preferences for Runtime Applications Application Programming

Chapter 23: Distributing Runtime Mode Applications 573
Runtime Licensing

A runtime license allows you to run an IDL application that cannot display the IDL
Workbench or IDL command line and which cannot compile .pro files. This type of
licensing offers developers who have smaller customer bases the opportunity to buy
single distribution licenses as they are needed, paying a small fee for each license.
The license is either a node-locked license tied to the specific machine on which your
application will run (which means you will need to obtain information about your
customer’s machine), or a more costly but less restricted floating license that will run
on any machine.

When using runtime licensing, you can distribute licenses to your users in two ways:

• If you wish to distribute a licensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but forces you to
create separate distributions for each customer.

• If you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase a license for each customer
and provide that license along with the information necessary for the customer
to license your application.

Ensuring That Your License is Used

To ensure that your application will run with your runtime license and not in the IDL
Virtual Machine, add code similar to the following to your application before
preparing your application distribution:

isVM = LMGR(/VM)
IF isVM THEN BEGIN

void = DIALOG_MESSAGE(['Please contact the author', $
'for licensing instructions'])

RETURN
ENDIF

Obtaining and Installing Runtime Licenses

Runtime applications are licensed using either node-locked licenses or floating
single-user licenses. Node-locked licenses are tied to the specific computer on which
the application will run, while floating licenses will run on any computer.
Application Programming Runtime Licensing

574 Chapter 23: Distributing Runtime Mode Applications
To license your runtime application, do the following:

1. Get information about the specific computer on which your application will
run. The process for retrieving the required information depends on the end
user’s operating system, as described below.

2. Send this information to ITT Visual Information Solutions. We will generate a
license file and send it to you.

3. Install the license file in a license subdirectory in your application’s
distribution, or provide instructions to your end user describing how to install
the license file.

Custom Features

You can request that your own custom feature license be added to your runtime
license. Using a custom feature license allows you to specify that your application
will only run if the custom feature license is present. Contact your ITT Visual
Information Solutions sales representative for information on adding custom features
to your runtime license.

Obtaining a Windows License

In order to obtain the information needed to generate a node-locked license file, your
end user must run the application lmtools.exe on the machine for which your
application will be licensed. If your end user has already installed an unlicensed copy
of your application, he or she will have access to the lmtools.exe application.
Otherwise, you will need to provide the end user with a copy of the lmtools.exe
file, which can be found in the bin/bin.platform directory of your IDL
distribution.

Provide your end user with the following instructions:

1. In order for lmtools.exe to be able to retrieve the correct information, your
system must have a properly-configured network interface card installed.

2. Run the lmtools.exe application. The Lmtools dialog appears.

3. Select the System Settings tab.

4. Click the Save HOSTID Info to a File button, then save the information to
your desktop with the file name hostid.txt.

5. Send the hostid.txt file saved in the previous step to your application
vendor.

When your end user has provided you with the information obtained by
lmtools.exe, email this information to register@ITTvis.com or fax the
Runtime Licensing Application Programming

mailto:register@ittvis.com

Chapter 23: Distributing Runtime Mode Applications 575
information to ITT Visual Information Solutions at (303) 786-9909. If you did not
purchase IDL directly from ITT Visual Information Solutions, send the file to your
local distributor.

ITT Visual Information Solutions will then send you a license file called
license.dat.

Obtaining a UNIX License

In order to obtain the information needed to generate a node-locked license file, your
end user must run the application lmhostid on the machine for which your
application will be licensed. If your end user has already installed a copy of IDL, he
or she will have access to lmhostid application.

If your end user does not already have an IDL installation, you can provide a copy of
the lmhostid file, located in the bin/bin.platform directory of your IDL
distribution where platform is the platform-specific bin directory. Note that you
must provide the executable for the platform on which your end user will run IDL.

Provide the end user with the following instructions:

1. Execute the command lmhostid. If the user has an IDL installation, the
lmhostid file can be found in the bin subdirectory of that installation. Text
similar to the following will be displayed:

The FLEXlm host ID of this machine is "80598a67"

2. Provide the host ID returned by lmhostid, along with the hostname of the
machine to your application vendor. (To obtain the hostname, enter the
command hostname.)

When your end user has provided you with the information returned by lmhostid
and the hostname of the machine, e-mail this information to
register@ITTvis.com or fax the information to ITT Visual Information Solutions
at (303) 786-9909. If you did not purchase IDL directly from ITT Visual Information
Solutions, send the file to your local distributor.

We will then send you a license file called license.dat.

Installing the License File

Once you have received a license.dat file from ITT Visual Information Solutions,
you must ensure that it is installed in a license subdirectory in your application’s
distribution. You can either:

• Create a custom distribution for each individual end user by placing the
license.dat file in the license subdirectory of your application’s
Application Programming Runtime Licensing

576 Chapter 23: Distributing Runtime Mode Applications
distribution tree prior to packaging it for the end user. Your end user will not
need to perform any licensing steps manually. This is a good solution if you
have a small number of end users.

• Create a single unlicensed distribution that you provide to all your end users
along with instructions to place the license.dat file you provide separately
in the license subdirectory. This is a good solution if you have a relatively
large number of end users, since it removes the need to create a custom
distribution for each end user.

Caution: IDL_LMGRD_LICENSE_FILE and LM_LICENSE_FILE
Environment Variables

By default, when your application runs, IDL searches for a directory named license
that contains a file named license.dat. It will use the first valid license it
encounters; if no licences are found, the application will either run in unlicensed
mode or exit.

If the end user has defined either the IDL_LMGRD_LICENSE_FILE or the
LM_LICENSE_FILE environment variable, IDL will check only the license files
specified by the environment variable. This means that if the end user has defined
either the IDL_LMGRD_LICENSE_FILE or the LM_LICENSE_FILE environment
variable for any reason, IDL might not find your application’s license file even if it is
placed correctly in a license subdirectory of your distribution.

See “License Sources” (Chapter 5, Installation and Licensing Guide) for a discussion
of how the licensing environment variables interact.
Runtime Licensing Application Programming

Chapter 23: Distributing Runtime Mode Applications 577
Embedded Licensing

An embedded license allows your application to run without an IDL license. It can be
distributed to multiple users and will run on any system supported by IDL. Licensing
an IDL application with an embedded license is the simplest form of licensing.

In order to create applications with embedded licenses, you must purchase a special
IDL Developer’s Kit license from ITT Visual Information Solutions. The
Developer’s Kit license gives your copy of IDL the ability to automatically embed a
license in your application’s SAVE file. See “Creating an Application Distribution”
on page 578 for information on embedding the license information in your
application’s SAVE file.

Note
Licenses for Callable IDL applications are embedded directly in the application
code. See Chapter 25, “Distributing Callable IDL Applications” for details.

Optional Embedded Features

When you purchase an IDL Developer’s Kit license from ITT Visual Information
Solutions, you can request that one or more optional features be included in the
license. Optional feature licenses control access to additional-cost IDL modules, such
as the IDL DICOM toolkit or the IDL DataMiner.

When your application attempts to use an additional-cost IDL module, IDL first
checks to see if a license for the module is included in your application’s embedded
license. If no license for the module is included in the embedded license, IDL will
check any license.dat files located in license directories in its search path, or in
files specified by the LM_LICENSE_FILE environment variable. (See “Caution:
IDL_LMGRD_LICENSE_FILE and LM_LICENSE_FILE Environment Variables”
on page 576 for additional information about how IDL uses this environment
variable.) If no license for the module is available, attempts to use that module’s
features will not succeed.
Application Programming Embedded Licensing

578 Chapter 23: Distributing Runtime Mode Applications
Creating an Application Distribution

If your IDL application is intended to be run in an installation with an IDL
development license, you do not need to create an IDL distribution. Simply package
up your application files (either .pro files or .sav files, and any necessary data
files) and distribute it to your users along with instructions describing how to install
and launch the application.

If your application will be run by users who do not already have an IDL installation,
or who do not have the proper IDL version, you can create and distribute a runtime
application distribution. Runtime distributions are created using the MAKE_RT
procedure; the process is described in detail in Chapter 26, “Creating a Runtime
Distribution”.
Creating an Application Distribution Application Programming

Chapter 23: Distributing Runtime Mode Applications 579
Starting a Runtime Application

You must provide your end users with instructions describing how to start your
application. You may choose to provide users with the name and location of your
application executable along with a launch command to execute, or (if you are using
an installer for your application) with shell scripts, shortcuts, or Start menu items.

The application startup process differs depending on whether you are supplying an
IDL runtime distribution (created using the IDL Project interface or the make_rt
script) or are relying on your user to install a full (if potentially unlicensed) IDL
distribution. The following sections describe the process for each of these situations.

Using an IDL Runtime Distribution

If you use the MAKE_RT procedure to create a runtime distribution, specifying a
SAVE file for your application, application launch scripts for your application are
created automatically. (You may need to modify the launch scripts.) If you do not use
MAKE_RT, you can still create application launch scripts based on generic scripts
included in the IDL distribution. See Chapter 26, “Creating a Runtime Distribution”
for complete details.

Using an Existing IDL Distribution

If you are relying on your end user to install an IDL distribution (licensed or not)
before running your application, you can either give your users instructions based on
the following information or create scripts to launch your application. The specifics
depend on your end user’s platform.

Windows

To start a runtime application if you are not providing a runtime IDL distribution,
either change directories to IDL_DIR\bin\bin.platform directory (where
IDL_DIR is the main IDL directory and platform is the platform-specific bin
directory) or ensure that this directory is included in the Windows PATH
environment variable. Do one of the following:

• If your application runs in the IDL Virtual Machine, enter the following:

idlrt -vm=<path><filename>

• If your application uses a runtime license, enter the following:

idlrt <path><filename>

• If your application uses an embedded license, enter the following:
Application Programming Starting a Runtime Application

580 Chapter 23: Distributing Runtime Mode Applications
idlrt -em=<path><filename>

where <path> is the path to the SAVE file, and <filename> is the name of the SAVE
file.

To simplify startup of your application, you can use the Windows launch script
described in “Runtime Application Launch Scripts” in Chapter 26. Alternately, you
can create a batch file that changes directories to the IDL bin directory and invokes
idlrt with the SAVE file name. Such a batch file might look something like the
following:

@ECHO OFF
REM This batch file launches the IDL runtime application myapp
cd C:\ITT\IDL70\bin\bin.x86
idlrt C:\mydir\myapp.sav

UNIX / Macintosh

To start a runtime application if you are not providing a runtime IDL distribution,
first ensure that the environment variable IDL_DIR is set to the path to the main
directory of the IDL installation. For example, if IDL is installed in
/usr/local/itt/idl70, you would set the IDL_DIR environment variable to this
value. When the IDL_DIR environment variable is set, do one of the following:

• If your application runs in the IDL Virtual Machine, enter the following:

idl -vm=<path><filename>

• If your application uses a runtime license, enter the following:

idl -rt=<path><filename>

• If your application uses an embedded license, enter the following:

idl -em=<path><filename>

where <path> is the path to the SAVE file, and <filename> is the name of the SAVE
file.

To simplify startup of your application, you can use the UNIX or Macintosh launch
script described in “Runtime Application Launch Scripts” in Chapter 26. Alternately,
you can create a shell script that sets the IDL_DIR environment variable and calls
IDL with the correct flag and SAVE file name. Such a script might look something
like the following:

#!/bin/sh
This script launches the IDL runtime application myapp
IDL_DIR=/usr/local/itt/idl70
idl -rt=/mydir/myapp.sav
Starting a Runtime Application Application Programming

Chapter 23: Distributing Runtime Mode Applications 581
Specifying Application Preferences at Startup

You can specify the values of IDL preferences in your startup command by including
either the -pref command line option or by specifying individual preference values
on the command line.

For example, suppose your application is installed in the directory /mydir. To have
IDL load the preference values contained in a file named myapp.pref in the same
directory when the application starts, you might modify your the UNIX startup script
described above to read:

#!/bin/sh
This script launches the IDL runtime application myapp
IDL_DIR=/usr/local/itt/idl70
idl -rt=/mydir/myapp.sav -pref=/mydir/myapp.pref

Similarly, to force a Windows runtime application to use software rendering, you
could explicitly specify the preference value in a batch file that starts the application:

@ECHO OFF
REM This batch file launches the IDL runtime application myapp
cd C:\ITT\idl70\bin\bin.x86
idlrt C:\mydir\myapp.sav -IDL_GR_WIN_RENDERER 1

See “Preferences for Runtime Applications” on page 569 for details.

What Happens When IDL Runs Your Application

When you launch an IDL runtime application, IDL does the following:

• Restores the specified SAVE file, if one is specified at the command line or
when creating the distribution via the IDL Project interface or make_rt script

• Under Microsoft Windows, if no SAVE file is specified, restores the SAVE file
specified by the IDL_WIN_RT preference

• If no SAVE file is specified, restores the file runtime.sav

IDL then calls the main procedure. This is one of the following:

• a procedure named main in the restored SAVE file

• a procedure with the same name as the .sav file

When the main procedure returns, IDL exits.
Application Programming Starting a Runtime Application

582 Chapter 23: Distributing Runtime Mode Applications
Installing Your Application

Installation of your application on the end user’s machine can be performed manually
by the user, or it can be automated using an installer. There are a number of
commercial applications available to help you build installers.

In order to avoid any possible conflicts with existing versions of IDL, you should
warn your users NOT to install your application in the same directory as IDL x.x,
where IDL x.x is the version used by your application.

Note
ITT Visual Information Solutions’ Global Services group can create installation
packages for your application. Contact your ITT Visual Information Solutions sales
representative for additional information.
Installing Your Application Application Programming

Chapter 24

Distributing Virtual
Machine Applications
This chapter describes the process of creating IDL Virtual Machine applications for distribution.
What Is a Virtual Machine Application? 584
Limitations of Virtual Machine Applications 585
Steps to Distribute Your Application 586
Preferences for Virtual Machine Applications 587
Creating Application SAVE Files . 589
Creating a Virtual Machine Distribution 591
Starting a Virtual Machine Application 592
Application Programming 583

584 Chapter 24: Distributing Virtual Machine Applications
What Is a Virtual Machine Application?

The IDL Virtual Machine is a runtime version of IDL that can execute IDL .sav
files without an IDL license. It is designed to provide IDL users with a simple,
no-cost method for distributing IDL applications. It runs on all IDL-supported
platforms, and does not require a license to run. This utility allows you to easily
distribute IDL SAVE files to your colleagues or your customers, without requiring
them to own an IDL runtime license.

Beginning with IDL 6.0, the IDL Virtual Machine is included with all IDL
distributions. During installation, you can choose to install just the IDL Virtual
Machine or a full installation of IDL (which includes the IDL Virtual Machine). For
the benefit of developers who need to debug applications designed to run in this
environment, the IDL Virtual Machine can be started explicitly. Otherwise, if a
SAVE file program is run without an IDL license, IDL defaults to the IDL Virtual
Machine mode.

If You Are Running a Virtual Machine Application

If you have received an IDL Virtual Machine application from someone else and are
interested in running it on your own computer, do the following:

1. Install the IDL Virtual Machine. If the application you received does not
include a runtime IDL distribution or installer, you can use an IDL installer
from ITT Visual Information Solutions. You do not need an IDL license to run
Virtual Machine applications.

2. Install the Application. Follow the application developer’s instructions to
install the Virtual Machine application on your computer.

3. Run the Application. Follow the application developer’s instructions to start
the application, or see “Starting a Virtual Machine Application” on page 592.

If You Are Creating a Virtual Machine Application

If you are creating an IDL Virtual Machine application, you should be familiar with
the entire contents of this chapter. You may also wish to familiarize yourself with
Chapter 23, “Distributing Runtime Mode Applications”.
What Is a Virtual Machine Application? Application Programming

Chapter 24: Distributing Virtual Machine Applications 585
Limitations of Virtual Machine Applications

The IDL Virtual Machine will run a compiled IDL SAVE file even if no IDL license
is present. ITT Visual Information Solutions’ aim with the IDL Virtual Machine is to
facilitate IDL code collaboration and application distribution.

In addition to the limitations described in “Limitations of Runtime Applications” in
Chapter 23, applications that run in the IDL Virtual Machine have the following
restrictions:

• The IDL Virtual Machine displays a splash screen on startup.

• SAVE files must be created using IDL version 6.0 or later.

• No access to the IDL command line or IDL compiler is provided. Startup files
are only executed when a command line is present. See “Understanding When
Startup Files are Not Executed” (Chapter 1, Using IDL) for details.

• The use of the IDL EXECUTE function is disabled. (In most cases, calls to the
EXECUTE function can be replaced with calls to the CALL_FUNCTION and
CALL_PROCEDURE routines.)

• The Execute, GetVar, and SetVar methods to the IDL_IDLBridge object are
disabled.

• The COM and Java IDL Export Bridge connector objects are disabled.

• Callable IDL applications will not run in the IDL Virtual Machine.

Note
The IDL Virtual Machine installation program does not install the IDL DataMiner,
IDLffDicomEX feature, IDL-Java bridge, or high resolution maps. If your
application uses any of these features, users must install the full version of IDL
(including the desired optional features) rather than the default IDL Virtual
Machine installation. Although an IDL license will not be required to run in IDL
Virtual Machine mode, certain features may require a special license.
Application Programming Limitations of Virtual Machine Applications

586 Chapter 24: Distributing Virtual Machine Applications
Steps to Distribute Your Application

To create and distribute an IDL Virtual Machine application, do the following:

1. Create your application using an IDL development license, observing the
limits described in “Limitations of Virtual Machine Applications” on
page 585. Test the application in the IDL Virtual Machine.

2. Create one or more SAVE files containing your application. See “Creating
Application SAVE Files” on page 589 for details.

3. Provide your users with instructions for installing an unlicensed copy of IDL,
or create an application distribution as described in “Creating a Virtual
Machine Distribution” on page 591.

4. Provide your users with instructions for installing your IDL application.

5. Provide your users with instructions for running your IDL application in the
IDL Virtual Machine. See “Starting a Virtual Machine Application” on
page 592.
Steps to Distribute Your Application Application Programming

Chapter 24: Distributing Virtual Machine Applications 587
Preferences for Virtual Machine Applications

IDL’s preference system allows developers, administrators, and individual users to
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

See “Preferences for Runtime Applications” in Chapter 23 for a discussion of using
preferences in the context of any IDL runtime application, including applications that
run in the IDL Virtual Machine.

The process of specifying preferences for a Virtual Machine application is
complicated by the following facts:

• Since you are relying on a standard IDL Virtual Machine distribution rather
than a distribution you create, it is more difficult to install a preferences file in
the application distribution.

• On Microsoft Windows and Macintosh platforms, users may launch your
Virtual Machine application by clicking on the SAVE file icon, or by dragging
the SAVE file icon onto the Virtual Machine icon. This prevents you from
specifying preferences via a command line option.

Options for Windows Applications

If your Virtual Machine application runs under Microsoft Windows, you have the
following options:

• Have your users launch the Virtual Machine application via the Windows
command line, and use the -pref command line option to specify a
preferences file or specify individual preferences.

• Have your users install an idl.pref file in the
IDL_DIR/bin/bin.platform directory where platform is the platform-
specific bin directory, and then launch the application by clicking on the
SAVE file icon or by dragging it to the Virtual Machine icon.

• Instruct your users to set environment variables that correspond to the
preferences you need to specify.

• If you are providing a runtime distribution for your application, you can install
an idl.pref file in the IDL_DIR/bin/bin.platform directory yourself.
Application Programming Preferences for Virtual Machine Applications

588 Chapter 24: Distributing Virtual Machine Applications
Options for UNIX/Macintosh Applications

If your Virtual Machine application runs under UNIX (including Mac OS X), you
have the following options:

• Have your users launch the Virtual Machine application via the shell command
line, and use the -pref command line option to specify a preferences file or
specify individual preferences.

• Instruct your users to set environment variables that correspond to the
preferences you need to specify.
Preferences for Virtual Machine Applications Application Programming

Chapter 24: Distributing Virtual Machine Applications 589
Creating Application SAVE Files

An IDL application created in IDL 6.0 or later that does not use the EXECUTE
function can be saved in one or more SAVE files that will run in the IDL Virtual
Machine. If an IDL application is to be run in the IDL Virtual Machine, it is not
necessary to include an IDL distribution with the SAVE file because IDL Virtual
Machine is installed on the user’s machine. The SAVE file need only include your
own code, creating a smaller file that is easier to distribute.

To create SAVE files to run in the IDL Virtual Machine, do one of the following:

• Create SAVE files from one or more compiled .pro files with the SAVE
procedure. See “Creating SAVE Files of Program Files” on page 56 for details,
and refer to “SAVE” (IDL Reference Guide).

• Create SAVE files from a project by selecting Project → Export with the
Save File (.sav) option specified.

Note
Creating SAVE files of object-oriented programs requires the use of
RESOLVE_ALL with the CLASS keyword.

Single vs. Multiple SAVE Files

There are several ways to include the necessary routines in your application:

• For a native IDL application, include all routines in the main SAVE file that is
restored when your application is started. This makes all routines available
without having to restore any additional SAVE files, and reduces the number
of SAVE files used by your application. The easiest way to do this is to add all
.pro files to a project, and build the project.

• Create a separate SAVE file containing all your routines. You might use this
method for a Callable application, if you want to keep certain routines separate
from your main SAVE file in a native IDL application, or if your application
includes routines provided to you as a SAVE file by another developer. To run
any routines included in this SAVE file, you must restore the SAVE file by
either calling a routine with the same name as the .sav file or restore it
explicitly using RESTORE.

• Create a separate SAVE file for each routine used by your application.
Assuming each .sav file uses the same name as the procedure or function it
contains, this allows you to call each routine without having to explicitly
Application Programming Creating Application SAVE Files

590 Chapter 24: Distributing Virtual Machine Applications
restore its SAVE file because IDL will search the current directory and the
defined !PATH for the .sav file and restore it automatically when it
encounters the first call to the routine.

Version Compatibility of SAVE Files

The IDL Virtual Machine will execute IDL routines stored in SAVE files created with
IDL version 6.0 and later. Any SAVE files created with previous versions of IDL
must be recompiled using IDL 6.0 or later for them to run with the Virtual Machine.
Creating Application SAVE Files Application Programming

Chapter 24: Distributing Virtual Machine Applications 591
Creating a Virtual Machine Distribution

If your IDL Virtual Machine application is intended to be run by users who have a
full IDL installation (with or without an IDL license), you do not need to create an
IDL distribution. Simply package up your application files (.sav files and any
necessary data files) and distribute them to your users along with instructions
describing how to install and launch the application.

If your application will be run by users who do not already have an IDL installation,
or who do not have the proper IDL version, you can create and distribute a runtime
application distribution. Runtime distributions are created using the MAKE_RT
procedure; the process is described in detail in Chapter 26, “Creating a Runtime
Distribution”.
Application Programming Creating a Virtual Machine Distribution

592 Chapter 24: Distributing Virtual Machine Applications
Starting a Virtual Machine Application

Installations of IDL that have access to a development license can create compiled
binary versions of IDL applications; these compiled versions are stored in files with
the extension .sav. Many applications stored in .sav files can be executed by the
IDL Virtual Machine.

If you use the MAKE_RT procedure to create a runtime distribution, specifying a
SAVE file for your application, application launch scripts for your application are
created automatically. (You may need to modify the launch scripts.) If you do not use
MAKE_RT, you can still create application launch scripts based on generic scripts
included in the IDL distribution. See Chapter 26, “Creating a Runtime Distribution”
for complete details.

Alternately, you can provide instructions for your users detailing how to run a .sav
file in the IDL Virtual Machine. The process depends on your operating system:

• Windows

• UNIX

• Mac OS X

Windows

Windows users can double-click on the .sav file, launch the IDL Virtual Machine
and open the .sav file, or launch the.sav file in the IDL Virtual Machine from the
command line.

Double-Click a .sav File

To run an application stored in a .sav file, simply double-click on the .sav file icon in
the Windows Explorer. If a development license is present, the application will run in
a licensed copy of IDL. If no license is present, the IDL Virtual Machine window will
open; click anywhere in the window to run the application in the IDL Virtual
Machine.

Launch the IDL Virtual Machine

To open a .sav file from within the IDL Virtual Machine:

1. Launch the IDL Virtual Machine and display the IDL Virtual Machine
window by selecting Start → Programs → IDL 7.0 → IDL Virtual Machine.
Starting a Virtual Machine Application Application Programming

Chapter 24: Distributing Virtual Machine Applications 593
2. Click anywhere in the IDL Virtual Machine window to close the window and
display the file selection menu.

3. Locate and select the .sav file, and double-click or click Open to run it.

Running from the Windows Command Line

To run a .sav file from the command line prompt:

1. Open a command line prompt. Select Run from the Start menu, and enter
cmd.

2. Change directory (cd) to the IDL_DIR\bin\bin.platform directory where
platform is the platform-specific bin directory.

3. Enter the following at the command line prompt:

idlrt -vm=<path><filename>

where <path> is the path to the .sav file, and <filename> is the name of
the .sav file.

UNIX

UNIX users must launch the IDL Virtual Machine from the UNIX command line.

To run a .sav file in the IDL Virtual Machine:

1. Enter the following at the UNIX command line:

idl -vm=<path><filename>

where <path> is the complete path to the .sav file and <filename> is the
name of the .sav file. The IDL Virtual Machine window is displayed.

2. Click anywhere in the IDL Virtual Machine window to close the window and
run the .sav file.

To launch the IDL Virtual Machine and use the file selection menu to locate the .sav
file to run:

1. Enter the following at the UNIX command line:

idl -vm

The IDL Virtual Machine window is displayed.

2. Click anywhere in the IDL Virtual Machine window to close the window and
display the file selection menu.

3. Locate and select the .sav file and click OK.
Application Programming Starting a Virtual Machine Application

594 Chapter 24: Distributing Virtual Machine Applications
Mac OS X

Macintosh users can launch the IDL Virtual Machine and open the .sav file, or
launch the.sav file in the IDL Virtual Machine from the command line.

Using the IDL Virtual Machine Icon

To open a .sav file from the IDL Virtual Machine:

1. Double-click the IDL 7.0 Virtual Machine icon to display the IDL Virtual
Machine window.

2. Click anywhere in the IDL Virtual Machine window to close the window and
display the file selection menu.

3. Locate and select the .sav file and click OK.

Running from the Command Line

To run the IDL Virtual Machine from the UNIX command line:

1. Enter the following at the UNIX command line:

idl -vm=<path><filename>

where <path> is the complete path to the .sav file and <filename> is the name
of the .sav file. The IDL Virtual Machine window is displayed.

2. Click anywhere in the IDL Virtual Machine window to close the window and
run the .sav file.

To launch the IDL Virtual Machine and use the file selection menu to locate the .sav
file to run:

1. Enter the following at the UNIX command line:

idl -vm

The IDL Virtual Machine window is displayed.

2. Click anywhere in the IDL Virtual Machine window to close the window and
display the file selection menu.

3. Locate and select the .sav file and click OK.
Starting a Virtual Machine Application Application Programming

Chapter 25

Distributing Callable
IDL Applications
This chapter describes the process of creating Callable IDL applications for distribution.
What Is a Callable IDL Application? 596
Limitations of Runtime Mode Callable IDL Applications . . 597
Steps to Distribute a Callable IDL Application 598
Preferences for Callable IDL Applications 599
Runtime Licensing . 600
Embedded Licensing . 601
Creating a Callable IDL Application Distribution 603
Starting a Callable IDL Application 606
Installing Your Callable IDL Application 607
Application Programming 595

596 Chapter 25: Distributing Callable IDL Applications
What Is a Callable IDL Application?

A Callable IDL application is written in another programming language, such as C or
C++, and calls IDL as a subroutine. The process of creating Callable IDL
applications is described in the External Development Guide.

Unlike applications written entirely in IDL, the process of creating an application
distribution for a Callable IDL application is the same whether the application’s end
user has an IDL development license or not. This chapter describes the packaging
process for Callable IDL applications using any licensing mechanism.

Callable IDL applications are packaged for distribution in much the same way as
native IDL applications. Before beginning the process of packaging your Callable
IDL application, you should be familiar with the contents of Chapter 23,
“Distributing Runtime Mode Applications”. This chapter describes the additional
steps necessary to create and distribute a Callable IDL application.

Licensing Options for Callable IDL Applications

When you have a Callable IDL application that you want to distribute to users who
do not have an IDL development license, you must purchase a runtime or embedded
license from ITT Visual Information Solutions. These options are described in detail
in “Runtime Licensing” and “Embedded Licensing” in Chapter 23, “Distributing
Runtime Mode Applications”.

If your end user already has an IDL development license, you can simply package
your Callable IDL application as described in this chapter and distribute it without
including a license.
What Is a Callable IDL Application? Application Programming

Chapter 25: Distributing Callable IDL Applications 597
Limitations of Runtime Mode Callable IDL
Applications

IDL applications that run without an IDL development license — whether native IDL
or Callable IDL — do not have access to the IDL compiler and thus cannot compile
IDL source code from .pro files. As a result, operations that require the compiler
will not execute when a development license is not present. In addition, if you are
writing an IDL application to be distributed to users who do not have an IDL
development license, you should be aware of the restrictions described in
“Limitations of Runtime Applications” in Chapter 23, “Distributing Runtime Mode
Applications”.

Note
Startup files are not executed when you launch an IDL application without a
command line. See “Understanding When Startup Files are Not Executed” (Chapter
1, Using IDL) for details.
Application Programming Limitations of Runtime Mode Callable IDL Applications

598 Chapter 25: Distributing Callable IDL Applications
Steps to Distribute a Callable IDL Application

To create and distribute a Callable IDL application, do the following:

1. Create your application using an IDL development license. Test the
application using the type of license you expect your end user to have. See the
External Development Guide for information on creating Callable IDL
applications.

2. Decide on a licensing mechanism for your application. (For an overview of
licensing mechanisms, see “Licensing Options for IDL Runtime Applications”
in Chapter 23.)

3. Obtain licenses for your application from ITT Visual Information Solutions.
See “Runtime Licensing” on page 600 or “Embedded Licensing” on page 601
for details.

4. Create an application distribution as described in “Creating a Callable IDL
Application Distribution” on page 603.

5. Create invocation and use instructions for your application. See “Starting a
Callable IDL Application” on page 606 for additional information.

6. Create an installer, if desired, and installation instructions for your application.
See “Installing Your Callable IDL Application” on page 607 for additional
information.
Steps to Distribute a Callable IDL Application Application Programming

Chapter 25: Distributing Callable IDL Applications 599
Preferences for Callable IDL Applications

IDL’s preference system allows developers, administrators, and individual users to
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

See “Preferences for Runtime Applications” in Chapter 23 for a discussion of using
preferences in the context of a IDL runtime application.

The process of specifying preferences for a Callable IDL application is complicated
by the fact that users never launch IDL directly. This means that in order to specify
preference values, you must do one of the following:

• Modify the idl.pref file in the resource/pref subdirectory of the
application distribution. This method is only useful if you are distributing an
IDL distribution to support your application — you should not modify an
existing idl.pref file in your end user’s installed IDL distribution.

• Instruct your users to set environment variables that correspond to the
preferences you need to specify, or explicitly set the variables yourself in a
startup script or batch file.
Application Programming Preferences for Callable IDL Applications

600 Chapter 25: Distributing Callable IDL Applications
Runtime Licensing

A runtime license allows you to run an IDL application that cannot display the IDL
Workbench or IDL command line and which cannot compile .pro files. This type of
licensing offers developers who have smaller customer bases the opportunity to buy
single distribution licenses as they are needed, paying a small fee for each license.
The license is either a node-locked license tied to the specific machine on which your
application will run (which means you will need to obtain information about your
customer’s machine), or a more costly but less restricted floating license that will run
on any machine of a given platform.

Note
It is beyond the scope of this manual to discuss the creation of Callable IDL
applications. See Chapter 16, “Callable IDL” (External Development Guide) for
details. Note that applications using a runtime license must set the
IDL_INIT_RUNTIME option when calling the IDL_Initialize() function, and
must call IDL_RuntimeExec() rather than IDL_Exec().

When using runtime licensing, you can distribute licenses to your users in two ways:

• If you wish to distribute a licensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but forces you to
create separate distributions for each customer.

• If you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase a license for each customer
and provide that license along with the information necessary for the customer
to license your application.

See “Obtaining and Installing Runtime Licenses” on page 573 for information on
obtaining and installing runtime licenses for your Callable IDL application.
Runtime Licensing Application Programming

Chapter 25: Distributing Callable IDL Applications 601
Embedded Licensing

An embedded license allows your application to run without an IDL license. It can be
distributed to multiple users and will run on any system supported by IDL. Licensing
an IDL application with an embedded license is the simplest form of licensing.

Note
It is beyond the scope of this manual to discuss the creation of Callable IDL
applications. See Chapter 16, “Callable IDL” (External Development Guide) for
details.

In order to create applications with embedded licenses, you must purchase a special
IDL Developer’s Kit license from ITT Visual Information Solutions. If you specify
that you will be distributing a Callable IDL application when you purchase your
Developer’s Kit license, ITT Visual Information Solutions will provide you with a
license string and some initialization code to be embedded into your application code
before the application’s initial call to IDL.

Obtaining Your Licensing Information

Contact ITT Visual Information Solutions for your license information. You will
need to provide the following information:

• The license installation number for your embedded license. Note that this
number is different from the installation number for IDL itself.

• Your company name.

• Application title (e.g., My App).

• Name of the application executable (e.g., myapp).

• IDL interface being called (Callable IDL).

• Calling program language (e.g., VB, C++, C, Fortran).

You will receive a text file containing a function that IDL uses to retrieve the
licensing information.
Application Programming Embedded Licensing

602 Chapter 25: Distributing Callable IDL Applications
Modifying Your Application Code

After you receive your license information, make the following changes to your
application code, in the module from which you are initializing IDL. These
instructions assume your code is written in C.

1. Define the licensing information for your application. Although your licensing
information is individualized, it will resemble the following:

/* Callable Application license for: myapp, My App */
/* License built for IDL Version 7.0 */
static char *initStr[] = {

"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"" };

2. Allocate the following structure in the callable application.:

IDL_INIT_DATA init_data;

3. Initialize the structure in the callable application before IDL initialization:

init_data.applic = initStr;
init_data.options |= IDL_INIT_APPLIC;

4. Initialize IDL with the following statement (all platforms):

if (!IDL_Initialize(&init_data))
return(FALSE);
Embedded Licensing Application Programming

Chapter 25: Distributing Callable IDL Applications 603
Creating a Callable IDL Application
Distribution

This section discusses the process of creating an application distribution that includes
the files necessary to run IDL, allowing you to distribute your application to users
who do not already have IDL installed.

First, see “Creating an Application Distribution” in Chapter 23 for information on
creating an IDL application distribution. The steps you will take after creating the
IDL runtime distribution depend on the platform on which your Callable IDL
application will run.

Windows

Once you have created an IDL runtime distribution, you must do the following:

1. Add your Callable IDL application executables to the bin/bin.platform
subdirectory of the distribution where platform is the name of the platform
for which you created the application.

2. If your application uses preferences, edit the resource/pref/idl.pref file
to contain the correct preference values.

3. If you are using the launch script generated by the MAKE_RT procedure,
modify the launcher’s .ini file to invoke your Callable IDL application rather
than the idlrt.exe executable. Alternately, you can simply provide
instructions detailing how to execute your Callable IDL executable file.

UNIX

Once you have created an IDL runtime distribution, you must do the following:

1. Add your Callable IDL application executables to the bin.platform
directory, where platform is the name of the platform for which you created
the application. If you are distributing your application on multiple platforms,
copy the executable for each platform to the corresponding bin.platform
directory. Placing your executables in the bin.platform directory offers a
couple of advantages:

• It simplifies application startup, especially if your application is
distributed for multiple platforms. The application startup script calls a
script in the bin directory. This script is designed to start the correct
executable, depending on the platform on which it is being executed. This
Application Programming Creating a Callable IDL Application Distribution

604 Chapter 25: Distributing Callable IDL Applications
allows the user to start the application on any platform by simply
executing the startup script in the top-level directory, thereby saving the
user from having to know the directory in which the executable is located.

• It saves the user, or your installation script, from having to set the
LD_LIBRARY_PATH environment variable because sharable libraries
are located in the bin.platform directory.

2. Rename the idl script. The idl script is located in the bin directory of your
distribution. For Callable IDL applications, this script must use the same name
as your application executable in the bin.platform directory. For example,
if your application executable in the bin.platform directory is called
myapp, rename the idl script in the bin directory to myapp.

3. Edit the startup script. In the top-level directory of your application
distribution, there is a startup script with the name specified by the
startcommand parameter you specified when you ran the make_rt script.
Make the following changes to this script:

A. Edit the startup script to execute the script in the bin directory that you
renamed in the previous step. For example, if your application executable
in the bin.platform directory is called myapp, and you therefore
renamed the idl script in the bin directory to myapp, you would edit the
startup script in the top-level directory as follows:

./bin/myapp

Note
The above command requires the user to execute the startup script from the
top-level directory of your application distribution. To allow the user to
launch your application from a different directory, the user (or your
installation script) could change the command to use the full path to the
script in the bin directory. See the example after the following step.

B. In order to allow your application to find the correct executable (either
IDL or a Callable IDL executable), the IDL_DIR environment variable
must be set on the user’s machine to point to the top-level directory of your
application. Because this location is not known until the user installs your
application, IDL_DIR must be set by either an installation script or by the
user.

If there are other ITT Visual Information Solutions products installed on
the user’s machine, IDL_DIR may already be set. For this reason,
IDL_DIR should be set for the instance of the shell that will be used to
start your application, but should not be set in the user’s login scripts such
Creating a Callable IDL Application Distribution Application Programming

Chapter 25: Distributing Callable IDL Applications 605
as .cshrc or .profile. This allows IDL_DIR to be set properly for your
application, without conflicting with the IDL_DIR setting for other
products the user may have installed.

The most convenient way to set IDL_DIR on the user’s machine is to have
your installation script (or the user) edit the startup script. This saves the
user from having to manually set IDL_DIR prior to launching your
application. You can either provide the user with instructions on adding
the necessary commands to the startup script, or you can have your
installation script modify the startup script. For example, if an application
called myapp is installed in the /home/apps directory, your startup script
would resemble the following:

IDL_DIR=/home/apps
export IDL_DIR
/home/apps/bin/myapp

If you do not modify the startup script, the user must set IDL_DIR at the
command prompt prior to launching your application. For example, if your
application is installed in the user’s /home/myapp directory, the user
could execute the following command at the C shell prompt:

setenv IDL_DIR /home/myapp

4. If your application uses preferences, edit the resource/pref/idl.pref file
to contain the correct preference values.
Application Programming Creating a Callable IDL Application Distribution

606 Chapter 25: Distributing Callable IDL Applications
Starting a Callable IDL Application

You must provide your end users with instructions describing how to start your
application. You may choose to provide users with the name and location of your
application executable along with a launch command to execute, or (if you are using
an installer for your application) with shell scripts, shortcuts, or Start menu items.
The specific instructions you provide will depend on your end user’s platform.

Windows

To start a Callable IDL application if you have exported an IDL runtime distribution
using the MAKE_RT procedure, change directories to the
application\idldir\bin\bin.platform directory (where application is
the name of the directory that contains your exported distribution, idldir is the IDL
directory inside your application directory, and platform is either x86 or x86_64,
depending on the verison of IDL your application relies on) and double-click on the
executable file you created.

Alternately, you can use the Windows launch application described in “Runtime
Application Launch Scripts” on page 618.

Note
The executable file must reside in the bin\bin.platform subdirectory of your
exported application distribution. For your users’ convenience, you may want to
create a Windows shortcut to the executable file in another location.

UNIX

To start a Callable IDL application if you have exported an IDL runtime distribution
using the MAKE_RT procedure, change directories to the
application/idldir/bin directory (where application is the name of the
directory that contains your exported distribution and idldir is the IDL directory
inside your application directory) and execute the renamed idl script file.
Starting a Callable IDL Application Application Programming

Chapter 25: Distributing Callable IDL Applications 607
Installing Your Callable IDL Application

Installation of your application on the end user’s machine can be performed manually
by the user, or it can be automated using an installer. There are a number of
commercial applications available to help you build installers.

In order to avoid any possible conflicts with existing versions of IDL, you should
warn your users NOT to install your application in the same directory as IDL x.x,
where IDL x.x is the version used by your application.

Note
ITT Visual Information Solutions’ Global Services group can create installation
packages for your application. Contact your ITT Visual Information Solutions sales
representative for additional information.
Application Programming Installing Your Callable IDL Application

608 Chapter 25: Distributing Callable IDL Applications
Installing Your Callable IDL Application Application Programming

Chapter 26

Creating a Runtime
Distribution
This chapter discusses the process of creating an application distribution that includes the files
necessary to run IDL, allowing you to distribute your application to users who do not already have
IDL installed.
About Runtime Distributions 610
Creating a Distribution Using MAKE_RT 611
Working with the manifest_rt.txt File 616

Runtime Application Launch Scripts 618
Incorporating the IDL DataMiner 624
Installing a Runtime Distribution 625
Application Programming 609

610 Chapter 26: Creating a Runtime Distribution
About Runtime Distributions

If your IDL application is intended to be run in an installation with an IDL
development license, you do not need to create an IDL distribution. Simply package
up your application files (either .pro files or .sav files, and any necessary data
files) and distribute it to your users along with instructions describing how to install
and launch the application.

If, however, you intend to distribute your application to users who do not have an
existing IDL installation, or if you want your application to run directly from
removable media such as a CD- or DVD-ROM, you must create a runtime
distribution. A runtime distribution contains the IDL executable files, dynamically-
loaded library files, and resource files needed to execute an IDL application that has
been packaged in an application .sav file.

In versions of IDL prior to version 7.0, there were two methods available to create a
runtime distribution:

• using the Export feature of the IDL Development Environment’s Project
interface (Windows and UNIX)

• using the make_rt script (UNIX only)

In IDL 7.0, these methods were replaced by the MAKE_RT procedure. MAKE_RT
provides a cross-platform mechanism for building runtime distributions for multiple
platforms. The MAKE_RT procedure itself is described in the IDL Reference Guide;
this chapter elaborates on some of the issues surrounding creating and distributing
runtime applications.
About Runtime Distributions Application Programming

Chapter 26: Creating a Runtime Distribution 611
Creating a Distribution Using MAKE_RT

The MAKE_RT procedure creates an IDL distribution for one or more target
platforms.

Note
You do not need to create a SAVE file in order to use MAKE_RT, but application
launch scripts will only be created if a SAVE file is included.

To create a runtime distribution for your application, you will do the following:

1. Collect Required Information

2. Modify or Create a Manifest File

3. Run the MAKE_RT Procedure

4. Add Required Files to Your Distribution

5. Modify the Launch Scripts

Collect Required Information

Before using the MAKE_RT procedure to create a runtime distribution, you will need
to collect the following information and make several decisions about how your
application will run. You will need to:

• Choose a name for your runtime application. The application name will be
used as the name of the directory that contains the runtime distribution, and
will be used as the base name for any launch scripts created by MAKE_RT.

• Know the full path to the output directory where your distribution will be
created. This directory must exist and you must have the appropriate
permissions to write files into it. A directory with the same name as your
application will be created in the output directory.

• Know the full path to the SAVE file that contains your application code, if one
exists. If you specify a SAVE file, launch scripts will be created to run the
application it contains.

• Decide which platforms you want your application to run on. You must have
access to an installed IDL distribution for every platform you want to include
in your runtime distribution. (Note that you do not need to have licenses for all
of the platforms; an installed distribution is all that is required.)
Application Programming Creating a Distribution Using MAKE_RT

612 Chapter 26: Creating a Runtime Distribution
• Decide whether your application should use an IDL license, if one is available.
By default, MAKE_RT will create launch scripts that will use an IDL license if
one is present; if no license is present, the application will run in the IDL
Virtual Machine. If you want to ensure that your application runs in the Virtual
Machine even if an IDL license is available, specify the VM keyword to the
MAKE_RT procedure.

• Know the full path to your custom manifest file, if you are using one. Manifest
files are described in the following section.

Modify or Create a Manifest File

The default manifest file, IDL_DIR/bin/make_rt/manifest_rt.txt (where
IDL_DIR is the IDL installation directory) contains entries for all of the files
necessary to create a runtime IDL distribution for all supported platforms. In most
cases, you can use the manifest_rt.txt file without modification, and the
MAKE_RT procedure will select the appropriate files to build the distribution you
specify.

In some cases, however, you may need to modify or add to the list of files contained
in manifest_rt.txt. For more on the format of this file, see “Working with the
manifest_rt.txt File” on page 616.

Run the MAKE_RT Procedure

Run the MAKE_RT procedure to create the runtime distribution. The syntax and
options are described in the IDL Reference Guide.

Creating Mixed UNIX/Windows Distributions

The MAKE_RT procedure allows you to create a single runtime distribution that
supports multiple platforms. In order to created a mixed-platform distribution,
MAKE_RT must have access to an IDL installation directory that contains all of the
required files.

On UNIX platforms (Solaris, Macintosh OS X, and Linux), a single installation
directory can contain files for multiple operating systems. If you are running IDL on
a UNIX platform and wish to create a runtime distribution for one or more UNIX
platforms (but not Microsoft Windows), MAKE_RT can create the distribution in a
single operation. On Microsoft Windows platforms, an IDL installation directory can
only contain Windows files.

If you want to create a runtime distribution that includes both Microsoft Windows
and one or more UNIX platforms, you will need to run the MAKE_RT procedure at
Creating a Distribution Using MAKE_RT Application Programming

Chapter 26: Creating a Runtime Distribution 613
least twice: once to create the Windows distribution and one or more additional times
to create distributions for the UNIX platforms. You can use the same target directory
for all invocations of MAKE_RT; any files that are duplicated in the selected
platforms’ distributions will be quietly overwritten.

For example, suppose you want to create a runtime distribution that supports 32-bit
Windows, Macintosh OS X, and 32-bit Linux, and both 32- and 64-bit Solaris. IDL is
installed on the Windows machine, on the Macintosh machine, and in a shared
location for the Linux and Solaris machines. The process of creating a mixed runtime
distribution would look something like this:

1. On the Windows machine, run IDL and give the following command:

MAKE_RT, 'myApp', Outdir, SAVEFILE=sfile

where Outdir is a directory on a network drive that is accessible to all systems,
and sfile is the full path to the IDL SAVE file that comprises your application.

2. On the Macintosh, run IDL and give the following command:

MAKE_RT, 'myApp', Outdir, SAVEFILE=sfile

where Outdir is a directory on a network drive that is accessible to all systems,
and sfile is the full path to the IDL SAVE file that comprises your application.

Note
Although your SAVE file has already been copied to the application
directory, you must include the SAVEFILE keyword to MAKE_RT again
here in order to create the Macintosh launch scripts.

3. On either a Linux or a Solaris machine, run IDL and give the following
command:

MAKE_RT, 'myApp', Outdir, SAVEFILE=sfile, /LIN32, /SUN32,
/SUN64

where Outdir is a directory on a network drive that is accessible to all systems,
and sfile is the full path to the IDL SAVE file that comprises your application.

Note
Again, you must include the SAVEFILE keyword to MAKE_RT here in
order to create the UNIX launch script.
Application Programming Creating a Distribution Using MAKE_RT

614 Chapter 26: Creating a Runtime Distribution
Add Required Files to Your Distribution

After you have created a distribution using MAKE_RT, any files that are not part of
the IDL distribution, as well as any required IDL files that you did not add to the
manifest, must be manually copied to your distribution. Do the following:

1. If your application requires any data files that are not in the IDL distribution,
including ASCII, binary, or image files, add them to your distribution.

2. If your application includes more than one SAVE file, add the files to the
distribution.

3. If your application includes help files or other documentation, add the files to
the distribution.

For information on creating and restoring SAVE files, see Chapter 4, “Creating SAVE
Files of Programs and Data”.

Modify the Launch Scripts

If you specify a value for the SAVEFILE keyword, the MAKE_RT procedure will
generate launch scripts for each of the platforms supported by your runtime
distribution. The launch scripts are named with the string specified as the Appname
argument to MAKE_RT, and several values within the launch scripts are modified.

Note
On Macintosh systems, the launch script created by MAKE_RT is a template that
you must modify before it will launch your application. On Windows, Linux, and
Solaris systems, the launch scripts will function unmodified, but you may want to
customize them.

The launch scripts are described in detail in “Runtime Application Launch Scripts”
on page 618. This section describes some additional modifications you may want to
make.

Windows

The launch script for Windows platforms is named Appname.exe, where
Appname is the value of the Appname argument to MAKE_RT. The launch script is
configured via an initialization file named Appname.ini. You may want edit
Appname.ini to modify the text used in the application launch dialog.

If your application runs on both 32- and 64-bit IDL, you may want to create separate
buttons to launch the different versions.
Creating a Distribution Using MAKE_RT Application Programming

Chapter 26: Creating a Runtime Distribution 615
See “Windows Launch Script” on page 618 for additional details.

Macintosh

The launch script for Macintosh platforms is an AppleScript named Appname.app,
where Appname is the value of the Appname argument to MAKE_RT.

See “Macintosh Launch Script” on page 621 for additional details.

Linux/Solaris

The launch script for Linux and Solaris platforms is a shell script named Appname,
where Appname is the value of the Appname argument to MAKE_RT.

See “Linux/Solaris Launch Script” on page 623 for additional details.
Application Programming Creating a Distribution Using MAKE_RT

616 Chapter 26: Creating a Runtime Distribution
Working with the manifest_rt.txt File

In many cases you can use the IDL_DIR/bin/make_rt/manifest_rt.txt file
(where IDL_DIR is the IDL installation directory) without modification. If, however,
your application uses files that are not part of the IDL distribution, or if you want to
include features described in manifest_rt.txt but commented out of the default
runtime distribution, you can create a custom manifest file. To create a custom
manifest file, begin by copying the manifest_rt.txt file and giving your file a
new name, such as manifest_custom.txt.

Warning
Use a text editor such as vi, emacs, TextEdit, or the Windows Notepad to edit
manifest files. Blank lines and any text following a comment character (semicolon)
will be ignored by the MAKE_RT procedure.

Format of the Manifest File

The manifest files used by the MAKE_RT procedure are plain text files that contain
one line for each file in the IDL installation directory that can potentially be copied to
the runtime distribution.

Each entry in the manifest file corresponds to a file that exists in the IDL distribution
for a particular platform. (Note that although files for all supported platforms are
included in the manifest file, the MAKE_RT procedure only attempts to copy files
for platforms specified when the procedure is run.)

In addition to editing the contents of the manifest file based on the keywords
specified at runtime, the MAKE_RT procedure applies the following rules when
creating its list of files to copy to the runtime distribution:

• blank lines are ignored

• lines that begin with a semicolon are ignored

• text following a semicolon that is not at the beginning of a line is ignored

Removing IDL Features

Some sections of the manifest_rt.txt file are noted as optional. If your
application does not use the features contained in one or more of these sections, you
may be able to remove them from your custom manifest file, creating a smaller
runtime distribution.
Working with the manifest_rt.txt File Application Programming

Chapter 26: Creating a Runtime Distribution 617
Warning
If you choose to remove one or more optional features, be sure to test your
application thoroughly using the runtime distribution. Removing an optional feature
may reveal dependencies in your code of which you were unaware.

Including Optional IDL Features

The manifest_rt.txt file includes sections that are commented out (that is,
each line begins with a semicolon). These sections correspond to features (support for
the IDL Dataminer, for example) that are rarely used or that require a special license.
To include these features in your runtime distribution, you will need to edit the
manifest file to remove the comment characters.

Note
Even if you uncomment all of the entries for a particular feature, only the files that
are required for the platforms you specify will be copied by MAKE_RT.

Including Non-IDL Files

To include features that are not described in the manifest_rt.txt file, add new
lines describing the location of the files. Note that paths specified in the manifest file
are relative to IDL_DIR, and that files will have the same relative location with the
IDL runtime distribution as they have in the source distribution.

Note
When adding non-IDL files to a manifest file, use the forward slash (“/”) as the
directory separator, even on Windows platforms.

Tip
If you are unable to place your extra files into the source IDL distribution, you may
want to manually copy the files after the runtime distribution has been built, as
described in “Add Required Files to Your Distribution” on page 614.
Application Programming Working with the manifest_rt.txt File

618 Chapter 26: Creating a Runtime Distribution
Runtime Application Launch Scripts

The bin/make_rt subdirectory of the IDL installation directory contains generic
launch scripts for Windows, Macintosh, and Linux/Solaris applications. If you use
the MAKE_RT procedure to create a runtime distribution and specify a value for the
SAVEFILE keyword, the appropriate launch scripts will be copied to your
distribution and renamed to match your application. For Windows and Linux/Solaris
platforms, the scripts are modified by MAKE_RT to launch the specified SAVEFILE
application. On Macintosh platforms you must manually edit the launch script.

This section describes the different launch scripts in more detail, and explains how to
configure and use them. Note that while some of the steps described here are
performed by the MAKE_RT procedure, you may still need to modify the scripts to
achieve the desired behavior.

Windows Launch Script

To use the application launcher, follow the steps outlined below.

Note
If you use the MAKE_RT procedure and specify a value for the SAVEFILE
keyword, the launch scripts are copied to your runtime distribution and renamed to
match the Appname argument automatically. The start_app_win.ini file is
modified to run your SAVE file.

Copy and Rename the start_app_win.exe File

Copy the file

IDL_DIR\bin\make_rt\start_app_win.exe

(where IDL_DIR is your IDL installation directory) to the location of your runtime
distribution. If you want, rename start_app_win.exe to reflect the name of your
application. (Be sure to retain the .exe extension.) For example, if your application
is named “HydroPlot,” you could rename the start_app_win.exe file as
hydroplot.exe.

Copy and Rename the start_app_win.ini File

When a user clicks on the executable file (start_app_win.exe or whatever you
have renamed it), the executable searches for and reads a .ini file with the same
base name as the executable. If you renamed start_app_win.exe, you will also
need to rename the .ini file with the same base name. For example, if you renamed
Runtime Application Launch Scripts Application Programming

Chapter 26: Creating a Runtime Distribution 619
start_app_win.exe as hydroplot.exe, you would rename
start_app_win.ini as hydroplot.ini.

Copy the file

IDL_DIR\bin\make_rt\start_app_win.ini

(where IDL_DIR is your IDL installation directory) to the location of your runtime
distribution. Rename the .ini file to match the name of the executable file, if you
have changed it from start_app_win.exe.

Modify the start_app_win.ini File

The .ini file (start_app_win.ini or whatever you have renamed it) specifies
what will happen when the user runs the .exe file. If you use the MAKE_RT
procedure and specify a value for the SAVEFILE keyword, the .ini file is rewritten
to launch your application. If you copy the .ini file manually, you must modify it
as described below.

The start_app_win.exe file can either run a single application immediately or
display a dialog with up to four buttons, each of which invokes a different
application. The configuration of the dialog (including whether or not it is displayed
at all) is controlled by the .ini file.

The .ini file contains five sections, one labelled [DIALOG] and four labelled
[BUTTONn] (where n is a number between 1 and 4). The contents of each type of
section are described below.

DIALOG Section

[DIALOG]
Show=False
BackColor=&H6B1F29
Caption=<any string>
Picture=.\splash.bmp
DefaultAction=<path to application>

• Show — this field can contain the string True or the string False. If
Show=True, the dialog is displayed, and the DefaultAction is not executed.
If Show=False, the dialog is not displayed, and the DefaultAction is
executed immediately when the user double-clicks on the
start_app_win.exe icon.

• BackColor — this field contains an RGB color triplet specified in
hexadecimal notation. This color will be used in any part of the dialog that is
not covered by the image specified as the value of the Picture field. To make
the background white, set BackColor=&HFFFFFF.
Application Programming Runtime Application Launch Scripts

620 Chapter 26: Creating a Runtime Distribution
• Caption — this field contains a string that will be displayed in the title bar of
the dialog, if Show=True.

• Picture — this field contains the relative path to a Windows bitmap file that
will be displayed in the dialog if Show=True. The image will be positioned
with its upper left corner in the upper left corner of the dialog window. To
completely fill the dialog, the image contained in the bitmap file should be 480
x 335 pixels. Any area of the dialog that is not filled by the image will be
displayed in the color specified in the BackColor field.

• DefaultAction — this field contains the command that should be executed
when start_app_win.exe is run if Show=False. In most cases, you will
need to specify the relative path to the idlrt.exe file in the IDL distribution
on your CD-ROM, followed by the -vm flag and the relative path to your
application’s SAVE file.

For example, if you have placed the SAVE file for the application
hydroplot.sav in the hydroplot directory of the CD-ROM along with the
start_app_win.exe application, the following DefaultAction launches
hydroplot.sav in the IDL Virtual Machine when the user double clicks on
the start_app_win.exe icon:

DefaultAction=.\idl70\bin\bin.x86\idlrt.exe
-vm=hydro\hydroplot.sav

(The DefaultAction specification should be on a single line.)

BUTTON Sections

There can be up to four [BUTTON] sections. The format is the same for any section of
this type.

Note
If the Show field of the [DIALOG] section is set to False, no buttons will be
displayed, regardless of the content of the [BUTTON] sections.

[BUTTON1]
Show=True
Caption=<any string>
Action=<path to application>

• Show — this field can contain the string True or the string False. If
Show=True, the button will be displayed on the dialog.

• Caption — this field contains a string that will be displayed on the button, if
Show=True.
Runtime Application Launch Scripts Application Programming

Chapter 26: Creating a Runtime Distribution 621
• Action — this field contains the command that should be executed when the
user clicks on the button, if Show=True. See Default Action above for an
explanation of the format of the command string.

To create a button that simply closes the dialog without executing anything, set
Action=Exit on the button.

Copy and Modify the autorun.inf File

If you want your application to launch automatically when the user inserts your
CD-ROM, you must modify the autorun.inf file. The autorun.inf file contains
the following lines:

[autorun]
open = start_app_win.exe
icon = idl.ico

If you want your application to launch automatically when the user inserts the
CD-ROM, copy the file

IDL_DIR\bin\make_rt\autorun.inf

(where IDL_DIR is your IDL installation directory) into your runtime distribution
and modify the

open = start_app_win.exe

line to reflect the name of the executable file you want to launch automatically. For
example, if you renamed start_app_win.exe to hydroplot.exe, change the
line to read:

open = hydroplot.exe

If your executable file displays a dialog, you might want to modify the

icon = idl.ico

line to specify an icon that will be displayed in the Windows task bar. If you specify
an icon file in your autorun.inf file, you must ensure that the icon file is included
in the root directory of your CD-ROM.

Macintosh Launch Script

The bin/make_rt subdirectory of the IDL installation directory includes two
Applescripts that you can use to launch your application. To use the Applescripts,
follow the steps outlined below.
Application Programming Runtime Application Launch Scripts

622 Chapter 26: Creating a Runtime Distribution
Note
If you use the MAKE_RT procedure and specify a value for the SAVEFILE
keyword, the launch scripts are copied to your runtime distribution automatically.
The start_app_mac.app file is renamed to match the Appname argument and
modified to run your SAVE file. You can edit the .app file using the AppleScript
editor.
A text version of the script named Appname_mac_script_source.txt is
also saved in the same directory as the .app file. You can delete the .txt file.

Copy and Rename the Applescript Files

Use the Finder to copy the files

IDL_DIR/bin/make_rt/start_app_mac.app
IDL_DIR/bin/make_rt/Utils_applescripts.scpt

(where IDL_DIR is your IDL installation directory) to the location of your runtime
distribution. If you want, rename start_app_mac.app to reflect the name of your
application. For example, if your application is named “HydroPlot,” you could
rename the start_app_mac.app file as hydroplot.app. Do not rename
Utils_applescripts.scpt.

Warning
If you copy the script files using the UNIX shell cp command rather than the
Finder, you must also copy the resource files named ._start_app_mac.app and
._Utils_applescripts.scpt. Be sure to rename ._start_app_mac.app if
you rename its counterpart.

Modify the start_app_mac.app File

Use the Applescript editor to modify the value of the idlApp and idlDir variables
in the start_app_mac.app file (or whatever you have renamed it) as shown below:

(*
Specify the path to the IDL SAVE file that launches the virutal
machine application, relative to the location of the script
*)
set idlApp to "my_app.sav" as string

(*
Specify the path to the top directory of the IDL distribution,
relative to the location of the script.
*)
set idlDir to "idl70" as string
Runtime Application Launch Scripts Application Programming

Chapter 26: Creating a Runtime Distribution 623
where the IDL installation is in the directory idl70 and the application is in a SAVE
file named my_app.sav.

Linux/Solaris Launch Script

The bin/make_rt subdirectory of the IDL installation directory includes a bourne
shell script that you can use to launch your application. To use the script, follow the
steps outlined below.

Note
If you use the MAKE_RT procedure and specify a value for the SAVEFILE
keyword, the launch scripts are copied to your runtime distribution automatically.
The start_app_unix file is renamed to match the Appname argument and
modified to run your SAVE file.

Copy and Rename the start_app_unix File

Copy the file

IDL_DIR/bin/make_rt/start_app_unix

(where IDL_DIR is your IDL installation directory) to the location of your runtime
distribution. If you want, rename start_app_unix to reflect the name of your
application. For example, if your application is named “HydroPlot,” you could
rename the start_app_unix file as hydroplot.

Modify the start_app_unix File

Using a text editor, modify the value of the idlapp and IDL_DIR variables in the
start_app_unix file (or whatever you have renamed it) as show below:

Specify the path to the IDL SAVE file that launches
the Virtual Machine application, relative to $topdir.
idlapp=$topdir/my_app.sav

Specify the path to the top directory of the IDL
distribution, relative to $topdir.
IDL_DIR=$topdir/idl70 ; export IDL_DIR

where the IDL installation is in the directory idl70 and the application is in a SAVE
file named my_app.sav.

Note
If you use the MAKE_RT procedure and specify a value for the SAVEFILE
keyword, the start_app_unix file is rewritten to launch your application.
Application Programming Runtime Application Launch Scripts

624 Chapter 26: Creating a Runtime Distribution
Incorporating the IDL DataMiner

If your application uses IDL DataMiner, use the DATAMINER keyword to the
MAKE_RT routine. You will also need to add some files and move other files before
you distribute your application. The changes you make will depend on the operating
system you are using.

Windows

If your application uses IDL DataMiner, please call ITT Visual Information Solutions
Technical Support for instructions.

• E-mail: support@ittvis.com

• Phone: (303) 413-3920

UNIX

You must modify the odbc.ini file to include information about the drivers you are
using. This file is located in the resource/dm/<OS_NAME> directory of the
distribution tree you have just created. After modifying this file, it must be placed in
each user’s home directory. For details on the modifications you must make to the
odbc.ini file, see the IDL DataMiner manual.
Incorporating the IDL DataMiner Application Programming

mailto:support@ittvis.com

Chapter 26: Creating a Runtime Distribution 625
Installing a Runtime Distribution

The runtime distribution you create using MAKE_RT can be distributed on
removable media such as a CD- or DVD-ROM, or copied directly to your end-user’s
computer.

Note
Copying a runtime distribution onto the user’s hard disk does not “install” IDL in
the usual sense. No file associations or symbolic links are created.

Installation Issues: Windows

When you install IDL for Windows, the installation program ensures that all
Microsoft Windows system libraries required by IDL are installed. If you are
distributing a runtime application that will run on a Windows system that does not
have an installed version of IDL, it is possible (although somewhat unlikely) that the
required system libraries will not be present on your end-user’s computer.

If your application does not run correctly on your user’s machine, the missing system
libraries may be the problem. The IDL_DIR/bin/make_rt directory includes
two small installation programs that ensure the required system libraries are present.
You are free to distribute these to your own users. Instruct your users to run the
appropriate system library installer if they have problems:

• For 32-bit Windows systems, run systemdll32_setup.exe.

• For 64-bit Windows systems, run systemdll64_setup.exe.

Note
The system library installers will only install the required libraries if the correct
versions (or later versions) are not already present. These installers will not
overwrite later versions of the libraries.
Application Programming Installing a Runtime Distribution

626 Chapter 26: Creating a Runtime Distribution
Installing a Runtime Distribution Application Programming

Index

Symbols
!EDIT_INPUT system variable

command recall, 36
!ERROR_STATE system variable

MSG field
custom error messages, 152

SYS_MSG field
custom error messages, 152

!HELP_PATH system variable
using, 561

operator, 222, 326
operator, 222, 327
##= operator, 235
#= operator, 235
$ character

operating system commands, 37
$MAIN$ program

command line, 22
defined, 22
text file, 23
variable scope, 22

% character, printf-style format code, 435
&& operator, 224
*= operator, 235
+= operator, 235
.sav files

defined, 21
executing, 67
saving data and variables, 52

/= operator, 235
< operator, 220
<= operator, 235
-= operator, 235
-> operator, 238
> operator, 220
Application Programming 627

628
>= operator, 235
? character

conditional expression, 238
?: ternary operator, 238
@ character, 47
\ (backslash character), escape sequences, 438
^ character, 215, 218
_REF_EXTRA keyword, 91
|| operator, 225
~ operator, 225

Numerics
64-bit data type

about long data, 247
about unsigned long, 247

A
abbreviating keywords, 81
aborting IDL, 41
actual parameters, 81
adding

help to an application, 532
addition operator, 213
AND operator, 227
AND= operator, 235
anonymous structures, 336
application distribution

adding files, 614
applications

callable (defined), 565
installation issues, 582
native IDL (defined), 565
runtime mode, 564
Virtual Machine, 584
written in IDL, 16

arguments
supplying values for missing, 88

arithmetic errors, 155

array majority, 330
array-oriented language, 300
arrays

concatenation, 237
definition, 300
display, 305
efficient accessing, 463
multiplying, 326
number of elements, 301
of structures, 345
of structures, creating, 345
operations on, 301
print, 305
selecting subarray, 317
subarrays

dimensions, 319
selection, 317

subscripts
defined, 302
examples, 304
ranges, 317

symmetric, 326
transposing, 325
troubleshooting

out-of-range subscript, 308, 309
variable undefined, 310

using as subscripts, 312
ASCII characters

codes, 294
assignment

operator, 234
operators (compound), 235
pointers, 367
statement types, 234

ASSOC function
accessing large datasets, 385

associated I/O, 459
automatic

compilation, 30, 68, 79
structure definition, 352
Index Application Programming

629
B
backslash character

escape sequences, 438
backspace character, representing, 294
batch files

defined, 21
interpretation, 49
naming and locating, 48
overview, 46
running, 47

BEGIN statement, 114
bell character (representing), 294
big endian byte ordering

issues, 166
binary trees, 378
bitwise operators, 227
block of statements, 114
Boolean

operators
See bitwise operators
See logical operators

true/false definitions, 136
bubble sort, 377
building applications in IDL, 17
byte

about data type, 246
arguments and strings, 280

byte order issues, 166

C
CALDAT procedure

using, 255
calendar dates

converting from Julian dates, 255
stored as Julian, 253

callable IDL applications
creating a distribution, 603
definition, 565
embedded licensing, 601

runtime licensing, 600
calling

mechanism for procedures, 100
calling mechanism, 100
caret (^) character, 215, 218
carriage return

representing, 294
case sensitivity

IDL, 79
naming .pro files, 106

case, uppercase/lowercase, 282
characters

non-printing, 294
code

comment character, 34
creating programs, 19
debugging, 139
line continuation character, 34

column major. See array majority
command line

in runtime applications, 566
command recall

setting the buffer, 36
use, 36

comments
code comment character, 34

compiling
automatically, 28, 30
changing default rules, 33
COMPILE_OPT, 33
manually, 32

complex
about data type, 248
constants, 262
data type

about, 248
numbers

exponentiation, 218
compound assignment operators, 235
compound statement, 114
computation speed. See multi-threading
Application Programming Index

630
concatenation
array, 237
string, 277

conditional expression, 238, 238
conditional statements, 112
constants

complex, 262
decimal, 258
double-precision, 260
floating-point, 260
hexadecimal, 258
integer, 258
ivalues, 259
octal, 258
string, 262

context, 147
copyrights, 2
creating

heap variables, 361
XML data, 520

current working directory
of SAVE file with runtime license, 567

D
dangling references, 371
data

dynamically typed, 246
time/date generation, 255
types

See also data types.
data types

64-bit
long, 247
unsigned long, 247

about, 246
byte, 246
complex, 248
date/time data, 253
double-precision

complex, 248

floating-point, 247
floating-point, 247
integer, 246
long integer, 247
string, 248
unsigned

integer, 247
long, 247

date/time data
generating, 255
precision, 254

debugging
executive commands, 38
stepping over, 145

decimal, 258
decrement operator, 214, 215
definitions

procedure, 96
delimiters, string, 262
dereference operator, pointers, 367
destroying

IDLffXMLDOM objects, 521
determining variable scope, 83
disappearing variables, 147
displaying

help files, 536
distributing IDL applications

about, 16, 563
obtaining licenses, 573

division operator, 214
DOM (Document Object Model), 508

See also XML
DOM object classes, 511

helper classes, 513
Node, 511
node ownership, 514
saving and restoring, 517
using, 518

DOM tree
creating, 510
navigation, 513
Index Application Programming

631
dot product, 328
double-precision

about complex data type, 248
about floating-point data type, 247

E
editing

command line, 36
efficiency

constants, correct type, 257
IDL implementation, 192
invariant expressions, 125
loops, 194
programming, 192
system functions and procedures, 197
vector and array operations, 194

efficiency improvements. See multi-threading
embedded licensing

callable IDL applications, 601
native IDL applications, 577

end of file
testing for, 396

END statement, 114
ENDCASE, 114
ENDELSE, 114
ENDFOR, 114
ENDIF, 114
ENDREP, 114
ENDSWITCH, 114
ENDWHILE, 114

entering procedure definitions, 96
environment variables

IDL_DIR, 604
LD_LIBRARY_PATH, 604

EQ operator
defined, 231
pointers, 370

EQ= operator, 235
error messages

See also errors.

errors
default error-handling mechanism, 141
floating-point underflow, 155
handling

error-handling options, 150
math, 155
mathematical assessment, 265
rounding, 264
truncation, 265

escape character (representing), 294
examples

batch files
sigprc09, 50

file input/output
xml_to_array_define.pro, 491
xml_to_struct__define.pro, 499

language
idl_tree.pro, 378
ptr_print.pro, 377
ptr_read.pro, 376
ptr_sort.pro, 378
tree_example.pro, 378

executing
$MAIN program, 24
batch files, 47
named programs (.pro), 28
SAVE files, 53

executive commands
about, 38

explicitly formatted I/O
overview, 385
using, 404

exponentiation operator, 215
expressions

regular, 295
structure, 252

Extensible Markup Language see XML

F
false, definition of, 136
Application Programming Index

632
file
end-of-file, 396
file units, see file units
input/output, 382
multiple structures, 463

file units
See also logical unit numbers
about, 389
closing, 388
flushing, 395
opening, 387
pointer position, 395
positioning pointer, 395
testing end of file, 396

files
adding to application distribution, 614
closing

file units, 388
logical unit number, 389
manipulation operations, 465

FINITE function
using, 158

floating-point
about data type, 247
errors, 155
underflow errors, 155

formal parameters, 81
format codes

about, 409
list, 411
padding and width, 410

formatting I/O
about, 384
format codes, about, 409
format codes, available, 411
padding and width, 410

formfeed character (representing), 294
free format I/O

about, 385
using, 399

freeing

heap variables
pointers, 375

FSTAT function
using, 392

functions
compiling user-defined, 79
how IDL resolves, 97

G
GE operators, 231
GE= operator, 235
GOTO statement

using, 135
GT operator, 231
GT= operator, 235

H
heap variables

creating, how to, 361
freeing

pointers, 375
leakage, 372
overview, 359
pointer, 363
saving and restoring, 362

help
displaying

options, 532
text files, 536
text with XDISPLAYFILE, 536

HTML files, 543
in text widget, 535
in user interface, 533
paths, 561
PDF files

displaying, 541
status lines, 533
tooltips, 533
Index Application Programming

633
using external applications, 537
XDISPLAYFILE, 536

hexadecimal, 258

I
identity matrix, 314
IDL

runtime licensing, 16
IDL applications

building, 17
distributing, 16

IDL Code Profiler, 203
idl startup script, renaming, 604
IDL_DIR, 604
IDL_LMGRD_LICENSE_FILE environment

variable
runtime applications, 576

IDL_TREE example routine, 378
idl_tree.pro, 378
IDLffXMLDOM object classes, 511

destroying objects, 521
helper classes, 513
IDLffXMLDOMNode, 511
node ownership, 514
orphan nodes, 523
saving and restoring, 517
tree-walking example, 524
using, 518

IEEE standard, 156
include files See batch files
increment operator, 213, 215
infinity, undefined result, 156
inheritance

keyword, 89
input/output

associated, 459
explicit format

overview, 385
using format, 404

format codes, 409

format reversion, 408
formatted

overview, 384
free format

overview, 385
using, 399

multiple file structures, 463
platform specific information, 470
portable, 454
unformatted

overview, 384
portable, 454
string variables, 447
using, 447

UNIX FORTRAN unformatted data files,
464

XDR, 454
installing

license file, runtime, 573
integer

about data type, 246
constants, 259
conversions, errors in, 158

interrupt
program execution, 41
variable context, 41

invariant expressions, 125
iTool State file (.isv) file, 20

J
joining strings, 289
journaling, 40
Julian date/time

calendar conversion, 253

K
keyboard

interrupt, 41
Application Programming Index

634
keywords
determining if set, 86
inheritance, 89
parameters

about, 81
passing, 85

setting, 81

L
language catalog

creating file, 473
definition, 472
widget example, 479

language catalog file
loading, 474
storing, 474

language catalog object
adding keys, 476
creating, 476
destroying, 478
languages

getting, 477
setting, 477

performing queries, 477
LE operator, 231
LE= operator, 235
legalities, 2
libraries

converting to prefixed, 109
naming, 108

library authoring
benefits of, 104
conversion wrappers, 109
converting to prefixed, 109
naming conventions, 105, 108
prefixing routines, 105

library of routines
authoring, 103
authoring conventions, 108
converting existing, 109

prefixing, 105
license file

installing, 573
obtaining, 573

line continuation, 34
linefeed character (representing), 294
lines

continuation character, 34
linked lists

creating, 376
using pointers to create, 376

little endian byte ordering
about, 166

LM_LICENSE_FILE environment variable
runtime applications, 576

lmhostid application, 575
lmtools.exe application, 574
loading

XML document, 518
logical operators, 224
logical unit numbers

about, 389
long integer data type, 247
loops

avoiding, 194
CONTINUE, 134
exiting (BREAK), 133
FOR, 125
REPEAT...UNTIL, 130
statements, 112
WHILE...DO, 131

lowercase strings, 282
LT operator, 231
LT= operator, 235
LUNs (logical unit numbers), 389

M
main-level program see $MAIN$ program
majority see array majority
manual compilation, 32
Index Application Programming

635
math errors, 155
mathematical operators, 213
mathematics

error assessment routines, 265
matrix operators, 222
maximum operator, 220
memory

See also virtual memory.
meta characters, 295
method invocation operator, 238
minimum operator, 220
MK_HTML_HELP procedure

using, 543
MOD, 215
MOD= operator, 235
modifying XML data, 520
modulo operator, 215
multiplication

operator, 222
operator, 222
* operator, 214
arrays, 326
matrices, 326

multi-threading
about, 178
array creation routines, 188
array manipulation routines, 189
byte swapping support, 189
calculation speed, 178
controlling with CPU procedure, 182
data type conversion routines, 188
default number, 182
image processing routines, 188
math routines, 187
operators, 187
overriding default use, 186
preferences, 182
when not to use, 179

N
N_ELEMENTS function

array elements, 301
checking variable definition, 83

N_PARAMS function
use of, 83

name conflicts, 105
named

structures, 336
names

of variables, 271
reserved, 108

NaN (not-a-number), 156
navigating the DOM tree, 513
NE operator

about, 231
pointers, 370

NE= operator, 235
negation operator, 213
nesting

IF statements, 118
non-interactive mode, 47
non-printing characters, 294
NOT operator, 228
null string, 262

O
objects

heap variables, 359
references for heap variables, 359

obtaining traceback information, 149
octal, 258
online help

extending, 532
operations

on pointers, 367
operators

&&, 224
?:, 238
Application Programming Index

636
||, 225
~, 225
addition, 213
AND, 227
array concatenation, 237
assignment, 234
bitwise, 227
Boolean

See operators, bitwise
See operators, logical

compound assignment, 235
decrement, 214, 215
division, 214
EQ, 231
exponentiation, 215
GE, 231
GT, 231
increment, 213, 215
LE, 231
logical, 224
LT, 231
mathematical, 213
matrix multiplication, 222
maximum, 220
method invocation, 238
minimum, 220
minimum and maximum, 220
modulo, 215
multiplication, 214
NE, 231
NOT, 228
OR, 229
other, 237
precedence, 240
relational, 231
string, 275
subtraction and negation, 213
XOR, 229

OR operator, 229
outer product, 328
overflow, integer, 159

overriding multi-threading, 186

P
parameters

actual, 81
copying, 82
formal, 81
passing by reference, 98
passing by value, 98
passing mechanism, 98

parser, XML, 485
passing parameters, 98
performance

analyzing, 203
efficient programming, 192
multi-threading, 178

plotting
Julian date/time, 253

pointers, 364
examples, 376
freeing specified, 375
heap variables

about, 359
creating, 363

validity, 374
portable unformatted I/O, 454
positional parameters

overview, 81
precedence

operators, 240
prefixing libraries, 109
printf-style format code, 435
PRINTNAMES example routine, 377
procedures

calling
mechanism, 100

entering definitions, 96
how IDL resolves, 97

processing speed. See multi-threading
profiling, 203
Index Application Programming

637
program files
executing, 28
interrupting execution, 41

programs
creating SAVE files, 52
restoring, 52

ptr_print.pro, 377
ptr_read.pro, 376
ptr_sort.pro, 378

Q
question mark

ternary operator, 238
quotation marks

string constants, 262
quoted string format codes

normal style, 423
printf style, 435

R
ranges, subscript, 317
reading

XML data, 519
READNAMES example routine, 376
recall buffer

changing, 36
recursion, 100
regular expressions, 295
relational operators, 231
relaxed structure assignment

using, 354
reserved names, 108
resolving routine, 104
resources available to thread pool, 178
RESTORE procedure

using, 68
restoring

SAVE files, 52

structures, 355
Rich Text Format, 539
routines

conflicting names, 105
how IDL resolves, 97
mathematical error assessment, 265
naming, 108

row major see array majority
RTF, 539
running

$MAIN program, 24
batch files, 47
named programs (.pro), 28
SAVE files, 53

runtime
application, 564
callable IDL applications, 600
IDL, 16
Virtual Machine applications, 585

runtime distribution, 610
multi-platform, 612

runtime mode application, 564

S
SAVE files

64-bit offsets, 70
about, 52
about creating, 54
application development, 52
contents, 52
creating, 51
data, saving, 65
examples, 56, 64
executing, 67
heap variables, 362
IDL 5.4 SAVE files, 70
running, 67
SAVE/RESTORE, 54

SAVE procedure
creating .sav files, 54
Application Programming Index

638
using, 52
save/restore. See SAVE files
saving

IDL routines, 54
SAX (Simple API for XML) see XML
scalars

about, 250
scope, variable, 83
script, startup (Callable IDL application), 604
semicolon character, 34
setting

keywords, 81
sigprc09 batch file, 50
SINKSORT example routine, 377
sorting

SINKSORT example, 377
spaces, removing from a string, 283
SPAWN procedure

displaying help files, 537
splitting strings, 289
startup script (callable IDL application), 604
statement labels, 133
statements

BEGIN, 114
block of statements, 114
BREAK, 133
CASE versus SWITCH, 122
compound, 114
conditional, 112
CONTINUE, 134
END, 114
FOR, 125
REPEAT...UNTIL, 130
WHILE...DO, 131

stopping program execution
overview, 41

stride subscripts, 318
string data type, 248
strings

about, 262
argument conversion to, 276

byte values, 280
case folding, 282
case-insensitive comparisons, 290
comparing, 290
comparing using wildcards, 291
complex comparisons, 292
concatenation, 277
converting case, 282
extracting substrings, 288
finding substrings within

first occurrence, 286
last occurrence, 287

formatting data, 278
inserting, 287
leading and trailing blanks, 283
length, determining, 285
lowercase, 282
meta characters, 295
null, 262
operations, 275
regular expressions

example, 292
using, 295

splitting and joining, 289
substrings, 286
uppercase, 282
whitespace

about, 283
STRUCT_ASSIGN procedure

using, 354
structures

advanced, 350
anonymous, 336
arrays of, 345
automatic definition, 352
creating and defining, 337, 352
definition, 354
inheritance, 338
input/output, 347
introduction to, 336
named, 336
Index Application Programming

639
number of fields in, 350
parameter passing, 343
references, 340
relaxed definition

using, 354
restoring, 355
using help with, 342
zeroed, 337

subarray
dimensions, 319
inserting, 320
moving, 320
selection, 317

subscripts
array valued, 312
defined, 302
examples, 304
ranges, 317, 317
ranges, combined with arrays, 322
stride, 318
syntax, 307

substrings
extracting, 288
finding first occurrence, 286
finding last occurrence, 287

subtraction operator, 213
symmetric arrays

about, 326
syntax

keywords, 85
system variables

!EDIT_INPUT, 36
about, 272

T
tab character (representing), 294
tabs

removing from a string, 283
ternary operator (?:), 238
thread pool. See multi-threading

time
 See also date/time data.

TIMEGEN, 255
traceback information

obtaining, 149
trademarks, 2
transposing arrays, 325
tree_example.pro, 378
trees

binary, 378
building with pointers, 376

troubleshooting
arrays

out-of-range subscript, 308, 309
variable undefined, 310

true, definition of, 136
types, internal

See also data types.

U
undefined variables, checking for, 86
underflow errors, 155
unformatted I/O, 384, 447
UNIX

OS-specific file I/O information, 470
unsigned data type

about integer data, 247
about long data, 247

uppercase
strings, 282

V
variable

context after interruption, 41
determine if defined, 86

variable information
variables view, 147

variables
Application Programming Index

640
attributes of, 270
determining scope, 83
disappearing, 147
names, 271
overview, 270
system, 272
undefined, checking for, 86

vectors
multiplying, 328
subscripting, 317

Virtual Machine
description, 584
limitations, 585
version compatibility, 590

virtual memory
about, 198
improving efficiency, 192
minimizing, 200
minimizing with TEMPORARY, 201
running out of, 199
system parameters, 201

W
whitespace

formatting, 410
removing from strings, 283

wildcards
in string searches, 291

wrapper routines
compatibility wrappers, 110
defined, 89
library conversion, 109
writing, 93

writing
binary data, 381
dat files, 383

X
XDISPLAYFILE, 536
XDR files, 386, 454
XML

See also IDLffXMLSAX.
defined, 484
DOM, 485

creating data, 520
destroying objects, 521
handling whitespace, 522
loading a document, 518
modifying data, 520
object classes, 511
orphan nodes, 523
reading data, 519
tree-walking example, 524

DTD, 489
parsers

defined, 485
DOM, 508

SAX, 485
schema, 489
validation, 489

XML document
creating data, 520
destroying objects, 521
loading, 518
modifying data, 520
orphan nodes, 523
reading data, 519
whitespace, 522

xml_to_array_define.pro, 491
xml_to_struct__define.pro, 499
XOR operator, 229

Z
zeroed structures, 337
Index Application Programming

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Application Programming
	Contents
	Part I: Application Programming
	Overview of IDL Applications
	What is an IDL Application?
	About Building Applications in IDL

	Creating and Running Programs in IDL
	Overview of IDL Program Types
	Creating $MAIN$ Programs
	About Named Programs
	Creating a Simple Program
	Running Named Programs
	Compiling Your Program
	Making Code Readable
	Command Line Tips and Tricks
	Recalling Commands
	Special Command Line Characters

	Recording IDL Command Line Input
	Interrupting or Aborting Execution
	For More Information on Programming

	Executing Batch Jobs in IDL
	Overview of Batch Files
	Batch File Execution
	Interpretation of Batch Statements
	A Batch Example

	Creating SAVE Files of Programs and Data
	Overview of SAVE Files
	About Program and Data SAVE Files
	Creating SAVE Files of Program Files
	Saving Variables from an IDL Session
	Executing SAVE Files
	Changes to IDL 5.4 SAVE Files

	Creating Procedures and Functions
	Overview of Procedures and Functions
	Defining a Procedure
	Defining a Function
	Automatic Compilation and Execution
	Parameters
	Using Keyword Parameters
	Determining if a Keyword is Set
	Supplying Values for Missing Keywords
	Supplying Values for Missing Arguments
	Keyword Inheritance
	Entering Procedure Definitions
	How IDL Resolves Routines
	Parameter Passing Mechanism
	Calling Mechanism
	Calling Functions/Procedures Indirectly

	Library Authoring
	Overview of Library Authoring
	Recognizing Potential Naming Conflicts
	Advice for Library Authors
	Converting Existing Libraries

	Program Control
	Overview of Program Control
	Compound Statements
	IF...THEN...ELSE
	CASE
	SWITCH
	CASE Versus SWITCH
	FOR...DO
	REPEAT...UNTIL
	WHILE...DO
	Jump Statements
	Definition of True and False

	Debugging and Error-Handling
	Debugging and Error-Handling Overview
	What Happens When Execution Stops
	Working with Breakpoints
	Stepping Through a Program
	Monitoring Variable Values
	Correcting Errors During Execution
	Obtaining Traceback Information
	Controlling and Recovering from Errors
	Creating Custom Error Messages
	Notifying the User of Errors
	Math Errors

	Building Cross- Platform Applications
	Overview of Cross-Platform Issues
	Which Operating System is Running?
	File and Path Specifications
	Files and I/O
	Math Exceptions
	Responding to Screen Size and Colors
	Printing
	SAVE and RESTORE
	Widgets in Cross-Platform Programs
	Using External Code
	IDL DataMiner Issues

	Multithreading in IDL
	The IDL Thread Pool
	Controlling the IDL Thread Pool
	Routines that Use the Thread Pool

	Writing Efficient IDL Programs
	Overview of Program Efficiency
	Use Vector and Array Operations
	Use System Functions and Procedures
	Virtual Memory
	The IDL Code Profiler

	Part II: Components of the IDL Language
	Expressions and Operators
	Overview of Expressions and Operators
	Mathematical Operators
	Minimum and Maximum Operators
	Matrix Operators
	Logical Operators
	Bitwise Operators
	Relational Operators
	Assignment and Compound Assignment
	Other Operators
	Operator Precedence

	Working with Data in IDL
	Data Types
	Data Type and Structure of Expressions
	Date/Time Data
	Defining and Using Constants
	Accuracy and Floating Point Operations
	Type Conversion Functions
	Variables
	System Variables

	Strings
	Overview of Strings
	String Operations
	Non-string and Non-scalar Arguments
	String Concatenation
	Using STRING to Format Data
	Byte Arguments and Strings
	Case Folding
	Whitespace
	Finding the Length of a String
	Substrings
	Splitting and Joining Strings
	Comparing Strings
	Non-Printing Characters
	Learning About Regular Expressions

	Arrays
	Overview of Arrays
	Understanding Array Subscripts
	Assignment Operations and Arrays
	Using Scalar Values as Subscripts
	Using Arrays as Subscripts
	Conditionally Altering Array Elements
	Subscript Ranges
	Avoid Using Range Subscripts
	Combining Subscripts
	Manipulating Arrays
	Columns, Rows, and Array Majority

	Structures
	Overview of Structures
	Creating and Defining Structures
	Structure References
	Using HELP with Structures
	Parameter Passing with Structures
	Arrays of Structures
	Structure Input/Output
	Advanced Structure Usage
	Automatic Structure Definition
	Relaxed Structure Assignment

	Pointers
	Overview of Pointers
	Heap Variables
	Creating Heap Variables
	Saving and Restoring Heap Variables
	Pointer Heap Variables
	IDL Pointers
	Operations on Pointers
	Dangling References
	Heap Variable Leakage
	Pointer Validity
	Freeing Pointers
	Pointer Examples

	Files and Input/Output
	Overview of File Access
	Formatted and Unformatted Input/Output
	Opening Files
	Closing Files
	Understanding (LUNs)
	Returning Information About a File Unit
	File Unit Manipulations
	Reading and Writing Very Large Files
	Using Free Format Input/Output
	Using Explicitly Formatted Input/Output
	Format Codes
	A Format Code
	: Format Code
	$ Format Code
	F, D, E, and G Format Codes
	B, I, O, and Z Format Codes
	Q Format Code
	Quoted String and H Format Codes
	T Format Code
	TL Format Code
	TR and X Format Codes
	C() Format Code
	C printf-Style Quoted String Format Code
	Example: Reading Formatted Table Data
	Example: Reading Records With Multiple Array Elements

	Using Unformatted Input/Output
	Portable Unformatted Input/Output
	Associated Input/Output
	File Manipulation Operations
	Reading and Writing FORTRAN Data
	Platform-Specific File I/O Information

	Using Language Catalogs
	What Is a Language Catalog?
	Creating a Language Catalog File
	Using the IDLffLangCat Class
	Widget Example

	Using the XML Parser Object Class
	About XML
	Using the XML Parser
	Example: Reading Data Into an Array
	Example: Reading Data Into Structures
	Building Complex Data Structures

	Using the XML DOM Object Classes
	About the Document Object Model
	About the XML DOM Object Classes
	Using the XML DOM Classes
	Tree-Walking Example

	Part III: Creating Applications in IDL
	Providing Online Help For Your Application
	Overview of Creating Application Help
	Providing Help Within the User Interface
	Displaying Text Files
	Using an External Viewer
	About IDL’s Online Help System
	Using Other Online Help Viewers
	Using the IDL Assistant Help System

	Distributing Runtime Mode Applications
	What Is an IDL Runtime Mode Application?
	Limitations of Runtime Applications
	Steps to Distribute a Runtime Application
	Preferences for Runtime Applications
	Runtime Licensing
	Embedded Licensing
	Creating an Application Distribution
	Starting a Runtime Application
	Installing Your Application

	Distributing Virtual Machine Applications
	What Is a Virtual Machine Application?
	Limitations of Virtual Machine Applications
	Steps to Distribute Your Application
	Preferences for Virtual Machine Applications
	Creating Application SAVE Files
	Creating a Virtual Machine Distribution
	Starting a Virtual Machine Application

	Distributing Callable IDL Applications
	What Is a Callable IDL Application?
	Limitations of Runtime Mode Callable IDL Applications
	Steps to Distribute a Callable IDL Application
	Preferences for Callable IDL Applications
	Runtime Licensing
	Embedded Licensing
	Creating a Callable IDL Application Distribution
	Starting a Callable IDL Application
	Installing Your Callable IDL Application

	Creating a Runtime Distribution
	About Runtime Distributions
	Creating a Distribution Using MAKE_RT
	Working with the manifest_rt.txt File
	Runtime Application Launch Scripts
	Incorporating the IDL DataMiner
	Installing a Runtime Distribution

	Index

