Application
Programming

IDL Version 7.0

November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

1107I1DL70BLD

Restricted Rights Notice

The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressy prohibited by U.S. laws and regulations. The recipient isresponsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, |ON Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
FLAASH islicensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Part I: Application Programming

Chapter 1

Overview oOf IDL ApplicatioNsScoooeeiiiiiiieeeec e 15
What iSan IDL APPHCALHONTc.eeiueeiieiie s cee e ee e e e s e e te e sre e e e sre e e s ee e enes 16
About Building ApplicationSiN IDLcoccuiiieiiiieeseecee et 17
Chapter 2

Creating and Running Programs in IDLc.ccoooiiiiiiiiiiiiiiiin e, 19
Overview Of IDL Program TYPESc.ccveieeecieseeeerseeseesreestessesstesssesssesssesssssnsesssssnsesnsens 20
Creating SMAINS Programsc.ocviiieeieie ettt st st se et e ene e sne s 22
ADOUt NaMEd Programscceeceiieiieiee e see e s iee s e s ee s e e saeeteesteesreesreesneeseensesneeensesnes 25
Creating @ SIMPIE PrograiMccccieciice e sies s see e sree e re e sreeste e beesseessessaesneesnsens 26
RUNNing Named Programsccceecieiieiieccieses e ees e siessee e sressae e e s reesreesneesaeensessrenns 28
CompPiliNg Y OUN PrOgQraimcccuecieiieieeseeseesieesieeieesieesesseeessessssssessesssesssesssessseessesssenns 30
Making Code REAAENIEocceeieeeee et 34

Application Programming 3

Command Line@ TipSand THCKS ...cvcecieiiie ettt st 35
Recording IDL Command Line INPULcccooiierieesise e 40
Interrupting or AbBOrting EXECULIONcc.eeiveiiiiieieeie et 41
For More Information 0N Programmingccccceeeeeersieeseeseesessesseeesresssessseesssenseessesnnes 43
Chapter 3

Executing Batch JOBS iN IDLuvveiiiiiiiiee e 45
Overview of BatCh FIlESoouoiiiiireeerer e 46
BaCh Fil@ EXECULIONevieieieieseeee ettt sttt ne e e ene e e e see e e 47
Interpretation of BatCh StAtEMENESccveieiiiiieseese e 49
A BaICh EXAMPIE ..ottt et 50
Chapter 4

Creating SAVE Files of Programs and Dataccccceeeeeeiieiieiiiinnnnens 51
OVErVIEW Of SAVE FIIES ...ttt 52
About Program and Data SAVE Fl€Scccoovieeceeecrcr e 54
Creating SAVE Files of Program Fil€S ... ie et 56
Saving Variables from an IDL SESSIONccccceeviiiieiicieeese et ee e st ae e sne s 65
EXECULING SAVE FIlES ..ottt sttt et st et 67
Changesto IDL 5.4 SAVE FIIES ..cviicee ettt st s 70
Chapter 5

Creating Procedures and FUNCLIONSuuvviiiiiiniiiieeeiieicccecevieii 73
Overview of Procedures and FUNCLIONScooiiriieriee e 74
DefiNiNG @PrOCEAUIEcueceeeieie ettt st st s ene e b re e 75
DEefiNiNg @FUNCLONcoeiie ettt et et ene e et e e 78
Automatic Compilation and EXECULIONcccceeeeiieiiicicieesesie e 79
PAIaIMELEN'S ...ttt st b e e e b bt e b b ere b e e e eanan 81
UsiNg KeyWOord ParameEtersccccceeieiiiiesese e st eete et se et s eneenne e nne e 85
Determining if a KeyWOrdiS SELccccvviiiie vt 86
Supplying Valuesfor Missing KEYWOIAScccccviieieieeniiiiiesie e seseeeestesiesreesse e e 87
Supplying Values for Missing ATQUMENLScccieiueiierersierseeseeseesreeseessesssesssesssesseeenns 88
KeyWOrd INNEMTANCEocveceeeiie sttt st et ne e b e 89
Entering Procedure DEfiNITIONSccoviiiiie ettt e 96
HOW IDL RESOIVES ROULINEScouiiiiiiiiieiesiesie ettt s s 97
Parameter Passing MEChani SIMcociiiicie ettt et 98
(O 1 gTo Y = 0o T o TP 100

Contents Application Programming

Calling Functions/Procedures INAIreCHYccoeveeeeiiiicicee s 102
Chapter 6

LiDrary AUTNOTING .oueeii e 103
Overview of Library AULNOIINGccceiceeiiriiesee ettt st 104
Recognizing Potential Naming CONnfliCtSccccveveiiieeecese e 105
Advicefor Library AULNOISccoo ittt s snee 108
Converting EXiSting LIDIari€Scoviiieeeie et 109
Chapter 7

Program CONTroleoiii i 111
Overview of Program CONEIOlccceieeieiesecieeee et sre e 112
CoMPOUNT SEAEEIMENES ... ceieeieieeeeierie ettt s e e e seeeneeneeeeseesreeneas 114
[F.. THENLLELSE ..ottt ettt 117
O RS 119
SWITCH ettt bbbttt bbb b et be b b e e e nbe b e 121
CASE VESUS SWITCH ...ttt e stee e ste e aae s te e snae s st snne e sneennree 122
FORL..DO .ottt st b et b ettt et e 125
L N I O I I SRR 130
WHILE...DO ..ottt sttt e 131
JUMP SEALEMENLSeeceee et e e e e sne e e saee e snbeesnreeeneeenreeeane 133
Definition of True and FalSe ..ot e 136
Chapter 8

Debugging and Error-Handlingueiiiiiieeee 139
Debugging and Error-Handling OVEINVIEWccceoeeieeie e cieses e seesee e see e sve e 140
What Happens When EXECULION SEOPScccccvvieeierieieeieeesie et ees et eveesae s es 141
Working wWith BreakpOintSccoceeeeoeerere e seeeee e e eneesee e seeeneenes 143
Stepping Through @Programccceceeeiieie et sre e 145
Monitoring Variabl€ VEIUESccoceeiieiiecece ettt s e st sttt e ne 146
Correcting Errors DUring EXECULTONccueieiieieeieeiecie ettt sre e 148
Obtaining Traceback INfOrmMationcccceiieiie i 149
Controlling and Recovering from EITOrSccocveeeiiiececee et 150
Creating CuStOm Error MESSAJESuecveerieerieeiiee e seeereeeesaesseesaaesneesresssaesseessesssesssessns 152
NOtifying the USEr Of EITOISooeii ettt 154
= g T 0] TS 155

Application Programming Contents

Chapter 9

Building Cross-Platform Applicationscccccvvvviiiiiiiiicciciiiee e, 161
Overview of Cross-PlatfOrm ISSUESccviririeerieninieeeese e 162
Which Operating System iSRUNNING?coooiiiiiieeeeeee e 163
File and Path SPeCITICAtiONScccceeveieiiececeese e 164
L 1=-S= 0 To 1 L R 166
s o= o) o] < S 168
Responding to Screen Size and COIOrScooveieccieciee e 169
11T o S 170
SAVE aNd RESTOREocui et es st te st te e teesaeste st snee st e snessneesressnnesneens 171
Widgets in Cross-Platform Programscccecveeeeese s seeceses e sie e e sreenees 172
O LS gTo g = 0= I oo L= 175
IDL DELAMINEY ISSUESeveviriirieseeiieiestesiesesie st it s sbe st sse st ssessesbe e e e sseneesseneenens 176
Chapter 10

Multithreading iN IDLcoooiiiiiii e 177
The IDL THhread POOIc..cccvieeiie sttt e te e st eneas 178
Controlling the IDL Thread POOIccoocieieiiececee e 181
Routines that Use the Thread POlccccoooiiiiiieeee e 187
Chapter 11

Writing Efficient IDL Programsccoonionieei it 191
Overview of Program EffiCIENCY ..ot 192
Use Vector and Array OPEratioNScccceeceieereieseeieieseseseesaese e seeseessessesseesseseesnes 194
Use System FUNCtions and ProCEAUIESccccecceeieere e see e ee e seesres e e see e e 197
VITTUBI IMEBIMOTY ottt ettt a et e e st et e e reenaetesreeneeneesesrens 198
The IDL COAE PrOfIlEN ..ottt 203

Part Il: Components of the IDL Language

Chapter 12

EXPressions and OPEratorsScooirieeeeeeeeiiieeeeieeiiiiias e e e e 211
Overview of EXpressions and OPEratorsSccouoereererrerreeeeeesie e seeeeeee e ssesseeneeseens 212
MathematiCal OPEIELOIScceiiieeree et eee st see ettt eseeseesneeneeeeseeeeas 213
Minimum and Maximum OPEFALOrSc.vcceieereierieeieieeseeeseesre e sreeeeseesre e eseesaeseesees 220
s D@ 0= o] R 222
[IoTe Lo I @] o< =10 £ 224
TS SY @ 1= 0] £ 227

Contents Application Programming

REatioNal OPEIELOIScveiveiiiceeieeiie sttt esee ettt e e e e te e sa s e be s e eaeestesresreeneens 231
Assignment and Compound ASSIGNMENTc.eeirrrieeeeerere e e 234
(@101 g @] o= - (o] £ S 237
OPErator PrECEUEINCEeeieeieieeeeiesie et e ettt sttt sne e e e e steeneeseeneeseeseeeneas 240
Chapter 13

Working with Data in IDLccooviiiiiiiiicie e 245
D= = W Y < T TR 246
Data Type and Structure of EXPreSSIONScccceverrreeieeiene e seeeeee e eseeseeseeseeeene 250
Date/ TIME DA ...ccverveueeieeiiriesie ettt sttt sttt be b e 253
Defining and USING CONSLANEScceeiieieeiieiieerieesieesieese e eeesessessreesaeesaesssessressesnsens 257
Accuracy and Floating Point OPErationsccoevueieeerieeseseseeee e e seesee e e seesseenes 264
Type CoNVErSION FUNCLIONSccueeiieeiiieiieseesieesteeseeste e e steeseessassteeseesnneseesnessneesnassnnens 267
VAHBDIES ...t e 270
Y = I = o =S 272
Chapter 14

YT TR URURUUPPPPRTPPRRPN 273
(@Y= V1= T Ao S 1] o U 274
S i1 ao @] o1 = 1 o] 1SS 275
Non-string and Non-scalar AFQUMENTSccceeiieereeieesieseeeeesesseesreesreeseeseeesressesnsens 276
StriNG CONCALENALIONoveeieieieeceeese et e st te e et e s e sreereesaensesresreeneas 277
UsiNg STRING t0 FOrMat D@cccueieeiieiieiiee e esieese e seesesseesreesreesaeessessreesesnnens 278
Byte ArgumentS and SEFHNGScocveeeieeeeee e esiesie e e e ee e e ne e 280
(0= 1SS o Lo 1 o U 282
LT T =S o o= S 283
Finding the Length Of @StNG ...ccoceiiieiic e e 285
S 1S 1 1S 286
Splitting and JOINING SEHNQSvvieeiieiee e e e s e sre e e e s ae e sreeenes 289
COMPAIING SLNGS .veveiveeeieieesieeeeeese s ese e s e s et e e e s e sreseesressesseesesestessesseesestesseenes 290
NON-Printing CaraClerscciiieiiie i s e st re e sreereeneas 294
Learning About Regular EXPrESSIONSc.cceiieiieieriesieeeciesesieseesese st sesseesse e sne e 295
Chapter 15

L = 1 T PP PEPPP T UPPPT RPN 299
(@Y= V1= N Ao A - V£ U 300
Understanding Array SUDSCIIPLSocvvcieiieiiiieieesess et 304

Application Programming Contents

Assignment OpPerations aNA ATTAYSccveeeeerieieii e see e ereesee st sre e e aesresrens 308
Using Scalar ValueS 8S SUDSCIPLS ...uveeeiieiiieerie e ene e 310
USING ATTayS S SUDSCIIPLS ...eviiiiieieieie st ceesie st te ettt e a e et sneene e e nas 312
Conditionally Altering Array EIEMENLSccocer ettt ses e s 315
01 o] o R = 110 L= TP 317
Avoid USiNG RANGE SUDSCIIPLS ..c.uveeiieiiecierir e cee st see e see e ee e s steesteesaeesreeneesee s 321
COMDBINING SUDSCIIPLS ..euveveieeeiesieseeeeie sttt ettt st e sresre e esaesbesresaeennesne e 322
[=TT LU = g0 [= Y/ 324
Columns, ROWS, and Array MajOritycccveeeiinieiieeiee e 330
Chapter 16

SETUCTUIES ettt e e e e e et e e e e e eenn e e aaennnes 335
OVEIVIEW OF SITUCTUIES ...ttt et ene e e e snesneeeesne e 336
Creating and DefiniNg SIIUCIUMESccveiiiiiicieiiie e 337
SEIUCIUNE REFEIENCESoviieieieee ettt st et e b e reene e e e e e 340
USINg HELP With SITUCIUIEScoiueeeee ettt 342
Parameter Passing With SIFUCIUIESooieeiie et es et 343
ATTAYS OF SLIUCLUIES ...ttt ettt ettt ettt ere e snnesneesnaeenee e 345
SErUCLUre INPUL/OULPULe.eeeeieeee ettt ee et e te e e e s te et sne e sneesae s saaesreesneesneens 347
AdvanCed SITUCIUrE USAJEocveiveeeeeieiie ettt ettt e sttt sre e snaenresre s 350
Automatic Structure DEfiNItiONccooi e 352
Relaxed Structure ASSIGNMENTcccveieiieieceese et eee et e e re s ereeaesreenas 354
Chapter 17

o T 1 =] 357
OVENVIEW Of POINLESooviiiiiiciiriesiee st 358
(1= Y = o] =S 359
Creating HEap Varial €Scouciiiieeeese e 361
Saving and Restoring Heap Variablesoccoiiiiieieiereeeee e 362
Pointer HEap Variablesccviiiieee ettt 363
I o T = S 364
OpErationS 0N POINLETScuecueeiieiesieeieeieste st etete e e e sre e stesaesreesaesaesressesseesessenns 367
Dangling REFEIENCEScoveeiieiie ettt e s e s re e re e sne e re e reenes 371
Heap Variabl@ LEaKAJEcooviieieeeee ettt 372
Lo 101 L= Y=o [374
= Lo o] 1 = £ 375
O 11 = g = 0 0] = 376

Contents Application Programming

Chapter 18

Files and INPUL/OULPUL ..o e 381
OVENVIEW Of FITE ACCESSveiviriineeeeierte ettt st et 382
Formatted and Unformatted INPUY/OULPULcoeeerrereeieeirieneseeeses e 384
OPENING FIES .ttt ettt s re e re e besresreeneas 387
(O3 01 110 1 =S 388
UNderstanding (LUNS)ocuecee ettt st s ne s 389
Returning Information About aFile UNitccoeeie i 392
File UNit ManipUlAtionsccceveiiiicicie sttt st 395
Reading and Writing Very Large FileS ...ttt 397
Using Free Format INPUL/OULPULocvecveeieiieiieiieesese et 399
Using Explicitly Formatted INPUL/OULPULc.eooeeieiieere e cresee et ses e ste e e eee e 404
FOIMEL COUBSviieeiieiteriee ettt ettt b e b b 409
Using Unformatted INPUY/OULPULcccveiieeiiiiecieces s scee e see s ee e e sneesre e s e 447
Portable Unformatted INPUI/OULPULc.ccveiieieieieie et 454
AsSOCiated INPUL/OULPULe.veeeeieee ettt e et eneeeeseeseeeneenes 459
File Manipulation OPErationscccovirereererenieseeese e se e s 465
Reading and Writing FORTRAN Dataccccceiirieieerese e 466
Platform-Specific File /O INfOrMationc.cooeirerenineeerese e 470
Chapter 19

Using Language Catalogsceeeuvuuiuiiiiiineeeeeeeeeeeeeeeeieii e 471
What IsaLanguage CalalOg?cccueecerierrieerieesiesieeseesieesteesreesteestessteesseesseessesssesssesnsens 472
Creating aLanguage Catalog Filecoveeeieiiieeeeese e 473
Using the IDLfLaNQCat ClaSSccccvvieieeiicieeree e ete et seeses et esaee e e te s sreese e e 476
A Ve o T= A T o o] = S 479
Chapter 20

Using the XML Parser Object ClassScccccevviviiiiiiviiiiiciie e, 483
ADOUE XML <ottt ettt e e 484
USING the XIML PaISENocceiiiiiieiis e e et eieesae st e s sre s saeesaeesneesneesteesreensesnens 486
Example: Reading Data INt0 @ ATAYcceveieeveiesieeeeee s se e sreee s sese e 491
Example: Reading Data INt0 SEIUCLUMESoovviieriee e 498
Building Complex Data SETUCLUIEScccveiierieieieieiesieeeeiese e eseee e saeesae e se e 505

Application Programming Contents

10

Chapter 21

Using the XML DOM Object ClasSesccoevvevvvvieiiiiiiiieeeeeeeieeeeeenannns 507
About the Document ObjeCt MOEcoeeeiiiiiiicesee e 508
About the XML DOM ODjJECE CIBSSESceviueeeeeeeirieieesersieesieesseestesstessresssesssesssesssesnns 511
USING the XML DOM ClSSESocueeieieiiiieieesiesie e eeeaestesesseesse et saesaestesseesesaeseesnas 518
Tree-WalKing EXAMPIEc.ooeeeeeee ettt 524

Part Ill: Creating Applications in IDL

Chapter 22

Providing Online Help For Your Applicationccccccccccciiiiiiineeeeeeen, 531
Overview of Creating Application HEIPcooveeiviiiiicee e 532
Providing Help Within the User INterface ... 533
Displaying TEXE FIlESociiieiectieee ettt et ene e e nas 536
USING aN EXTErNEl VIBWED ...ttt ste et e sttt et et s n e e nee e 537
About IDL’SONINE HEIP SYSLEM ...t s 538
Using Other Onling HEIP VIBWENScccveiieiiecieceesee ettt 539
Using the IDL Assistant HElP SYStEM ..c..oceieeiiie e 545
Chapter 23

Distributing Runtime Mode Applicationsccccoiiiiiiiiiiiciiinee, 563
What Isan IDL Runtime Mode AppliCatioN?ccoveriiieeene e 564
Limitations of RUNtiMe APPlICALIONSccceceeieieciecieie st 567
Stepsto Distribute a Runtime AppliCationccooeererrrenoenere e 568
Preferences for Runtime APPlICALIONScccveveiiieciee et 569
RUNEIME LICENSING .vevveiieiieeiieseeseeseeseeseesteesteeseeteesesstestesneesneessessaeesreessessaeessesssennns 573
[SgloTce (o =lo I Lot 01> T o P 577
Creating an Application DIStHDULTONcccceiiriiiiicsececcee e 578
Starting a RUNtime ApPliCaLIONcocoiiiieiee e e 579
INstalling Y our APPIICALIONccoccuieieeieccecie e e et e e e re e e eee e e 582
Chapter 24

Distributing Virtual Machine Applicationscccccooiiiiiiiiiiiiiieeeen. 583
What IsaVirtual Maching APpliCatioN?cccoeiieeeneneieeeere e e 584
Limitations of Virtual Machine AppliCationscccceeevevevieeresiese e 585
Stepsto Distribute Y our APPlICALIONc.coieieiiieieeee e 586
Preferences for Virtual Machine Applicationsccccceveeiveeresiese e 587
Creating Application SAVE FIlE€S ..ottt s 589

Contents Application Programming

Creating aVirtual Maching DisStriDULIONccceeveeiiiiiiiciee e 591
Starting aVirtual Maching APPliCaLIONccccoeieieiiiiee e 592
Chapter 25

Distributing Callable IDL Applicationsccccevvieeeeviiiicceie e 595
What Isa Callable IDL APPIICALIONTccociviieeieie et 596
Limitations of Runtime Mode Callable IDL AppliCationscccoeeereererieeneneseenenn. 597
Stepsto Distribute a Callable IDL APPlICaLioNcccviveeeieieeiice e 598
Preferences for Callable IDL AppPliCationSccccoovieeoeeeeneee e 599
RUNEIME LICENSING .veiieieciecte ettt sttt s ene e aesne s ne e 600
[=nglol= e (0 [=To l I Tor= o S] oo [601
Creating a Callable IDL Application Distributioncccceeeveiieveneseeieeese e 603
Starting aCallable IDL APPLICAIONccceeiieciececiee et 606
Installing Your Callable IDL APPliCaLIONccccceeeeriiieiiece e 607
Chapter 26

Creating a Runtime Distributionccccovriiiiciiiii e, 609
About RUNtIME DIStIDULIONSccueieeiriesiisieirenesieee e e 610
Creating aDistribution UsSing MAKE _RT ..o 611
Working with the manifest_rt.tXt Filecccovoeeiiiiii e 616
Runtime Application Launch SCIHPLScccoviiiiiereie e 618
Incorporating the IDL DataMIiNErcccvecieieiiceeeese e se et 624
Installing a Runtime DiStriDULIONccceiieiiriie et 625
IO X i a e 627

Application Programming Contents

12

Contents Application Programming

Part I. Application
Programming

Chapter 1
Overview of IDL
Applications

This chapter includes information about the following topics:

What isan IDL Application?............ 16 About Building Applicationsin IDL

Application Programming

15

16 Chapter 1: Overview of IDL Applications

What is an IDL Application?

We use theterm “IDL Application” very broadly; any program written in the IDL
languageis, in our view, an IDL application. IDL Applications range from the very
simple (a MAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphica user interfaces, such as
ENV1). Whether you are writing a small program to analyze asingle data set or a
large-scale application for commercial distribution, it is useful to understand the
programming concepts used by the IDL language.

Can | Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and otherswho use IDL. (If you intend to distribute your applications, it is agood
ideato avoid any code that depends on the qualities of a specific platform. See
“I'VERSION” (IDL Reference Guide) and “ Tips on Creating Widget Applications”
(Chapter 3, Widget Application Programming) for some hints on writing platform-
independent code.) Of course, IDL applications can only be run from within the IDL
environment, so anyone who wishes to run your IDL application must have access to
an IDL license.

If youwould like to distribute your IDL application to people who do not have access
toan IDL license, you have several options. Many IDL applicationswill run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 23, “ Distributing Runtime Mode Applications’ for a

complete discussion of the different ways you can distribute an application written in
IDL.

What is an IDL Application? Application Programming

Chapter 1: Overview of IDL Applications 17

About Building Applications in IDL

IDL isacomplete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL isatime-saving aternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore datainteractively using IDL commands and
then create compl ete applications by writing IDL programs.

Advantages of IDL include:

IDL isacomplete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including
BMP, JPEG, and XWD) and scientific dataformats (CDF, HDF, and
NetCDF).

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

IDL programs run the same across all supported platforms (Microsoft
Windows and awide variety of Unix systems) with little or no modification.
This application portability allows you to easily support a variety of
computers.

Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.

Application Programming About Building Applications in IDL

18 Chapter 1: Overview of IDL Applications

About Building Applications in IDL Application Programming

Chapter 2

Creating and Running
Programs in IDL

The following topics are covered in this chapter:

Overview of IDL Program Types 20
Creating SMAIN$ Programs 22
About Named Programs 25
CreatingaSimpleProgram 26
Running Named Programs 28
Compiling Your Program 30

Application Programming

Making Code Readable 34
Command Line Tipsand Tricks 35
Recording IDL Command Line Input 40
Interrupting or Aborting Execution 41

For More Information on Programming . .. 43

19

20

Chapter 2: Creating and Running Programs in IDL

Overview of IDL Program Types

In addition to being a useful interactive data analysistool, IDL is apowerful
programming language. Many of IDL’s programming language features and
constructs can be used either interactively at the IDL command line or as part of a
larger program — which can itself be invoked at the IDL command line or by other
programs. A program may or may not be compiled before execution. The type of
programsyou use in IDL will depend upon your tasks.

Program Type

Description

iTools State File

(.isv)

Restore or share an i Tools session — you can save the current
state of aniTool asan iTools Sate (*.isv) file. Whenever you
close an iTool window, you are prompted to save the current
state asan *.i sv file so that you can return to the current state
of the data later when you open the *.isv file. Other IDL
users running the same version or a newer version of IDL can
open *.isv files. TheiTool State file includes the data
visualized at the time it was created. Thereis no need to
provide a separate datafile to support the visualization. See
the iTool User’'s Guide for details.

SMAINS
Program

Repeat a series of command line statements or interactively
change variable valuesin aprogram file. These short programs
or procedures are called $SMAINS$ (main-level) programs.
They are not explicitly named, and cannot be called from other
programs. See “ Creating SMAINS$ Programs’ on page 22 for
details.

Named Program
File (.pro)

Create programs and applications — you can create programs
for dataanalysis or visualization using one or more named
programfiles (*.pro). Program files are created in the IDL
Editor or atext editor of your choice. See “About Named
Programs’ on page 25.

Overview of IDL Program Types

Table 2-1: IDL Program Types

Application Programming

Chapter 2: Creating and Running Programs in IDL 21

Program Type

Description

Batch File

Automate processing tasks — you can automate routine or
lengthy processing tasks using abatch file, which contains one
or more IDL statements or commands. Each line of thefileis
read and executed before proceeding to the next line. See
Chapter 3, “Executing Batch Jobsin IDL” for additional
information on batch files.

SAVE File

(.sav)

Share programs and di stribute applications— you can create a
SAVE file containing data or named program filesina . sav
file to share with other users who may or may not have afull
IDL installation. See Chapter 4, “ Creating SAV E Files of
Programs and Data” for details.

Application Programming

Table 2-1: IDL Program Types (Continued)

Overview of IDL Program Types

22 Chapter 2: Creating and Running Programs in IDL

Creating $MAINS$ Programs

A $MAINS$ (main-level) program can be created in two ways:. at the command line
and in atext editor. You typically create a$MAIN$ program at the IDL command
line when you have afew commands you want to run without creating a separate file
to contain them. Creating a$MAINS$ program in atext file allows you to combine the
functionality of named procedures and functions with the ability to have command
line access to variable data that is defined in the SMAINS scope.

$MAINS programs are not explicitly named; they consist of a series of statements
that are not preceded by a procedure (PRO) or function (FUNCTION) heading. They
do, however, require an END statement. Since there is no heading, the program
cannot be called from other routines and cannot be passed arguments. When IDL
encounters a main program either as the result of a . RUN executive command, or in a
text file, it compilesit into the special program named $MATINS and immediately
executesit. Afterwards, it can be executed again using the . co executive command.

Creating a $SMAINS$ Program at the Command Line

To create aSMAINS level program at the command line, start IDL and complete the
following steps:

1. Initializeavariable. At the IDL command line, enter the following:
A=2

2. Designatea command line $SM AIN$ program. Enter .RUN at the IDL
command line:

.RUN
The command line prompt changes from 1pL> to -.

3. Enter the program statements. Create a SMAINS level program consisting
of the following statements:

A =A%*2
PRINT, A
END

The $MAIN$ program isimmediately compiled and executed when you enter
the END statement. IDL prints 4.

4. Re-executethe $MAIN program. Enter .GO at the IDL command line:
.GO

The $MAINS$ program is executed again, and now IDL prints 8.

Creating $SMAIN$ Programs Application Programming

Chapter 2: Creating and Running Programs in IDL 23

Creating a SMAINS$ Program in a Text File

When you create a $SMAINS$ program in a named text file, you can execute the
program and have command line access to variables. Thisis an easy way to run and
test various variable values without having to modify the code and rerun the entire
program, or set breakpoints. The following example alows you to create, save, run
and test a$MAIN$ program.

1. Createthe SMAINS program file. Enter the following into the IDL Editor.
This example consists of afunction that modifies the image data, and a
$MAINS program. The SMAIN program displays the original image, solicitsa
threshold value, passes the value to the function, and displays the new image
data:

FUNCTION stretchImage, img, value

; Stretch image by input amount.
image = img > value
RETURN, image

End

; —--- Begin $MAINS program.------—--—-————————————
; Display the image, solicit threshold value and
; display new results.

; Set up display.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

; Access image data and display.

img = READ_PNG(FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'l))

dims = SIZE(img, /DIMENSIONS)

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]

TVSCL, img

; Ask for a threshold value and stretch image.
READ, threshold, PROMPT='Enter Numerical Value: '
newImg = stretchImage (threshold, img)

; Display the results.
TVSCL, newlmg

END

Application Programming Creating $SMAIN$ Programs

24

Chapter 2: Creating and Running Programs in IDL

Savethe SMAINS program. Savethefileas interactivestretch.pro. It
isimportant to note that a$MAIN$ program should not have the same name as
any internal procedures or functions.

Run the $M AIN program. Type the following at the command line to run the
program:

.RUN interactiveStretch.pro

This compilesinternal functions and procedures, and executes the SMAIN
program. The command line prompt changes from IpL> to -.

Enter athreshold value. Enter 67 (or any value between 0-255) at the
command line and press Enter. This scales the image so that the remaining
pixel values are stretched across all possible intensities (O to 255).

Test another threshold value. Enter .GO at the IDL command line;
.GO

Enter adifferent value and press enter to see the results. These two final steps
can be repeated as many times as you like.

Creating $SMAIN$ Programs Application Programming

Chapter 2: Creating and Running Programs in IDL 25

About Named Programs

L onger routines and programs, consisting of more than afew lines, aretypically
given their own explicit names, allowing them to be called from other programs as
well as executed at the IDL command line. Named programs are stored in disk files
created using atext editor. The IDL Workbench includes a built-in text editor, but
any text editor can be used to create named IDL programs. Files containing IDL
programs, procedures, and functions are assumed to have the filename extension
.pro.

Note
Although any text editor can be used to create an IDL program file, the IDL Editor

contains features that simplify the process of writing IDL code. See “Command
Line Tipsand Tricks’ on page 35 for details on using the IDL Editor.

Most IDL applications consist of one or more IDL procedures, functions, object
definitions, and object method routines:

* Procedures— aprocedure is a self-contained sequence of IDL statements
with a unique name that performs awell-defined task. Procedures are defined
with the procedure definition statement, Pro.

* Functions— afunction is a self-contained sequence of IDL statements that
performs a well-defined task and returns a value to the calling program unit
when it is executed. Functions are defined with the function definition
statement FUNCTION.

e Object definitions — an object definition describes an IDL object, which can
encapsulate both instance data and method routines. For additional
information on IDL’s object-oriented programming features, see Chapter 1,
“The Basics of Using Objectsin IDL” (Object Programming).

* Object methods — these routines are procedures and functions that act on
object instance data. See “Acting on Objects Using Methods” (Chapter 1,
Object Programming) for additional information.

See the following section for a simple procedure that calls afunction. See Chapter 5,
“Creating Procedures and Functions” for details on creating and calling procedures
and functions, defining argument and keyword parameters, and using keyword
inheritance.

Note
See Chapter 6, “Library Authoring” for information on procedure naming.

Application Programming About Named Programs

26 Chapter 2: Creating and Running Programs in IDL

Creating a Simple Program

In this section, we'll create asimple “Hello World” program consisting of two . pro
files. Start the IDL Workbench and complete the steps described below.

Note
For information on using the IDL Editor, see

1. Openanew IDL SourceFile. Start the IDL Editor by selecting File — New
— IDL Source File or clicking the New | DL Sour ce File button on the
toolbar.

2. Createa procedure. Typethe following in the IDL Editor:

PRO hello_main
name = ''
READ, name, PROMPT='Enter Name:
str = HELLO_WHO (name)
PRINT, str
END

3. Savetheprocedure. To save thefile, select File — Save or click the Save
button on the toolbar. Save the file with the name hello_main.pro inthe
main IDL directory (which the Save As dialog should aready show).

4. Createafunction. Open anew IDL sourcefile by selecting File — New —
IDL SourceFileor clicking the New I DL Sour ce File button on the tool bar.
Enter the following code:

FUNCTION hello_who, who
RETURN, 'Hello ' + who
END

5. Savethefunction. Savethefileashello_who.pro inthemain IDL
directory. This simple program, consisting of a user-defined procedure, calls a
user-defined function.

6. Compiletheprograms. Compilehello_main.pro andhello_who.pro
programs by selecting Project — Build All.

Note
You can also type .COMPILE hello_who.pro, hello_main.pro atthe
IDL command prompt to compile the files. With functions, the compilation
order does matter. See “ Compiling Your Program” on page 30 for details.

7. Runthe program. Select Run — Run hello_main.

Creating a Simple Program Application Programming

Chapter 2: Creating and Running Programs in IDL 27

8. Enter aname. Type your name at the IDL command line, which now reads
“Enter Name” and press the Enter key. This passes the text to the function
hello_who. The“Hello name” string is returned to the procedure and printed
in the Console View.

Application Programming Creating a Simple Program

28 Chapter 2: Creating and Running Programs in IDL

Running Named Programs

IDL program files, identified with a . pro extension, can be compiled and executed
using the following methods:

* Running Programs Using the IDL Workbench Interface
¢ Running Programs From the IDL Command Line

¢ Running Programs Using Executive Commands

Running Programs Using the IDL Workbench
Interface

To run an IDL program using the IDL Workbench interface, do the following:

1. Openthefileinthe IDL Editor. For example, select:
File — Open File

and select examples/demo/demosrc/d_uscensus.pro from your IDL
installation directory.

2. Compilethefile by selecting Run — Compile filename

where filename is the name of the file opened in the IDL Editor
(d_uscensus.pro, in this example).

3. Executethefile by selecting Run — Run filename

where filename is the name of the file opened in the IDL Editor
(d_uscensus.pro, in this example).

Running Programs From the IDL Command Line

When afileis specified by typing only the filename at the IDL prompt, IDL searches
the current directory for filename.pro (where filename is the file specified) and then for
filename.sav. If no fileisfound in the current directory, IDL searches in the same way
in each directory specified by !PATH. If afileisfound, IDL automatically compiles
the contents and executes any functions or procedures that have the same name asthe
file specified (excluding the extension). See “Automatic Compilation” on page 30 for
additional details.

Using the previous example, run the US Census Data demo by entering the following
at the command line:

d_uscensus

Running Named Programs Application Programming

Chapter 2: Creating and Running Programs in IDL 29

Running Programs Using Executive Commands

When afileis specified using either the .RUN, .RNEW, .COMPILE, or @ command
followed by the filename, IDL searchesthe current directory for £i1ename.pro
(wherefilename isthefile specified) and then for £i 1ename.sav. If nofileisfoundin
the current directory, IDL searchesin the same way in each directory specified by
IPATH. If afileisfound, IDL compiles or runs the file as specified by the executive
command used. Executive commands can be entered only at the IDL command
prompt, and are often used when executing $MAIN$ program files. See “About
Executive Commands’ on page 38 for more information.

Note
If you are compiling files that do not exist in your path, make sure to compile
functions before procedures. Thiskeeps DL from misinterpreting afunction call as
asubscribed variable or array definition. See “Compiling Your Program” on
page 30 for details.

Warning
If the current directory contains a subdirectory with the same name as filename, IDL
will consider the file to have been found and stop searching. To avoid this problem,
specify the extension (.pro or . sav, usualy) when entering the run, compile, or
batch file executive command.

The details of how !PATH isinitialized and used differ between the various operating
systems, although the overall concept is the same. See “!PATH” (Appendix D, IDL
Reference Guide) for more information.

Application Programming Running Named Programs

30 Chapter 2: Creating and Running Programs in IDL

Compiling Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (afunction or procedure built into IDL, such asiPLOT) is caled, either from
the command line or from another procedure, IDL aready knows about this routine
and compilesit automatically. When a user-defined function or procedureis called,
IDL must find the routine and then compileit. Compilation can be either automatic or
manual, as described below.

Warning

User-written functions must be defined before they are referenced, unless they:

1) Existinthe IDL !'PATH.

2) Existin a . pro file with the same name as the function.

3) Arereserved using the FORWARD_FUNCTION statement.
Defining the function is necessary to distinguish between function calls and
subscripted variable references. See “About Calling and Compiling Functions” on
page 79 for details.

Automatic Compilation

When you enter the name of an uncompiled user-defined routine at the command line
or cal the routine from another routine, IDL searches the current directory for
filename.pro, then filename. sav, where filename is the name of the specified
routine. If no fileisfound in the current directory, IDL searches each directory
specified by 'PATH. (For more on the IDL path, see “!PATH” (IDL Reference
Guide).)

If no file matching the routine nameis found, IDL issues an error:

Q

% Attempt to call undefined procedure/function: 'routine'
where routine is the name of the routine you specified.

If afileisfound, IDL automatically compiles the contents of the file up to the routine
with the same name of the file (excluding the suffix), and then executes the routine. If
the file does not contain the definition of aroutine with the same name as thefile,
IDL issues the same error as when the no file with the correct name is found.

For example, suppose afile named proc1 .pro contains the following procedure
definitions:

PRO procl
PRINT, 'This is procl'
END

Compiling Your Program Application Programming

Chapter 2: Creating and Running Programs in IDL 31

PRO proc2
PRINT, 'This is proc2'
END

PRO proc3
PRINT, 'This is proc3'
END

If you enter proc1 at the IDL command line, only the proc1 procedure will be
compiled and executed. If you enter proc2 or proc3 at the command line, you will
get an error informing you that you attempted to call an undefined procedure.

In general, the name of the IDL program file should be the same as the name of the
last routine within the file. Thislast routine is usually the main routine, which calls
all the other routineswithin the IDL program file (or, in the case of object classes, the
class definition). Using this convention for your IDL program files ensures that all
the related routines within the file are compiled before being called by the last main
routine.

Program files within the IDL distribution use this formatting style. For example, open
the program file for the XLOADCT procedure, x1oadct .pro, inthe IDL Editor.
Thisfileisinthe 1ib/utilities subdirectory of the IDL distribution. Thisfile
contains several routines. The main routine (XLOADCT) is at the bottom of thefile.
When thisfileis compiled, the IDL Console notes all the routines within this file that
are compiled:

IDL> .COMPILE XLOADCT

% Compiled module: XLCT_PSAVE.
Compiled module: XLCT_ALERT CALLER.
Compiled module: XLCT_SHOW.
Compiled module: XLCT_DRAW_CPS.
Compiled module: XLCT_TRANSFER.
Compiled module: XLOADCT EVENT.
Compiled module: XLOADCT.

Note that the main XLOADCT procedure is compiled last.
Tip
When editing a program file containing multiple functions and/or proceduresin the
IDL Editor, you can easily move to the desired function or procedure in the Outline

view by selecting the Outline tab next to the Project Explorer tab. Select the
function or procedure name from the list, and the Editor highlights and displaysit.

O° 0P 0 P d° o

oe

Application Programming Compiling Your Program

32 Chapter 2: Creating and Running Programs in IDL

Manual Compilation

There are several ways to manually compile a procedure or function.

* Usethe .COMPILE executive command at the IDL command line:

.COMPILE myFile

where myFileisthe name of a .pro file located either in IDL’s current
working directory or in one of the directories specified by |PATH. All the
routines included in the specified file will be compiled, but none will be
executed automatically. If you are using the IDL Workbench, the . pro file
will also be opened inthe IDL Editor.

« If thefileisopeninthe DL Editor, select Run — Compile or click the
Compile button on the toolbar. All routines within the file will be compiled,
but none will be executed automatically.

¢ Usethe .RUN or .RNEW executive command at the IDL command line;

.RUN myFile

where myFileisthe name of a .pro file located either in IDL’s current
working directory or in one of the directories specified by |PATH. All the
routines included in the specified file will be compiled, and any SMAIN$ level
programs will be executed automatically. If you are using the IDL Workbench,
the .pro file will aso be opened in the IDL Editor.

* Usethe .RUN, .RNEW, OF . COMPILE executive command with no filename
argument to interactively create and compile a$MAIN$ level program. The
Command line prompt changes from IDL > prompt toe - so that you can start
entering the SMAINS level program. See “ Creating SMAIN$ Programs”’ on
page 22 for additional details.

Note
Only .pro files can be compiled using the manual compilation mechanisms.
Attempting to compile a SAVE (. sav) file using one of these mechanisms will
result in an error.

The “Hello World” example shown in “Compiling Your Program” on page 30 hasa
user-defined procedure that contains a call to a user-defined function. If you enter the
name of the user-defined procedure, hello_main, at the command line, IDL will
compile and execute thehello_main procedure. After you provide the requested
input, acall tothehello_who functionismade. IDL searchesfor hello_who.pro,
and compiles and executes the function.

Compiling Your Program Application Programming

Chapter 2: Creating and Running Programs in IDL 33

Compilation Errors

If an error occurs during compilation, the error isreported in the IDL Workbench
Console view. For example, because the END statement is commented out, the
following user-defined procedure will result in a compilation error:

PRO procedure_without_END
PRINT, 'Hello World’
; END

When trying to compile this procedure (after saving it into a file named
procedure_without_END.pro), you will receive an error similar to the following
the IDL Console view:

IDL> .COMPILE procedure_without_END

% End of file encountered before end of program.
At: C:\ITT\workspace\Default\procedure_without_end.pro, Line 4
% 1 Compilation error(s) in module PROCEDURE_WITHOUT_END.
Note

The IDL Editor displays ared dot to the left of each line that contains an error.

Setting Compilation Options

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears. The syntax of COMPILE_OPT isas
follows:

COMPILE_OPT opt, [,opty, ..., opt,]

where opt,, is any of the available options documented in “COMPILE_OPT” (IDL
Reference Guide). These options allow you to change default values of true and false,
hide routines from HEL P, and reserve the use of parentheses for functions. See
COMPILE_OPT for complete details.

Application Programming Compiling Your Program

34 Chapter 2: Creating and Running Programs in IDL

Making Code Readable

Commenting code and limiting line length both promote readability. See the
following sections for details.

Using Code Comments

In IDL, the semicolon (;) isthe comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully document programs with comments. Commentsin IDL do not slow down code
execution or add noticeable size to IDL files.

A comment can exist on aline by itself, or can follow another IDL statement, as
shown bel ow:

; This is a comment
COUNT = 5 ; Set the variable COUNT equal to 5.

Using Line Continuations

The line continuation character ($) allows you to break asingle IDL statement into
multiple lines. The dollar sign at the end of aline indicates that the current statement
is continued on the following line. The dollar sign character can appear anywhere a
spaceislegal, except within astring constant or between afunction name and the first
open parenthesis. Any number of continuation lines are allowed. The following
example shows aline continuation after the space at the end of the third line:

PRO sample_recurse2, oNode, indent
;; "Visit" the node by printing its name and value
PRINT, indent gt 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $
oNode->GetNodeName (), ':', oNode->GetNodeValue ()

Making Code Readable Application Programming

Chapter 2: Creating and Running Programs in IDL 35

Command Line Tips and Tricks

Entering text at the command line allows you to perform ad hoc analysis, compile and
launch applications, and create SMAIN$ programs. IDL provides some valuable
command line functionality to support these tasks. See the following sections for
details.

e “Copying and Pasting Multiple IDL Code Lines’ on page 35
¢ “Recdling Commands’ on page 36

e “Specia Command Line Characters’ on page 37

e “Specia Command Line Key Combination” on page 38

Note
Also see “Recording IDL Command Line Input” on page 40 for information on
maintaining the history of an IDL session in afile.

Copying and Pasting Multiple IDL Code Lines

You can paste multiple lines of text from the clipboard to the command line. You
simply need to place some text in the clipboard and paste it into the command line.
Any source of text is valid, with emphasis on the requirement that the text be
convertible to ASCII.

When you are using the tty-based command line version of IDL and you paste
multiple lines, make sure that they contain only asingle IDL command or are
statements containing line continuation characters ($). Multi-line statements will
produce unintended IDL interpreter behavior or errors. Lines are transferred to the
command line asis. Namely, leading white space is not removed and comment lines
are sent to the IDL interpreter without distinction.

If you are using the IDL Workbench, you can paste multiple statements directly into
the Command Line view. You can also drag single or multiple lines from the
Command History view to the Command Line view.

Application Programming Command Line Tips and Tricks

36 Chapter 2: Creating and Running Programs in IDL

Recalling Commands

By default, IDL savesthe last 500 commands entered in arecall buffer. These
command lines can be viewed, edited, and re-entered. The Command History view to
the right of the Console displays the command history, organized by day.

You can re-use and edit commands by recalling them on the Command Line. The up-
arrow key (T) on the keypad recalls the previous command you entered to IDL.
Pressing it again recalls the previous line, moving backward through the command
history list. The down-arrow key (|) on the keypad moves forward through the
command history.

Note
Using the HEL P procedure with the RECALL_COMMANDS keyword displaysthe
entire contents of the recall buffer in the IDL Console.

Command recall is always available in the IDL Workbench. The command recall
feature is enabled for the tty-based command-line version of IDL by setting the
IDL_EDIT_INPUT preferenceto true, which setsthe system variable 'EDIT_INPUT
to anon-zero value (the default is 1). See “!EDIT_INPUT” (Appendix D, IDL
Reference Guide) for details.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by setting
the IDL_RBUF_SIZE preference equal to anumber other than one (in the IDL
Workbench, you can set this value via the General tab of the IDL Workbench
Preferences dialog as well.)

Recalling Commands Application Programming

Chapter 2: Creating and Running Programs in IDL 37

Special Command Line Characters

Commands entered at the IDL prompt are usually interpreted as IDL statementsto be
executed. Other interpretations include executive commands that control execution

and compilation of programs, shell commands, and so on. Input to the IDL prompt is
interpreted according to the first character of the line, as shown in the following table.

Note
The information in this section applies equally to IDL used in command-line mode
or in the IDL Workbench.

First Character Action

Executive command. See “About Executive
Commands’ on page 38 for details.

? Help inquiry. For example, enter » on the Command
Line to open the online help system. Enter » . RUN to
open the Help system to the page that explains the
.RUN command.

$ Send an operating system commands to a subprocess.

Note - the SPAWN procedure is a more flexible
aternative. It need not be used interactively and the
standard output of the command can be saved in an
IDL string array. See “SPAWN?” (IDL Reference
Guide) for details.

@ Batch file initiation.
Tor | key Recall/edit previous commands.
CTRL+D In UNIX command-line mode, exits IDL, closes all
files, and returns to operating system.
CTRL+Z In UNIX command-line mode, suspendsIDL.
All others IDL statement.

Table 2-2: Interpretation of the First Character in an IDL Command

Application Programming Special Command Line Characters

38

Chapter 2: Creating and Running Programs in IDL

About Executive Commands

IDL executive commands compile programs, continue stopped programs, and start
previously compiled programs. All of these commands begin with a period and must
be entered in response to the IDL prompt. Commands can be entered in either
uppercase or lowercase and can be abbreviated. Under UNIX, filenames are case
sensitive; under Microsoft Windows, filenames can be specified in any case. See
“Executive Commands” (IDL Quick Reference) for a descriptions of the available
executive commands.

Note
Comments (prefaced by the semicolon character in IDL code) are not allowed

within executive commands.

Executive commands are used to create SMAINS programs. See “Creating $SMAINS$
Programs” on page 22 for details.

Special Command Line Key Combination

When working at the command line, key combinations can be used to quickly edit a
command. The line-editing abilities and the keys that activate them differ somewhat
between the different operating systems. To access the history of commands entered
at the command line, see “Recalling Commands’ on page 36.

Note
The behavior can also differ within the same operating system, between the

tty-based command line and the Command Line view in the IDL Workbench.

The table below lists the edit functions and the corresponding keys.

Function TTY (Command line) IDL Workbench
Move cursor to start of line | CTRL+A or Home CTRL+A or Home
Move cursor to end of line | CTRL+E or End CTRL+A or Home
Move cursor left one Left arrow Left arrow
character
Move cursor right one Right arrow Right arrow
character

Table 2-3: Command Recall and Line Editing Keys

Special Command Line Characters Application Programming

Chapter 2: Creating and Running Programs in IDL

39

Function TTY (Command line) IDL Workbench
Move cursor left oneword | CTRL+B, CTRL+€eft arrow
(R13 on Sun Keyboard)
Move cursor right oneword | CTRL+F, CTRL+right arrow

(R15 on Sun Keyboard)

Delete from current to start | CTRL+U CTRL+U
of line
Delete from currenttoend | CTRL+K CTRL+K

of line

Delete current character

CTRL+X or CTRL+D

CTRL+X or Delete

Delete previous character CTRL+H, or Backspace, | Backspace
or Delete
Delete previous word CTRL+W, or Esc-Delete
Generate IDL keyboard CTRL+C CTRL+break
interrupt
Move back onelinein CTRL+N, Up arrow Up arrow
recall buffer
Move forward onelinein Down arrow Down arrow
recall buffer
Redraw current line CTRL+R
Overstrike/l nsert Esc-
EOF if current lineis CTrRL+D
empty, else EOL
Search recall buffer for text | Available only in
command-line mode.
Enter A, then input
search string at prompt.
Insert the character at the any character any character

current Executive
Commands position

Table 2-3: Command Recall and Line Editing Keys (Continued)

Application Programming

Special Command Line Characters

40 Chapter 2: Creating and Running Programs in IDL

Recording IDL Command Line Input

Journaling provides a record of an interactive session by saving all text entered from
the Command Linein afile. In journaling, all text entered to the IDL prompt is
entered directly into the file, and any text entered from the terminal in response to any
other input request (such aswith the READ procedure) is entered as acomment. The
result isafilethat contains a compl ete description of the IDL session. JOURNAL has
the form:

JOURNAL [, Argument]

where Argument is either a filename (if journaling is not currently in progress) or an
expression to be written to the file (if journaling is active). Thefirst call to
JOURNAL starts the logging process. If no argument is supplied, ajournal file
named idlsave.pro isstarted.

Warning
Under all operating systems, creating a new journal file will cause any existing file
with the same name to be lost. Supply afilename argument to JOURNAL to avoid
destroying existing files.

When journaling is not in progress, the value of the system variable 'l JOURNAL is
zero. When the journal file is opened, the value of this system variable is set to the
number of the logical file unit on which thefile is opened. This alows DL routines
to check if journaling is active. You can send any arbitrary datato this file using the
normal IDL output routines. In addition, calling JOURNAL with an argument while
journaling isin progress results in the argument being written to the journal file as if
the PRINT procedure had been used. In other words, the statement,

JOURNAL,
is equivalent to
PRINTF, !JOURNAL, Argument

with one significant difference—the JOURNAL statement is not logged to thefile,
only its output; while the PRINTF statement will be logged to thefile in addition to
its output.

Journaling ends when the JOURNAL procedure is called again without an argument
or when IDL is exited. The resulting file serves as arecord of the interactive session
that went on while journaling was active. It can be used later as an IDL batch input
file to repeat the session, and it can be edited with any text editor if changes are
necessary. See “JOURNAL” (IDL Reference Guide) for examples.

Recording IDL Command Line Input Application Programming

Chapter 2: Creating and Running Programs in IDL 41

Interrupting or Aborting Execution

To manually stop programs that are running, issue a keyboard interrupt by typing
Ctrl+C. A message indicating the statement number and program unit being
executed isissued on the terminal or IDL Console acknowledging the interrupt. The
values of variables can be examined, statements can be entered from the keyboard,
and variables can be changed. The program can be resumed by issuing the
.CONTINUE executive command to resume or the .STEP executive command to
execute the next statement and stop.

Variable Context After Interruption

When a program is interrupted, the variable context is within the program unit where
the program stopped. IDL checks for interrupts after each statement. Program
execution does not stop until the active statement finishes, so it can take sometime
after you type an interrupt for the program to be interrupted.

Note
You can view the variables in a program using the IDL Workbench Variables view.

To revert to the next-higher program level, use the RETURN statement at the
Command Line. You can repeat this command until the program returns to the main
level. To return control to the main program level, use the RETALL command. To
find out where the interrupt occurred, use the HEL P command to determine the
program context.

Varibles view
Aborting IDL on UNIX Systems

If you use IDL in command-line mode on aUNIX system and need to abort rather
than exit using the EXIT command, type Ctrl+\. Thisis avery abrupt exit—all
variables are lost, and open files may not be saved. You should always close IDL
using the EXIT command when possible. Avoid using CtrI+\ except in emergency
situations.

Note
After aborting IDL by using Ctrl+\, you may find that your terminal isleft in the
wrong state. You can restore your terminal to the correct state by issuing one of the
following UNIX commands:

Application Programming Interrupting or Aborting Execution

javascript:doEclipse("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=org.eclipse.debug.ui.VariableView)")

42 Chapter 2: Creating and Running Programs in IDL

% reset Oor % stty echo -cbreak

Interrupting or Aborting Execution Application Programming

Chapter 2: Creating and Running Programs in IDL 43

For More Information on Programming

Here we have just touched on the possibilities that IDL offers for programmers. For
more information on how to prepare and run programs, see Chapter 5, “ Creating
Procedures and Functions” for creating and calling procedures and functions. It also
describes argument and keyword parameters, and keyword inheritance.

Application Programming For More Information on Programming

44

For More Information on Programming

Chapter 2: Creating and Running Programs in IDL

Application Programming

Chapter 3

Executing Batch Jobs
In IDL

The following topics are covered in this chapter:

Overview of BatchFiles 46 Interpretation of Batch Statements
Batch File Execution 47 ABacchExample

Application Programming

45

46 Chapter 3: Executing Batch Jobs in IDL

Overview of Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch file is read and executed before proceeding to the next line. This makes batch
files different from main-level programs, which are compiled as a unit before being
executed, and named programs, in which al program modules are compiled as an
unit before being executed. A file created by the JOURNAL routine is an example of
an batch file. Program types and more information on journaling are described in
Chapter 2, “ Creating and Running Programsin IDL".

Note
Batch files are sometimes referred to as include files, since they can be used to
“include” the multiple IDL statements contained in the file in another file.

See the following topics for more information on batch files:
« “Batch File Execution” on page 47
e “Interpretation of Batch Statements’ on page 49
e “A Batch Example’ on page 50

Tip
For information on how to specify abatch file as a startup file that is automatically
executed when IDL is started, see “ Startup Files’ (Chapter 1, Using IDL).

Overview of Batch Files Application Programming

Chapter 3: Executing Batch Jobs in IDL 47

Batch File Execution

You can run IDL in non-interactive mode (batch mode) by entering the character @
followed by the name of afile containing IDL executive commands and statements.
Commands and statements are executed in the order they are contained in thefile, as
if they had been entered at the IDL command prompt.

Batch execution can be terminated before the end of the file, with control returning to
interactive mode without exiting IDL, by calling the STOP procedure from the batch
file. Calling the EXIT procedure from the batch procedure has the usual effect of
terminating IDL.

Executing a Batch File

To execute a batch file, enter the name of thefile, prefaced with the“ @” character, at
the IDL prompt:

@batchfile

where batchfileis the name of the file containing IDL statements. Note that the @
symbol must be thefirst character on the line in order for it to be interpreted properly.

Note
This syntax can also be used within an IDL program file.

The cntour01 batch file contains the following lines:

; Restore Maroon Bells data into the IDL variable "elev".
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples', 'data'l)

; Make the x and y vectors giving the column and row positions.
X
Y

= 326.850 + .030 * FINDGEN (72)

= 4318.500 + .030 * FINDGEN(92) .

Enter the following at the IDL command line to execute the batch file:
@cntour0l

IDL reads statements from the specified file until the end of thefile is reached.
Variables ELEV, X, and Y appear in the variable watch window. Batch files can also
be nested by placing a call to one batch file within another. For example, the surf01
batch file callsthe cntour01 batch file and uses the variable data to create a surface
display. To see the results, enter the following at the command line;

@surf0l

Application Programming Batch File Execution

48 Chapter 3: Executing Batch Jobs in IDL

Naming and Locating Batch Files

If filename does not include a file extension, IDL searches the current working
directory and the directories specified by the |PATH system variable for afile with
filename asits base, with the file extension . pro. If filename. pro isnot foundin a
given directory, IDL searches for filename with no extension in that directory. If
filename is found (with or without the .pro extension), the file is executed and the
search ends. If filename includes a full path specification, IDL does not search the

directoriesin 'PATH.

Batch File Execution Application Programming

Chapter 3: Executing Batch Jobs in IDL 49

Interpretation of Batch Statements

Each line of abatch file isinterpreted exactly asif it was entered from the keyboard.
In batch mode, IDL compiles and executes each statement before reading the next
statement. Thisdiffersfrom the interpretation of main-level programs compiled using
.RNEW or .RUN, in which all statementsin a program are compiled as a single unit
and then executed.

GOTO statements are illegal in the batch mode because each batch file statement is
compiled and executed sequentially.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending with
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

; This will not work in batch mode.
FOR I = 1, 10 DO BEGIN
A = X[I]

ENDFOR
In batch mode, IDL compiles and executes each line separately, causing syntax errors
in the above exampl e because no matching ENDFOR is found on the line containing
the BEGIN statement when the lineis compiled. The above example could be made
to work by writing the block of statements as a single line using the $ (continuation)
and & (multiple commands on asingle line) characters.

Application Programming Interpretation of Batch Statements

50 Chapter 3: Executing Batch Jobs in IDL

A Batch Example

You can create a batch filein the IDL Editor or other text editor program. An
example of an IDL executive command line that initiates batch execution:

emyfile

This command causes the filemy file to be used for statement and command input.
If thisfileis not in the current directory, the directories specified by |PATH are also
searched.

An example of the contents of a batch file follows:

; Run program A:

.RUN proga

; Run program B:

.RUN progb

; Print results:
PRINT, AVALUE, BVALUE
; Close unit 3:
CLOSE, 3

The batch file should not contain complete program units. Complete program units
should be compiled and run by using the .RUN and .RNEW commands in the batch
files, asillustrated above.

Example Code
Several working batch files are included in the distribution. For an example, type
@sigprc09 at the IDL prompt to run the batch file. The source code for this
exampleislocated in sigprc09, inthe examples/doc/signal directory.

A Batch Example Application Programming

Chapter 4

Creating SAVE Files of
Programs and Data

The following topics are covered in this chapter:

Overview of SAVEFiles 52 Saving Variablesfroman IDL Session ... 65
About Program and Data SAVE Files 54 Executing SAVEFiles 67
Creating SAVE Files of Program Files 56 ChangestoIDL 5.4 SAVEFiles......... 70

Application Programming 51

52 Chapter 4: Creating SAVE Files of Programs and Data

Overview of SAVE Files

You can create binary files containing data variables, system variables, functions,
procedures, or objects using the SAVE procedure. These SAVE files can be shared
with other users who will be able to execute the program, but who will not have
access to the IDL code that created it. Variables that are used from session to session
can be saved as and recovered from a SAVE file.

Tip
A startup file can be set up to execute the RESTORE command every time IDL is
started. See “ Startup Files” (Chapter 1, Using IDL) for information on specifying a
startup files.

Note
Files containing IDL routines and system variables can only be restored by versions
of IDL that share the same internal code representation. Since the internal code
representation changes regularly, you should always archive the IDL language
source files (. pro files) for routines you are placing in IDL SAVE files so you can
recompile the code when anew version of IDL is released.

What Can be Stored in a SAVE File

A SAVE file can contain system variables, data variables, or named program files.
See the following topics for details:

« Named routines — store one or more routinesin asingle SAVE file and
distribute it other IDL users. See “About Program and Data SAVE Files’ on
page 54.

e Variable data— store system or session variable datain a SAVE file. See
“Saving Variables from an IDL Session” on page 65.

Warning
Variables and routines cannot be stored in the same SAVE file.

Save Files and Application Development

For distributable applications, IDL does not compile . pro files. Therefore, any
procedures or functions used by an application must be resolved and contained in a
SAVE file. For IDL applications, these routines can be part of the main SAVE file

Overview of SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 53

that is restored when your application is started. The following are examples of cases
in which you might use SAVE to create . sav files:

* Tocreate SAVE filesfor any procedures or functions that are not contained in
the main SAVE filethat is restored when a native IDL application is started

* Tocreate SAVE files for any procedures or functions used by a Callable IDL
or ActiveX application

» To create SAVE filesfor any variables used by your application, such as
custom ASCII templates

If your application is composed of a number of procedures and other types of files, it
would likely be easier to create a SAVE file using the IDL Workbench Build Project
interface; see Running and Building IDL Projects for information. See Chapter 23,
“Distributing Runtime Mode Applications’ for more information on creating
applicationsin IDL, including how to license your application and package it for
distribution.

Accessing and Running SAVE Files

Depending upon the name and contents of the SAVE file, there are a number of ways
to restore the file. SAVE files containing routines can be executed in a fully licensed
version of IDL, through the IDL Virtual Machine (if created in IDL version 6.0 or
later), or using the IDL_Savefile object. SAVE files containing variable data can be
restored using the RESTORE procedure or the IDL_Savefile object. You may also be
able to automatically compile and restore the file by typing the name of thefile at the
command line. See “Executing SAVE Files’ on page 67 for details.

Application Programming Overview of SAVE Files

../com.rsi.idl.doc.wb/Running_and_Building_IDL_Projects.html

54 Chapter 4: Creating SAVE Files of Programs and Data

About Program and Data SAVE Files

The SAVE procedure can be used to quickly save IDL routines and datavariablesin a
binary format that can be shared with other IDL users, or with others who have
installed the IDL Virtual Machine. If you are developing an application for
distribution to users who do not have aversion of IDL installed, you should also see
Chapter 23, “Distributing Runtime Mode Applications’.

Warning
Variables and routines cannot be stored in the same SAVE file.

Note
While IDL routines or data can be saved in afile with any extension, it is common

to use the extension . sav for SAVE files. Using the . sav extension hastwo
benefits: it makes it clear to another IDL user that the file contains IDL routines or
data, and it allows IDL automatically locate and compile the routinesin the file as
described in “Automatic Compilation” on page 30.

If your program or utility consists of multiple routines, each procedure or function
used by your program must be resolved and contained in a SAVE file. You have the
following options:

* Includeal routinesin amain SAVE file that is restored first. This makes all
routines available without having to restore any additional SAVE files. You
can do this manually, by compiling all of the routines yourself (possibly with
the assistance of the RESOLVE_ALL or ITRESOLVE routines).

» Create aseparate SAVE file for each routine used by your application.
Assuming each SAVE file uses the . sav extension and has the same name as
the procedure or function it contains, this allows you to simply place the files
in adirectory included in 'PATH; IDL will compileall of the files
automatically when needed.

If your program also contains variable data, you must create a separate SAVE file to
contain the data. Variable data must be explicitly restored before any routine attempts
to use the variables contained in the file. See “Executing SAVE Files’ on page 67 for
more information.

About Program and Data SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 55

Note
A SAVE file containing data will always be restorable. However, SAVE files

created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portabl e between different versions of IDL. If you created
your SAVE file with aversion of IDL earlier than 5.5, you will need to recompile
your original .pro files and re-create the SAVE file using the current version of
IDL.

Application Programming About Program and Data SAVE Files

56 Chapter 4: Creating SAVE Files of Programs and Data

Creating SAVE Files of Program Files

The following examples create SAVE files that are stand-alone IDL applications that
can be run on any Windows, UNIX or Mac OS X computer containing the IDL
Virtual Machine or alicensed copy of IDL. See the following examples:

« Example: A SAVE File of a Simple Routine below creates two SAVE files.
One SAVE file contains variable data, the other SAVE file contains a
procedure uses RESTORE to access the variable datain the first SAVE file.

» “Example: A Save File of a Simple Widget Application” on page 59 displays
an image in asimple widget application.

* “Example: Creating a SAVE File of an Object Definition” on page 60 shows
the special steps that must be taken when creating a SAVE file of an object that
has dependencies upon other objects.

e “Example: A SAVE File of a Custom iPlot Display” on page 62 restores
variable data and plotsit in aniPlot display.

Note
If you want your customers to run your application on acomputer without IDL, you
will need to include aruntime version of IDL with aruntime or embedded licensein
your application distribution. See Chapter 23, “ Distributing Runtime Mode
Applications’ for details.

Example: A SAVE File of a Simple Routine

The following example creates two SAVE files. One SAVE file contains variable
data, loaded from an image file. This SAVE fileis then restored by the program in the
main SAVE file, which uses asimple call to the ARROW procedure to point out an
area of interest within the image.

Save Image Variable Data
1. Start afresh session of IDL. Thisavoids saving unwanted session
information.

2. Read image data into a variable. Open an image file containing an MRI
proton density scan of a human thorax, and read the data into a variable named
image:

READ_JPEG, (FILEPATH('pdthoraxl24.jpg', SUBDIRECTORY= $
['examples', 'data'l)), image

Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 57

3. Create a SAVE file containing the image data. Use the SAVE procedure to
save the image variable in a SAVE file by entering the following:

SAVE, image, FILENAME='imagefile.sav'

This stores the SAVE file in your current working directory.

Note
When using the SAVE procedure, some users identify binary files containing
variable data using a . dat extension instead of a . sav extension. While any
extension can be used to identify files created with SAVE, it is recommended that
you use the . sav extension to easily identify files that can be restored.

Save a Procedure that Restores Variable Data

1. Createtheprogram file. Create the following IDL program that first restores
the image variable contained withinthe imagefile.sav file. Thisvariableis
used in the following program statements defining the size of the window and
in the TV routine which displays the image. The ARROW routine then draws
an arrow within the window. Enter the following linesin atext editor.

PRO draw_arrow

; Restore image data.
RESTORE, 'imagefile.sav'

; Get the dimensions of the image file.
s = SIZE(image, /DIMENSIONS)

; Prepare display device and display image.

DEVICE, DECOMPOSED = 0

WINDOW, 0, XSIZE=s[0], YSIZE=s[1l], TITLE="Point of Interest"
TV, image

; Draw the arrow.
ARROW, 40, 20, 165, 115

; The IDL Virtual Manchine exits IDL when the end of a

; program is reached if there are not internal events. The
; WAIT statement here allows the user to view the .sav file
; results for 10 seconds when executed through the IDL

; Virtual Machine.

WAIT, 10

END

2. Savethefile. Namethe saved file draw_arrow.pro.

Application Programming Creating SAVE Files of Program Files

58

Chapter 4: Creating SAVE Files of Programs and Data

Reset the | DL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET_SESSTON
Compilethe program. Enter the following at the IDL prompt:

.COMPILE draw_arrow

Resolve dependencies. Use RESOLVE_ALL (or ITRESOLVE if the routine
has any dependencies on i Tools components) to iteratively compile any
uncompiled user-written or library procedures or functions that are called in
any aready-compiled procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve procedures or functions that are called via
quoted strings such as CALL_PROCEDURE, CALL_FUNCTION, or
EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these
routines.

Createthe SAVE file. Create afile called draw_arrow. sav that containsthe
user-defined draw_arrow procedure. When the SAVE procedure is called with
the ROUTINES keyword and no arguments, it create a SAVE file containing
al currently compiled routines. Because the procedures within the
draw_arrow procedure are the only routinesthat are currently compiled in the
IDL session, create the SAVE file as follows:

SAVE, /ROUTINES, FILENAME='draw_arrow.sav'

Note
When the name of the SAVE file uses the . sav extension and has the same

base name as the main level program, it can be automatically compiled by
IDL. This means that it can be called from another routine or restored from
the IDL command line using only the name of the saved routine. See
“Automatic Compilation” on page 30 for details.

Test the SAVE file. Select Start — Programs — IDL 7.0 —» IDL Virtual
Machine. Click on the splash screen and open draw_arrow. sav. You could
also test the SAVE file from IDL, enter the following at the command prompt.

RESTORE, 'draw_arrow.sav'
draw_arrow

Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data

59

See “Executing SAVE Files’ on page 67 for all the available waysto run aSAVE file.

Example: A Save File of a Simple Widget Application

The following example creates a native IDL application that displays an imagein a
simple widget interface. When any application runsin the IDL Virtual Machine,
there must some element (such as widget or interface events, or aWAIT statement)
that keeps the application from immediately exiting with the END statement is
reached. This example includes a Done button for this reason. The examplein
“Example: A SAVE File of a Simple Routing” on page 56 includes a WAIT

statement.

1. Createa.profile. Enter the following in the IDL Editor, and saveit as

myApp .pro.

PRO done_event, ev

; When the 'Done' button is pressed, exit

; the application.

WIDGET_CONTROL, ev.TOP, /DESTROY

END

PRO myApp

; Read an image file.

READ_JPEG, (FILEPATH('endocell.jpg', SUBDIRECTORY = $

['examples', 'data'l)),

image

; Find the dimensions of the image.
info = SIZE (image, /DIMENSIONS)

xdim = infol[0]
ydim = infol[1l]

; Create a base widget containing a draw widget

; and a 'Done' button.

wBase = WIDGET_BASE (/COLUMN)

wDraw = WIDGET_ DRAW (wBase,

XSIZE=xdim, YSIZE=ydim)

wButton = WIDGET_ BUTTON (wBase, VALUE='Done',

EVENT_PRO="'done_event"')

; Realize the widgets.

WIDGET_CONTROL, wBase, /REALIZE

; Retrieve the widget ID of the draw widget.
WIDGET_CONTROL, wDraw, GET_VALUE=index

Application Programming

Creating SAVE Files of Program Files

60 Chapter 4: Creating SAVE Files of Programs and Data

; Set the current drawable area to the draw widget.
WSET, index

; Display some data.
TV, image

; Call XMANAGER to manage the event loop.
XMANAGER, 'myApp', wBase, /NO_BLOCK

END

2. Reset thelDL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET_SESSION
Compilethe application. Select Run — Compile to compile the . pro file.

Resolve dependencies. Type RESOLVE_ALL at the command line to resolve
al procedures and functions that are called in the application:

RESOLVE_ALL
Note

If your program relies on iTools components, use ITRESOLVE instead of
RESOLVE_ALL.

5. Createthe SAVE file. Enter the following to save the compiled application as
aSAVE file

SAVE, /ROUTINES, FILENAME = 'myApp.sav'

See “Executing SAVE Files’ for waysto run the SAVE file.

Example: Creating a SAVE File of an Object
Definition

When you create a SAVE file that contains an object defined ina . pro file, you must
savethe .pro file asa SAVE file, just like any other procedure you wish to
distribute. However, it isimportant to note that if the object has any inherited
properties from superclasses or other objects, and the object definitionsexistin .pro
files, you must also compile and include these object definition files in your SAVE
file. Objectsusing a . pro extension typicaly exist inthe IDL distribution’s 1ib
subdirectory and its subdirectories.

Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 61

Note
Do not confuse the process of saving an instance of an object with saving its
definition. A reference to an instantiated object is stored in an IDL variable, and
must be saved in a SAVE file as avariable. An object definition, on the other hand,
isan IDL routine, and must be saved in a SAVE file as aroutine. It isimportant to
remember that restoring an instance of an object does not restore the object’s
definition. If the object isdefined in . pro code, you must save the object definition
routine and the object instance variable in separate SAVE files, and restore both
instance and definition in the target IDL session.

The IDL distribution includes and example of a composite object composed of an
image, a surface, and a contour, which are combined into a single object called the
IDL exShow3 object. To see this object being used in an application, run the
show3_track.pro fileinthe examples/doc/objects directory. This procedure
has dependencies on two objects (trackball .pro and
IDLexShow3__define.pro). You must use RESOLVE_ALL and explicitly
include these two objects in the CLASS keyword string array in order to create a
valid SAVE file.

If you fail to resolve all object dependencies, you will receive an error stating that
there was an attempt to call and undefined procedure or function when you run the
SAVE file. If the error references an object, add the object name to the CLASS
keyword string array to resolve the problem. Undefined procedure or function errors
aremore likely to appear when you restore a SAVE file using the IDL Virtual
Machine, which does not search 'PATH to resolve routines. Using RESTORE at the
command line does search 'PATH. Therefore, a SAVE file that can be successfully
executed using RESTORE may not succeed when called from the IDL Virtual
Machine. If you are distributing SAVE files to users running the IDL Virtual
Machine, make sure to test the SAVE filein the Virtual Machine.

Complete the following steps to create a save file of an object:

1. Reset your session. Either start anew IDL session or enter the following at the
IDL prompt to ensure that no unwanted session information is saved along
with the program:

.FULL_RESET_SESSION

2. Open the main procedure. Open and compile show3_track.pro file by
entering the following at the IDL command prompt:

.COMPILE Show3_Track.pro

Application Programming Creating SAVE Files of Program Files

62 Chapter 4: Creating SAVE Files of Programs and Data

3. Resolve object dependencies. Use the CLASS keyword to resolve
dependencies to other object . pro filesby passing it astring or string array
containing the name(s) of the objects:

RESOLVE_ALL, CLASS=['Trackball', 'IDLexShow3']
4. Createthe SAVE file. Enter the following at the IDL command prompt:
SAVE, /ROUTINES, FILENAME='show3_track.sav'

5. Test the SAVE file. Select Start — Programs — IDL 7.0 — IDL Virtual
Machine. Click on the splash screen and open show3_track. sav. You could
also test the SAVE filefrom IDL. Enter the following at the command prompt.

RESTORE, 'show3_track.sav'
show3_track

See “Executing SAVE Files’ on page 67 for all the available waysto run a SAVE file.
Example: A SAVE File of a Custom iPlot Display

The following example configures a custom iPlot display and stores the program in a
SAVE file. Restoring the SAVE file opens iPlot with the specified data.

Note
When working with iTools, you can create an iTool State (.isv) file that contains
data and application state information.You can share this file with other IDL users
who have the same version or a newer version of IDL. Seethe iTool User’s Guide
for details. Thisis not the same as packaging i Tools functionality into a SAVE file,
which is described in this example. When iTools functionality is packaged into a
SAVE filg, it can be accessed by IDL users or through the IDL Virtual Machine.

1. Accessand save data. Save variable data from a batch file into a SAVE file:

@plot01
SAVE, FILENAME='plotdatalOl.sav'

2. Createthe program file. This program restores data, and creates a plot
display in aniPlot display. Enter the following linesin atext editor:

PRO ex_saveiplot

; Define variables.
RESTORE, 'plotdatall.sav'

; Use the LINFIT function to fit the data to a line:
coeff = LINFIT(YEAR, SOCKEYE)

Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 63

;YFIT is the fitted line:
YFIT = coeff[0] + coeff[l]*YEAR

; Plot the original data points with PSYM

4, for diamonds:

iPLOT, YEAR, SOCKEYE, /YNOZERO, SYM INDEX = 4, $
SYM_COLOR=[255,0,0], LINESTYLE=6, $
TITLE = 'Quadratic Fit', XTITLE = 'Year'Kk $

YTITLE = 'Sockeye Population'

; Overplot the smooth curve using a plain line:
iPLOT, YEAR, YFIT, /OVERPLOT

END

Reset you session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET_SESSION

Compilethe program. Use the .COMPILE executive command as follows:
Compile the main program file:

.COMPILE ex_saveiplot

Resolve dependencies. Use ITRESOLVE to resolve dependencies upon i Tool
components:

ITRESOLVE

Createthe SAVE file. Use the /ROUTINES keyword to include all currently
compiled routines:

SAVE, /ROUTINES, FILENAME='ex_saveiplot.sav'

Test the SAVE file. Select Start — Programs— IDL 7.0 — IDL Virtual
Machine. Click on the splash screen and open ex_saveiplot.sav. You
could also run the SAVE file from IDL. Enter the following at the command
prompt.

RESTORE, 'ex_saveiplot.sav'
ex_saveiplot

See “Executing SAVE Files’ on page 67 for all the available waysto run aSAVE file.

Application Programming Creating SAVE Files of Program Files

64 Chapter 4: Creating SAVE Files of Programs and Data

Other Examples of SAVE File Creation

See the following topics for additional SAVE file examples:

 “ASCII_TEMPLATE”" (IDL Reference Guide) contains Example: Create a
SAVE File of aCustom ASCII Template

* “XROI” (IDL Reference Guide) contains the following SAVE file examples:
e “Example: Save ROI Data’
« “Example: Save the XROI Utility with ROI Data’

Creating SAVE Files of Program Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 65

Saving Variables from an IDL Session

In addition to distributing IDL code in binary format, you can also create SAVE files
that contain variable data. The state of variablesin an IDL session can be saved
quickly and easily, and can be restored to the same point. This feature allows you to
stop work, and later resume at a convenient time. Variables that you may wish to
create a SAVE file of include frequently used datafiles or system variable definitions.

Saving Data Variables in a SAVE File

Data can be conveniently stored in SAVE files, relieving you of the need to remember
the dimensions of arrays and other details. It is very convenient to store images this
way. For instance, if the three variables Red, Green, and Blue hold the color table
vectors, and the variable Image holds the image variable, the IDL statement,

SAVE, FILENAME = 'image.sav', Red, Green, Blue, Image

will save everything required to display the image properly in afile named
image.sav. At alater date, the simple command,

RESTORE, 'image.sav'

will recover the four variables from the file. See “ Save Image Variable Data”’ on
page 56 for an additional example.

Saving Heap Variables in a SAVE File

The SAVE procedure works for heap variablesjust asit worksfor all other supported
types. By default, when IDL saves a pointer or object referencein a SAVE file, it
recursively saves the heap variablesthat are referenced by that pointer or object
reference.

In some cases, you may want to save the pointer or object reference, but not the heap
variable that are referenced by that pointer or object reference. You can specify that
the heap variable associated with a pointer or object reference not be saved using the
HEAP_NOSAVE procedure or the HEAP_SAVE function. See the documentation for
HEAP_SAVE for additional details.

Saving System Variables in a SAVE File
System variables can also be saved and later applied to another session of IDL. For

instance, you may choose to customize !PATH, the system variable defining the
directories IDL will search for libraries, batch/include files, and executive commands

Application Programming Saving Variables from an IDL Session

66

Chapter 4: Creating SAVE Files of Programs and Data

or !P, the system variable that controls the definition of graphic elements associated
with plot procedures. You can save these definitions in a SAVE file and later
automatically restore or selectively restore the variables to apply the settings to other
IDL sessions.

To save and restore the state of al current and system variables within an IDL
session, you could use the following statement:

SAVE, /ALL, FILENAME = 'myIDLsession.sav'

The ALL keyword saves all system variables and local variables from the current
IDL session. See Chapter 13, “Working with Datain IDL” for information on these
elements of an IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyword

does not save routines.

To restore the session information, enter:

RESTORE, 'myIDLsession.sav'

Note

If the fileisnot located in your current working directory, you will need to define
the path to thefile.

Long iterative jobs can save their partial resultsin a SAVE format to guard against
losing data if some unexpected event such as a machine crash should occur.

Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portabl e between different versions of IDL. If you created
your SAVE file with aversion of IDL earlier than 5.5, you will need to recompile
your original .pro files and re-create the SAVE file using the current version of
IDL.

Saving Variables from an IDL Session Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 67

Executing SAVE Files

IDL SAVE files (created using the SAVE procedure) can contain one or more
routines that have been packaged into asingle binary file. SAVE files can also
contain system or data variables.

Note
While IDL routines or data can be saved in afile with any extension, it is common
to use the extension . sav for SAVE files. Using the . sav extension hastwo
benefits: it makes it clear to another IDL user that the file contains IDL routines or
data, and it allows IDL to locate routines with the same base name as thefilein
SAVE fileslocated in IDL’s path.

This section describes various ways to restore files created with the SAV E procedure.
In order of increasing complexity and flexibility, your options are:

e “Using the IDL Virtual Machineto Run SAVE Files’, described below
* “Executing SAVE Files by Name” on page 67

e “Using RESTORE to Access SAVE Files’ on page 68

e “Using the IDL_Savefile Object to Access SAVE Files’ on page 69

Using the IDL Virtual Machine to Run SAVE Files

Userswithout an IDL license can use the IDL Virtual Machine to access programs
contained in SAVE files created in IDL version 6.0 or later. See “ Starting a Virtual
Machine Application” (Chapter 24, Application Programming) for instructions.

Note
There are afew limitations to SAVE file contents discussed in “Limitations of

Virtual Machine Applications’ (Chapter 24, Application Programming).

Executing SAVE Files by Name

You can execute a program stored in a SAVE file from the IDL command line by
typing in the name of the routine if the file meets the following conditions:

* The SAVE file has the same base name as the routine you wish to run

* The SAVE file hasthe extension . sav

 TheSAVE fileis stored in adirectory included in the |PATH system variable

Application Programming Executing SAVE Files

68

Chapter 4: Creating SAVE Files of Programs and Data

Call the procedure with the same name as the . sav file to restore the program and
execute it immediately using IDL’s automatic compilation mechanism. IDL will
search the current directory then the path specified by !PATH for a . sav filewith the
name of the called routine and, if it findsthe . sav filg, it restores, compiles and
executes it automatically.

For example, to restore and execute the draw_arrow routine contained in thefile
draw_arrow.sav (created in “Example: A SAVE File of a Simple Routine” on
page 56), enter the following at the command line:

draw_arrow

IDL will search for afile named either draw_arrow.pro Of draw_arrow. sav,
beginning in the current working directory and then searching in each directory
specified by 'PATH. When it finds a file whose name matches (in this case,
draw_arrow.sav), it will compile the routines in the file up to and including the
routine whose name matches the filename. IDL then executes the routine with the
matching name. See “Automatic Compilation” on page 30 for additional details.

Using RESTORE to Access SAVE Files

Use the RESTORE procedure to explicitly restore the entire contents of a SAVE file
that contains variable data or program files. Because calling a procedure with the
same name as a SAVE file allows IDL to automatically find and restore the SAVE
file, it isn't always necessary to explicitly restore a . sav file using RESTORE. Cases
in which you must use RESTORE include the following:

* When you arerestoring a SAVE file containing variable data.

* When your SAVE file contains multiple routines, and you need to first call a
routine that uses a different name than the . sav file. For example, if you have
aSAVE file named routines . sav that contains the ARROW and
BAR_PLOT procedures, you would need to restore routines . sav before
calling ARROW or BAR_PLOT.

Using RESTORE is more powerful and flexible than relying on IDL's rules for
automatic compilation, for the following reasons:

* Therestored SAVE file can contain IDL variable data

* |f therestored SAVE file contains IDL routines, all routines contained in the
file will be restored, and none will be executed

e Therestored SAVE file can have any filename and extension
e Therestored SAVE file can be located in any directory

Executing SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 69

For example, in “Example: A SAVE File of a Simple Routine” on page 56, we
created two SAVE files; imagefile.sav and draw_arrow. sav. The
imagefile.sav file containsimage variable data. To restore the image data, enter
the following at the IDL command line:

RESTORE, 'imagefile.sav'
IDL creates the variable image in the current scope using the saved variable data.

If thefile you are attempting to restoreis not located in your current working
directory, you will need to specify a path to the file. RESTORE does not search for
SAVE filesin any other directory. For example, if draw_arrow.sav islocated in
myappdir, restore it using the following statement:

RESTORE, 'myappdir/draw_arrow.sav'

Using the IDL_Savefile Object to Access SAVE Files

You can usethe IDL_Savefile object class to gain information about the contents of a
SAVE file, and to selectively restore items from the save file. Once aroutine has been
restored viacallsthe IDL_Savefile abject, you can execute it simply by typing its
name at the IDL command prompt. For example, if an IDL program named
myroutine isstored inmyroutine.sav, whichislocated in adirectory that is not
in 'PATH, entering the following at the IDL command line will restore the routine

and execute it:
obj = OBJ_NEW('IDL_Savefile', 'path/myroutine.sav')
obj->RESTORE, 'myroutine'
myroutine

where path isthe full path to themyroutine. sav file. See * Getting Information
About SAVE Files’ (Chapter 4, Using IDL) for additional details.

Application Programming Executing SAVE Files

70 Chapter 4: Creating SAVE Files of Programs and Data

Changes to IDL 5.4 SAVE Files

With IDL 5.4, IDL became 64-bit capable. The origina IDL SAVE/RESTORE
format used 32-bit offsets. In order to support 64-bit memory access, the IDL
SAVE/RESTORE file format was modified to allow the use of 64-bit offsets within
the file, while retaining the ability to read old files that use the 32-hit offsets.

The SAV E command always begins reading any SAVE file using 32-bit offsets. If the
64-bit offset command is detected, 64-hit offsets are then used for any subsequent
commands.

e InIDL versions capable of writing largefiles
('VERSION.FILE_OFFSET_BITSEQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

e SAVE always starts reading any SAVE file using 32-bit offsets. If it seesthe
64-bit offset command, it switches to 64-hit offsets for any commands
following that one.

This configuration is fully backward compatible, in that any IDL program can read
any SAVE fileit has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
fileswritten by newer IDL versionsto sites where they are restored by older versions
of IDL. It isnot generally reasonable to expect this sort of forward compatibility, and
it does not fit the usual definition of backwards compatibility. We have always
strived to maintain this compatibility. However, in IDL 5.4 thiswas not the case. The
following steps were taken in IDL 5.5 to minimize the problems caused by the IDL
5.4 save format:

e 64-hit offsets encoding has been improved. SAVE fileswritten by IDL 5.5 and
later should be readable by any previous version of IDL, if the file data does
not exceed 2.1 GB in length.

< |IDL 5.5 and later versions will retain the ability to read the 64-bit offset files
produced by IDL 5.4.x, thus ensuring backwards compatibility.

« SAVE fileswritten by IDL 5.5 or later versionsthat contain file data exceeding
2.1GB in length are not readabl e by older versions of IDL, but will be readable
by IDL 5.5 and later versions of IDL that have 'VERSION.MEMORY _BITS
equal to 64.

e The CONVERT_SR54 procedure, apart of the IDL 5.5 user library, can be
used to convert SAVE fileswritten within IDL 5.4 into the newer IDL 5.5

Changes to IDL 5.4 SAVE Files Application Programming

Chapter 4: Creating SAVE Files of Programs and Data 71

format. This allows existing data files to become readable by previous I DL
versions. The CONVERT_SR54 procedureis located in the
IDI,_DIR/1lib/obsolete directory.

Application Programming Changes to IDL 5.4 SAVE Files

72 Chapter 4: Creating SAVE Files of Programs and Data

Changes to IDL 5.4 SAVE Files Application Programming

Chapter 5

Creating Procedures
and Functions

The following topics are covered in this chapter:

Overview of Procedures and Functions 74
DefiningaProcedure 75
DefiningaFunction 78
Automatic Compilation and Execution 79
Parameters 81
Using Keyword Parameters 85
Determining if aKeywordisSet 86

Supplying Values for Missing Keywords .. 87

Application Programming

Supplying Values for Missing Arguments . 88

Keyword Inheritance 89
Entering Procedure Definitions 96
How IDL Resolves Routines 97
Parameter Passing Mechanism 98
Cdling Mechanism 100

Calling Functions/Procedures Indirectly . 102

73

74 Chapter 5: Creating Procedures and Functions

Overview of Procedures and Functions

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the command prompt or from
other programs. When a procedure or function is finished, it executesa RETURN
statement that returns control to its caller. Functions always return an explicit result.

A procedureis called by a procedure call statement, while afunctioniscaled by a
function reference. For example, if myproaBc isaprocedure and my funcxvzisa
function, the calling syntax is:

; Call procedure with two parameters.
myproABC, A, 12

; Call function with one parameter. The result is stored
; 1in variable A.
A = myfuncXYZ(C/D)

Note
See Chapter 6, “Library Authoring” for information on naming procedures to avoid
conflictswith IDL routine names. It isimportant to implement and consistently use
anaming scheme from the earliest stages of code devel opment.

Procedures and functions are collectively referred to as routines. An IDL program file
may contain one or many routines, which can be amix of procedures and functions.

Overview of Procedures and Functions Application Programming

Chapter 5: Creating Procedures and Functions 75

Defining a Procedure

A sequence of one or more IDL statements can be given aname, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

The general format for the definition of a procedureis as follows:

PRO Name, Parameterl, ..., Parametern
; Statements defining procedure.
Statementl
Statement2

; End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that isin adirectory in the IDL search path (!PATH)
and has the same name as the prefix of the . sav or .pro file, causes the procedure
to be read from the disk, compiled, and executed without interrupting program
execution.

Calling a Procedure

The syntax of the procedure call statement is as follows:
Procedure_Name, Parameter;, Parameter,, ..., Parameter,

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:
e System procedures provided with IDL.

e User-written procedures written in IDL and compiled with the .RUN
command.

e User-written procedures that are compiled automatically becausethey residein
directoriesin the search path. These procedures are compiled the first time
they are used. See “Automatic Compilation and Execution” on page 79.

Application Programming Defining a Procedure

76

Chapter 5: Creating Procedures and Functions

* Procedureswrittenin IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

e Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Procedure Examples

Some procedures can be called without any parameters. For example:
IPLOT

Thisisaprocedure call to launch the iPlot iTool. There are no explicit inputs or
outputs. You can also call iPlot with parameters including data and color
specifications:

data = RANDOMU (Seed, 45)
IPLOT, data, COLOR=[255,0,0]

This opens the iPlot tool and passes it random plot data. The data parameter is an
argument and the COLOR parameter is a keyword. These elements are described in
more detail in “Parameters’ on page 81.

You can also create a named program consisting of a procedure. For example,
suppose you have afile called hel1o_world.pro containing the following code:

PRO hello_world
PRINT, 'Hello World'
END

ThisIDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension .pro or the extension . sav.
When IDL searches for a user-defined procedure or function, it searches for files
consisting of the name of the procedure or function, followed by the .pro or . sav
extension. Procedures and functions can a so accept arguments and keywords. Both
arguments and keywords allow the program that calls the routine to pass datain the
form of IDL variables or expressions to the routine.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hello_world, name, INCLUDE_NAME = include
IF (KEYWORD_SET (include) && (N_ELEMENTS (name) NE 0)) THEN BEGIN
PRINT, 'Hello World From '+ name
ENDIF ELSE PRINT, 'Hello World'
END

Defining a Procedure Application Programming

Chapter 5: Creating Procedures and Functions 77

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the name variable if avalue was
supplied for the name argument. Enter the following procedure call at the command
line:

hello_world, name, /INCLUDE_NAME
IDL prints,
Hello World
Now define a string name and repeat the procedure call:

name = "Horton"
hello_world, name, /INCLUDE_NAME

IDL prints:
Hello World From Horton

This example usesthe KEYWORD_SET and N_ELEMENTS functionsin order to
handle the possibility of missing information in a procedure or function call. See
“Determining if a Keyword is Set” on page 86 for more information.

Application Programming Defining a Procedure

78 Chapter 5: Creating Procedures and Functions

Defining a Function

A function is aprogram unit containing one or more IDL statements that returns a
value. This unit executes independently of its caller. It hasits own local variables and
execution environment. Referencing a function causes the program unit to be
executed. All functions return a function value which is given as a parameter in the
RETURN statement used to exit the function. Function names can be up to 128
characters long.

The general format of afunction definition is asfollows:

FUNCTION Name, Parameter;, ..., Parameter,
Statement;
Statement,

RETURN, Expression
END

Function Example

To define afunction called AVERAGE, which returns the average value of an array,
use the following statements:

FUNCTION AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS (arr)
END

Once the function AV ERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRINT, AVERAGE (X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. To return the result in a variable, use afunction call as follows:

vAvg = AVERAGE (X"2)

Parameters passed to functions are identified by their position or by a keyword. See
“Using Keyword Parameters’ on page 85. If afunction has no parameters, you must
specify empty parenthesesin the function call.

Defining a Function Application Programming

Chapter 5: Creating Procedures and Functions 79

Automatic Compilation and Execution

IDL automatically compiles and executes a user-written function or procedure when
it isfirst referenced if:

1. The source code of the function isin the current working directory orina
directory in the IDL search path defined by the system variable |PATH.

2. The name of the file containing the function is the same as the function name
suffixed by .poro or .sav. The suffix should be in lowercase letters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be lowercase |etters.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation, or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For more information on how to access routines, see “ Running Named Programs” on
page 28.

About Calling and Compiling Functions

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable !PATH, must be compiled before the first reference to the
function is encountered. This is necessary because the IDL compiler is unable to
distinguish between areference to a variable subscripted with parentheses and a call
to apresently undefined user function with the same name. For example, in the
statement:

A = XYZ(5)

it isimpossible to tell by context aloneif XY Z isan array or afunction.

Application Programming Automatic Compilation and Execution

80 Chapter 5: Creating Procedures and Functions

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 307 for additional
details.

When IDL encounters references that may be either afunction call or a subscripted
variable, it searchesthe current directory, then the directories specified by 'PATH, for
files with names that match the unknown function or variable name. If one or more
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, IDL

displays an error message.
There are several ways to avoid this problem:

* Compilethe lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

e Placethe function in afile with the same name as the function, and place that
filein one of the directories specified by 'PATH.

e Usethe FORWARD_FUNCTION definition statement to inform IDL that a
given name refers to afunction rather than avariable. See
“FORWARD_FUNCTION” (IDL Reference Guide).

e Manually compile all functions before any reference, or use
RESOLVE _ROUTINE or RESOLVE_ALL to compile functions.

Automatic Compilation and Execution Application Programming

Chapter 5: Creating Procedures and Functions 81

Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the following,

; Call procedure with two parameters.
myproABC, A, 12

; Call function with one parameter. The result is stored
; 1in variable A.
A = myfuncXYZ(C/D)

the actual parametersin the procedure call are the variable A and the constant 12,
while the actual parameter in the function call isthe value of the expression (c/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
anumber of placesin other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters (Arguments)

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=") that identifies which
parameter is being passed.

When calling aroutine with akeyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEY WORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /[KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

Application Programming Parameters

82 Chapter 5: Creating Procedures and Functions

For example, a procedure is defined with a keyword parameter named TEST.
PRO XYZ, A, B, TEST =T

The caller can supply avalue for the formal (keyword) parameter T with the
following calls:

; Supply only the value of T. A and B are undefined inside the
; procedure.
XY7, TEST = A

; The value of A is copied to formal parameter T (note the
; abbreviation for TEST), Q to A, and R to B.
XYz, TE = A, Q, R

; Variable Q is copied to formal parameter A. B and T are undefined
; inside the procedure.

XYz, Q
result = FUNCTION(Argl, Arg2, KEYWORD = value)
Note
When supplying keyword parameters for a function, keywords are specified inside
the parentheses.

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, viaa RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of thecal. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or afunction can be called with fewer arguments than were defined in
the procedure or function. For example, if aprocedure is defined with 10 parameters,
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into

Parameters Application Programming

Chapter 5: Creating Procedures and Functions 83

parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list can be found
by using the system function N_PARAMS. Usethe N_ELEMENTS function to
determineif avariableis defined.

Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. Thisfunction is useful in user-written proceduresto determineif a created
value remains within the scope of the calling routine. ARG_PRESENT helps the
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i

If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

IF ARG_PRESENT (1) THEN BEGIN
Function Parameters Example

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTION GRAD, image
; Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

; Evaluate and return the result.
RETURN, ABS(image - SHIFT(image, 1, 0)) + S
ABS (image-SHIFT (image, 0, 1))

; End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within amodule (i.e., they are not parameters and
are not contained in common blocks).

Application Programming Parameters

84

Parameters

Chapter 5: Creating Procedures and Functions

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

; Store gradient of B in A.
A = GRAD(B)

; Display gradient of IMAGE.
; Access image data and pass to GRAD function.

; Display the gradient.

file=FILEPATH('endocell.jpg', SUBDIRECTORY=['examples',6 'data'l])
READ_JPEG, file, image, /GRAYSCALE

result=GRAD (image)

IIMAGE, result

Application Programming

Chapter 5: Creating Procedures and Functions 85

Using Keyword Parameters

A short example of afunction that exchanges two columns of a4 x 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix

defined below.

; Function to swap columns of T. XYEXCH swaps columns 0 and 1,

; XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTION SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = vyz

; Swap columns 0 and 1 if keyword XYEXCH is set.
IF KEYWORD_SET (XY) THEN S=[0,1] $

; Check to see if xz is set.
ELSE IF KEYWORD_SET(XZ) THEN S=[0,2] S

; Check to see if yz is set.
ELSE IF KEYWORD_SET(YZ) THEN S=[1,2] $

; If nothing is set, return.
ELSE RETURN, T

; Copy matrix for result.
R =T
; Exchange two columns using matrix insertion operators and
; subscript ranges.
R[s[1], 0] = T[S[O0], *]
R[s[0], 0] = T[S[1], *]

; Return result.
RETURN, R

END

Typical callsto SWAP are asfollows:

Q = SWAP(!P.T, /XYEXCH)

Q = SWAP(Q, /XYEX)

Q SWAP (INVERT (Z), YZ = 1)
Q = SWAP(Z

XYE = I EQ 0, XZE = I EQ 1, YZE = I EQ 2)

’

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable 1.

Application Programming Using Keyword Parameters

86 Chapter 5: Creating Procedures and Functions

Determining if a Keyword is Set

The previousfunction example (in “ Using Keyword Parameters’ on page 85) usesthe
system function KEYWORD_SET to determine if a keyword parameter has been
passed and if it is nonzero. Thisis similar to using the condition:

IF N_ELEMENTS(P) NE 0 THEN IF P THEN ...

to test if keywords that have a true/fal se value are both present and true. The
N_ELEMENTS function returns the number of elements contained in any expression
or variable. Scalars always have one element. The N_ELEMENTS function returns
zero if its parameter is an undefined variable. The result is aways alongword scalar.
Thefollowing example determinesif avariableisdefined usingN_ELEMENTS. It sets
the variable abc to zero if it is undefined; otherwise, the variable is not changed.

IF N_ELEMENTS (abc) EQ 0 THEN abc = 0

The KEYWORD_SET function returns a 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedureis
written which performs and returns the result of a computation. If the keyword PLOT
is present and nonzero, the procedure also plotsits result as follows:

; Procedure definition.
PRO XYZ, result, PLOT = plot

; Compute result.

; Plot result if keyword parameter is set.
IF KEYWORD_SET (PLOT) THEN PLOT, result

END
A call to this procedure that produces aplot is shown in the following statement.

XYZ, R, /PLOT

Determining if a Keyword is Set Application Programming

Chapter 5: Creating Procedures and Functions 87

Supplying Values for Missing Keywords

N_ELEMENTS s frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. (See “ Supplying
Valuesfor Missing Arguments’ on page 88.) An exampleof using N_ELEMENTSto
check for akeyword parameter is as follows:

; Display an image with a given zoom factor.
; If factor is omitted, use 4.
PRO ZOOM, image, FACTOR = factor

; Supply default for missing keyword parameter.
IF N_ELEMENTS (factor) EQ 0 THEN factor = 4

Note
If you use this method, the variable factor is defined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable factor would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of factor,
you could use an approach similar to the following:

IF N_ELEMENTS (factor) EQ 0 THEN zoomfactor = 4 S
ELSE zoomfactor = factor

You would then set the zoom factor internally using the zoomfactor variable,
leaving factor itself unchanged.

Application Programming Supplying Values for Missing Keywords

88 Chapter 5: Creating Procedures and Functions

Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function call. A frequent useisto call
N_PARAMS to determineif all arguments are present and if not, to supply default
values for missing parameters. For example:

; Print values of XX and YY. If XX is omitted, print
; values of YY versus element number.
PRO XPRINT, XX, YY

; Check number of arguments.
CASE N_PARAMS () OF

; Single-argument case.
1: BEGIN

First argument is y values.
= XX

Ko~

; Create vector of subscript indices.
X = INDGEN (N_ELEMENTS (Y))

END

; Two-argument case.
2: BEGIN

; Copy parameters to local arguments.
Y = YY & X = XX

END

; Print error message.
ELSE: MESSAGE, 'Wrong number of arguments'

ENDCASE

; Remainder of procedure.

END

Supplying Values for Missing Arguments Application Programming

Chapter 5: Creating Procedures and Functions 89

Keyword Inheritance

Keyword inheritance allows IDL routinesto accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is simple, and
requires significantly less maintenance. Keyword inheritance is of particular value
when writing:

« Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routinein asmall way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappersto be very simple, and benefit from
not having to specify al the details of the underlying routine's interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

» Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makes it simpleto
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of itsinternal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. Theroutine must declare that it accepts inherited keywords. Thisis done by
specifying either the _EXTRA or _REF _EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_LREF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword I nheritance Mechanisms” on page 90.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance M echanism” on page 92. Only one of these
two keywords can be specified for a given routine.

Application Programming Keyword Inheritance

90 Chapter 5: Creating Procedures and Functions

2. Theroutine passes the inherited keywords to a called routine, by including
either the _EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an
inherited keyword is not accepted by the called routine. _EXTRA causes such
keywordsto be quietly ignored, while _STRICT_EXTRA causes IDL to issue
an error and stop execution. _EXTRA isthe usual choice, while
_STRICT_EXTRA isused primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

e The mechanism used by aroutine for inherited keywords is solely determined
by which keyword (EXTRA or REF EXTRA) isused in the formal
parameter list for that routine. Hence, REF_EXTRA isonly used in the
formal parameter list of aroutine, and never in a call to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. There is no need to
change any of the callsto the routine, just the formal parameter list of the
routine itself.

e Attempting to use boththe EXTRA and _REF_EXTRA keywordstogether in
the formal parameter list of afunction or procedure will cause an error to be
issued. You can only use one or the other.

e Only the caler of aroutine can dictate whether keywords that are not
understood by the called routine should be ignored (EXTRA) or should
generate an error (_ STRICT_EXTRA). For thisreason, STRICT_EXTRA is
only used in acall to aroutine, and not in the formal parameter list for the
routine.

e Attempting to use boththe EXTRA and _STRICT_EXTRA keywords
together in acall to afunction or procedure will cause an error to be issued.
You can only use one or the other.

Keyword Inheritance Mechanisms

Asdescribed above, there are two possible mechanisms used by IDL to passinherited
keywords. The one used by aroutine is determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to aroutine by value by
adding the keyword parameter EXTRA to the formal argument list of that routine.
Passing parameters by value means that you are giving the called routine a copy of

Keyword Inheritance Application Programming

Chapter 5: Creating Procedures and Functions 91

the value of the passed parameter, and not the original. As such, any changes made to
the value of such a keyword is not passed back to the caller.

When aroutine is defined with the formal keyword parameter EXTRA, and
keywords that are not recognized by that routine are passed to it in acall, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag is a copy of the value that was passed to that keyword. If no unrecognized
keywords are passed in a call, the value of the EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can all be of usein
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _EXTRA structure:

PRO SOMEPROC, _EXTRA = ex
if (N_ELEMENTS (ex) NE 0) $
THEN ex = CREATE_STRUCT (’COLOR’, 12, ex) $
ELSE ex = { COLOR : 12 }
SOME_UNDERLYING_PROC, _EXTRA=ex
END

Theuse of N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.

_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that aroutine accepts inherited keywords by reference, by adding the
keyword REF EXTRA to the forma argument list of the routine. When aroutineis
defined with _REF_EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, aswith any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine asthe
value of the REF EXTRA keyword. The presence of anameinthe REF EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in afunction or procedure call (using either _EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in a call, the value of

Application Programming Keyword Inheritance

92

Chapter 5: Creating Procedures and Functions

the EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especially useful when
writing object methods.

Selective Keyword Redirection

If extrakeyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names viathe EXTRA keyword. For example, suppose that we
write a procedure named SOM EPROC that passes extra keywords by reference:
PRO SOMEPROC, _REF_EXTRA = ex
ONE, _EXTRA=['MOOSE', 'SQUIRREL']

TWO, _EXTRA='SQUIRREL'
END

If we call the SOMEPROC routine with three keywords:
SOMEPROC, MOOSE=moose, SQUIRREL=3, SPY=PTR_NEW (moose)

e it will passthe keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

e it will passthe keyword SQUIRREL and its value to procedure TWO,

« it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.

Choosing a Keyword Inheritance Mechanism

The two available keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine:

« If your routine needs to see the values of the inherited keywords, and you do
not need to pass modified values back to the caller, use _EXTRA (pass by
value).

< |If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use REF_EXTRA (pass by
reference).

< |If your routine is an object method, REF EXTRA ismost likely the correct
choice for your application.

Keyword Inheritance Application Programming

Chapter 5: Creating Procedures and Functions 93

« If either mechanism will serve your needs, asis often the case, then we
recommend REF _EXTRA, which has aminor efficiency advantage over
_EXTRA, dueto thefact that it does not have to construct an anonymous
structure and copy the original valuesinto it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism isto create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such a wrapper, using both available inheritance mechanisms.

By Value

In most wrapper routines, thereis no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST is awrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _EXTRA = e
END

Thiswrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such akeyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COL OR) to be placed into an anonymous structure assigned to the variable
e. |f there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the foll owing command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5
variable e, within TEST, contains an anonymous structure with the value:

{ LINESTYLE: 4, THICK: 5 }

Application Programming Keyword Inheritance

94

Chapter 5: Creating Procedures and Functions

These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into aroutine via_ EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifiesacolor index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
sufficesto changethe EXTRA keyword to REF _EXTRA in the formal parameter
list:

PRO TEST, a, b, _REF_EXTRA = e, COLOR = color

PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, a string
array containing the inherited keyword names is assighed to the variable e. If there
are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the foll owing command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable e, within TEST, contains an anonymous structure with the value:
[‘LINESTYLE', ‘THICK']

These inherited keywords are then passed from TEST to the PLOT routine using the
_EXTRA keyword. Note that keywords passed into aroutinevia_EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifiesacolor index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by EXTRA) asthe value of the extra keyword to a routine that
uses the by reference keyword inheritance mechanism (REF_EXTRA). Thereisno
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be calling it. However, any
keyword values that are changed within PLOT will fail to be returned to the caller
due to the use of the by-value mechanism.

Keyword Inheritance Application Programming

Chapter 5: Creating Procedures and Functions 95

Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of avariable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and _REF_EXTRA, consider the following simple example procedures:

PRO HELP_BYVAL, _EXTRA = ex
HELP, _EXTRA = ex
END

PRO HELP_BYREF, _REF_EXTRA = ex
HELP, _EXTRA = ex
END

Both HELP_BY VAL and HELP_BY REF are smple wrappers to the HELP
procedure. The HEL P procedure accepts a keyword named OUTPUT that passes
back avalue to the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP_BYVAL, OUTPUT = out & HELP, out

IDL prints:
% At HELP_BYVAL 2 /dev/tty
% SMAINS
EX UNDEFINED = <Undefined>

Compiled Procedures:
SMAINS HELP_BYVAL

Compiled Functions:

ouT UNDEFINED = <Undefined>

This occurs because the HEL P call within HELP_BY VAL is passed a variable that
cannot be used to return avalue, due to the use of by value keyword inheritance. It
therefore reverts to the default of writing to the user’s screen, and no valueis returned
to the caller for the OUTPUT keyword.

Now run HELP_BY REF:

HELP_BYREF, OUTPUT = out & HELP, out
IDL prints:

ouT STRING = Array|[8]

HELP_BY REF returns the value of the HELP OUTPUT keyword as desired.

Application Programming Keyword Inheritance

96 Chapter 5: Creating Procedures and Functions

Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commandsis as follows:

.RUN [File; , File,, ...]
.COMPILE [File; , File,, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE" (IDL Reference Guide).

To enter program text directly from the keyboard, simply enter .RUN at the

IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
adirectly entered program. Aslong as IDL requires more text to complete a program
unit, it prompts with the “-” character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as awhole. See “ Creating
$MAINS Programs’ on page 22 for more information.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty lineisnot a
procedure or function definition statement, the program unit is assumed to be amain
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same nameis already
compiled, it is replaced by the new program unit.

Entering Procedure Definitions Application Programming

Chapter 5: Creating Procedures and Functions 97

How IDL Resolves Routines

When IDL encountersacall to afunction or procedure, it must find the routine to
call. To do this, it goes through the following steps. If agiven step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1

If the routine is known to be a built-in intrinsic routine (commonly referred to
as a systemroutine), then IDL calls that system routine.

If auser routine written in the IDL language with the desired name has a ready
been compiled, IDL callsthat routine.

If afile with the name of the desired routine (and ending with the filename
suffix . pro) existsin the current working directory, IDL assumes that thisfile
contains the desired routine. It arranges to call a user routine, but does not
compilethefile. Thefile will be compiled when IDL actually needsit. In other
words, it is compiled at run time when IDL actually attemptsto call the
routine, not when the code for the call is compiled.

IDL searchesthe directories given by the !'PATH system variable for afile with
the name of the desired routine ending with the filename suffix . pro. If sucha
fileexists, IDL assumes that thisfile contains the desired routine. It arranges to
call auser routine, but does not compile the file, as described in the previous
step.

If the above steps do not yield acallable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 15, “Arrays’ for adiscussion of this ambiguity). In either case,
the result is not a callable routine.

Application Programming How IDL Resolves Routines

98

Chapter 5: Creating Procedures and Functions

Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It isimportant to recognize the distinction between these two
methods.

* Expressions, constants, system variables, and subscripted variable references
are passed by value.

e Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:
PRO ADD, A, B
A=A+ B
RETURN
END
This procedure adds its second parameter to the first, returning the result in the first.
The call

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A
No error message isissued. Similarly, if ARR isan array, the call

ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARR[5]

ADD, TEMP, 4
ARR[5] = TEMP

Parameter Passing Mechanism Application Programming

Chapter 5: Creating Procedures and Functions 99

Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “ Parameter
Passing with Structures’ on page 343 for additional details.

Application Programming Parameter Passing Mechanism

100 Chapter 5: Creating Procedures and Functions

Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

2. Theactual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

3. Thefunction or procedureis executed until aRETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
auser-written function is passed back to the caller by specifying it asthe value
of aRETURN statement. RETURN statementsin procedures cannot specify a
return value.

4. All local variablesin the procedure, those variables that are neither parameters
nor common variables, are deleted.

5. Thenew values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

6. Control resumesin the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., aprogram calling itself) is supported for both procedures and
functions.

Example

Here is an example of an IDL procedure that reads and plots the next vector from a
file. Thisexampleillustrates using common variables to store values between calls, as
local parameters are destroyed on exit. It assumes that the file containing the datais
open on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

; Read and plot the next record from file 1. If RECNO is specified,
; set the current record to its value and plot it.
PRO NXT, recno

; Save previous record number.

Calling Mechanism Application Programming

Chapter 5: Creating Procedures and Functions 101

COMMON NXT_COM, lastrec

; Set record number if parameter is present.
IF N_PARAMS(0) GE 1 THEN lastrec = recno

; Define LASTREC if this is first call.
IF N_ELEMENTS (lastrec) LE 0 THEN lastrec = 0

; Define file structure.
AA = ASSOC (1, FLTARR(512))

; Read and plot record.
PLOT, AA[lastrec]

; Increment record for next time.
lastrec = lastrec + 1

END

Once the user has opened thefile, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.

Application Programming Calling Mechanism

102 Chapter 5: Creating Procedures and Functions

Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose names are contained in strings. The
CALL_METHOD routine can be used to indirectly call an object method whose
nameis contained in a string. Although not as flexible as the EXECUTE function
(see“"EXECUTE” (IDL Reference Guide)), the CALL_* routines are much faster,
and should be used in preference to EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SVDFIT, calls a function whose
name is passed to SVDFIT via a keyword parameter as a string. If the keyword
parameter is omitted, the function POLY iscalled.

; Function declaration.
FUNCTION SVDFIT, ..., FUNCT = funct

; Use default name, POLY, for function if not specified.

IF N_ELEMENTS (FUNCT) EQ O THEN FUNCT = 'POLY'
; Make a string of the form "a = funct(x,m)", and execute it.
7Z = EXECUTE('A = '+FUNCT+' (X,M)")

The above example is easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL_FUNCTION (FUNCT, X, M)

Calling Functions/Procedures Indirectly Application Programming

Chapter 6

Library Authoring

The following topics are covered in this chapter:

Overview of Library Authoring 104 Advicefor Library Authors 108
Recognizing Potential Naming Conflicts . 105 Converting Existing Libraries 109

Application Programming 103

104 Chapter 6: Library Authoring

Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they
develop domain-specific programs and applications that implement knowledge far
beyond our level of expertise. User library code is often freely available, supported,
and documented. However, as the number of library authors and routines continuesto
grow, it becomes increasingly important for authors to adhere to a routine naming
convention within their libraries that avoids conflicts with core IDL functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because thisis often agradual process, the importance of naming is
not obvious until there is a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveals
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by usersin the IDL community. (See “How IDL Resolves
Routines’ on page 97 for step-by-step routine resolution details.)

Thefact that IDL system routines always take precedence over user routines provides
the following benefits:

e ThelDL environment remains reliable and consistent — a call to FFT aways
returns the IDL version of the FFT function.

« Iteiminatesagreat dea of path searching, which translates into faster
execution speed.

In contrast, if user routinestook precedence over system routines, agiven installation
could radically alter the meaning of common and basic IDL constructs simply by
creating user routines with the names of IDL system routines. Thiswould result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It isimportant
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

¢ “Recognizing Potential Naming Conflicts’ on page 105
e “Advicefor Library Authors’ on page 108
* “Converting Existing Libraries” on page 109

Overview of Library Authoring Application Programming

Chapter 6: Library Authoring 105

Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searches for routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes aroutine that is not part of the base release
of IDL, and placesit in alocal library. At some later date, a new version of IDL is
installed that contains anew IDL library routine with the same name as the user's
routine. Depending on the order of the directoriesin the user’s path, one of these two
routines is executed. If the user'sroutineisused, IDL library code that callsthe
routinewill get the wrong version and fail in strange and mysterious ways. If the IDL
routineis used, the IDL library will be satisfied, but the user's library will get the
wrong version, also with bad results.

System Level Conflicts

The system level caseis similar, but harder to work around. In this case, the user
creates alocal routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaningless in this case because the search path is not
even consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seems
like atrivial issue, but names are very important. It is crucial to adopt and
consistently adhere to a routine naming strategy to avoid conflict. The core idea of
this convention (described in detail in “Advice for Library Authors’ on page 108) is
to prefix all library routine names with a unique identifier, one indicative of your
organization or project. We reserve routine names that are generic, and those with an
“IDL" prefix on behalf of the entire IDL community. Prefixing your user library
routines significantly reduces the risk of namespace collisions with IDL routines.

Application Programming Recognizing Potential Naming Conflicts

106 Chapter 6: Library Authoring

Asalibrary author, your decision to follow aroutine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
allowing IDL system routinesto always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note
For instructions on how to prefix an existing user library, see “ Converting Existing
Libraries’ on page 109.

Cross-Platform Naming of IDL .pro Files

When naming IDL .pro filesused in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “:”
character is not allowed in afilename under Microsoft Windows.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
Under Unix, file names are case sensitive—file.pro isdifferent fromrile.pro.

When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest courseisto use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

IDL> command
IDL> COMMAND
IDL> CommanD

Automatic Compilation and Case Sensitivity

On UNIX platforms, where filename case matters, IDL looks for a lower-case
filename when you enter the name of a user-written routine at the IDL command
prompt. Thus, if you save your program file asmyprogram.pro and enter the
following at the IDL command prompt:

IDL> MyProgram

IDL will compilethe filemyprogram.pro and attempt to execute a procedure
named myprogram.

If you save your program file asMyProgram. pro and enter the following at the IDL
command prompt:

IDL> MyProgram

Recognizing Potential Naming Conflicts Application Programming

Chapter 6: Library Authoring 107

IDL will not compile the file MmyProgram.pro and will issue an error that |ooks like:

% Attempt to call undefined procedure/function: 'MYPROGRAM'.
% Execution halted at: S$SMAINS

You can compile and run a program with a mixed- or upper-case file name on a
UNIX platform by using IDL's .COMPILE or .RUN executive commands:

IDL> .COMPILE MyProgram
IDL> MyProgram

or, if MyProgram.pro contains amain-level program:
IDL> .RUN MyProgram

In general we recommend that you use lower-case file names on platforms where
case matters.

Application Programming Recognizing Potential Naming Conflicts

108 Chapter 6: Library Authoring

Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Life is more difficult for an
author of alibrary of IDL routines. In addition to the challenges facing any
programmer, library authors face additional challenges:

e The structure and organization of the library needs to encourage reuse and
generality.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

e Errorsmust be gracefully handled whenever possible. See Chapter 8,
“Debugging and Error-Handling” for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their users to be aware of the details.

» Documentation must be provided, or the library will not find users.

» Libraries must be able to co-exist with other code over which they have no
control. Authors must not alter the global environment in ways that cause
conflicts, and they must also take care to prefix the names of al routines,
common blocks, systems variables, and any other global resources they use.
This prevents alibrary from conflicting with other libraries on the same
system, and protects the library from changesto IDL that may occur in newer
releases.

Prefixing Routine Names

The use of aproper prefix minimizesthe risk of anamespace collision as described in
“Recognizing Potential Naming Conflicts’ on page 105. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” are reserved. New names of these
forms can and will appear without warning in new versions of IDL, and should be
avoided when naming new library routines.

Advice for Library Authors Application Programming

Chapter 6: Library Authoring 109

Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advicefor Library Authors’ on page 108. Such libraries are bound to experience an
occasional conflict with new versions of IDL. The best solution to avoid conflictsis
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library islikely to already have users. Assuming that non-prefixed
names were used in such libraries, it is not possible to simply change the names. Such
conversions require time to carry out, and once that has happened, it takestime for
usersto adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1

Generate alist of all files containing routines to be renamed.
Using thislist, build an IDL batch file that uses .COMPILE on each file.

Start afresh IDL session, execute the batch file, and use HELP, /ROUTINES
to get acompletelist of al compiled routines. Only IDL user library routines
(those .pro files shipped with the IDL distribution) should not contain a
prefix.

Asyou rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that callsthe new version. Such wrappers are easy to
writein IDL, using the_ REF EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 89 for details.

Usethe COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See COMPILE_OPT in
the IDL Reference Guide for more information on COMPILE_OPT. These
compatibility wrappers serve the following purposes:

* You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to changeto calling the
new name. This enhances the stability of the library and gives you timeto
do acareful job.

e Onceyou are finished, you can provide them to your customersas a
bridge, so that their old code continuesto work.

» Asyou change the names of routines, use grep (or asimilar file searching
tool) to locate uses of that name, and convert them to the new form aswell.

Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the

Application Programming Converting Existing Libraries

110

Chapter 6: Library Authoring

COMPILE_OPT OBSOLETE directive, you can set the 'WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveal s no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappersin a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’'s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routinesto your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. There is no backward
compatibility issuein this case, and they are not needed.

Although the one time hit of prefixing an existing library can consume some time and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raisesthe profile
of thelibrary to the end user, raising their level of understanding and appreciation for
the work it does.

Converting Existing Libraries Application Programming

Chapter 7

Program Control

The following topics are covered in this chapter:

Overview of Program Control 112
Compound Statements 114
IF.THEN..ELSE 117
CASE 119
SWITCH ... 121
CASEVasusSWITCH 122

Application Programming

FOR.DOciiiii i 125
REPEAT..UNTIL 130
WHILE..DO 131
Jump Statements. 133
Definition of Trueand False........... 136

111

112 Chapter 7: Program Control

Overview of Program Control

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and |ooping mechanisms. These constructs include the
following.

Compound Statements
Use BEGIN and END to create a block of statements, which is simply a group of

statements that are the subject of a conditional or repetitive statement.
¢ BEGIN...END

Conditional Statements

Most useful applications have the ability to perform different actionsin response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

« |IF.THEN...ELSE
« CASE
e SWITCH

Loop Statements

L oop statements perform the same set of statements multiple times. Rather than
repeat a set of statements again and again, aloop can be used to perform the same set
of statements repeatedly.

* FOR..DO
* REPEAT..UNTIL
« WHILE..DO

Overview of Program Control Application Programming

Chapter 7: Program Control 113

Note
IDL’s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same calculation on
each element of an array, you could write aloop to iterate over each array element:

array = INDGEN(10)

FOR 1 = 0,9 DO BEGIN
arrayl[i] = array[i] * 2

ENDFOR

Thisis much less efficient than using IDL’s built-in array capabilities:

array = INDGEN(10)
array = array * 2

See “Use Vector and Array Operations’ on page 194 for details.

Jump Statements

Jump statements can modify the behavior of conditional and iterative statements.

* BREAK
» CONTINUE
« GOTO

Application Programming Overview of Program Control

114 Chapter 7: Program Control

Compound Statements

Many of the language constructs that we will discuss in this chapter eval uate an
expression, then perform an action based on whether the expression is true or false,
such as with the IF statement:

IF expression THEN statement
For example, we would say “If X equals 1, then set Y equal to 2" asfollows:
IF (X EQ 1) THEN Y = 2

But what if we want to do more than one thing if X equals 1? For example, “If X
equalsl, setY equal to 2 and print the value of Y.” If wewrote it as follows, then the
PRINT statement would always be executed, not just when X equals 1:

IF (X EQ 1) THEN Y = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container is called a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create a block of statements, which is simply
agroup of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEGIN
Y =2
PRINT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statements is composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:

IF (X EQ 1) THEN BEGIN
Y =2
PRINT, Y

ENDIF

Compound Statements Application Programming

Chapter 7: Program Control

115

Thisisto ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN isused. The
following table lists the correct END identifiers to use with each type of statement.

END
Statement Identifier Example
ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
A=2
ENDELSE
FOR variable=init, limit DO ENDFOR FOR i=1,5 DO BEGIN
BEGIN PRINT, arrayl[il
ENDFOR
IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
A=1
ENDIF
REPEAT BEGIN ENDREP REPEAT BEGIN
A=A *2
ENDREP UNTIL A GT B
WHILE expression DO BEGIN | ENDWHILE | WHILE ~ EOF(1) DO BEGIN
READF, 1, A, B, C
ENDWHILE
LABEL: BEGIN END LABELl: BEGIN
PRINT, A
END
case_expression: BEGIN END CASE name OF
'Moe': BEGIN
PRINT, 'Stooge'
END
ENDCASE
switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN
PRINT, 'Stooge'
END
ENDSWITCH

Table 7-1: Types of END Identifiers

Note

CASE and SWITCH also have their own END identifiers. CASE should aways be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Application Programming

Compound Statements

116 Chapter 7: Program Control

The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spacesto the right of
the previous level to make the program structure easier to read. (See “.RUN” (IDL
Reference Guide) for details on producing program listings with the IDL compiler.)

Compound Statements Application Programming

Chapter 7: Program Control 117

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the IF statement is as follows:

IF expression THEN statement [ELSE statement]
or

IF expression THEN BEGIN
statements

ENDIF [ELSE BEGIN
statements

ENDELSE]

The expression after the “IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN" is executed. (See “Definition of True and False” on page 136 for details on
how the “truth” of an expression is determined.)

For example:

A =2
IF A EQ 2 THEN PRINT, 'A is two'

Here, IDL prints“a is two”.

If the expression evaluates to a fal se value, the statement following the “EL SE”
clause is executed:

A =3
IF A EQ 2 THEN PRINT, 'A is two' ELSE PRINT, 'A is not two'

Here, IDL prints“a is not two”.

Control passesimmediately to the next statement if the condition is false and the
EL SE clause is not present.

Note
Another way to write an IF...THEN...EL SE statement is with a conditional
expression using the ?: operator. For more information, see “Working with
Conditional Expressions’ on page 238.

Tip
Programs with vector and array expressions run faster than programs with scalars,
loops, and | F statements. See “Use Vector and Array Operations’ on page 194 for a
discussion on increasing efficiency of these expressions.

Application Programming IF...THEN...ELSE

118 Chapter 7: Program Control

Using Statement Blocks with the IF Statement

The THEN and EL SE clauses can be in the form of ablock (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 114). To ensure
proper nesting of blocks, you can use ENDIF and ENDEL SE to terminate the block,
instead of using the generic END. Below is an example of the use of blocks within an
| F statement.

IF (I NE 0.0) THEN BEGIN
ENDIF ELSE BEGIN
ENDELSE

Nesting IF Statements

|F statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

IF PN THEN SN ELSE SX

If condition PL istrue, only statement Sl is executed; if condition P2 istrue, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
issimilar to the CASE statement except that the conditions are not necessarily
related.

IF...THEN...ELSE Application Programming

Chapter 7: Program Control 119

CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The genera form of the CASE
statement is as follows:

CASE expression OF
expression: statement

expression: statement
[ELSE: statement]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If amatchis
found, the statement is executed and control resumes directly below the CASE
statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it isusually
written as the last clause in the CA SE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example — Case Statement Use

An example of the CASE statement follows:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
"Curly': PRINT, 'Stooge 3'
ELSE: PRINT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. Oneis equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X GT' 0) AND (X LE 50): ¥ = 12 * X + 5

Application Programming CASE

120 Chapter 7: Program Control

(X GT 50) AND (X LE 100): Y = 13 * X + 4
(X LE 200) : BEGIN
Y =14 * X - 5
Z =X + Y
END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Tip
Each clauseistested in order, so it is most efficient to order the most frequently
selected clauses first.

CASE Application Programming

Chapter 7: Program Control 121

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SWITCH Expression OF
Expression: Statement

Expression: Statement
[ELSE: Statement]
ENDSWITCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If amatch
is found, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statements in the SWITCH block. Once a
match isfound in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The EL SE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it isusually
written as the last clause in the switch statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

Application Programming SWITCH

122 Chapter 7: Program Control

CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:

e Execution exits the CASE statement at the end of the matching statement. By
contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

CASE SWITCH
x=2 x=2
CASE x OF SWITCH x OF
1: PRINT, 'one' 1: PRINT, 'one'
2: PRINT, 'two' 2: PRINT, 'two'
3: PRINT, 'three' 3: PRINT, 'three’
4: PRINT, 'four' 4: PRINT, 'four'
ENDCASE ENDSWITCH
IDL Prints: IDL Prints:
two two
three
four

Table 7-2: CASE versus SWITCH

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 133.) For example, we
can add aBREAK statement to the SWITCH example in the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWITCH x OF
1: PRINT, 'one'
2: BEGIN
PRINT, 'two'
BREAK
END
3: PRINT, 'three'
4: PRINT, 'four'
ENDSWITCH

CASE Versus SWITCH Application Programming

Chapter 7: Program Control 123

IDL Prints:

two

* |f there are no matches within a CASE statement and there is no ELSE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe' : PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'
ELSE: PRINT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SWITCH name OF
'Larry': BEGIN
PRINT, 'Stooge 1'
BREAK
END
'Moe' : BEGIN
PRINT, 'Stooge 2'
BREAK
END
'Curly': BEGIN
PRINT, 'Stooge 3'
BREAK
END
ELSE: PRINT, 'Not a Stooge'
ENDSWITCH

Clearly, this code can be more succinctly expressed using a CASE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF_XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmasto start on. It starts on the specified day,
and prints the presentsfor al previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. Thefirst day of Christmas requires special
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1.

Application Programming CASE Versus SWITCH

124 Chapter 7: Program Control

PRO DAYS_OF_XMAS, day

IF (N_ELEMENTS (day) EQ 0) THEN DAY = 12
IF ((day LT 1) OR (day GT 12)) THEN day = 12

day_name = ['First', 'Second', 'Third', 'Fourth', 'Fifth', $
'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth',$
'Eleventh', 'Twelfth']

PRINT, 'On The ', day_name[day - 11, $

' Day Of Christmas My True Love Gave To Me:'

SWITCH day of

12: PRINT, ' Twelve Drummers Drumming'
11: PRINT, ' Eleven Pipers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, ' Nine Ladies Dancing'
8: PRINT, ' Eight Maids A-Milking'
7: PRINT, ' Seven Swans A-Swimming'
6: PRINT, ' Six Geese A-Laying'
5: PRINT, ' Five Gold Rings'
4: PRINT, Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEGIN
PRINT, ' Two Turtledoves'
PRINT, ' And a Partridge in a Pear Tree!'
BREAK
END
1: PRINT, ' A Partridge in a Pear Tree!'
ENDSWITCH

END

If we passthe value 3tothe DAYS OF XMAS procedure, we get the following
output. Achieving this behavior with CASE would be difficult.

On The Third Day Of Christmas My True Love Gave To Me:
Three French Hens
Two Turtledoves
And a Partridge in a Pear Tree!

CASE Versus SWITCH Application Programming

Chapter 7: Program Control 125

FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until a conditionis
met. It is analogous to the DO statement in FORTRAN.

In IDL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed. See the following
topicsfor details:

¢ “FOR Statement with an Increment of One” on page 125
e “FOR Statement with Variable Increment” on page 128
* “Sequence of the FOR Statement” on page 129

Avoid Invariant Expressions

When using FOR loops, you can increase program efficiency by avoiding invariant
expressions. Expressions whose values do not change inside aloop should be moved
outside the loop. For example, in the loop:

FOR I = 0, N - 1 DO arr[I, 2*J-1] = ...,

the expression (2* J-1) isinvariant and should be evaluated only once before the loop
is entered:

temp = 2*J-1
FOR I = 0, N-1 DO arr[I, temp] =

See Chapter 15, “Arrays’ for details on working with arrays.
FOR Statement with an Increment of One

The FOR statement with an implicit increment of one is written as follows:
FOR Variable = Expression, Expression DO Statement

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variableis
incremented by 1 until the index variable is larger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Application Programming FOR...DO

126 Chapter 7: Program Control

Warning
The data type of the index variable is determined by the type of theinitial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO ...

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields —15,536 because of truncation. The loop is not
executed. Theindex variable' sinitia value islarger than the limit variable. The
loop should be written as follows:

FOR I = OL, 50000 DO ...

Note also that changing the data type of an index variable within aloop is not
alowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial datatype (and so is
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:
FOR i = OB, 240, 16 DO PRINT, i

The problem occurs because the variablei isinitialized to abyte type with OB. After
the index reaches the limit value 240B, i isincremented by 16, causing the value to
go to 256B, which isinterpreted by IDL as 0B, because of the truncation effect. As
aresult, the FOR loop “wraps around” and the index can never be exceeded.

Example — FOR Statement with Increment of One

A simple FOR statement:
FOR I = 1, 4 DO PRINT, I, I™2
This statement produces the following outpult:

1 1
2 4

FOR...DO Application Programming

Chapter 7: Program Control 127

4 16

Theindex variable | isfirst set to an integer variable with avalue of one. The call to
the PRINT procedure is executed, then the index isincremented by one. Thisis
repeated until the value of | is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of ablock structure (instead of a single statement)
as the subject of the FOR statement. The example is acommon process used for
computing a count-density histogram. (Note that aHISTOGRAM function is
provided by IDL.)

FOR K = 0, N - 1 DO BEGIN
C = A[K]
HIST(C) = HIST(C)+1
ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to afloating-point variable and steps through the values
(1.5, 25, ..., 10.5):

FOR X = 1.5, 10.5 DO S = S + SQRT (X)

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of the index variable is determined by the type of the first
expression after the “=" character.

Warning
Due to the inexact nature of 1EEE floating-point numbers, using floating-point
indexing can cause “infinite loops” and other problems. This problem isalso
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(£20.10)"

IDL prints the following approximations to the numbers we requested:
.1000000015
.0099999998
.6000000238
.7000000477

R P O O

See “Accuracy and Floating Point Operations” on page 264 for more information
about floating-point numbers.

Application Programming FOR...DO

128 Chapter 7: Program Control

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:
FOR Variable = Expression;, Expression,, Increment DO Statement
Thisform is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Example — FOR Statement with Variable Increment

The following examples demonstrate the second type of FOR statement.

;Decrement, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO ...

;Increment by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO ...

;Divide range from bottom to top by 4.
FOR mid = bottom, top, (top - bottom)/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A common

mistake resulting in an infinite loop is a statement similar to the following:

FOR X = 0, 1, .1 DO

Thevariable X isfirst defined as an integer variable because the initial value
expression isan integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer typeis 0. The correct form of the statement is:

FOR X = 0., 1, .1 DO

which defines X as a floating-point variable.

FOR...DO Application Programming

Chapter 7: Program Control 129

Sequence of the FOR Statement

The FOR statement performs the following steps:

1

The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variableis set to the
type of this expression.

The value of the second expression is evaluated, converted to the type of the
index variable, and saved in atemporary location. Thisvalueis called the limit
value.

The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, avalue of 1 is assumed.

If theindex variable is greater than the limit value (in the case of a positive
step value) the FOR statement is finished and control resumes at the next
statement. Similarly, in the case of a negative step value, if the index variable
is less than the limit value, control resumes after the FOR statement.

The statement or block following the DO is executed.
The step value is added to the index variable.
Steps 4, 5, and 6 are repeated until the test of Step 4 fails.

Application Programming FOR...DO

130 Chapter 7: Program Control

REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition is true. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once. (See “ Definition of
True and False” on page 136 for details on how the “truth” of an expressionis
determined.)

The syntax of the REPEAT statement is asfollows:
REPEAT statement UNTIL expression
or

REPEAT BEGIN
statements
ENDREP UNTIL expression

Examples — REPEAT...UNTIL

The following example finds the smallest power of 2 that is greater than B:

A 1
B 10
REPEAT A = A * 2 UNTIL A GT B

The subject statement can also be in the form of a block:

A 1
B 10
REPEAT BEGIN
A=A * 2
ENDREP UNTIL A GT B

The next example sorts the el ements of ARR using the inefficient bubble sort
method. (A more efficient way to sort elementsisto use IDL’'s SORT function.)

;Sort array.
REPEAT BEGIN
;Set flag to true.
NOSWAP = 1
FOR I = 0, N - 2 DO IF arr[I] GT arr[I + 1]THEN BEGIN
; Swapped elements, clear flag.
NOSWAP = 0
T = arr[I] & arr[I] = arr[I + 1] & arr[I + 1] =T
ENDIF
;Keep going until nothing is moved.
ENDREP UNTIL NOSWAP

REPEAT...UNTIL Application Programming

Chapter 7: Program Control 131

WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remains true. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.
(See “Definition of True and False” on page 136 for details on how the “truth” of an
expression is determined.)

The syntax of the WHILE...DO statement is as follows:
WHILE expression DO statement
or

WHILE expression DO BEGIN
statements
ENDWHILE

When the WHILE statement is executed, the conditional expression istested, and if it
istrue, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition isinitially
false.

Examples — WHILE...DO

The following example reads data until the end-of-file is encountered:
WHILE ~ EOF(1l) DO READF, 1, A, B, C
The subject statement can also be in the form of ablock:

WHILE ~ EOF (1) DO BEGIN
READF, 1, A, B, C
ENDWHILE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:

array = [2, 3, 5, 6, 10]
i 0 ;Initialize index
n N_ELEMENTS (array)

;Increment i1 until a point larger than 5 is found or the end of the
;array is reached:

Application Programming WHILE...DO

132 Chapter 7: Program Control

WHILE (array[i] LT 5) AND (i LT n) DO i =i + 1

PRINT, 'The first element >= 5 is element ', i
IDL Prints:

The first element >= 5 is element 2
Tip

Another way to accomplish the same thing is with the WHERE command, whichis
used to find the subscripts of the points where ARR[1] is greater than or equal to X.
P = WHERE (arr GE X)
;Save first subscript:
I = P(0)

WHILE...DO Application Programming

Chapter 7: Program Control 133

Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit aloop, start the next iteration of aloop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well asthe ON_ERROR and
ON_IOERROR procedures. The label field is simply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 aphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:

LOOP_BACK: A = 12
ISQUIT: RETURN ;Comments are allowed.

BREAK

The BREAK statement provides a convenient way to immediately exit from aloop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This exampleillustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use aloop to find where in the array the
value 5 islocated. If the value is found, we BREAK out of the loop because thereis
no need to check therest of the array:

Note
This example could be written more efficiently using the WHERE function. This
exampleisintended only toillustrate how BREAK might be used.

; Create a randomly-ordered array of integers
; from 0 to 9999:

array = SORT (RANDOMU (seed, 10000))
n = N_ELEMENTS (array)

; Find where in array the value 5 in located:

Application Programming Jump Statements

134 Chapter 7: Program Control

FOR i = 0,n-1 DO BEGIN
IF (arrayl[i] EQ 5) THEN BREAK
ENDFOR

PRINT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we're looking for (or resort to
using a GOTO statement):

FOR i = 0, n-1 DO BEGIN
IF (array[i] EQ 5) THEN found=i
ENDFOR

PRINT, found
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from aloop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the . CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR I=1,10 DO BEGIN
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration
PRINT, I
ENDFOR

Jump Statements Application Programming

Chapter 7: Program Control 135

GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those casesin which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of aloop resultsin an error.
The syntax of the GOTO statement is as follows:

GOTO, Label
Warning
You must be careful in programming with GOTO statements. It is not difficult to

get into aloop that will never terminate, especialy if thereis not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMPL is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1

PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of |F statements, asin the following statement:

IF A NE G THEN GOTO, MISTAKE

Application Programming Jump Statements

136

Definition of True and False

Chapter 7: Program Control

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates predicate
expressions in the following contexts:

e TIF...THEN...ELSE Statements

* 2 :inlineconditional expressions

* WHILE...DO Statements

* REPEAT...UNTIL Statements

The definition of true and false for the different data typesis as follows:

Data Type True False
Byte, integer, and Odd integers Zero or even integers
long
Floating point and Non-zero values Zero
complex
String Any string with non- | Null string (* *)

zero length

Heap variables Non-null values Null values
(pointers and object
references)

Table 7-3: Default Definitions of True and False

If the LOGICAL_PREDICATE compile option is set:

Data Type True False
Numerical values Non-zero values Zero
String or heap Non-null values Null values
variables

Table 7-4: True and False Definitions with LOGICAL_PREDICATE

See “COMPILE_OPT” (IDL Reference Guide) for additional details on the
LOGICAL_PREDICATE compilation option.

Definition of True and False

Application Programming

Chapter 7: Program Control 137

In the following example, the logical statement for the condition is a conjunction of
two conditions:

IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than —40 and less than or equal to —20) are true,
the statement following the THEN is executed.

Application Programming Definition of True and False

138 Chapter 7: Program Control

Definition of True and False Application Programming

Chapter 8

Debugging and
Error-Handling

The following topics are covered in this chapter:

Debugging and Error-Handling Overview 140
What Happens When Execution Stops . .. 141

Working with Breakpoints 143
Stepping ThroughaProgram........... 145
Monitoring VariableValues 146
Correcting Errors During Execution 148

Application Programming

Obtaining Traceback Information 149
Controlling and Recovering from Errors . 150

Creating Custom Error Messages.. 152
Notifying the User of Errors........... 154
Math Errorso, 155

139

140 Chapter 8: Debugging and Error-Handling

Debugging and Error-Handling Overview

IDL provides several tooks to help find and handle errors in your code. This chapter
describes debugging and error-handling features that are intrinsic to IDL itself —
they are available at the IDL command prompt (either in an IDL terminal session or
in the IDL Workbench), or programmatically via IDL routines and statements.

Tip
The IDL Workbench provides additional debugging features that can speed
debugging of your IDL code. See Debugging Toolsin the IDL Workbench online

documentation for a compl ete description.

Debugging and Error-Handling Overview Application Programming

../com.rsi.idl.doc.wb/Debugging_Tools.html

Chapter 8: Debugging and Error-Handling 141

What Happens When Execution Stops

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred. If you are using the IDL Workbench when execution is
interrupted, the code in which the error occurred is displayed in an editor window and
an indicator is placed next to the line that will be executed when processing resumes.
The routine being compiled need not already be shown in an editor window. If a
routine compiled with the . RUN, . RNEwW, Or . COMPILE executive commands contains
an error, the IDL Workbench will display the file automatically.

When execution stops, you can take the following steps:

» Correct the problem and continuing program execution (see “ Correcting Errors
During Execution” on page 148)

e Anticipate and handle errors to avoid execution halt (“ Controlling and
Recovering from Errors’ on page 150)

To understand what is happening during program execution, consider setting
breakpoint and stepping through the code. See “Working with Breakpoints” on
page 143.

Example: Correcting Undefined Variable

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed. Start the IDL Workbench. Call the
BROKEN procedure by entering:

BROKEN

at the DL command line. An error isreported in the console; if you are using the IDL
Workbench, an editor window displays the file BROKEN.PRO :

; $Id: broken.pro,v 1.1 1996/10/01 22:01:54 doug Exp $

PRO BROKEN
PRINT, i
PRINT, i*2
PRINT, 1*3
PRINT, i*4

END

Application Programming What Happens When Execution Stops

142 Chapter 8: Debugging and Error-Handling

A “Variableis undefined” error has occurred. Theline of code that first referencesthe
undefined variable is noted in the error message and (if applicable) highlighted with
an arrow in the editor.

There are several waysto fix this error. We could edit the program file to explicitly
definethevariable 1, or we could change the program so that it accepts a parameter at
the command line. Instead, we'll define the variable i on the fly and continue
execution of the program without making any changes to the program file. To define
the variable i and assign it the value 10, enter at the command line;

i =10
Next, enter
.CONTINUE

at the command line, or select Run — Resumein the IDL Workbench.

What Happens When Execution Stops Application Programming

Chapter 8: Debugging and Error-Handling 143

Working with Breakpoints

A breakpoint isamarker in an IDL source codefile that tellsIDL to halt execution
temporarily, allowing you to inspect the state of program variables in the program
unit where the breakpoint occurred. Breakpoints allow you to control the flow of
execution of your IDL program, stopping and starting at will.

Note
While you can set and use breakpointsin an IDL terminal session using the
BREAKPOINT routine and various Executive Commands, breakpoints are vastly
more useful when working within the IDL Workbench.

To experiment with breakpoints, do the following:
1. IntheIDL Workbench, type
.EDIT broken

a the IDL command prompt. This loads the file broken . pro into an editor
window.

2. Edit thefirst program line to read as follows and then save and compile the
program:

PRO BROKEN, i
Thisallows you to passavaluefor i to the program.
3. Set abreakpoint in broken.pro by placing the cursor in the line that reads:
PRINT, i*2

and selecting Toggle Breakpoint from the Run menu or simply double-
clicking on theline. A blue breakpoint dot appears next to the line.

4. Now enter the following to execute the program:
BROKEN, 10
The Console view displays the following:

10
% Breakpoint at: BROKEN 10

and acurrent line indicator arrow stops at the breakpoint.

Note
When execution halts, you may see the Confirm Per spective Switch dialog.

Application Programming Working with Breakpoints

144 Chapter 8: Debugging and Error-Handling

5. Inspect the value of the variablei by typing
PRINT, i

a the command line, or by hovering the mouse pointer over the variable in the
editor window.

Working with Breakpoints Application Programming

Chapter 8: Debugging and Error-Handling 145

Stepping Through a Program

Once execution halts at a breakpoint, you can step through the program manually, or
continue execution automatically. When stepping through a main program, if the next
line calls another IDL procedure or function, you have three options with which to
handle execution of the nested program:

» Step Into executes statementsin order by successive . STEP commands

e Step Over executes statements to the end of the called function, without
interactive capability

e Step Out to continue processing until the main program returns.

While you can step through code in an IDL terminal session using the .STEP,
.STEPOVER and .RETURN executive commands, these operations are easier and
more interactive when working within the IDL Workbench.To experiment with
stepping, do the following:

1. IntheIDL Workbench, type
.EDIT broken

at the IDL command prompt. This loads the file broken . pro into an editor
window.

2. Set abreakpoint in broken.pro by placing the cursor in the line that reads:
PRINT, i*2

and selecting Toggle Breakpoint from the Run menu or simply double-
clicking on theline. A blue breakpoint dot appears next to the line.

3. Now enter the following to execute the program:
BROKEN, 10
Execution stops at the specified line.

4. To step through the program, select Step Over from the Run menu, or press
F6. Statements are executed one at atime. Alternately, select Resume from the
Run menu or press F8 to let IDL continue until it hits another breakpoint, an
error, or the end of thefile.

Application Programming Stepping Through a Program

146 Chapter 8: Debugging and Error-Handling

Monitoring Variable Values

When execution halts, there are several ways to see the values of program variables.
These include:

e Check variable values from the command line — see “ Showing Variable
Values During Execution” below

e Usethe Variable Watch window — see“ The Variables View” on page 147
* Recover “missing” variables — see “ Disappearing Variables’ on page 147

Showing Variable Values During Execution

When execution stops you can query the values of current variablesin the program
scope using the PRINT and HEL P routines. For instance, suppose you have created
the following program:

FUNCTION hello_who, who

RETURN, 'Hello ' + who
END

PRO hello_main
name = ''
READ, name, PROMPT='Enter Name:
str = HELLO_WHO (name)
PRINT, str
END

Place a breakpoint on the PRINT, str lineand then compile and run the program.
Enter aname at the IDL command line when prompted. When execution halts, return
the value of the name variable by entering,

PRINT, name
The Console view shows the name you have entered.
Return information about the st r variable by entering:
HELP, str

The Console view shows the variable name, data type and value. Thisinformationis
also available in the Variables view, described in the following section.

Monitoring Variable Values Application Programming

Chapter 8: Debugging and Error-Handling 147

Tip
You can also place PRINT and HEL P statements in your program to see variable
values without pausing program execution. As these statements are encountered,
values are printed to the Console.

The Variables View

The Variables view window displays the values of variablesin the current execution
context. If the calling context changes during execution — as when stepping into a
procedure or function — the variable table is replaced with a table appropriate to the
new context. See Variables view in the IDL Workbench online help for a complete
description.

Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety is that after the
error accurs, IDL’s context is inside the called procedure, not in the main level. All
variablesin procedures and functions, with the exception of parameters and common
variables, arelocal in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL isbest suited for use when an error is detected in aprocedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HELP command can be used to see the current call stack (i.e., which program
unit IDL isin and which program unit called it). For more information, see “HELP”
(IDL Reference Guide).

Application Programming Monitoring Variable Values

../com.rsi.idl.doc.wb/Variables_View.html

148 Chapter 8: Debugging and Error-Handling

Correcting Errors During Execution

Sometimesiit is possible to recover from an error by manually entering statements to
correct the problem. Possibilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

Asan example, if an error occurs because an undefined variable is referenced, you
can smply define the variable at the command prompt and then continue execution
with .CONINUE. Of course, thisis atemporary solution. You should till edit the
program file to fix the problem permanently.

See “Example: Correcting Undefined Variable” on page 141 for a simple example.

Correcting Errors During Execution Application Programming

Chapter 8: Debugging and Error-Handling 149

Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The SCOPE_TRACEBACK function returns a string array describing the
contents of the procedure stack. The first element of the resulting array contains
information for the IDL main program ($MAIN$). Each subsequent element contains
information for the next routine in the call stack. The final element contains the
information for the currently running routine. Each element of thisarray containsthe
module name, source filename, and line number of the routine it describes.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

A = SCOPE_TRACEBACK ()

; Print next to last element: caller of the current routine
PRINT, 'Called from: ', A[N_ELEMENTS (A)-2]

This resultsin amessage of the following form:
Called from: DIST </usr/local/itt/idl/lib/dist.pro (27)>

SCOPE_TRACEBACK can aso provide more detailed information for the call stack.
See “SCOPE_TRACEBACK” (IDL Reference Guide) for more information about the
function’s capabilities.

In the IDL Workbench, you can visually inspect the call stack using the Debug view.

Application Programming Obtaining Traceback Information

../com.rsi.idl.doc.wb/Debug_View.html

150 Chapter 8: Debugging and Error-Handling

Controlling and Recovering from Errors

IDL divides possible execution errors into three categories: input/output, math, and
al others. There are three main error-handling routines: CATCH, ON_ERROR, and
ON_IOERROR. CATCH is a generalized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
alows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.

Note
The!'ERROR_STATE system variable is updated when errors occur. At the
beginning of an IDL session, 'ERROR_STATE contains default information. To see
thisinformation, you can either view 'ERROR_STATE from the System field of the
Variable Watch Window (see “The Variables View” on page 147) or you can enter
PRINT, 'ERROR_STATE at the Command Line. After an error has occurred, all of
the fields of 'ERROR_STATE display their updated status. Refer to
“IERROR_STATE” (IDL Reference Guide) for details.

You can also write code in such a manner as to anticipate and handle potential errors,
especially when you are writing your own routines. See the following topicsin
Chapter 5, “ Creating Procedures and Functions® for details:

« “Determining Variable Scope” on page 83

o “Determining if a Keyword is Set” on page 86

e “Supplying Values for Missing Keywords’ on page 87
e “Supplying Values for Missing Arguments’ on page 88

Interaction of CATCH, ON_ERROR, and

ON_IOERROR
Error handlers established by callsto CATCH supersede callsto ON_ERROR.
However, callsto ON_IOERROR made in the procedure that causes an 1/0 error

supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.

Controlling and Recovering from Errors Application Programming

Chapter 8: Debugging and Error-Handling 151

Thefollowing figureis aflow chart of how errors are handled in IDL.

Error or Exception is Generated

Isitan1/O error?

No |sON_IOERROR

routine in use?

Yes
Handle error with
Isthere an error handler]
defined by the CATCH ﬁATCH-defl ned error
routine? andler and continue
program execution.
)
Handle error as
indicated by
Handle error as ON_IOERROR stting.

indicated by setting of
ON_ERROR routine or
use default error handling.

Figure 8-1: Error Handling in IDL

Application Programming Controlling and Recovering from Errors

152 Chapter 8: Debugging and Error-Handling

Creating Custom Error Messages

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that sets the
IERROR_STATE system variable. [ERROR_STATE.MSG is set to the string used as
an argument to MESSAGE.

The MESSAGE procedureis used by user procedures and functions to issue errors. It
has the form:

MESSAGE, Text
where Text is ascalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message isissued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

Asaside effect of issuing the error, appropriate fields of the system variable
IERROR_STATE are set; the text of the error message is placed in
IERROR_STATE.MSG, or in lERROR_STATE.SYS_MSG for the operating
system’s component of the error message. See “!ERROR_STATE” (IDL Reference
Guide) for more information.

As an example, assume the statement:
MESSAGE, 'Unexpected value encountered.'

is executed in a procedure named CALC. IDL would print:
% CALC: Unexpected value encountered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. See
“MESSAGE” (IDL Reference Guide) for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_IOERROR to read from afile until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

; Open the data file.
OPENR, UNIT, 'DATA.DAT', /GET_LUN

; Arrange for jump to label EOD when an input/output error occurs.
ON_TIOERROR, EOD

; Read every line of the file.

Creating Custom Error Messages Application Programming

Chapter 8: Debugging and Error-Handling 153

WHILE 1 DO READF, UNIT, LINE

; An error has occurred. Cancel the input/output error trap.
EOD: ON_IOERROR, NULL

; Close the file.
FREE_LUN, UNIT

; Reissue the error. !ERROR_STATE.MSG contains the appropriate

; text. The IOERROR keyword causes it to be issued as an

; input/output error. Use of NONAME prevents MESSAGE from tacking
; the name of the current routine to the beginning of the message
; string since !ERROR_STATE.MSG already contains it.

MESSAGE, !ERROR_STATE.MSG, /NONAME, /IOERROR

Message Blocks

IDL messages include text and formatting information which, when combined with
text supplied in the call to MESSAGE, provide information to the program’s user
about the error that occurred. For example, entering

MESSAGE, 'Howdy, folks'
a the IDL command line produces the following outpult:

% SMAINS: Howdy, folks
% Execution halted at: S$MAINS

indicating that the message was issued from within the IDL $MATNS program.

A message block is a collection of messages that are loaded into IDL as asingle unit.
At startup, IDL contains asingle internal message block named IDL_MBLK_CORE,
which contains the standard messages required by the IDL system. By default,
MESSAGE throwsthe IDL_M_USER_ERR message from the IDL_MBLK_CORE
message block, producing output similar to that shown above.

Dynamically loadable modules (DLMs) usually define additional message blocks for
their own needs when they are loaded. In addition, if you wish to provide something
other than the default error message for your own IDL programs, you can define your
own message blocks and error messages. See “DEFINE_MSGBLK” and
“DEFINE_MSGBLK_FROM_FILE” (IDL Reference Guide) for additional details.
Specify the BLOCK and NAME keywords to the MESSAGE procedure to issue a
message from a message block you have defined.

Application Programming Creating Custom Error Messages

154 Chapter 8: Debugging and Error-Handling

Notifying the User of Errors

The DIALOG_MESSAGE function creates amodal (blocking) dialog box that can
be used to display information for the user. The dialog must be dismissed, by clicking
on one of its option buttons, before execution can continue.

See“DIALOG_MESSAGE” (IDL Reference Guide) for details or the MEMORY
routine “ Examples’ section in the IDL Reference Guide for an example of using
DIALOG_MESSAGE.

Notifying the User of Errors Application Programming

Chapter 8: Debugging and Error-Handling 155

Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems that
implement the | EEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values’ on page 156.) Integer overflow and underflow is not
detected. Integer divide by zero is detected on al platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero that
it cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy and Floating Point
Operations’ on page 264

Accumulated Math Error Status

IDL handles math errors by keeping an accumul ated math error status. This status,
which isimplemented as alongword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable lEXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

IEXCEPT has three possible values:
IEXCEPT=0

Do not report exceptions.
IEXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

[

% Program caused arithmetic error: Floating divide by 0

Application Programming Math Errors

156

Chapter 8: Debugging and Error-Handling

IEXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Math Errors

Machines which implement the IEEE standard for binary floating-point arithmetic
have two specia values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when aresult islarger than the largest representation. NaN isthe
result of an undefined computation such as zero divided by zero, taking the square-
root of a negative number, or the logarithm of a non-positive number. In many cases,
when IDL encounters the value NaN in a data set, it treatsit as “missing data” The
special values NaN and Infinity are also accessible in the read-only system variable
IVALUES. These special operands propagate throughout the eval uation process—the
result of any term involving these operands is one of these two special values.

Note
For the minimum (<) and maximum (>) operators with NaN operands, the result is
undefined and may not necessarily be the special value NaN. “ Mathematical
Operators’ on page 213 for details.

For example:

; Multiply NaN by 3
PRINT, 3 * !VALUES.F_NAN

IDL prints:
NaN

It isimportant to remember that the value NaN isliterally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A = [1.0, 2.0, !VALUES.F_NAN, 3.0]
PRINT, A

IDL prints:
1.00000 2.00000 NaN 3.0000

Application Programming

Chapter 8: Debugging and Error-Handling 157

If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL might generate an error (depending on the
hardware and operating system):

; Print the indices of A that are not equal to 1
PRINT, WHERE(A NE 1.0)

IDL prints:

1 2 3
% Program caused arithmetic error: Floating illegal operand

(Depending on your hardware and operating system, you may not see the floating-
point error.)

To avoid this problem, use the FINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRINT, WHERE(FINITE(A))
IDL prints the indices of the finite elements of A:
0 1 3

To then print the indices of the elements of A that are both finite and not equal to 1.0,
you could use the command:

good = WHERE(FINITE(A))
PRINT, good[WHERE (A[good] NE 1.0)]

IDL prints:
1 3

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use acommand like:

; Print the indices of the elements of A that are not valid
; floating-point numbers.
PRINT, WHERE(~FINITE(A))

IDL prints:
2

Note that the special value Infinity can be compared to afloating point number. Thus,

if:
B = [1.0, 2.0, !VALUES.F_INFINITY]
PRINT, B

IDL prints:
1.00000 2.00000 Inf

Application Programming Math Errors

158

Chapter 8: Debugging and Error-Handling

and
PRINT, WHERE(B GT 1.0)

IDL prints:
1 2

You can also compare numbers directly with the special value Infinity:
PRINT, WHERE(B EQ !VALUES.F_INFINITY)

IDL prints:

2

Note
On Windows, using relational operators such as EQ and NE with the values infinity
or NaN (Not a Number) causes an “illegal operand” error. The FINITE function’s
INFINITY and NAN keywords can be used to perform comparisonsinvolving
infinity and NaN values. For more information, see “FINITE” on page 825.

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the | EEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
statement:

;Perform exponentiation.
A = EXP (EXPRESSION)

;Print error message.
IF ~ FINITE(A) THEN PRINT, 'Overflow occurred'

If A isan array, use the statement:

IF TOTAL(FINITE(A)) NE N_ELEMENTS (A) THEN

Integer Conversions

Math Errors

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-hit integer) if overflow isimportant, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflown—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.

Application Programming

Chapter 8: Debugging and Error-Handling 159

When run on a Sun workstation, the program:

A=2.0"31+ 2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0

Q

% Program caused arithmetic error: Floating illegal operand

Thisresult isincorrect.

Warning
No error message will appear if you attempt to convert a floating number whose
absolute value is between 21° and 23 - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231 - 1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow isusually not detected. Your programs
must guard explicitly against it.

Application Programming Math Errors

160 Chapter 8: Debugging and Error-Handling

Math Errors Application Programming

Chapter 9

Building Cross-
Platform Applications

The following topics are covered in this chapter:

Overview of Cross-Platform Issues 162
Which Operating System is Running? ... 163
File and Path Specifications 164
Filesand1/O 166
Math Exceptions 168
Responding to Screen Size and Colors ... 169

Application Programming

Printingo o 170
SAVEand RESTORE 171
Widgetsin Cross-Platform Programs 172
Using External Code 175
IDL DataMiner Issues 176

161

162 Chapter 9: Building Cross-Platform Applications

Overview of Cross-Platform Issues

IDL isdesigned as a platform-independent environment for data analysis and
programming. Because of this, the vast majority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite I DL’s cross-platform nature, there are differences between the computers
that make up a multi-platform environment. Operating systems supply resourcesin
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows and UNIX machines, there are some cases
where the discrepancies cannot be overcome. This chapter discusses aspects of IDL
that you may wish to consider when devel oping an application that will run on
multiple types of compuiter.

Note
This chapter is not an exhaustive list of differences between versions of IDL for

different platforms. Rather, it coversissuesyou may encounter when writing cross-
platform applicationsin IDL.

Overview of Cross-Platform Issues Application Programming

Chapter 9: Building Cross-Platform Applications 163

Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable 'VERSION. For example, you could use an IDL CASE statement that 1ooks
something like the following to execute code that pertains to a particul ar operating

system family:
CASE !VERSION.OS_FAMILY OF
'unix' : Code for Unix
'Windows' : Code for Windows
ENDCASE

Writing conditional IDL code based on platform information should be a last resort,
used only if you cannot accomplish the same task in a platform-independent manner.

Operating System Access

While IDL provides waysto interact with each operating system under which it runs,
it is not generally useful to use operating-system native functions in a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described above) and branch your code
accordingly.

Application Programming Which Operating System is Running?

164 Chapter 9: Building Cross-Platform Applications

File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used
by different operating systems; see “!PATH” (IDL Reference Guide) for further
details on path specification.

Operating Directory Path Element
System Separator Separator
UNIX / (forward dash) : (colon)
Windows \ (backward slash) ; (semicolon)

Table 9-1: Directory and Path Element Separator Characters

Asaresult of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific file
and path specification issues by using the FILEPATH, PATH_SEP, and
DIALOG_PICKFILE functions.

Choosing Files at Runtime

To allow users of your application to choose afile at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such asreading afile
name from atext field in awidget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to a file you know to beinstalled on the host, use the
FILEPATH function. By default, FILEPATH allows you to sdlect filesthat are included
inthe IDL distribution tree. Chances are, however, that afile you supply as part of your
own application isnot included in the IDL tree. You can till use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

File and Path Specifications Application Programming

Chapter 9: Building Cross-Platform Applications 165

root
rsi MYAPP other

idl

Figure 9-1: A Possible Directory Hierarchy for an IDL Application

For example, suppose your application isinstaled in a subdirectory named MYAPP
of the root directory of the filesystem that contains the IDL distribution. You could
use the FILEPATH function and set the ROOT_DIR keyword to the root directory of
the filesystem, and use the SUBDIRECTORY keyword to select the MYAPP
directory. If you are looking for afile named myapp.dat, the FILEPATH command
looks like this:

file = FILEPATH('myapp.dat', ROOT_DIR=root, SUBDIR='MYAPP')

The problem that remainsis how to specify the value of root properly on each
platform. Thisis one case where it is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment setsan IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE !VERSION.OS_FAMILY OF
'unix' : rootdir = '/
'Windows' : rootdir = STRMID(!DIR, 0, 2)

ENDCASE

file = FILEPATH('myapp.dat', ROOT=rootdir, SUBDIR='MYAPP')

Note that the root directory under Unix iswell defined, whereas the root directory on
amachine running Microsoft Windows must be determined by parsing the IDL
system variable !DIR. Under Windows, the root is assumed to be the drive letter of
the hard drive and the following colon — usually “C:".

Application Programming File and Path Specifications

166

Chapter 9: Building Cross-Platform Applications

Files and I/O

IDL’sfile input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening atext file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII datato afileon ahard disk, IDL's I/O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
dataformat files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writesfilesin
the proper way.

Before attempting to write a cross-platform IDL application that uses more than basic
file 1/0O, you should read and understand the sections in Chapter 18, “Files and
Input/Output” that apply to the platforms your application will support. The
following are afew topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Files and I/O

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which
numbers are stored beginning with the least significant byte. The following table lists
the processor types and operating systems IDL supports and their byte ordering
schemes:

Processor Type Operating System Byte Ordering

AMD Linux little-endian
Windows little-endian

Intel x86 Linux little-endian
Windows little-endian
Macintosh OS X little-endian

Motorola PowerPC Macintosh OS X big-endian

Sun SPARC Solaris big-endian

Table 9-2: Byte Ordering Schemes Used by Platforms that Support IDL

Application Programming

Chapter 9: Building Cross-Platform Applications 167

TheIDL routinesBY TEORDER and SWAP_ENDIAN allow you to convert numbers
from big endian format to little endian format and vice versa. It is often easier,
however, to use the XDR (for eXternal Data Representation) format to store data that
you know will be used by multiple platforms. XDR files write binary datain a
standard “canonical” representation; as a result, the files are sightly larger than pure
binary data files. XDR files can be read and written on any platform that supports
IDL. XDR isdiscussed in detail in “Portable Unformatted Input/Output” on

page 454.

Application Programming Files and 1/O

168 Chapter 9: Building Cross-Platform Applications

Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL usesthe | EEE floating-point standard on all supported systems. Asa
result, IDL always substitutes the special floating-point values NaN and Infinity
when it detects a math error. (See “Specia Floating-Point Values’ on page 156 for
detailson NaN and Infinity.)

For information on debugging math errors, see “Math Errors’ on page 155.

Math Exceptions Application Programming

Chapter 9: Building Cross-Platform Applications 169

Responding to Screen Size and Colors

The usability of your application may depend on responding to settings on the user’s
system.

Finding Screen Size

Usethe GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size allows your
application to handle different screen sizes gracefully.

Number of Colors Available

Usethe N_COLORSand TABLE_SIZE fields of the !D system variable to determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of all theavailable colorsfor its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application is running
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays aswell. If your application uses IDL’s color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVICE, DECOMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.

Application Programming Responding to Screen Size and Colors

170 Chapter 9: Building Cross-Platform Applications

Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presented via
IDL’s print dialogs. If your IDL application uses IDL’s printing dialogs, make sure
that your interface cals the dialog your user will expect for the platform in question.

Printing Application Programming

Chapter 9: Building Cross-Platform Applications 171

SAVE and RESTORE

If you distribute your application via IDL SAVE files, remember that files containing
IDL routines are not necessarily compatible between IDL releases. Always save your
original code and re-save when anew version of IDL isreleased. SAVE files
containing data are always compatible between releases of IDL.

Note
If you are restoring afile created with VAX IDL version 1, you must restore on a

machine running VMS.

Application Programming SAVE and RESTORE

172 Chapter 9: Building Cross-Platform Applications

Widgets in Cross-Platform Programs

IDL’s user interface toolkit is designed to provide a“ native” ook and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as aresult, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependenciesin the IDL widget toolkit.
Consult the descriptions of theindividual DIALOG and WIDGET routinesin the IDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE inan IDL application, Windows users will see the
Windows-native file selection dialog and Motif users will see the Motif file selection
dialog. Consult the descriptions of the individual DIALOG routinesin the IDL
Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET _BASE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See “Iconizing, Layering, and Destroying Groups of Top-Level Bases’
under “WIDGET_BASE” (IDL Reference Guide) for details about the platform-
dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET _BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
Asaresult of the platform-specific appearance of each widget, attempting to position
individual widgets manually within abase will seldom give satisfactory resultson all
platforms.

Widgets in Cross-Platform Programs Application Programming

Chapter 9: Building Cross-Platform Applications 173

Instead, insert widgets inside base widgets that have the ROW or COLUMN
keywords set, and let IDL determine the correct geometry for the current platform
automatically. You can gain afiner degree of control over the layout by placing
groups of widgets within sub-base widgets (that is, base widgets that are the children
of other base widgets). This allows you to control the column or row layout of small
groups of widgets within the larger base widget.

In particular, refrain from using the X/Y SIZE and X/Y OFFSET keywords in cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts Used in Widget Applications

You can specify the font used in awidget viathe FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?’ on
page 163. You can avoid the need for platform-dependent code by using the TrueType
fonts supplied with IDL; there may be a performance penalty when the fonts are
initially rendered. See Appendix H, “Fonts’ (IDL Reference Guide) for details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to awidget on a Motif system. Resources specified viathe
RESOURCE_NAME keyword will be quietly ignored on Windows systems. See
“RESOURCE_NAME" under “WIDGET_BASE” (IDL Reference Guide) for details.
In general, you should not expect to be able to duplicate the level of control available
via X Window System resources on other platforms.

WIDGET_STUB

On Motif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism is only available under Unix, and is thus not
suitable for usein cross-platform applications that will run under Microsoft
Windows. WIDGET_STUB is described in the External Development Guide.

Application Programming Widgets in Cross-Platform Programs

174 Chapter 9: Building Cross-Platform Applications

Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
al windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.

Widgets in Cross-Platform Programs Application Programming

Chapter 9: Building Cross-Platform Applications 175

Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program viaCALL_EXTERNAL or LINKIMAGE or viathe callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the

External Development Guide for details on writing and using external code along
with IDL.

Application Programming Using External Code

176 Chapter 9: Building Cross-Platform Applications

IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL's Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
allow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.

IDL DataMiner Issues Application Programming

Chapter 10

Multithreading in IDL

This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.

ThelDL ThreadPool 178 Routinesthat Usethe Thread Pool 187
Controlling the IDL Thread Pool 181

Application Programming 177

178 Chapter 10: Multithreading in IDL

The IDL Thread Pool

On computer systems that have more than one central processing unit, multi-
threading can be used to increase the speed of numeric calculations by using multiple
system processors to simultaneously carry out different parts of the computation. Ina
multithreaded environment, each thread handles a portion of the overall task; if
several threads can run in parallel, the computation can often be completed more
quickly than if the different portions of the task ran in series.

IDL’sthread pool —a pool of computation threads that are used as helpersto
accelerate numerical computations— allows for multithreading when multiple CPUs
are present. IDL automatically evaluates all computations performed by routines that
may benefit from multithreading to determine whether or not to use the thread pool in
the current computation. This decision is based on attributes such as the number of
data elements involved, the availability of multiple CPUs, and the availability of a
multithreaded implementation of the algorithm in use. You can alter the parameters
used by IDL to make this decision, either on aglobal basisfor the duration of asingle
IDL session, or for an individual computation.

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 187.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL encounters a computation
that can use the thread pool and which would benefit from parallel execution, it
divides the task into sub-parts for each thread, enables the thread pool to do the
computation, waits until the thread pool completes, and then continues. Other than
the improved performance, the end result is virtually indistinguishable when
compared to the same computation performed in the standard single-threaded
manner.

The IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 179

Possible Drawbacks to the Use of the
IDL Thread Pool

There areinstances when allowing IDL to useits default thread pool settings can lead
to undesired results. In some instances, a multithreaded implementation using the
thread pool may actually take longer to complete a given job than a single-threaded
implementation. If a computation uses the thread pool in an inappropriate situation,
there may be other undesirable effects. The following are some situations in which
the default thread pool settings may provide less than optimal results.

Computation of a Relatively Small Number of Data Elements

Use of the IDL thread pool requires a small fixed overhead when compared to a non-
threaded version of the same computation. Normally, computational speed increases
when multiple CPUs work in parallel, and the speed-up is much larger than the loss
due to thread pool overhead. However, if the computation does not include alarge
enough number of data elements (each element being a data value of a particular data
type), the loss due to thread pool overhead can exceed the benefit and the overall
computation speed can be slower.

To prevent the use of the thread pool for computations that involve too few data
elements, IDL supports a minimum threshold value for thread pool computations.
The minimum threshold value is contained in the TPOOL_MIN_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Large Computation that Requires Virtual Memory Use

If acomputation istoo large to fit into physical memory, the threads in the thread
pool may cause page faults that will activate the virtual memory system. If more than
one thread encounters this situation simultaneously, the threads will compete with
each other for access to memory and performance will fall below that of asingle-
threaded approach to the computation.

To prevent the use of the thread pool for computations that involve too many data
elements, IDL supports a maximum threshold value for thread pool computations.
The maximum threshold value is contained in the TPOOL_MAX_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Multiple Users Competing for CPU Resources

On alarge multi-user system, an IDL application that uses the thread pool may
consume all available CPUs, thus affecting other users of the system by reducing
overall performance.

Application Programming The IDL Thread Pool

180 Chapter 10: Multithreading in IDL

To prevent the use of al system processors by routines that use the thread pool, IDL
alowsyou to specify explicitly the number of CPUs that should be used in
calculations that involve the thread pool. The number of processors to be used for
thread pool operationsis contained in the TPOOL_NTHREADS field of the !CPU
system variable. See the following sections for details on modifying this value.

Note
To change the default number of threads used by IDL, set the
IDL_CPU_TPOOL_NTHREADS preference. For more information, see “!CPU
Settings Preferences’ (Appendix E, IDL Reference Guide).

Sensitivity to Numerical Precision

Algorithms that are sensitive to the order of operations may produce different results
when performed by the thread pool. Such results are due to the use of finite precision
floating point types, and are equally correct within the precision of the data type.

The IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 181

Controlling the IDL Thread Pool

IDL allows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

« Viewing the Current Thread Pool Settings

e Using the Default Thread Pool Settings

e Changing Global Thread Pool Settings

e Changing Thread Pool Settings for a Specific Computation
» Disabling the Thread Pool

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 187.

Viewing the Current Thread Pool Settings

The current values of the parameters that control IDL’s use of the thread pool for
computations are always available in the read-only ! CPU system variable. |CPU is
initialized by IDL at startup with default values for the number of CPUs (threads) to
use, as well as the minimum and maximum number of data e ements. To view the
settings, use the following command:

HELP, /STRUCTURE, !CPU

The values of thefieldsin the |CPU system variable are explained in “!CPU” (IDL
Reference Guide).

Using the Default Thread Pool Settings

If you have more than one processor on your system, if the routine you are using is
ableto use the thread pool, and if the number of data elementsin your computation
fallsinto the allowed range (neither too few nor too many), then IDL will employ the
thread pool in that calculation.

If the above requirements are met, IDL will automatically use the thread pool for the
computation. You do not need to do anything specia to enable IDL’s multithreading
capabilities.

Application Programming Controlling the IDL Thread Pool

182 Chapter 10: Multithreading in IDL

Changing Global Thread Pool Settings

Unless they are overridden by thread pool keywords supplied at the time of
execution, the values contained in the | CPU system variable control IDL’'s use of the
thread pool. !CPU isa“read-only” system variable, which means that you cannot
assign valuesto its structure fields directly, either at the command line or within a
program. However, you can set the default number of threads prior to starting IDL by
using the IDL_CPU_TPOOL_NTHREADS preference. See“!CPU Settings
Preferences’ (Appendix E, IDL Reference Guide) for details. You can also changethe
values of the !CPU system variable for the duration of the current IDL session by
using the CPU procedure.

The CPU procedure accepts the following keywords:
TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data el ements
involved in a computation that uses the thread poal. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword changes the value returned by |CPU.TPOOL_MAX_ELTS.
TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread poal. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit fromit.

This keyword changes the value returned by 'CPU.TPOOL_MIN_ELTS.
TPOOL_NTHREADS

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
ICPU.HW_NCPU threads, so that each thread will have the potential to runin
parallel with the others. Set this keyword equal to O (zero) to ensure that
ICPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

This keyword changes the value returned by |CPU.TPOOL.NTHREADS.

Controlling the IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 183

Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “Possible Drawbacks to the Use of the IDL Thread Pool” on
page 179 for a discussion of the circumstances under which using fewer than the
maximum number of CPUs makes sense.

For more information on the CPU procedure, see “CPU” (IDL Reference Guide).
Examples

The following examplesillustrate use of the CPU procedure to modify IDL’s global
thread pool settings.

Note
The following examples are designed for systems with more than one processor.
The examples will generate correct results on single-processor systems, but may
run more slowly than the same operations performed without the thread pool.

Example 1

As afirst example, imagine that we want to ensure that the thread pool is not used
unless there are at least 50,000 data elements. We set the minimum to 50,000 since
we know, for our system, that at |east 50,000 floating point data elements are required
before the use of the thread pool will exceed the overhead required to use it.

In addition, we want to ensure that the thread pool is not used if acalculation involves
more than 1,000,000 data elements. We set the maximum to 1,000,000 since we
know that 1,000,000 floating point data elements will exceed the maximum amount
of memory available for the computation, requiring the use of virtual memory.

Thefollowing IDL statements use the CPU procedure to modify the minimum and
maximum number of elements used in thread pool computations, create an array of
floating-point values, and perform a computation on the array:

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FINDGEN (361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta)) "2

Application Programming Controlling the IDL Thread Pool

184 Chapter 10: Multithreading in IDL

In this example, the thread pool will be used since we are performing a computation
on an array of 361 x 181 = 65,341 data elements, which falls between the minimum
and maximum thresholds. Note that we altered the global thread pool parametersin
such away that the computation was alowed. The values set by the CPU procedure
will remain in effect, either until they are changed again by another call to CPU or
until the end of the IDL session. An alternative approach that does not change the
globa defaultsin shown in “Changing Thread Pool Settings for a Specific
Computation” on page 185.

Example 2
In this example, we will:
1. Savethe current thread pool settings from the !CPU system variable.

2. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform afloating point computation.

Perform several floating point computations.

Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

5. Perform several double precision computations.
6. Restorethe thread pool settingsto their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool.

; Retrieve the current thread pool settings
threadpool = !CPU

; Modify the thread pool settings
CPU, TPOOL_MAX ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $
TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data
theta = FINDGEN (361, 181)

; Perform computations, using 2 threads
sineSquared = 1. - (COS(!DTOR*theta))"2
next computation

next computation

etc.

; Modify thread pool settings for new data type
CPU, TPOOL_MAX ELTS = 50000, TPOOL_MIN_ELTS = 10000

Controlling the IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 185

; Create 65,341 elements of double precision data
theta = DINDGEN (361, 181)

; Perform computation

sineSquared = 1. - (COS(!DTOR*theta)) "2
next computation

next computation

etc.

;Return thread pool settings to their initial values

CPU, TPOOL_MAX_ ELTS = threadpool.TPOOL_MAX_ELTS, $
TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

Again, in this example we atered the global thread pool parameters. In cases where
you plan to perform multiple computations that take advantage of the same thread
pool configuration, changing the global thread pool parametersis convenient. In
cases where only a single computation uses the specified thread pool configuration, it
iseasier to use the thread pool keywordsto the routine that performs the computation,
as described in the following section.

Changing Thread Pool Settings for a Specific
Computation

All routines that have been implemented to use the thread pool accept keywords that
allow you to override the thread pool settings stored in !|CPU for a single invocation
of the routine. This allows you to modify the settings for a particular computation
without affecting the global default settings of your session. For alist of the routines
that have been implemented to use multithreading when possible, see “Routines that
Use the Thread Pool” on page 187. In the IDL Reference Guide, documentation for
routines that use the thread pool includes a section titled “ Thread Pool Keywords.”

Thethread pool keywords are:
TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on the maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword overrides the default value, given by |CPU.TPOOL_MAX_ELTS.

Application Programming Controlling the IDL Thread Pool

186 Chapter 10: Multithreading in IDL

TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit fromit.

This keyword overrides the default value, given by 'CPU.TPOOL_MIN_ELTS.
TPOOL_NOTHREAD

Set this keyword to explicitly prevent IDL from using the thread pool for the current
computation. If this keyword is set, IDL will use the non-threaded implementation of
the routine even if the current settings of the | CPU system variable would allow use
of the threaded implementation.

Example

We can usethe TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to the
COS function to modify the example used in the previous section so that our changes
to the thread pool settings do not alter the global default.

; Create 65,341 elements of floating point data
theta = FINDGEN (361, 181)

; Perform computation and override session settings for maximum

; and minimum number of elements

sineSquared = 1. - (COS(!DTOR*theta, TPOOL_MAX_ ELTS = 1000000, S
TPOOL_MIN_ELTS = 50000))"2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:
» Usethe CPU procedure to alter the global thread pool parameters.

* Usethe TPOOL_NOTHREAD keyword to aroutine to disable the thread pool
for a specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threads to use to one:

CPU, TPOOL_NTHREADS = 1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(!DTOR*theta, /TPOOL_NOTHREAD))"2

Controlling the IDL Thread Pool Application Programming

Chapter 10: Multithreading in IDL 187

Routines that Use the Thread Pool

Multithreading does not offer the possibility of increased execution speed for all IDL
routines. The operators and routines currently using the thread pool in IDL are listed
below, grouped by functional category.

Binary and Unary Operators:

- — +
++ NOT AND
/ * EQ
NE GE LE
GT LT >
< OR XOR
n MOD #
#

Note

If an operator uses the thread pool, any compound assignment operator based on
that operator (+=, *=, etc.) also uses the thread pool.

Mathematical Routines:

* ABS * ERRORF * MATRIX_MULTIPLY
* ACOS « EXP * PRODUCT

* ALOG * EXPINT * ROUND

* ALOGI10 * FINITE « SIN

* ASIN * FLOOR * SINH

* ATAN « GAMMA * SQRT

* CEIL * GAUSSINT « TAN

Application Programming Routines that Use the Thread Pool

188 Chapter 10: Multithreading in IDL

* CONJ * IMAGINARY * TANH
* COS e ISHFT * VOIGT
* COSH * LNGAMMA

Image Processing Routines:

« BYTSCL « INTERPOLATE
« CONVOL . POLY_2D
« FFT . TVSCL

Array Creation Routines:

* BINDGEN * LINDGEN

* BYTARR * L64INDGEN

* CINDGEN * MAKE_ARRAY
* DCINDGEN * REPLICATE

* DCOMPLEXARR * UINDGEN

* DINDGEN * ULINDGEN

* FINDGEN * UL64INDGEN
* INDGEN

Non-string Data Type Conversion Routines:

* BYTE * LONG

* COMPLEX * LONG64
» DCOMPLEX * UINT

» DOUBLE * ULONG

Routines that Use the Thread Pool Application Programming

Chapter 10: Multithreading in IDL 189

* FIX * ULONG64
* FLOAT

Array Manipulation Routines:

* MAX TOTAL
* MIN * WHERE
* REPLICATE_INPLACE

Programming and IDL Control Routines:

* BYTEORDER * LOGICAL_OR
 LOGICAL_AND * LOGICAL_TRUE

Application Programming Routines that Use the Thread Pool

190 Chapter 10: Multithreading in IDL

Routines that Use the Thread Pool Application Programming

Chapter 11

Writing Efficient IDL

Programs

The following topics are covered in this chapter:

Overview of Program Efficiency 192
Use Vector and Array Operations 194
Use System Functions and Procedures ... 197

Application Programming

Virtual Memory

The IDL Code Profiler

191

192 Chapter 11: Writing Efficient IDL Programs

Overview of Program Efficiency

This chapter presentsideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improve the efficiency of IDL programs. In IDL, complicated computations
can be specified at ahigh level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programsin IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

* Usearray operations rather than loops wherever possible. Try to avoid loops
with high repetition counts. See “Use Vector and Array Operations’ on
page 194.

» UselDL system functions and procedures wherever possible. See “Use System
Functions and Procedures’ on page 197.

« Access array datain machine address order. See “Access Large Arrays by
Memory Order” on page 199.

Attention also must be given to algorithm complexity and efficiency, asthisis
usually the greatest determinant of resources used.

IDL Implementation

IDL programs are compiled into alow-level abstract machine code which is
interpretively executed. The dynamic nature of variablesin IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of thetimerequired for array operationsis similar to that of vector
computers and array processors. Thereisan initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per el ement is shorter
in longer arrays because the cost of thisinitial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array

Overview of Program Efficiency Application Programming

Chapter 11: Writing Efficient IDL Programs 193

operations. When data are treated as scalars, IDL efficiency degrades by afactor of
30 or more.

Additional Programming Efficiency Resources
Also refer to the following topics, located in other sections of this manual, for
additional waysto improve the efficiency of your IDL program:

» “Efficiency and Expression Evaluation Order” on page 243 — describes how
to organize operations to increase execution speed

* “Defining and Using Constants” on page 257 — describes the importance of
using constants of the correct type

« “Avoid Invariant Expressions’ on page 125 — describes the inefficiency of
invariant expression within loop statements

Application Programming Overview of Program Efficiency

194 Chapter 11: Writing Efficient IDL Programs

Use Vector and Array Operations

Programs with vector and array expressions run faster than programs with scalars,
loops, and I F statements. Whenever possible, vector and array data should be
processed with IDL array operations rather than scalar operationsin aloop.

Example—Inverting an Image

Consider the problem of inverting a512 x 512 image. This problem arises because
some image display devices consider the origin to be the lower-left corner of the
screen, while others recognize it as the upper-left corner.

Note
The following example is for demonstration only. The IDL system variable

IORDER should be used to control the origin of image devices. The ORDER
keyword to the TV procedure serves the same purpose.

A programmer without experiencein using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

;Temporarily save pixel image.
temp = imagel[I, J]

;Exchange pixel in same column from corresponding row at bottom

image[I, J] = image[I, 511 - J]
image[I, 511-J] = temp
ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process
arrays as asingle entity:

FOR J = 0, 255 DO BEGIN

; Temporarily save current row.
temp = imagel*, J]

;Exchange row with corresponding row at bottom.

imagel[*, J] = imagel[*, 511-J]
image[*, 511-J] = temp
ENDFOR

Use Vector and Array Operations Application Programming

Chapter 11: Writing Efficient IDL Programs 195

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
image2 = BYTARR(512, 512, /NOZERO)

;Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = imagel[*, 511-J]

Even more efficient isthe single line;

image2 = image[*, 511 - INDGEN(512)]
that reverses the array using subscript ranges and array-val ued subscripts.
Finally, using the built-in ROTATE function is quickest of all:

image = ROTATE (image, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.

See Chapter 15, “Arrays’ for complete details on working with arraysin IDL.
Example—Summing Elements

Consider the problem of adding all positive elements of array B to array A.
Using aloop will be slow:
FOR I = 0, (N-1) DO IF B[I] GT O THEN A[I] = A[I] + BI[I]
Masking out negative elements using array operations will be faster:
A=A+ (BGT 0) * B
Adding only the positive elements of B isfaster till:
A=A+ (B>0)

When an I F statement appears in the middle of aloop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and WHERE

In this example, each element of C is set to the square-root of A if A[l] is positive;
otherwise, C[1] is set to minus the square-root of the absolute value of A[l].

Using aloop statement is slow:

FOR I=0, (N-1) DO IF A[I] LE 0 THEN $
C[I]=-SQRT(-A[I]) ELSE C[I]=SQRT(A[TI])

Application Programming Use Vector and Array Operations

196

Chapter 11: Writing Efficient IDL Programs

Using an array expression is much faster:
C = ((AGT 0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) hasthevalue 1 if A[l] is positive and has the value O if
Alllisnot. (A GT 0)* 2- 1isequal to +1if A[l] ispositive or -1 if A[l] is negative,
accomplishing the desired result without resorting to loops or |F statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

;Get subscripts of negative elements.

negs = WHERE(A LT 0)

;Take root of absolute value.

C = SQRT (ABS(A))

;Negate elements in C corresponding to negative elements in A.
C[negs] = -Cl[negs]

Use Vector and Array Operations Application Programming

Chapter 11: Writing Efficient IDL Programs 197

Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation is to find the sum of the elementsin an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each element.
sum = 0. & FOR I = J, K DO sum = sum + array[I]

;Efficient, simple way.
sum = TOTAL (array[J:K])

Similar savings result when finding the minimum and maximum elementsin an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
e ements (WHERE function), etc.

Application Programming Use System Functions and Procedures

198 Chapter 11: Writing Efficient IDL Programs

Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systemsto avoid penalty. Virtual memory allows the computer to
execute programs that require more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this processis transparent to the user, it greatly affects the efficiency of the
program.

Note
In relatively modern computers, plentiful physical memory (hundreds of megabytes
for a single-use machine) is not uncommon. Remember, however, that IDL is
generally not the only consumer of memory on a system. Other applications, the
operating system itself, and other users on multi-user systems may consume large
amounts of physical and virtual memory. If your IDL program appearsto be
inefficient or slow, inspect the system memory situation to determine whether
virtual memory is being used, and if so, whether there is enough of it.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only asmall portion of that data actually residesin
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory accesstime,
page faults become an important consideration.

When using IDL with large arrays, it isimportant to have accessto sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parameters that
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See * Virtual Memory System Parameters’ on

page 201. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.

Virtual Memory Application Programming

Chapter 11: Writing Efficient IDL Programs 199

Access Large Arrays by Memory Order

When an array is larger than or close to the working set size (i.e., the amount of

physical memory available for the process), it is preferable to access it in memory
address order.

Consider the process of transposing alarge array. Assumethe array isa 512 x 512
byte image with a 100 kilobyte working set. The array requires 512 x 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. Thefirst row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses almost equal to the size of the entire image. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written aimost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 x 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:
FOR X = 0, 511 DO FOR Y = 0, 511 DO ARRI[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FOR Y = 0, 511 DO FOR X = 0, 511 DO ARR[X, Y] = ...

This approach cuts computing time by afactor of at least 50.
Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especialy if you have a small system), you may encounter the error
message

Q

% Unable to allocate memory.

Application Programming Virtual Memory

200 Chapter 11: Writing Efficient IDL Programs

This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asks the
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

The first time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to ascalar value.

If you need to exit IDL, you first should use the SAVE procedure to save your
variablesin an IDL savefile. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELR/MEMORY command tells you how much virtual memory you have
alocated. For example, a512 x 512 complex floating array requires 8 x 5122 bytesor
about 2 megabytes of memory because each complex element requires 8 bytes.
Deleting avariable containing a 512 x 512 complex array will increase the amount of
memory available by this amount.

Minimizing Virtual Memory

If virtual memory is aproblem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
Sstatement

A= (B+C) * (E+ F)

IDL first evaluatesthe expression B + C and creates atemporary array if either B or C
are arrays. In the same manner, another temporary array is created if either E or F are
arrays. Finally, the result is computed, the previous contents of A are deleted, and the
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays’ worth of data
isrequired in addition to normal variable storage.

It isagood ideato delete the allocation of avariable that contains an image and that
appears on the | eft side of an assignment statement, as shown in the following
program.

;Loop to process an image.
FOR I = ... DO BEGIN

; Processing steps.

Virtual Memory Application Programming

Chapter 11: Writing Efficient IDL Programs 201

;Delete old allocation for A.
A =0

;Compute image expression and store.
A = Image_Expression

;End of loop.
ENDFOR

The purpose of the statement A=0 is to free the old memory allocation for the
variable A before computing the image expression in the next statement. Because the
old value of A isgoing to bereplaced in the next statement, it makes senseto free A’s
allocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arraysis
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as atemporary variable and makes the argument undefined. In this way, you avoid
making anew copy of temporary results. For example, assumethat A isalarge array.
To add 1 to each element in A, you could enter:

A = A+1

However, this statement creates a new array for the result of the addition and assigns
theresult to A before freeing the old allocation of A. Hence, thetotal storage required
for the operation is twice the size of A. The statement:

A = TEMPORARY (A) + 1

requires no additional space.
Virtual Memory System Parameters

Thefirst step is to determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 x 512 images, each
complex image requires 2 megabytes. Suppose that during atypical session you need
to have twenty images stored in variables and require enough memory for ten images
to hold temporary results, resulting in atotal of thirty images or 60 megabytes.
Rounding up to 80 megabytes gives a reasonable value for the amount of physical
and virtual memory that should be availableto IDL.

Application Programming Virtual Memory

202

Chapter 11: Writing Efficient IDL Programs

UNIX Virtual Memory

For UNIX, The size of the swapping area(s) determines how much virtual memory
your processis allowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is atime-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatting the
disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to aregular file. Thisis a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Windows Virtual Memory

For Microsoft Windows, creation and management of virtual memory files (called
“paging files") are handled more or less automatically. You can, however, adjust the
initial and maximum size of the paging file for a given disk. Consult your system
documentation for details and instructions on how to perform these operations.

Virtual Memory Application Programming

Chapter 11: Writing Efficient IDL Programs 203

The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within afile.

You can start the IDL Code Profiler by selecting “Profile’ from the Run menu of the
IDL Workbench or by entering PROFILER at the Command Line. For more
information about the PROFILER procedure, see “PROFILER” (IDL Reference
Guide).

Note
Calling the Profiler from the Command Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

— Uzer Module — Syztem Module:

[wIDIST
[wIFILEPATH
[wIPATH_SEP
[CIPROF_TEST

[Al User Modules

Profie 4l | Clear Al |

Figure 11-1: Profile Dialog

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for

Application Programming The IDL Code Profiler

204

Chapter 11: Writing Efficient IDL Programs
profiling. To select amodule, click on the checkbox next toit. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.
All User Modules

Select this checkbox to select all the user modules for profiling.

System Modules

Thisfield includes all IDL system procedures and functions.
All System Modules
Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for al the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. The
“Profile Report” dialog isdismissed, asit no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismissthe Profile dialog. Click “Help” to display Help
onthisdialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDL Workbench. The
Profile Report dialog appears.

Fields in the Profiler Report Dialog

The fields in the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the valuesin each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted al phabetically.

Note
Whether you enter a program at the command line or run a program contained in a
file, the PROFILER procedure reports the status of all the modules compiled and
executed either since profiling was first set or since the PROFILER was reset.

Modules

The name of the library, user, or system procedure or function.

The IDL Code Profiler Application Programming

Chapter 11: Writing Efficient IDL Programs 205

Typ

Thetype of module. System procedures or functions are associated with an “S’. User
or library functions or procedures are associated with a“U”.

Count
The number of times the procedure or function has been called.
Only(sec)

Thetimerequired, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg
Average of the Only(sec) field above.
+Children(sec)

Thetime required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg
Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDL Workbench. Click “Save” to save the report as a text
file. The Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile
Report dialog. The contents remain available after cancelling. Click “Help” to
display Help on this dialog.

Using the IDL Code Profiler

Open a new editor file by selecting “New” from the File menu.
Enter the following linesin the editor:

PRO prof_test

OPENR, 1, FILEPATH('nyny.dat’, SUBDIR=['examples’, ‘data’])
a=ASSOC (1, BYTARR(768,512, /NOZERO))
b=al0]
CLOSE, 1
™V, b
END

Application Programming The IDL Code Profiler

206 Chapter 11: Writing Efficient IDL Programs

Save thefileas prof_test.pro by selecting “ Save” from the File menu. The Save As
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compile all
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “ Report”. The Profile Report dialog
appears, as shown in the following figure.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Avg
AS50C 5 1 0.000116 0.000116 0.000116 0.000116
EvYTARR 5 1 0.001603 0.001603 0.001603 0.001603
CLOSE 5 1 0.000093 0.000093 0.000093 0.000093
KETWORD_SET S g 0.000018 0.000003 0.000018 0.000003
M_ELEMENTS 5 3 0.000011 0.000004 0.000011 0.000004
OM_ERROR 5 1 0.000028 0.000028 0.000028 0.000028
OPEMR 5 1 0.000293 0.000293 0.000293 0.000293
STRLEN 5 1 0.000006 0.000006 0.000006 0.000006
STRMID 5 1 0.000011 0.000011 0.000011 0.000011
™ 5 1 0.087759 0.087759 0.087759 0.087759
WwHERE 5 1 0.000017 0.000017 0.000017 0.000017
Print | Save... | ok I

Figure 11-2: Profile Report Dialog

For moreinformation about the capabilities of either dialog, see “ The Profile Dialog”
on page 203 and “ The Profile Report Dialog” on page 204.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for al system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report
and run prof_test again.

Enter the following lines at the Command Line:

;Create a dataset using the library function DIST. Note that DIST
;is immediately compiled.

The IDL Code Profiler Application Programming

Chapter 11: Writing Efficient IDL Programs 207

A= DIST(500)

;Display the image.
TV, A

Return to the Profile dialog. You will note that the DIST function has been appended
to the User Modulefield, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog's results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previoudy selected for profiling.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Av:l
FINDGEM 5 1 0.000034 0.000034 0.000034 0.0000
FLTARR 5 1 0.000040 0.000040 0.000040 0.0000
KETWORD_SET S g 0.000040 0.000007 0.000040 0.0000
M_ELEMENTS 5 4 0.000015 0.000004 0.000015 0.0000
OM_ERROR 5 2 0.000042 0.000021 0.000042 0.0000
OPEMR 5 1 0.000168 0.000168 0.000168 0.0001
SQRT S 281 0.004357 0.000018 0.004397 0.0000
STRLEN 5 1 0.000009 0.000009 0.000009 0.0000
STRMID 5 1 0.000054 0.000054 0.000054 0.0000
™ 5 2 0.235904 0117952 0.235904 01179
WwHERE 5 1 0.000038 0.000038 0.000038 0.0000 7+ |
« | 2
Print | Save... | 55 |

Figure 11-3: Refreshing the Profile Report

If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Line, you will notice that only the
count for TV increasesin the profiler report. You must re-enter the statement calling
DIST at the Command Line; the aready-compiled library function is executed again,
making it available for profiling.

Application Programming The IDL Code Profiler

208 Chapter 11: Writing Efficient IDL Programs

The IDL Code Profiler Application Programming

Part Il: Components
of the IDL Language

Chapter 12

Expressions and

Operators

The following topics are covered in this chapter:

Overview of Expressions and Operators .. 212

Mathematical Operators 213
Minimum and Maximum Operators 220
Matrix Operators 222
Logical Operators 224

Application Programming

BitwiseOperators
Relational Operators. 231
Assignment and Compound Assignment . 234

Other Operators 237
Operator Precedence 240
211

212 Chapter 12: Expressions and Operators

Overview of Expressions and Operators

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the va ues of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has alarge number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), andlogical arithmetic (&&, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operatorsin themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PIl) evaluates the variable A multiplied by the value of rt, then
applies the trigonometric sine function. This result can be used as an operand to form
amore complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!Pl) evaluates eSn(@m,

Overview of Expressions and Operators Application Programming

Chapter 12: Expressions and Operators

213

Mathematical Operators

IDL mathematical operators are described in the following table.

Note

Also see “Assignment and Compound Assignment” on page 234 for information on
= and op= and “Other Operators’ on page 237 for information onthe[], (), and ?:

operators.

Operator

Description

Example

+

Addition

Storethesum of 3and 6in B:
B =3 +6

String Concatenation

Store the string value of “ John Do€” in B:

B = 'John' + ' ' + 'Doe'

++

Increment

Adds one to the operand:

A =3
A++
PRINT, A

IDL Prints:

4
Note - The increment operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 215.

Subtraction

Store the value of 5 subtracted from 9in C:
c=9--5

Negation

Change the sign of C:
c = -C

Application Programming

Table 12-1: Mathematical Operators

Mathematical Operators

214

Chapter 12: Expressions and Operators

Operator

Description

Example

Decrement

Subtracts one from the operand:

PRINT, A

IDL Prints:

2

Note - The decrement operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 215.

Multiplication

Store the product of 2 and 5 in variable C:
c=2*5

Pointer dereference

If ptr isavalid pointer (created viathe
PTR_NEW function), then *ptr isthe value
held by the heap variable that ptr pointsto.
For more information on IDL pointers, see
Chapter 17, “Pointers’ (Application
Programming).

Division

Store result of 10.0 divided by 3.2 in variable
D:
D = 10.0/3.2

Mathematical Operators

Table 12-1: Mathematical Operators (Continued)

Application Programming

Chapter 12: Expressions and Operators

215

Operator

Description

Example

N

Exponentiation

Store result of 2 raised to the 3rd power in
variable B:

B = 273

Note - How exponentiation is evaluated
depends upon whether the operands are rea
or complex. See “Using Exponentiation” on
page 218 for details.

MOD

Modulo

| MOD Jisequal to the remainder when | is
divided by J. The magnitude of theresult is
lessthan that of J, and its sign agreeswith that
of I. Print the value of 9 modulo 5:

PRINT, 9 MOD 5

IDL Prints:
4

Compute angle modulo 2p.
A =(ANGLE + B) MOD (2 * !PI)

Table 12-1: Mathematical Operators (Continued)

Using Increment/Decrement

The increment (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

Application Programming

Mathematical Operators

216

Chapter 12: Expressions and Operators

Note
Theincrement and decrement operators can only be applied to variable expressions
to which avalue can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating thisrule isto say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standal one statements
or within alarger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Increment/Decrement Statements

Increment and decrement operators can be used, along with avariable, as standalone
statements:

* A++0r ++A
e A--0Or--A

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable isincremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of thetarget is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of thevariable A is 27, while B is 28:

27
B++

B
A

In contrast, after executing the following statements, both A and B have a value of
26:

27
--B

Mathematical Operators Application Programming

Chapter 12: Expressions and Operators 217

Efficiency of Prefix vs. Postfix Operations

When used as part of an expression, the prefix form of the increment and decrement
operators has an efficiency advantage over the postfix form. The reason for thisisthat
the postfix form requires IDL to make a copy of the data, while the prefix form does
not. The operations carried out by IDL to execute a prefix increment or decrement
operation are:

1. Fetch thetarget variable.
2. Increment or decrement the target variable in place (no copies are made).
3. Usethe variable when evaluating the surrounding expression.

Thisisvery efficient. In contrast, the postfix form requires IDL to make a copy of the
variablein order to use its old value in the surrounding expression following the
increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are:

1. Fetchthetarget variable.

2. Make atemporary copy of the variable.

3. Increment or decrement the original variable.

4. Usethetemporary copy when evaluating the surrounding expression.

If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better
choice. The larger the data involved, the more important this becomes. It isnot a
concern for small variables.

Order Of Side Effects

The way that the increment and decrement operators change the value of avariablein
addition to using its value in a surrounding expression is called a side effect. In most
cases, the side effects are desired, and cause no problems. Side effects can cause
problems, however, if the increment or decrement operator is applied to avariable
that appears more than once within a single statement or expression. Consider the
following statement (taken from The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie):

A[i] = i++

Which value of i isused to index A?Isit the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement

Application Programming Mathematical Operators

218

Chapter 12: Expressions and Operators

are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

B = 23

A = B++ + B
the value of A could be either 47 or 46, depending on which part of the expression is
evaluated first.

Note that this situation falls outside the rules of operator precedence — it isthe order
in which the variables themselves are eval utated that affects the result. Let’s examine
the situation closely:

e Herethe“old” value of B (23) is always used for the first occurrence of B in
the statement.

* |f the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

« |f the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. Asaresult, you should avoid writing code that
depends on a particular ordering of the side effects.

Using Exponentiation

The caret (») is the exponentiation operator. A~B is equal to A raised to the B power.
For real numbers, A~B is evaluated as follows:
« If Alisareal number and B is of integer type, repeated multiplication is
applied.
« If both A and B arereal (non-integer), the formulaAB = eB™ s evaluated.
« Alisdefined as1.

For complex numbers, A~B is evalutated as follows. The complex number A can be
represented as A = a + ib, whereaisthereal part, and ib is the imaginary part. In
polar form, we can represent the complex number as A = re'® = r cosd + ir sine,
wherer cost isthereal part, and ir sinf isthe imaginary part:

« If Aiscomplex and B isred, the formula AB = (ré®)B = rB (cosB6 +isinB9) is
evaluated.

Mathematical Operators Application Programming

Chapter 12: Expressions and Operators 219

« If Aisred and B is complex, the formula AB = eB™ s evaluated.

« If both A and B are complex, the formula AB = e®™ is evaluated, and the
natural logarithm is computed to be In(A) = In(re'e) =In(r) +ié.

Application Programming Mathematical Operators

220

Chapter 12: Expressions and Operators

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below.

Note

Negated values must be enclosed in parenthesesin order for IDL to interpret them

correctly.

Operator

Description

Example

<

Minimum operator.
Thevdueof “A <B” is
equal tothesmaller of A
or B.

Note - Seeaso “Using
Minimum or Maximum
with Complex
Numbers’ and “Using
Minimum or Maximum
with NaN Values”
below.

Set A equal to 3:

A=5<3

Set A equal to -6. Use parentheses to avoid
asyntax error.

A =5 < (-6)

Set dll pointsin array ARR that are larger
than 100 to 100:

ARR = ARR < 100

Set X to the smallest of the three operands:

X = X0 < X1 < X2

Maximum operator.
“A >B" isequd to the
larger of A or B.

Note - Seeaso “Using
Minimum or Maximum
with Complex
Numbers’ and “Using
Minimum or Maximum
with NaN Values”
below.

Use ">' to avoid taking the log of zero or
negative numbers.

C = ALOG(D > 1E - 6)

Plot positive points only. Negative points
are plotted as zero:
PLOT, ARR > 0

Table 12-2: Minimum and Maximum Operators

Minimum and Maximum Operators

Application Programming

Chapter 12: Expressions and Operators 221

Using Minimum or Maximum with Complex Numbers

For complex numbers, the absolute value is used to determine which valueis smaller
or larger. If both values have the same magnitude then the first value is returned.

Minimum Operator Examples

; Set A equal to 1+2i, since ABS(1+2i) is less than ABS(2-4i):
A = COMPLEX(1l,2) < COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-21i) equals ABS(-2+1i):

A = COMPLEX(1,-2) < COMPLEX(-2,1)

Maximum Operator Examples

; Set A equal to 2-4i, since ABS(2-41i) is greater than ABS(1+21i)
A = COMPLEX(1,2) > COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+1)
A = COMPLEX(1l,-2) > COMPLEX(-2,1)

Using Minimum or Maximum with NaN Values

Typicaly in IDL, the result of any operation involving the special value NaN is
simply NaN. For efficiency, IDL does not check the values of A and B for NaN
values before performing the minimum or maximum operation. If A or B contains a
NaN value, the result isundefined and can be either NaN or the other non-NaN value,
depending on the specific hardware and operating system. If you suspect that one of
your operands contains NaN values, you might want to use the FINITE function to
ensure that you return NaN values in the result. For example, if A and B are scalars:

A
B

!VALUES . F_NAN
5

; Result is undefined and can either be 5 or NaN:
PRINT, A > B

; Result must be NaN if either operand is NaN:
PRINT, (FINITE(A) && FINITE(B)) ? (A > B) : !VALUES.F_NAN

This second method al so avoids any floating-point math errors. If A and B are arrays,
the following method can be used:

C = REPLICATE(!VALUES.F_NAN, N_ELEMENTS (A))
good = WHERE(FINITE(A) and FINITE(B), ngood)
IF (ngood GT 0) THEN C[good] = A[good] > Bl[good]

Application Programming Minimum and Maximum Operators

222 Chapter 12: Expressions and Operators

Matrix Operators

IDL hastwo operators used to multiply arrays and matrices. For an example
illustrating the difference between the two, see “Multiplying Arrays’ (Chapter 15,
Application Programming).

Operator Description Example
Computes array elements | Multiply a 3-column by 2-row array:
by multiplying the arrayl = [[1, 2, 11, $
columns of the first array [2, -1, 21 1

by the rows of the second
array. The second array Create a 2-column by 3-row array:
must have the same array2 = [[1, 31, [0, 11,$
number of columns as the [1, 11 1

first array hasrows. The PRINT, arrayl#array?2
resulting array hasthe

same number of columns IDL prints:
asthefirst array and the 7 -1 7
same number of rows as i _i i
the second array.
Ht Computes array elements | Create a 3-column by 2-row array:
by multiplying the rows arrayl = [[1, 2, 11, [2, -1, 2] 1
of thefirst array by the
columns of the second Create a 2-column by 3-row array:
array. The second array array2 = [[1, 31, [0, 11, [1, 111
must have the same PRINT, arrayl##array?2
number of rows as the
first array hascolumns. | IDL prints:
The resulting array has 2 6
the same number of rows | 4 7

asthefirst array and the
same number of columns
as the second array.

Table 12-3: Matrix Operators

Matrix Operators Application Programming

Chapter 12: Expressions and Operators 223

Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to use the MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.

Application Programming Matrix Operators

224 Chapter 12: Expressions and Operators

Logical Operators

There are three logical operatorsin IDL: &&, ||, and ~. When dealing with logical
operators, hon-zero numerical values, non-null strings, and non-null heap variables
(pointers and object references) are considered true, everything elseis false.

Note
Programmers familiar with the C programming language, and the many languages
that shareits syntax, may expect ~ to perform bitwise negation (1's complement),
and for ! to be used for logical negation. Thisisnot thecasein IDL: ! isusedto
reference system variables, the NOT operator performs bitwise negation, and ~
performs logical negation.

Operator Description Example
&& Logical AND PRINT, 5 && 7
IDL Prints: 1

Returns 1 whenever both of its
operands are true; otherwise,
returns 0. Non-zero numerical
values, non-null strings, and
non-null heap variables (pointers
and object references) are

PRINT, 5 && 2
IDL Prints: 1

PRINT, 4 && O

; . IDL Prints: 0
considered true, everything else
isfalse. PRINT, ** && "sun’
Operands must be scalars or IDL Prints: 0

single-element arrays. The & &
operator short-circuits; the
second operand will not be
evaluated if thefirst isfalse. See
“Short-circuiting” on page 225
for details.

Table 12-4: Logical Operators

Logical Operators Application Programming

Chapter 12: Expressions and Operators 225

Operator Description Example

| Logical OR IF ((5 GT 3) || (4 GT 5)) $

. . THEN PRINT, 'True'
Returns 1 whenever either of its

operands are true; otherwise, IDL Prints:
returns 0. Uses the same test for
“truth” asthe & & operator.

Operands must be scalars or
single-element arrays. The ||
operator short-circuits; the
second operand will not be
evaluated if thefirst istrue. See
“Short-circuiting” on page 225
for details.

True

~ Logical negation PRINT, ~ [1, 2, 0]

Returns 1 Wh_en itsoperand is IDL Prints:
false; otherwise, returns O.

Uses the same test for “truth” as
the & & operator.

0o 0 1

Table 12-4: Logical Operators (Continued)

Short-circuiting

The ss and | | logical operators are short-circuiting operators. This meansthat IDL
does not evaluate the second operand unlessit is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, since it allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Opl && Op2

IDL does not evaluate op2 if op1 isfalse, because it already knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Opl || Op2

IDL does not evaluate op2 if op1 istrue, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are eva uated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

Application Programming Logical Operators

226 Chapter 12: Expressions and Operators

Additional Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
asfollows:

;True if A is between 25 and 50. If A is an array, then the result
;is an array of zeros and ones.
(A LE 50) && (A GE 25)

;True if A is less than 25 or greater than 50. This is the inverse

;of the first.
(A GT 50) || (A LT 25)

Logical Operators Application Programming

Chapter 12: Expressions and Operators

Bitwise Operators

227

There are four bitwise operatorsin IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands

independently.
Operator Description Example
AND Bitwise AND The statement

For integer, longword, and byte
operands, a bitwise AND
operation is performed. If the
operands are scalars, it returns a
scalar value. If either operand is
an array, it returns an array
containing one value for each
element of the shortest array
operand.

For operations on other types,
the result is equal to the second
operand if thefirst operand isnot
egual to zero or the null string;
otherwise, theresult is zero or
the null string.

Note - The bitwise AND
operator is not valid for heap
variable operands

5 AND 6 = 4
isrepresented in binary as follows:

0101 AND 0110 = 0100

PRINT, (5 GT 2)
IDL Prints: 1

PRINT, (5 GT 2)
IDL Prints: 0

PRINT, 5 AND 7
IDL Prints: 5

PRINT, 5 AND 2
IDL Prints: 0

PRINT, 4 AND 2
IDL Prints: 0

AND (4 GT 2)

AND (4 GT 5)

Application Programming

Table 12-5: Logical Operators

Bitwise Operators

228 Chapter 12: Expressions and Operators
Operator Description Example
NOT Bitwise NOT The statement
Returnsthe bitwiseinverse of its | NoT 4 = -5
scalar or array operand (returns IS represented in binary asfollows:
scalar if operand isascalar, or NOT 0100 = 1011

returns an array containing one
value for each element of the
operand array).

For integer, longword, and byte
operands, NOT returns the
complement of each bit of the
operand. For floating-point
operands, the result is 1.0 if the
operand is zero; otherwise, the
result is zero.

Warning - Use caution when
using the return value from the
bitwise NOT operator as an
operand for the logical operators
&& and | |. See*Using the NOT
Operator” on page 230 for
additional discussion.

Note - Not valid for string or
complex operands.

PRINT, NOT 1
IDL Prints;

-2

Note - Modern computers use the
“2s complement” representation
for negative signed integers. This
means that to arrive at the decimal
representation of a negative binary
number (a string of binary digits
with a one as the most significant
bit), you must take the
complement of each bit, add one,
convert to decimal, and prepend a
negative sign. For example, NOT
O equals-1, NOT 1 equals-2, etc.

IF (NOT (5 GT 6)) THEN $
PRINT, 'True'

IDL Prints:

True

Bitwise Operators

Table 12-5: Logical Operators (Continued)

Application Programming

Chapter 12: Expressions and Operators

229

Operator Description Example
OR Bitwise OR For integer operands, OR
Performs the logical “inclusive performs a bitwise inclusive “or”
or” operation on two scalar or operation and returns the result.
array operands (returning a The statement:
scalar value for scalar operands, | 3 OR 5 = 7
or returning an array containing | isrepresentedinbinary asfollows:
onevaluefor each element of the | 0011 or 0101 = 0111
shortest array operand.
. IF ((5 GT 3) OR $

For integer or byte operands, a (4 GT 5)) THEN &
bitwiseinclusive OR is PRINT, 'True'
performed. For floating- point IDL Prints:
operands, returns the first True
operand if it is non- zero, or the
2nd operand otherwise.

XOR Bitwise exclusive XOR For integer operands, XOR setsa

XORisonly valid for byte,
integer, and longword operands.

Performs the logical “exclusive
or” operation on two scalar or
array operands (returning a
scalar value for scalar operands,
or returning an array containing
onevaluefor each e ement of the
shortest array operand.

A bitintheresultissetto 1if the
corresponding bitsin the
operands are different; if they
areequal, it is set to zero.

bit in the result to 1 if the
corresponding bitsin the operands
are different or to O if they are
equal. The statement:

3 XOR 5 = 6
isrepresented in binary asfollows:

0011 XOR 0101 = 0110
IF ((5 GT 3) XOR (4 GT 5))
THEN $
PRINT, 'Different' $
ELSE PRINT, 'Same'
IDL Prints:
Different

Application Programming

Table 12-5: Logical Operators (Continued)

Bitwise Operators

230 Chapter 12: Expressions and Operators

Using the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
aways use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

IF ((NOT EOF (lun)) && device_ready) THEN statement

which wants to execute statement if the file specified by the variable 1un has data
remaining, and the variable device_ready isnon-zero. When EOF returns the
value 1, the expression NOT EOF (1un) Yields-2, due to the bitwise nature of the
NOT operator. The s& operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

IF ((~ EOF(lun)) && device_ready) THEN statement

Additional Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

; Displays the “negative” of an image contained in the array IMG.
TV, NOT IMG

; Adds the hexadecimal constant FF (255 in decimal) to the array
; ARR. This masks the lower 8-bits and zeros the upper bits.
ARR AND 'FF'X

Bitwise Operators Application Programming

Chapter 12: Expressions and Operators 231

Relational Operators

The IDL relational operators apply arelation to two operands and return alogical
value of true or false. The resulting logical value can be used as the predicate in IF,
WHILE or REPEAT statements. You can also combine Boolean operators with other
logical values to make more complex expressions.

Note
It isimportant to see “ Definition of True and False” (Chapter 7, Application
Programming) for details on when avalueis considered true or false.

Therulesfor evaluating relational expressions with operands of mixed modes are the
same as for arithmetic expressions. Each operand is promoted to the data type of the
operand with the greatest precedence or potential precision. (See “Data Type and
Structure of Expressions” on page 250 for details.) For example, in the relational
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression istrue. The relational operators
return avalue of 1 for true and O for false. The type of the result is always byte.

Note
When using EQ and NE with complex numbers, both the rea and imaginary parts
must meet the condition of the relational operator. For example, the following
returns O (false):

PRINT, COMPLEX(1,2) EQ COMPLEX(1,-2)

When using GE, GT, LE, and LT with complex numbers, the absolute value (or
modulus) of the complex number is used for the comparison.

For more information on using relational operators, also see “Using Relational
Operators with Arrays’ and “ Relational Operators with Infinity and NaN Values’ on

page 233.
Operator Description Example
EQ Equal to Returnstrueif its operands are equal;

otherwisg, it returns false. The
following returns True:

IF (2 EQ 2.0) THEN PRINT, 'True'

Table 12-6: Relational Operators

Application Programming Relational Operators

232

Chapter 12: Expressions and Operators

Operator

Description

Example

NE

Not equal to

Returns true whenever the operands are
different. The following returns 1
(true):

PRINT, "sun" NE "fun"

GE

Greater than or equal to

Returnstrueif the operand on theleft is
greater than or equal to the one on the
right. Relational operator are useful for
creating array masks:

A = ARRAY * (ARRAY GE 100)

See “Using Relational Operators with
Arrays’ on page 233.

GT

Greater than

Returnstrueif the operand on theleft is
greater than the operand on the right.
Determineif A is greater than B:

IF (A GT B) THEN PRINT, 'True'

Note - Strings are compared using the
ASCII collating sequence: “ “ isless
than“0" islessthan“9” islessthan “A”
islessthan “Z" islessthan “a’ whichis
lessthan “z".

LE

Lessthan or equal to

Returnstrueif the operand on the left is
less than or equal to the operand on the
right. Determineif A islessthan or
equal to B:

IF (A LE B) THEN PRINT, 'True'

LT

Lessthan

Returnstrueif the operand on theleft is
less than the operand on the right.
Determineif A islessthan B:

IF (A LT B) THEN PRINT, 'True'

Relational Operators

Table 12-6: Relational Operators (Continued)

Application Programming

Chapter 12: Expressions and Operators 233

Note
You can use the NE and EQ operatorsto determine if two object references point to

the same heap variable. See “Object Equality and Inequality” (Chapter 1, Object
Programming) for examples.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression:

A = ARR * (ARR LE 100)

aAisanarray egqual to ARR except that all points greater than 100 have been reduced to
zero. The expression (ARR LE 100) isan array that contains a 1 where the
corresponding element of ARR is lessthan or equal to 100, and zero otherwise. For
example, to print the number of positive elementsin the array ARRr:

PRINT, TOTAL(ARR GT O0)

The following command sets B equal to ARRAY whenever the corresponding
element of ARRAY isgreater than or equal to 100. If the element is less than 100, the
corresponding element of B is set to zero.

B = ARRAY * (ARRAY GE 100)

Relational Operators with Infinity and NaN Values

On the Windows platform, using relational operators with the values infinity or NaN
(Not a Number) causes an “illegal operand” error. The FINITE function’sINFINITY
and NAN keywords can be used to perform comparisons involving infinity and NaN
values. For more information, see “FINITE” (IDL Reference Guide) and “ Special
Floating-Point Values’ on page 156.

Application Programming Relational Operators

234

Chapter 12: Expressions and Operators

Assignment and Compound Assignment

The assignment statement stores a value in a variable. Compound assignment
combines assignment with another operator.

Operator

Description

Examples

Assignment

The value of the expression
on the right hand side of the
equal signisstored in the
variable, subscript element, or
range on the left side. The old
value of thevariable, if any, is
discarded, and the value of
the expression is stored in the
variable. The expression on
the right side can be of any
type or structure.

For more information on
assignment involving arrays
and ranges, see Chapter 15,
“Arrays’.

For information on
assignment involving objects,
see “Object Assignment”
(Chapter 1, Object
Programming).

Simple assignment examples:
A=5
Assigns 5to variable A:

B='Hello World'
Assign “Hello World” to variable B:

name = 'Mary'
The variable name becomes a scalar
string variable.

arr = FLTARR(100)

Make arr a 100-element, floating-
point array.

arr = arr[50:*]

Discard points0to 49 of arr. Itis
now a 50-element array.

Table 12-7: Assignment and Compound Assignment

Assignment and Compound Assignment

Application Programming

Chapter 12: Expressions and Operators 235

Operator Description Examples
op= Compound Assignment Applies the specified operation to
where op is one of the the target variable “in place,’

following operators: ## #, *, | Without making a copy of the
+,-,1,<,> " AND, EQ, GE variable. For example,

GT, LE, LT, MOD, NE, OR, A+=5

XOR adds 5 to the value of the variable A.

Provides succinct syntax for | 2 op= expression
expressionsinwhichthesame | 1S equivalent to:
variable would otherwise be A = TEMPORARY (A) op
present on both sides of the (expression)

equzil San _ The following statements both add
See “ Compound Assignment | 100 to current value of A:

Operators’ on page 235 for

i A=A+ 100
details.

A += 100

Table 12-7: Assignment and Compound Assignment (Continued)
Compound Assignment Operators

In addition to the standard assignment statement, IDL supports the following
compound assignment operators:

HH= #= *= += -=

I= <= >= AND= EQ=
GE= GT= LE= LT= MOD=
NE= OR= XOR= A=

See op= in previous table for examples.

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op isan IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression isany IDL
expression, produces the same result as the statement:

A = A op (expression)

Application Programming Assignment and Compound Assignment

236 Chapter 12: Expressions and Operators

The difference is that the statement using the compound operator makes more
efficient use of memory, because it performs the operation on the target variable A in
place. In contrast, the statement using the simple operators makes a copy of the
variable A, performs the operation on the copy, and then assigns the resulting value
back to A, temporarily using extra memory.

Note that the statement:
A op= expression
isidentical to the IDL statement:
A = TEMPORARY (A) op (expression)

which uses the TEMPORARY function to avoid making a copy of the variable A.
While thereis no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

Thefirst statement assigns the value 23 to a variable named AAND. The second
statement performsthe AND operation between A and 23, storing the result back into
the variable A.

Compound operators that do not involve IDL keywords (+=, for example) do not
require whitespace in order to be properly parsed by IDL, athough such whitespace
is recommended for code readability. That is, the statements

A+= 23
A += 23

areidentical, but the latter is more readable.

Assignment and Compound Assignment Application Programming

Chapter 12: Expressions and Operators

Other Operators

237

The following operators (onthe[], (), ?: and -> operators) are used when working
with arrays, controlling the order of operations, creating conditional expressions, or
invoking an object method.

Operator

Description

Examples

[]

Array concatenation

The expression [A, B] isan
array formed by
concatenating A and B,
which can be scalars or
arrays, along the first
dimension.

To concatenate second and
third levels, nest the brackets;
[[1,2],[3,4]] isa2-element by
2-element array with the first
row containing 1 and 2 and
the second row containing 3
and 4. Operands must have
compatible dimensions; all
dimensions must be equal
except the dimension that is
to be concatenated, e.g.,
[2NTARR(2,2)] are
incompatible.

See Chapter 15, “Arrays’ for
more information.

Define C as three-point vector:
c=1[0, 1, 3]

Add 5 to the end of C:

PRINT, [C, 5]
IDL Prints: 0 1 3 5

Insert -1 at the beginning of C:

PRINT, [-1, C]

IDL Prints: -1 0 1 3
Plot ARR2 appended to ARRL.
[ARR],

PLOT, ARR2]

Define a 3x3 matrix.

KER = [[1,2,1],
[1,2,11]

[2,4,2], $

Note - Array concatenationisa
relatively inefficient operation, and
should only be performed once for a
given set of dataif possible.

Enclose array subscripts

Note - See “Array Subscript
Syntax: [] vs. ()" on

page 307 for additional
details.

A= [2, 1, 5]
Print the 3rd element in A:

PRINT, A[2]

IDL Prints: 5

Application Programming

Table 12-8: Other Operators

Other Operators

238

Chapter 12: Expressions and Operators

Operator Description Examples
() Group expressionsto control | PRINT, 3 + 4 * 2 ~ 2 /2
order of evaluation or IDL Prints: 11
enclose function parameter PRINT, (3 + (4 * 2) ~ 2 / 2)
lists IDL Prints: 35
Note - See “ Operator Enclose function argument lists:
Precedence” on page 240 for | gry(anc * p1/180.)
details on order of evaluation
? Conditional expression For
Provides away to write value = exprl ? expr2 : expr3
simple constructionsof the | gypr1 is evaluated first. If exprlis
IF..THEN...ELSE statement | {,g, then value = expr2. If exprlis
in expression form. false, value = expr3.
See “Working with A=6 & B=4
Conditional Expressions’
below. Set Z to the greater of A and B:
Z = (AGT B) ? A : B
PRINT, Z
IDL Prints: 6
-> Method invocation oWindow->Draw

Calls an object method. See
“Acting on Objects Using
Methods” (Chapter 1, Object
Programming) for more
information.

where oWindow is an IDLgrWindow
object and braw isthe object method.

Table 12-8: Other Operators (Continued)
Working with Conditional Expressions

The conditional expression—written with the ternary operator ?—has the lowest
precedence of all the operators. It provides away to write simple constructions of the
IF...THEN...EL SE statement in expression form. In the following example, Z
receives the larger of the values contained by A and B:

IF (A GT B)

Other Operators

THEN Z =

A ELSE Z = B

Application Programming

Chapter 12: Expressions and Operators 239

This statement can be written more concisely using a conditional expression:
Z = (AGT B) ? A : B

The general form of a conditional expressionis:
exprl ? expr2 : expr3

The expression exprl is evaluated first. If exprlistrue, then the expression expr2 is
evaluated and set as the value of the conditional expression. If exprlisfalse, expr3is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3 isevaluated, based on the result of exprl. (See " Definition of True and False”
on page 136 for details on how the “truth” of an expression is determined.)

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around expr 1. However, parentheses are often used in this situation, as
they enhance the readability of the expression.

Application Programming Other Operators

240

Operator Precedence

Chapter 12: Expressions and Operators

The following table lists IDL’s operator precedence. Operators with the highest
precedence are evaluated first. Operators with equal precedence are evaluated from
left to right.

Note

See “Efficiency and Expression Evaluation Order” on page 243 for information on
creating efficient statements.

Operator Precedence

Priority Operator
First (highest) () (parentheses, to group expressions)
[] (brackets, to concatenate arrays)
Second . (structure field dereference)
[] (brackets, to subscript an array)
() (parentheses, used in afunction call)
Third * (pointer dereference)
~ (exponentiation)
++ (increment)
-- (decrement)
Fourth * (multiplication)

and #4# (matrix multiplication)

/(division)

MOD (modulus)

Table 12-9: Operator Precedence

Application Programming

Chapter 12: Expressions and Operators 241

Priority Operator

Fifth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (bitwise negation)

~ (logical negation)

Sixth EQ (equality)

NE (not equal)

LE (lessthan or equal)

LT (lessthan)

GE (greater than or equal)

GT (greater than)

Seventh AND (bitwise AND)

OR (bitwise OR)

XOR (bitwise exclusive OR)
Eighth && (logical AND)

| | (logical OR)
Ninth ?. (conditional expression)

Table 12-9: Operator Precedence (Continued)

Note
Thereisalso adatatype hierarchy that affectsthe result of mathematical operations.
See “Data Type and Structure of Expressions’ on page 250 for details.

The effect of a given operator is based on both position and the rules of operator
precedence. This concept is shown by the following examples.

A =4+ 5 *2

Application Programming Operator Precedence

242

Chapter 12: Expressions and Operators

A isequal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default eval uation.

A= (4 +5) *2

In this case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parenthesesis evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A=6/2*3
In this case, A equals 9, since the division operator is to the |eft of the multiplication
operator. The subexpression 6 / 2 isevaluated before the multiplication is done,
even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A=6/ (2% 3)
In this case, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some exampl es of
expressions are provided in the following table.

Expression Value

A+1 The sum of A and 1.

A<2+1 The smaller of A or two, plus one.

A<2*3 The smaller of A and six, since* has
higher precedence than <.

2* SQRT(A) Twice the square root of A.

A + 'Thursday' The concatenation of the strings A
and “Thursday.” An error resultsif A
isnot astring

Table 12-10: Examples of Expressions

Operator Precedence Application Programming

Chapter 12: Expressions and Operators 243

Efficiency and Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A isan array:

; Scale A from 0 to 16.
B=2A*16. / MAX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operationsrequired is
twice the number of elementsin A. A much faster way of computing the same result
isused in the following statement:

; Scale A from 0 to 16 using only one array operation.
B =A* (16./MAX(A))

or

; Operators of equal priority are evaluated from left to right.
; Only one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
statements:

A = RANDOMU (seed, 512, 512)
tl = SYSTIME(1l) & B = A*16./MAX(A) & t2 = SYSTIME(1l)

PRINT, 'Time for inefficient calculation: ', t2-tl
t3 = SYSTIME(1l) & B = 16./MAX(A)*A & t4d = SYSTIME(1)
PRINT, 'Time for efficient calculation: ', t4-t3

Application Programming Operator Precedence

244 Chapter 12: Expressions and Operators

Operator Precedence Application Programming

Chapter 13

Working with Data

In IDL

The following topics are covered in this chapter:

DataTypes ... viiiiiiii i 246
Data Type and Structure of Expressions .. 250
Date/TimeData 253
Defining and Using Constants 257

Application Programming

Accuracy and Floating Point Operations . 264

Type Conversion Functions 267
Variables 270
System Variables 272

245

246

Chapter 13: Working with Data in IDL

Data Types

The IDL language is dynamically typed. This means that an operation on avariable
can change that variable's type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision. For example, if an integer variable is added to afloating-point variable, the
result will be afloating-point variable. See “ Data Type and Structure of Expressions’
on page 250

Note
See “Returning Type and Size Information” (Chapter 4, Using IDL) for information
on how to determine the data type of an array.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to a variable is determined either by the syntax used when
creating the variable, or as a result of some operation that changes the type of the
variable. IDL’s basic datatypes are discussed in more detail beginning with “ Defining
and Using Constants’ on page 257

Table 13-1 lists IDL's basic data types, provides examples of how to explicitly create
avariable of each type, and list the routines used to create variables and arrays of
each type.

Data Type Description Creation Routines

Byte

An 8-bit unsigned integer a = 5B BYTE

ranging in value from 0 to BYTARR
255. Pixelsin images are a = BYTE(5)
commonly represented as

byte data.
Integer A 16-bit signed integer b=0 FIX
ranging from —32,768 to INTARR
+32,767. b =08
b = FIX(0)
Table 13-1: Data Types
Data Types Application Programming

Chapter 13: Working with Data in IDL

247

Data Type Description Creation Routines

Unsigned A 16-bit unsigned integer 0U UINT

I nteger ranging from 0O to 65535

€g ging UINT (0) UINTARR

Long A 32-bit signed integer 0L LONG
ranging in value from LONARR
approximately minus two LONG (0)
billion to plus two billion.

Unsigned Long | A 32-bit unsigned integer 0UL ULONG
ranging in value from O to ULONARR
approximately four billion. ULONG (0)

64-bit Long A 64-bit signed integer OLL LONG64
ranging in value from — LONG64ARR
9,223,372,036,854,775,808 LONG64 (0)
to
+9,223,372,036,854,775,80
7.

64-bit Unsigned | A 64-bit unsigned integer OULL ULONG64

Long ranging in value from 0 to ULONG4ARR
18,446,744,073,709,551,61 ULONG64 (0)

5.

Floating-point A 32-bit, single-precision, 0.0 FLOAT
floating-point number in FLTARR
the range of £10%8, with FLOAT(0)
approximately six or seven
decimal places of
significance.

Double- A 64-bit, double-precision, 0.0D DOUBLE

precision floating-point number in DBLARR
the range of £10%%8 with DOUBLE (0)
approximately 14 decimal
places of significance.

Table 13-1: Data Types (Continued)
Application Programming Data Types

248 Chapter 13: Working with Data in IDL
Data Type Description Creation Routines
Complex A real-imaginary pair of j=5 COMPLEX
single-precision, floating- | COMPLEX (1.0, 0.0) COMPLEXARR
point numbers. Complex | = COMPLEX(L,0)
numbers are useful for ’ '
signal processing and
frequency domain filtering.
Double- A real-imaginary pair of k=% DCOMPLEX
precision double-precision, floating- | PCOMPLEX (1.0, 0.0) | 5~~Mvipl EXARR
complex point numbers.
String A sequence of characters, 1 = 'Hello' STRING
from O to 2147483647 (2.1 STRARR
GB) charactersin length, émini@([72B, 101B, $
whichisinterpreted astext. | Jggr 1085, 1118])

Table 13-1: Data Types (Continued)

Note
In previous versions of IDL prior to version 4, the combination of a double-
precision number and a complex number in an expression resulted in a single-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex datatype. Starting with IDL version 4, this combination
resultsinaDCOMPLEX number.

Precision of Floating-Point Numbers

Data Types

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, thisis something you
should consider.

For more information on floating-point mathematics, see Chapter 9, “Mathematics”
(Using IDL). For information on your machine's precision, see “MACHAR” (IDL
Reference Guide).

Application Programming

Chapter 13: Working with Data in IDL 249

Complex Data Types
e Structures: Aggregations of data of various types. Structures are discussed in
Chapter 16, “ Structures’.

» Pointers: A reference to adynamically-allocated heap variable. Pointers are
discussed in Chapter 17, “Pointers’.

* Object References: A referenceto a special heap variable that contains an IDL
object structure. Object references are discussed in Chapter 13, “ Creating
Custom Objectsin IDL” (Object Programming).

Application Programming Data Types

250 Chapter 13: Working with Data in IDL

Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The structure of an
expression determines whether the expression can represent asingle value or multiple
values. IDL expressions can be either scalars (with exactly one value) or arrays (with
one or more values). The data type and structure of an expression depend on the data
type and structure of its operands.

Tip
You can determine the data type of an expression by returning the type code of the
expression. See “Returning Type and Size Information” (Chapter 4, Using IDL) for

more information.

Hierarchy of IDL Data Types

Unlike many other languages, the data type and structure of most expressionsin IDL
cannot be determined until the expression is evaluated. Because of this, care must be
taken when writing programs. For example, avariable can be a scalar byte variable at
one point in a program while at alater point the same variable can hold a complex
array. See “Expression Type” on page 251 for information on how the hierarchy of
datatypes affect the outcome of mathematical operations. See “ Expression Structure”
on page 252 for information on how the results of scalar and array operations are
evaluated. The twelve atomic data typesin decreasing order of precedence are as
follows:

Double-precision complex floating-point
Complex floating-point

Double-precision floating-point

Floating-point

Signed and unsigned 64-bit integer

Signed and unsigned longword (32-bit) integer
Signed and unsigned (16-bit) integer

Byte

String

Data Type and Structure of Expressions Application Programming

Chapter 13: Working with Data in IDL 251

Expression Type

IDL attempts to evaluate expressions containing operands of different data typesin
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variableisfirst
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to a complex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of datatypes. See “Hierarchy of IDL Data
Types’ on page 250 for the order of precedence.

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assumethe variable A isan integer variable with avalue
of 5. The following expressions yield the indicated results:

; Integer division is performed. The remainder is discarded.
A/ 2 =2

; The value of A is first converted to floating.
A/ 2. =2.5

; Integer division is done first because of operator precedence.
; Result is floating point.
A/ 2+ 1. = 3.

; Division is done in floating, then the 1 is converted to floating
; and added.
A/ 2. +1 =23.5

; Signed and unsigned integer operands have the same precedence, so
; the left-most operand determines the type of the result as signed
; integer.

A + 5U = 10

; As above, the left-most operand determines the result type

; between types with the same precedence
50 + A = 10U

Application Programming Data Type and Structure of Expressions

252

Chapter 13: Working with Data in IDL

Note

When other data types are converted to complex type, the real part of the resultis
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric datatype, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 isfirst converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.

Expression Structure

IDL expressions can contain operandsthat are either scalars or arrays, just asthey can
contain operands with different types. Conversion of variables between the scalar and
array formsisindependent of data type conversion. An expression will yield an array
result if any of its operandsis an array, as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Table 13-2: Structure of Expressions

See “Operations on Array Expressions’ on page 301 for more information on
working with arrays as operands in an expression.

Data Type and Structure of Expressions

Application Programming

Chapter 13: Working with Data in IDL 253

Date/Time Data

Dates and times are among the many types of information that numerical datacan
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian dateis
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows afew examples of calendar dates and their
corresponding Julian dates.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0
January 2, 4713 B.C.E., at 12pm 1
January 1, 2000 at 12pm 2451545

Table 13-3: Example Julian Dates

Julian dates can also include fractional portions of aday, thereby incorporating hours,
minutes, and seconds. If the day fraction isincluded in a Julian date, it is represented
as adouble-precision floating point value. The day fraction is computed as follows:

hour + minute+ seconds

dayFraction =
ayFraction = 54 1440.d | 86400.d

One advantage of using Julian dates to represent dates and timesisthat a given
date/time can be stored within asingle variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
datesjust asfor any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Application Programming Date/Time Data

254 Chapter 13: Working with Data in IDL

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision istypically limited by the datatype of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a dataformat for date/time data:

» Time valuesthat require a high precision, and that span arange of afew days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

» Datevaluesthat do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of thisformat is 1 day.

e Datevalues whereit is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian datesislimited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm:
julian = JULDAY(1,1,2000,12,15,0)

; Get machine characteristics:
machine = MACHAR (/DOUBLE)

; Multiply by floating-point precision:
precision = julian*machine.eps

; Convert to seconds:
PRINT, precision*86400d0

Date/Time Data Application Programming

Chapter 13: Working with Data in IDL 255

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent value corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
sizefor agiven date/time unit. Unlike the other array generation routinesin IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/timeis
originally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for afull year:

date_time = TIMEGEN(12, UNIT = 'Months', $
START = JULDAY (3, 1, 2000))

wherethe UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000. The results of the above call
to TIMEGEN can be output using either of the following methods:

1. Using the CALDAT procedure to convert the Julian dates to calendar dates:

CALDAT, date_time, month, day, year

FOR i = 0, (N_ELEMENTS(date_time) - 1) DO PRINT, $
month([i], day[i], year[i], $
FORMAT = ' (i2.2, "/", i2.2, "/, i4)"

2. Using the calendar format codes:
PRINT, date_time, format = ' (C(CMOI2.2, "/", CDI2.2, "/", CYI))'
The resulting calendar dates are printed out as follows:

03/01/2000
04/01/2000
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001
02/01/2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, seethe“TIMEGEN" (IDL Reference Guide).

Application Programming Date/Time Data

256 Chapter 13: Working with Data in IDL

Date/Time Data Examples

You can display date/time data on IDLgrAXxis objects (through the TICKFORMAT
property) plots, contours, and surfaces by setting tick mark attributes. See
“Displaying Date/Time Data on Axis Objects’ (Chapter 5, Object Programming) and
theroutines LABEL _DATE and “CONTOUR” (IDL Reference Guide) routine for
examples.

Date/Time Data Application Programming

Chapter 13: Working with Data in IDL 257

Defining and Using Constants

The syntax of a constant determinesits type. Efficiency is adversely affected when
the type of a constant must be converted during expression evaluation. Consider the
following expression:

A+ 5

If the variable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

Thetype of a constant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A isabyte array, the result of the expression A + 5B isa
byte array, while A + 5 yields a 16-hit integer array.

This section discusses details of IDL data typesincluding the following:
e “Integer Constants’ below
¢ “Floating-Point and Double-Precision Constants’ on page 260
e “Complex Constants’ on page 262
e “String Constants’ on page 262

Application Programming Defining and Using Constants

258 Chapter 13: Working with Data in IDL

Integer Constants

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B
I nteger nornS 12,12S5,425,425S
Unsigned Integer | nU or nUS 12U,12US
Long nL 12L, 94L
Unsigned Long nuL 12UL, 94UL
64-bit Long nLL 12LL, 94LL
Unsigned 64-bit nuULL 12ULL, 94ULL
Long

Hexadecimal | Byte 'n'XB '2E'XB
Integer 'n'X or 'n'XS 'OF'X, 'A2'XS
Unsigned Integer | 'n'XU or 'n'XUS | 'OF XU, 'A2’XUS
Long n'XL 'FF'XL
Unsigned Long 'n'XUL "FF XUL
64-bit Integer 'n'XLL "FF XLL
Unsigned 64-bit n'XULL 'FFXULL
I nteger

Table 13-4: Integer Constants

Defining and Using Constants Application Programming

Chapter 13: Working with Data in IDL 259
Radix Type Form Examples
Octal Byte "nB "12B
I nteger "n "12
n'O or 'n'OS '377'0, '234'0S
Unsigned Integer | "nU "12U
n'OU or 'n'OUS '377'0U, '234'0US
Long "nL "12L
n'OL 77r7TToL
Unsigned Long "nUL "12UL
'nN'OUL 7T77T77TTOUL
64-bit Long "nLL "12LL
n'OLL T77T77TTOLL
Unsigned 64-bit "nULL "12ULL
Long n'OULL 7T77r77TT'OULL

Table 13-4: Integer Constants (Continued)

Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.

Type Absolute Value Range
Byte 0-255
Integer 0-32767
Unsigned Integer 0-65535
Long 0-2%.1
Unsigned Long 0-2%.1

Table 13-5: Absolute Value Range Of Integer Constants

Application Programming

Defining and Using Constants

260 Chapter 13: Working with Data in IDL

Type Absolute Value Range
64-bit Long 0-263_1
Unsigned 64-bit Long 0-264-1

Table 13-5: Absolute Value Range Of Integer Constants (Continued)

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword becauseit istoo large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Unacceptable Reason Acceptable
256B Too large, limit is 255 255B
'123L Missing apostrophe '123'L
'03G'x Invalid character "129
'27'L No radix '27'0L
650X L No apostrophes '650'X L

"129 9isaninvalid octal digit "124

Table 13-6: Examples of Integer Constants
Floating-Point and Double-Precision Constants
Floating-point and double-precision constants can be expressed in either

conventional or scientific notation. Any numeric constant that includes a decimal
point is afloating-point or double-precision constant.

Defining and Using Constants Application Programming

Chapter 13: Working with Data in IDL

261

The syntax of floating-point and double-precision constantsis shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for

example, E-2.
Form Example

n. 102.

.n 102

n.n 10.2

nE 10E

NESX 10E5

N.EsX 10.E-3

.NESX AE+12
N.NESX 2.3E12

Table 13-7: Syntax of Floating-Point Constants

Double-precision constants are entered in the same manner, replacing the & with ap.
For example, 1.0D0, 1D, and 1 . D each represent a double-precision numeral 1.

Note

Thenk and np forms are shorthand for ne0 and npo, and are usually used to
indicate the type of the number, either single or double precision. When using these
formsin expressions, be sure to leave a space after the £ or D if the next term has a

+or - sign.

For example, the expression 1D+45 is evaluated as 1x10* in double precision,
while 1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write thisexpressionis 1p + x (note the spaces).

Application Programming

Defining and Using Constants

262

Chapter 13: Working with Data in IDL

Complex Constants

Complex constants contain areal and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which caseit is assumed to be zero. The form of acomplex constant is as follows:

COMPLEX (REAL_PART, IMAGINARY_PART)
or
COMPLEX (REAL_PART)

For example, COMPLEX(1,2) is acomplex constant with areal part of one, and an
imaginary part of two. COMPLEX(1) is acomplex constant with areal part of one
and a zero imaginary component. To extract the real part of a complex expression,
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
quotes (). The value of the constant is simply the characters appearing between the
leading delimiter (* or ~~) and the next occurrence of the same delimiter. A double
apostrophe (' ') or quote (*) is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g., 'Don' 't ' returnsbon' t. Thissyntax often can be
avoided by using adifferent delimiter; e.g., “Don't” instead of 'Don' 't'. The
following tableillustrates valid string constants.

Expression Resulting String

'Hi there' Hi there

"Hi there" Hi there

" Null Sring

"I'm happy" I’'m happy

‘I"'m happy’ I"m happy

‘counter counter

129 129

Table 13-8: Examples of Valid String Constants

Defining and Using Constants Application Programming

Chapter 13: Working with Data in IDL 263

The following table illustrates invalid string constants. In the last entry of the table,
"129" isinterpreted as an illegal octal constant. Thisis because a quote character
followed by adigit from O to 7 represents an octal numeric constant, not a string, and
the character 9 isan illegal octal digit.

String Value Unacceptable Reason
Hi there 'Hi there" Mismatched delimiters
Null String ' Missing delimiter
I’m happy 'I'm happy' Apostrophein string
counter "counter” Double apostrophe is null string
129 "129" Illegal octal constant

Table 13-9: Examples of Invalid String Constants

Whilean IDL string variable can hold up to 64 Kbytes of information, the buffer than
handles input at the IDL command prompt islimited to 255 characters. If for some
reason you need to create a string variable longer than 255 characters at the IDL
command prompt, split the variable into multiple sub-variables and combine them
with the “+" operator:

var = varl+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

Note
See Chapter 14, “ Strings” for details on working with strings.

Application Programming Defining and Using Constants

264 Chapter 13: Working with Data in IDL

Accuracy and Floating Point Operations

In a computer, real numbers are represented with finite precision. While in most
cases it is safe to assume that the result of an arithmetical operation done on your
computer is correct, it isimportant to remember that this finite-precision
representation leads to unavoidable errors, especially when floating-point numbers,
which are digital approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider the
following:

» Hoating-point numbers must be made to fit in a space (a string of binary digits
in acomputer’s memory register) that can only hold an integer and a scaling
factor.

* Hoating-point numbers are represented by strings of alimited number of bits,
but represent numbers much larger or smaller than that number of digits can be
made to express.

In other words, floating-point values are finite-precision approximations of infinitely
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. Thisis the smallest number that, when added to 1.0, produces a floating-
point result that is different from 1.0.

A useful way of thinking about machine accuracy isto consider it to be the fractional
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit of the
floating-point manti ssas—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissais rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduces an
error at least equal to the machine accuracy into the result. Thiserror isknown as
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involving n arithmetic operations might have atotal roundoff error
between SQRT(n) times the machine accuracy and n times the machine accuracy.

Accuracy and Floating Point Operations Application Programming

Chapter 13: Working with Data in IDL 265

Note that the machine accuracy is not the same as the smallest floating-point number
your computer can represent. To find these and other machine-dependent quantities
for your own computer, see MACHAR in the IDL Reference Guide.

Truncation Error

Another type of error is also present in some numerical algorithms. Truncation error
is the error introduced by the process of numerically approximating a continuous
function by evaluating it at a finite number of discrete points. Often, accuracy can be
increased (again at some cost of computation time) by increasing the number of
discrete points evaluated.

For example, consider the process of calculating

2 3 n
= 1+x+ X+ X+ X
21 3! n!
Obviously, the answer becomes more accurate as n approaches infinity. When
performing the actual computation, however, a cutoff value must be specified for n.
Increasing n reduces truncation error at the expense of computational effort.

Several IDL routines allow you to specify cutoff valuesin such cases (see, for
example, INT_2D of the IDL Reference Guide). When writing your own routinesin
IDL, it isimportant to consider this trade-off between accuracy and computational
time.

Routines for Mathematical Error Assessment

Below isabrief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in the IDL Reference
Guide.

CHECK_MATH | Returns and clears accumulated math error status.

FINITE Returns Trueif its argument isfinite.

MACHAR Determines and returns machine-specific parameters affecting
floating-point arithmetic.

Table 13-10: Mathematical Error Assessment Routines in IDL

See “Math Errors’ on page 155 for more information.

Application Programming Accuracy and Floating Point Operations

266 Chapter 13: Working with Data in IDL

Accuracy and Floating Point Operation References

Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch. Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Accuracy and Floating Point Operations Application Programming

Chapter 13: Working with Data in IDL 267

Type Conversion Functions

IDL allows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output datain a mode compatible with
other programs, etc. For alist of type conversion functions, see “Type Conversion”
(IDL Quick Reference). Conversion functions operate on data of any structure:
scalars, vectors, or arrays, and variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

; Define A. Note that the value of A is outside the range
; of integers, and is automatically created as a longword
; integer by IDL.

A = 33000

;B 1s silently truncated.

B = FIX(A)

PRINT, B

IDL prints:
-32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See “Math Errors’ on page 155, for more
information.

Converting Strings

When converting from a string argument, it is possi bl e that the string does not contain
avalid number and no conversion is possible. The default action in such casesisto
print awarning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jJumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. Theresult of the BY TE function applied to astring or string array isabyte array
containing the ASCII codes of the characters of the string. Converting a byte array

Application Programming Type Conversion Functions

268 Chapter 13: Working with Data in IDL

with the STRING function yields astring array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TY PE keyword to the FIX function allowstype conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TY PE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D

; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA

; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value:
; Convert the user value to the type stored in typeA:

ConvUserVal = FIX(UserVal, TYPE=typeA)

PRINT, ConvUserVal
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results
FLOAT(1) 1.0
FIX(1.3+1.7) 3
FIX(1.3) + FIX(1.7) 2
FIX (1.3, TY PE=5) 1.3000000

Table 13-11: Uses of Type Conversion Functions

Type Conversion Functions Application Programming

Chapter 13: Working with Data in IDL 269

Operation Results
BYTE(L.2) 1
BYTE(-1) 255b (Bytes are modul o 256)
BYTE('01ABC') [48b, 49b, 65b, 66b, 671]
STRING([65B, 66B, 67B]) 'ABC’
FLOAT(COMPLEX(L, 2)) 1.0
COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Table 13-11: Uses of Type Conversion Functions (Continued)

Application Programming Type Conversion Functions

270

Chapter 13: Working with Data in IDL

Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL datatypes. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and a type.

Structure

A variable can contain a single value (a scalar) or anumber of values of the same
type (an array) or data entities of potentially differing type and size (a structure).
Strings are considered as single values, and a string array contains a number of
variable-length strings.

In addition, a variable can associate an array structure with afile; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” (IDL
Reference Guide).

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When a variable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previoudy assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.

Application Programming

Chapter 13: Working with Data in IDL 271

Variable Names

IDL variables are named by identifiers. Each identifier must begin with a letter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after thefirst 128 are ignored. Names are case insensitive. Lowercase |etters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptabl e variable names.

Unacceptable Reason Acceptable
EOF Conflicts with function name | A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE
AB@ Illegal character ABCS$DEF
abcd Embedded space My_variable

Table 13-12: Unacceptable and Acceptable IDL Variable Names

Tip
Usethe IDL_VALIDNAME routine to determine whether agiven string is
acceptable asan IDL variable name.

Warning
A variable cannot have the same name as afunction (either built-in or user-defined)
or areserved word (see “Reserved Words' (IDL Reference Guide)). Giving a
variable such a name results in a syntax error or in “hiding” the variable.

Application Programming Variables

272 Chapter 13: Working with Data in IDL

System Variables

System variables are a special class of predefined variables available to al program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSY SV
procedure.

System variables are discussed in Appendix D, “System Variables’ (IDL Reference
Guide).

System Variables Application Programming

Chapter 14

Strings

The following topics are covered in this chapter:

Overviewof Strings 274
String Operations 275
Non-string and Non-scalar Arguments ... 276
String Concatenation 277
Using STRINGto Format Data 278
Byte Argumentsand Strings 280
CaseFolding 282

Application Programming

Whitespace oL 283
Finding theLengthof aString 285
Substrings 286
Splitting and Joining Strings 289
Comparing Stringsoov i 290
Non-Printing Characters. 294
Learning About Regular Expressions ... 295

273

274 Chapter 14: Strings

Overview of Strings

An DL string is a sequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and thereisno
need to declare the maximum length of a string prior to using it. Aswith any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

Note
This chapter covers operations on strings. For information about using the * and
“characters to create valid strings, see “ String Constants” on page 262.

A Note About the Examples

In some of the examples in this chapter, it is assumed that a string array hamed
TREES exists. TREES contains the names of seven trees, one name per el ement, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak',6 $
'Pine', 'Walnut']

Executing the statement,
PRINT, '>' + trees + '< '
results in the following output:

>Beech< >Birch< >Mahogany< >Maple< >0Oak< >Pine< >Walnut<

Overview of Strings Application Programming

Chapter 14: Strings

275

String Operations

IDL supports several basic string operations, as described below:

Operation

Description

Concatenation

The Addition operator, “+”, can be used to concatenate strings
together. See “ String Concatenation” on page 277.

Formatting Data

The STRING function is used to format datainto astring. The
READS procedure can be used to read values from a string
into IDL variables. See “Using STRING to Format Data” on
page 278.

Case Folding The STRLOWCASE function returns a copy of its string
argument converted to lowercase. Similarly, the STRUPCA SE
function convertsits argument to uppercase. See “ Case
Folding” on page 282.

White Space The STRCOMPRESS and STRTRIM functions can be used to

Removal eliminate unwanted white space (blanks or tabs) from their
string arguments. See “Whitespace” on page 283.

Length The STRLEN function returns the length of its string
argument. See “Finding the Length of a String” on page 285.

Substrings The STRPOS, STRPUT, and STRMID routines locate, insert,
and extract substrings from their string arguments. See
“Substrings’ on page 286.

Splitting and The STRSPLIT function is used to break strings apart, and the

Joining Strings

STRJOIN function can be used to and glue strings together.
See “ Splitting and Joining Strings” on page 289

Comparing
Strings

The STRCMP, STRMATCH, and STREGEX functions
perform string comparisons. See “ Comparing Strings’ on
page 290.

Application Programming

Table 14-1: String Operations

String Operations

276 Chapter 14: Strings

Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument — the string on which they act. If the argument is not of type string, IDL
convertsit to type string using the same default formatting rules that are used by the
PRINT/PRINTF or STRING routines. The function then operates on the converted
result. Thus, the IDL statement,

PRINT, STRLEN(23)
returns the result
8

because the argument “23” isfirst converted to the string ' 23 that happens to
be a string of length 8.

If theargument is an array instead of ascalar, the function returns an array result with

the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

; Get an uppercase version of TREES.
A = STRUPCASE (trees)

; Show that the result is also an array.
HELP, A

; Display the original.
PRINT, trees

; Display the result.
PRINT, A
produce the following output:

A STRING = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut
BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptionsin the IDL Reference Guide.

Non-string and Non-scalar Arguments Application Programming

Chapter 14: Strings 277

String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A = 'This is' + ' a concatenation example.'
PRINT, A

results in the following output:
This is a concatenation example.
Strings can also be broken across code lines:

Print, "This is a multi-line " $
+ "string concatenation example."

results in the following output:
This is a multiline string concatenation example.

Thefollowing IDL statements build a scalar string containing a comma-separated list
of the names found in the TREES string array:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak',6 $
'Pine', 'Walnut']

; Use REPLICATE to make an array with the correct number of commas
; and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS (trees)-1), '']

; Show the resulting list.
PRINT, names

Running the above statements results in the following output:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut

Application Programming String Concatenation

278 Chapter 14: Strings

Using STRING to Format Data

The STRING function has the following form:
S = STRING(Expression,, ..., Expression,))

It convertsits parametersto characters, returning the result as a string expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. Aswith PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
freeformat and explicitly formatted input/output (“ Free Format 1/O” on page 385) for
details of dataformatting. For more information on the STRING function, see
“STRING” (IDL Reference Guide).

Asasimple example, the following IDL statements:

; Produce a string array.
A = STRING (FORMAT=' ("The values are:", /, (I))', INDGEN(5))

; Show its structure.
HELP, A

; Print the result.
FOR I = 0, (N_ELEMENTS(A)-1) DO PRINT, A[I]

produce the following output:

A STRING = Array(6)
The values are:
0

B w N

Note
When you use vector, TrueType, and some device fonts, text strings can include
embedded formatting commands that facilitate subscripting, superscripting, and
equation formatting. See “Embedded Formatting Commands’ (Appendix H, IDL
Reference Guide).

Using STRING to Format Data Application Programming

Chapter 14: Strings 279

Reading Data from Strings

The READS procedure performs formatted input from a string variable and writesthe
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

Thisroutine is useful when you need to examine the format of a datafile before
reading the information it contains. Each line of the file can be read into astring using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS’ (IDL Reference Guide) for more details.

Application Programming Using STRING to Format Data

280 Chapter 14: Strings

Byte Arguments and Strings

There is a close association between a string and a byte array—a string is ssimply an
array of bytesthat is treated as a series of ASCI| characters. Therefore, itis
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])
produces the output below:
Hello

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Itsfirst element is 72B which isthe ASCI|
code for “H,” the second is 101B which isan ASCII “e,” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte datain
the usual way.

Asdiscussed in Chapter 18, “Files and Input/Output”, it is easier to read fixed-length
string data from binary filesinto byte variablesinstead of string variables. Therefore,
it is convenient to read the data into a byte array and use this special behavior of
STRING to convert the data into string form.

Another use for this feature is to build strings that contain nonprintable charactersin
away such that the character is not entered directly. Thisresultsin programsthat are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
areimplemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRINT, STRING([65B, 66B, 0B, 67B])
produces the following output:

AB

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.

Byte Arguments and Strings Application Programming

Chapter 14: Strings 281

Note
The BY TE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in a byte array containing
the same byte values as its string argument. For additional information about the
BY TE function, see “ Type Conversion Functions’ on page 267.

Application Programming Byte Arguments and Strings

282 Chapter 14: Strings

Case Folding

The STRLOWCASE and STRUPCA SE functions are used to convert arguments to
lowercase or uppercase. Where String is the string to be converted, they have the
form:

S = STRLOWCASE(Sring)
S = STRUPCASE(Sring)

The following IDL statements generate a table of the contents of TREES showing
each namein its actual case, lowercase and uppercase:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak',6 $
'Pine', 'Walnut']

FOR I=0, 6 DO PRINT, trees[I], STRLOWCASE (trees[I]),$
STRUPCASE (trees[I]), FORMAT = '(A, T15, A, T30, A)'

The resulting output from running this statement is as follows:

Beech beech BEECH

Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions.

; Create a string variable to hold the response.
answer = ''

; Ask the question.

READ, 'Answer yes Or no: ', answer

IF (STRUPCASE (answer) EQ 'YES') THEN $
; Compare the response to the expected answer.
PRINT, 'YES' ELSE PRINT, 'NO'

Case Folding Application Programming

Chapter 14: Strings 283

Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white

space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)
where String is the string to be compressed.

The default action is to replace each section of white space with a single space.

Setting the REMOVE_ALL keyword causes white space to be completely
eliminated. For example,

; Create a string with undesirable white space. Such a string might
; be the result of reading user input with a READ statement.
A =" This is a poorly spaced sentence.

; Print the result of shrinking all white space to a single blank.
PRINT, '>', STRCOMPRESS(A), '<'

; Print the result of removing all white space.
PRINT '>', STRCOMPRESS(A, /REMOVE_ALL), '<'

resultsin the output:

> This is a poorly spaced sentence. <
>Thisisapoorlyspacedsentence.<

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S = STRTRIM(Sring[, Flag])

where String is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag isO or is not present, trailing white spaceis
removed. If itis 1, leading white space is removed. Both trailing and |eading white
space are removed if Flag is equal to 2. For example:

; Create a string with unwanted leading and trailing blanks.

Application Programming Whitespace

284 Chapter 14: Strings

A = ' This string has leading and trailing white space '

; Remove trailing white space.
PRINT, '>', STRTRIM(A), '<'

; Remove leading white space.
PRINT, '>', STRTRIM(A,1), '<'

; Remove both.
PRINT, '>', STRTRIM(A,2), '<'

Executing these statements produces the output below.

> This string has leading and trailing white space<
>This string has leading and trailing white space <
>This string has leading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove |leading and trailing white space and shrink any white space in the middle
down to single spaces.

; Create a string with undesirable white space.
A = 'Yet another poorly spaced sentence. !

; Eliminate unwanted white space.
PRINT, '>' STRCOMPRESS (STRTRIM(A,Z2)), <!

Executing these statements gives the result below:

>Yet another poorly spaced sentence.<

Whitespace Application Programming

Chapter 14: Strings 285

Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:
L = STRLEN(Sring)

where Sring isthe string for which the length is required. For example, the following
Statement

PRINT, STRLEN('This sentence has 31 characters')
resultsin the output
31

whilethefollowing IDL statement printsthe lengths of all the names contained in the

array TREES.
; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

PRINT, STRLEN(trees)
The resulting output is as follows:

5 5 8 5 3 4 6

Application Programming Finding the Length of a String

286

Chapter 14: Strings

Substrings

IDL providesthe STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

Substrings

The STRPOS function is used to search for the first occurrence of asubstring. It has
the form

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appearsin the string “dog cat duck rabbit dog cat dog”:

PRO Animals

; The search string, "dog", appears three times.
animals = 'dog cat duck rabbit dog cat dog'

; Start searching in character position 0.
I =0

; Number of occurrences found.
cnt = 0

; Search for an occurrence.
WHILE (I NE -1) DO BEGIN
I = STRPOS (animals, 'dog', I)

IF (I NE -1) THEN BEGIN
; Update counter.
cnt = cnt + 1

;I ncrement I so as not to count the same instance of 'dog'
; twice.
I =TI+ 1

ENDIF
ENDWHILE

; Print the result.

PRINT, 'Found ', cnt, " occurrences of 'dog'"
END

Application Programming

Chapter 14: Strings 287

Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makesit easy to find
thelast occurrence of a substring within astring. In the following example, we search
for the last occurrence of the letter “1” (or “i”) in a sentence:

sentence 'IDL is fun.'

sentence STRUPCASE (sentence)

lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

Thisresultsin:
4

Note that although REVERSE SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where 0 is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedureis used to insert the contents of one string into another. It has
the form,

STRPUT, Destination, Source], Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position isthefirst character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwriteis started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “CAT” in the
string “dog cat duck rabbit dog cat dog”:

animals = 'dog cat duck rabbit dog cat dog'
;The string to search, "dog", appears three times.

;While any occurrence of "dog" exists, replace it.
WHILE (((I = STRPOS(animals, 'dog'))) NE -1) DO $
STRPUT, animals, 'CAT', I

;Show the resulting string.
PRINT, animals

Application Programming Substrings

288 Chapter 14: Strings

Running the above statements produces the result below.

CAT cat duck rabbit CAT cat CAT
Extracting Substrings

The STRMID function isused for extracting substrings from alarger string. It has the
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,
First_Character isthe starting position within Expression of the substring (the first
position is position 0), and Length is the length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

; String containing all the month names.
months = 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

; Extract each name in turn. The equation (I-1)*3 calculates the
; position within MONTH for each abbreviation

FOR I = 1, 12 DO PRINT, I, ' ', S

STRMID (months, (I - 1) * 3, 3)

The result of executing these statementsis asfollows:

1 JAN
2 FEB
3 MAR
4 APR
5 MAY
6 JUN
7 JUL
8 AUG
9 SEP
10 OoCT
11 NOV
12 DEC

Substrings Application Programming

Chapter 14: Strings 289
Splitting and Joining Strings

The STRSPLIT function is used to break apart astring, and the STRJOIN functionis
used to glue together separate strings into asingle string.

The STRSPLIT function uses the following syntax:
Result = STRSPLIT(String [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or aregular expression, asimplemented by the
STREGEX function.

The STRJOIN function uses the following syntax:
Result = STRIOIN(Sring [, Delimiter])

where String is the string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

strl = 'Hello Cruel World'

words = STRSPLIT(strl, ' ', /EXTRACT)

newwords=[words[0] ,words[2]]
PRINT, STRJOIN (newwords, ' ')

This code resultsin the following output:
Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space asin the above example, we could use adifferent delimiter as

follows:
strl = 'Hello Cruel World'
words = STRSPLIT(strl, ' ', /EXTRACT)
newwords=[words[0] ,words[2]]
PRINT, STRJOIN (newwords, ' Kind ')

This code results in the following output:

Hello Kind World

Application Programming Splitting and Joining Strings

290 Chapter 14: Strings
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N
Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only thefirst N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(Sringl, Sring2 [, N])

where Stringl and Sring2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOQ” requires the following steps:

A
B

'Moose''
'mO0'

C=STRMID(A,Q, 3)

IF (STRLOWCASE(C) EQ STRLOWCASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:
A='"'Moose'
B="mOO0"
IF (STRCMP(A,B,3, /FOLD_CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.

Comparing Strings Application Programming

Chapter 14: Strings 291

String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:
Result = STRMATCH(String, SearchString)
where String is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

B Description
Character
* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of

characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [isa!, any character not enclosed is matched. To
prevent one of these characters from acting as awildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a@' isthe same as"a").

Table 14-2: Wildcard Characters used by STRMATCH

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter wordsin astring array that begin with “f” or “F” and end
with“t” or “T":

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret',K 'fort']
PRINT, str[WHERE (STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

Thisresultsin:
foot Feet FAST fort
Example 2: Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret',K 'fort']

Application Programming Comparing Strings

292 Chapter 14: Strings

PRINT, str[WHERE (STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]
Thisresultsin:
foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “0” and “€” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret',K 'fort']

PRINT, str[WHERE (STRMATCH(str, 'fleo][eo]lt', /FOLD_CASE) EQ 1)]
Thisresultsin:

foot Feet

Example 4: Find al words beginning with “f” and ending with “t” whose second
character is not the letter “0”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret',K 'fort']
PRINT, str[WHERE (STRMATCH(str, 'f['o]*t', /FOLD_CASE) EQ 1)]

Thisresultsin:

Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “0” in between. Thiswould
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret',6 'fort']
PRINT, STREGEX(str, '~f[”o]l*t$', /EXTRACT, /FOLD_CASE)

This statement resultsin:
Feet FAST ferret

Note the following about this example:

e Unlikethe* wildcard character used by STRMATCH, the * meta character
used by STREGEX appliesto theitem directly on itsleft, whichinthiscaseis
[*o], meaning “any character except the letter ‘0’ ”. Therefore, [o]* means
“zero or more charactersthat are not ‘0’ ”, whereas the following statement
would find only words whose second character isnot “0”:

PRINT, str[WHERE(STRMATCH(str, 'f[!'o]*t', /FOLD_CASE) EQ 1)]

Comparing Strings Application Programming

Chapter 14: Strings 293

* Theanchors (* and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we |eft out the $ anchor, STREGEX would also return
“fat”, which isasubstring of “fate’.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which is why the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see “STREGEX” (IDL Reference Guide), and
for an introduction to regular expressions, see “Learning About Regular Expressions’
on page 295.

Application Programming Comparing Strings

294 Chapter 14: Strings

Non-Printing Characters

ASCII characters with value less than 32 or greater than 126 do not have printable
representations. Such characters can be included in string constants by specifying
their ASCII value as a byte argument to the STRING function.

For example, to represent the TAB character, use the expression
STRING (9B)

This syntax can be used when comparing strings or performing regular expression
matching. For example, to find the position of the first TAB character in a string:

pos = STREGEX (input_string, STRING (9b))
where input_string is a variable containing the string to be searched.

The following table lists the some ASCII characters you might commonly want to
represent as | DL strings.

ASCII Character Byte Value
Bell 7B
Backspace 8B
Horizontal Tab 9B
Linefeed 10B
Vertical Tab 11B
Formfeed 12B
Carriage Return 13B
Escape 27B

Table 14-3: Selected ASCII Characters
and Their Byte Values

For acomplete list, consult a standard ASCI| table.

Note
ASCII characters may have different effects (or no effect) on platformsthat do not
support ASCII terminal commands.

Non-Printing Characters Application Programming

Chapter 14: Strings 295

Learning About Regular Expressions

Regular expressions are avery powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940’s, their mathematical
foundation was established during the 1950'sand 1960’s. Their use has along history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

Thetopic of regular expressionsis avery large one, complicated by the arbitrary
differencesin the implementations found in various tools. Anything beyond an
extremely simplistic sketch is well beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as “Mastering Regular
Expressions’, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). Thefollowing isan abbreviated, simplified, and incompl ete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from | eft
to right. The matching is considered to be “greedy”, because at any given point, it
will always match the longest possible substring. For example, if aregular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “ meta characters’, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backdash character (e.g. *").

Application Programming Learning About Regular Expressions

296

Chapter 14: Strings

The meta characters are described in the following table:

Character

Description

The period matches any character.

[]

The open bracket character indicates a* bracket expression”,
which is discussed below. The close bracket character terminates
such an expression.

The backslash suppresses the special meaning of the character it
precedes, and turnsit into an ordinary character. Toinsert a
backslash into your regular expression pattern, use a double
backslash ("\V').

0

The open parenthesisindicates a“ subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters below are used to specify repetition. The
repetition is applied to the character or expression directly to the
left of the repetition operator.

Zero or more of the character or expression to theleft. Hence, 'a*"
means “zero or more instances of 'a' ”.

One or more of the character or expression to the left. Hence, 'a+'

means “one or more instances of 'a”.

Zero or one of the character or expression to the left. Hence, ‘a?
will match 'a or the empty string ".

{}

Aninterval qualifier allows you to specify exactly how many
instances of the character or expression to the left to match. If it
encloses a single unsigned integer length, it means to match
exactly that number of instances. Hence, 'af 3} will match 'aaa. If
it encloses 2 such integers separated by a comma, it specifies a
range of possible repetitions. For example, 'af 2,4} ' will match
'ad, 'aad, or 'aaad. Note that '{0,1}' is equivaent to '?.

Table 14-4: Meta Characters

Learning About Regular Expressions Application Programming

Chapter 14: Strings 297

Character Description

| Alternation. This operator is used to indicate that one of several
possible choices can match. For example, '(alblc)z' will match any
of 'az, 'bz, or 'cz.

~$ Anchors. A "M matches the beginning of astring, and '$' matches
the end. Aswe have seen above, regular expressions usually
match any possible substring. Anchors can be used to change this
and require a match to occur at the beginning or end of the string.
For example, “abc' will only match strings that start with the
string 'abc'. "*abc$' will only match a string containing only 'abc'.

Table 14-4: Meta Characters (Continued)

Subexpressions

Subexpressions are those parts of aregular expression enclosed in parentheses. There
are two reasons to use subexpressions:

* To apply arepetition operator to more than one character. For example,
"(fun){ 3} ' matches ‘funfunfun', while 'fun{ 3} ' matches 'funnn'.

e Toalow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of charactersthat can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs asthe first character in the expression (after an
initial ", if any).

There are several different forms of bracket expressions, including:

e Matching List — A matching list expression specifies alist that matches any
one of the charactersin the list. For example, [abc]’ matches any of the
characters'a, 'b', or 'c'.

* Non-Matching List — A non-matching list expression beginswith a'', and
specifies alist that matches any character not in the list. For example, '[*abc]'
matches any characters except 'a, 'b', or 'c’. The "M only has this special
meaning when it occurs first in the list immediately after the opening ['.

Application Programming Learning About Regular Expressions

298 Chapter 14: Strings

* RangeExpression — A range expression consists of 2 characters separated
by a hyphen, and matches any characters lexically within the range indicated.
For example, '[A-Za-z]' will match any alphabetic character, upper or lower
case. Another way to get this effect is to specify [a-z]' and use the
FOLD_CASE keyword to STREGEX.

Special Characters in Regular Expressions

Special (non-printing) characters are often represented in regular expressions using
backsd ash escape codes, such as \ t to represent a TAB character or \n to represent a
newline character. IDL does not support these backslash codesin regular expressions.
See “Non-Printing Characters’ on page 294 for information on how to represent
these special charactersin regular expressions.

Learning About Regular Expressions Application Programming

Chapter 15

Arrays

The following topics are covered in this chapter:

Overview of Arrayscoovvnnnn. 300
Understanding Array Subscripts 304
Assignment Operations and Arrays 308
Using Scalar Values as Subscripts 310
Using Arraysas Subscripts 312

Conditionally Altering Array Elements. .. 315

Application Programming

Subscript Ranges 317
Avoid Using Range Subscripts......... 321
Combining Subscripts 322
Manipulating Arrays 324
Columns, Rows, and Array Magjority 330

299

300 Chapter 15: Arrays

Overview of Arrays

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. An array can be of any IDL datatype; saying that an array isof a
particular type means that all elements of the array are of that datatype. Array
subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

One-dimensional arrays are often called vectors. Thefollowing IDL statement creates
avector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often called matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:
PRINT, array

IDL prints:

1 2 3
4 5 6

Arrays can have up to eight dimensionsin IDL. The following IDL statement creates
athree-column by four-row by five-layer deep three-dimensional array. In this case,
we usethe IDL FINDGEN function to create an array whose elements are set equal to
the floating-point val ues of their one-dimensional subscripts:

array = FINDGEN (3, 4, 5)

IDL isan array-oriented language. This means that any operation on an array is
performed on all elements of the array, without the need for the user to write an
explicit loop. The resulting code is easier to read and understand, and executes more
efficiently. For example, suppose you have athree-dimensional array and wish to
divide each element by two. A language that does not support array operations would
require you to write aloop to perform the division for each element; IDL can
accomplish the division in asingle line of code:

array = array/2

Overview of Arrays Application Programming

Chapter 15: Arrays 301

Determining the Number of Array Elements

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of elementsin
arrays or vectorsis equal to the product of the dimensions. The N_ELEMENTS
function returns zero if its parameter is an undefined variable. The result isalways a
longword scalar. For example, the following expression is equal to the mean of a
numeric vector or array.

array = FINDGEN (3, 4, 5)
PRINT, TOTAL(array) / N_ELEMENTS (array)

Operations on Array Expressions

Functions exist to create arrays of the datatypes IDL supports. (See “Array Creation”
(IDL Quick Reference) for alist of available routines.) The dimensions of the desired
array are the parameters to these functions. The result of FLTARR(5) is afloating-
point array with one dimension, a vector, with five elementsinitialized to zero.
FLTARR(50,100) is atwo-dimensional array, a matrix, with 50 columns and 100
rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-paint array; the
last 50 points of the larger array areignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array always yields an array of identical dimensions. When two arrays of
equal size (number of elements) but different dimensionality are operands, the result
is of the same dimensionality as the first operand. For example:

; Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, arow vector is added to a column vector and arow vector is
obtained because the operands are the same size. This causes the result to take the
dimensionality of the first operand. Here are some examples of expressions involving
arrays.

; An array in which each element is equal to the same element in

; ARR plus one. The result has the same dimensions as ARR. If ARR

; 1s byte or integer, the result is of integer type; otherwise, the

; result is the same type as ARR.
ARR + 1

; An array obtained by summing two arrays.
ARR1 + ARR2

Application Programming Overview of Arrays

302

Chapter 15: Arrays

; An array in which each element is set to twice the smaller of
; elther the corresponding element of ARR or 100.
(ARR < 100) * 2

; An array in which each element is equal to the exponential of the
; same element of ARR divided by 10.
EXP (ARR/10.)

; An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. Thisway of writing the statement requires that each element of ArRr be
operated on twice. If (3./MAX (ARR)) isevaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.

Array Subscripts

Subscripts are used to select individual elements of an array for retrieval or
modification. The subscript of an array element denotes the address of the element
within the array. In the smple case of a one-dimensional array (that is, an n-element
vector), elements are numbered starting at 0 with the first element, 1 for the second
element, and running to n — 1, the subscript of the last element.

The syntax of a subscript referenceis:
Variable Name [Subscript_ List]

or
(Array_Expression)[Subscript_List]

The Subscript_List issimply alist of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commas if there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts. Factors affecting the outcome of the expression
include whether the subscript appears on the right or left side of the assignment
operator, and the dimensionality of the subscript (scalar, array or range). See the
following topics for more information:

e See“Understanding Array Subscripts’ on page 304 for important information
regarding the structure of an array and how subscripts are used to access
elements of the array

Overview of Arrays Application Programming

Chapter 15: Arrays 303

e See“Assignment Operations and Arrays’ on page 308 for details on how to
mani pul ate arrays using subscripts and the assignment operator

e See“Manipulating Arrays’ on page 324 for information on transposing and
multiplying multi-dimensional arrays

e “Columns, Rows, and Array Majority” on page 330 describes how a multi-
dimensional array is mapped in computer memory, and the ramifications of
this mapping when working with arraysin IDL

Application Programming Overview of Arrays

304 Chapter 15: Arrays

Understanding Array Subscripts

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elementsto receive new values. The expression arr [12] denotesthe
value of the 13th element of arr (because subscripts start at 0), while the statement
arr[12] = 5 storesthe number 5 in the 13th element of arr without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. IDL’s notational convention isthat for generic arrays and images, thefirst
subscript denotes the column and the second subscript denotes the row. In standard
mathematical representation (linear algebra, for example), the convention is reversed:
the first subscript denotes the row and the second subscript denotes the column.

If A isa2-element by 3-element array (using [column, row] notation), the elements
are stored in memory as follows:

Stored in Memory
Aop A1 L owest memory address
Ao A1l
Ao A1 Highest memory address

Table 15-1: Storage of IDL Array Elements in Memory

The elements are ordered in memory as: Ag o, A1 0, Ag 1, A1,1: Ag2s A . This
ordering is like Fortran. It is the opposite of the order used by C/C++. For more
information on how IDL arranges multidimensional datain memory, see “Columns,
Rows, and Array Majority” on page 330. For adiscussion of how the ordering of such
datarelatesto IDL mathematics routines, see “Manipulating Arrays’ on page 324.

Understanding Array Subscripts Application Programming

Chapter 15: Arrays 305

Note
When comparing IDL’s memory layout to other languages, remember that those
languages usually use a mathematical [row, column] notation for array dimensions,
which isthe reverse of the array notation used for the example above. See
“Columns, Rows, and Array Mgjority” on page 330 for more on comparing IDL’s
array layout to that of other languages.

Arrays that contain image data are usually displayed in graphics displays with row
zero at the bottom of the screen, matching the display’s coordinate system (although
this order can be reversed by setting the system variable |ORDER to a nonzero
value). Array data are printed to standard text output (such asthe IDL output log or
console window) with the first row on top.

Arrays with multiple dimensions are addressed by specifying a subscript expression
for each dimension. A two-dimensional array with n columns and mrows, is
addressed with a subscript of theform [i, j], where0<i<nand 0 <j <m. Thefirst
subscript, i, is the column index; the second subscript, j, is the row index. For
example, the following statements select and print the element in the first column of
the second row of array:

array = [[1, 2, 31, [4, 5, 61]
PRINT, arrayl[0,1]

IDL prints:
4

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points.

Aoo Aoa
Ao1 A1
Ag2 A

In the 2 by 3 element array, A, element a[2] isthesameelementasaf[o, 11, and
A[5] isthesameelementasa(1l, 21].

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension
minus 1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expression is
not integer, alongword integer copy is made and used to evaluate the subscript.

Application Programming Understanding Array Subscripts

306 Chapter 15: Arrays

Note
When floating-point numbers are converted to longword integers, they are
truncated, not rounded. Thus, specifying a11.991 isthe same as specifyinga[11].

Extra Dimensions

When creating arrays, IDL eliminatesall size 1, or “degenerate”, trailing dimensions.
Thus, the statements

A = INTARR(10, 1)
HELP, A

print the following:
A INT = Array[10]

Thisremoval of superfluous dimensions is usually convenient, but it can cause
problemswhen attempting to write fully general proceduresand functions. Therefore,
IDL allows you to specify “extra’ dimensions for an array aslong as the extra
dimensions are al zero.

For example, consider a vector defined as follows:
arr = INDGEN(10)

The following are all valid references to the sixth element of arr:

X = arr[5]
X = arr[5, 0]
X = arr([5, 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

The REFORM function can be used to add degenerate trailing dimensionsto an array
if desired. For example, the following statements create a 10 element integer vector,
and then alter the dimensions to be [10, 1]:

A
A

INTARR(10)
REFORM(A, 10, 1, /OVERWRITE)

Understanding Array Subscripts Application Programming

Chapter 15: Arrays 307

Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parenthesesin a visually identical way to specify argument lists.
Asaresult, the IDL compiler was not able to distinguish between arrays and
functions by looking at the statement syntax. For example, the IDL statement

value = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to afunction called fish.

To determineif it is compiling an array subscript or afunction call, IDL checksits
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that function
with the argument specified. If IDL does not find a function with the correct namein
itstable of known functions, it assumes that the unknown e ement is an array, and
attempts to return the value of the designated element of that array. Thisrule
generaly gives the desired result, but it can be fooled into the wrong choice under
certain circumstances, much to the surprise of the unwary programmer.

For thisreason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in thisway is
unambiguoudy interpreted as an array under all circumstances. In IDL 5.0 and later:

value = fish[5]
sets value to the sixth element of an array named fish.

Dueto the large amount of existing IDL code written in the older syntax, aswell as
the ingrained habits of thousands of IDL users, IDL continuesto allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

value = fish[5]
is unambiguous,
value = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
to version 5.0.

Since the older syntax has been used widely, you should not be surprised to seeit
from time to time. However, square brackets are the preferred form, and should be
used for new code.

Application Programming Understanding Array Subscripts

308 Chapter 15: Arrays

Assignment Operations and Arrays

The following table shows the variations possible in expressions containing array and
scalar subscripts. The result of the assignment operation depends upon the
dimensionality of the subscript.

Note
A subscript structure can also be composed of arange of elements. If expression is
scalar, it isinserted into the subarray. If Variable[Range] and Array are the same
size, elements of Array specified by Range areinserted in Variable. It isillegd if
Variable[Range] and Array are different sizes. See " Subscript Ranges’ on page 317
for complete details. For information on when you should not use subscript ranges,
see “Avoid Using Range Subscripts’ on page 321.

Syntax Structure Description
Variable[ScalarSubscripts] = | Expressionisstoredinasingle element of
ScalarExpression Variable.
arrOne = [1, 2, 3, 4, 5]
arrOne[2] = 9

PRINT, arrOne
1 2 9 4 5

Variable[ScalarSubscripts] = | Expression array isinserted in Variable
ArrayExpression array beginning at point indicated by
subscript.
arrOne = [1, 2, 3, 4, 5]
arrTwo = [11, 12]
arrOne[l] = ArrTwo

PRINT, arrOne
1 11 12 4 5

Note - An “out of range subscript” error will
occur if you attempt to insert arrTwo
elements into non-existent elements of
arrOne. For example arrone[4] =
ArrTwo fails.

Table 15-2: Introduction to Subscript Expression Structures

Assignment Operations and Arrays Application Programming

Chapter 15: Arrays 309

Syntax Structure Description
Variable[ArraySubscripts] = | Expression scalar isstored in designated
ScalarExpression elements of Variable. Other array elements
are unchanged.
arrOne = [1, 2, 3, 4, 5]
arrOnel[[2, 4]] =0

PRINT, arrOne
1 2 0 4 0

Note - Note the use of the double brackets.
Attempting to assign zeros to the 3rd and 5th
element of the array using

arrOne([2, 4] = 0

resultsin an error; “Attempt to
subscript ARRONE with <INT(4)> is
out of range.” IDL interpretsthisas
attempting to modify asingle element in the
3rd column and 5th row, which does not

exist.
Variable[ArraySubscripts] = | Elementsof Expression are storedin
ArrayExpression designated elements of Variable.
arrOne = [1, 2, 3, 4, 5]
arrOne[[0, 2]] = [111,333]

PRINT, arrOne
111 2 333 4 5

Note - Elements of the subscript array that
are negative, or greater than the highest
subscript of the subscripted array, are
clipped to the target array boundaries. For
example,

arrOne[[-1, 2]] = [111,333]
hasthe sameresult asarrone[[0,2]]. See
“Clipping” on page 313 for details.

Table 15-2: Introduction to Subscript Expression Structures (Continued)

Note
Array operations are much more efficient than loops. See “Use Vector and Array
Operations’ on page 194 for details.

Application Programming Assignment Operations and Arrays

310 Chapter 15: Arrays

Using Scalar Values as Subscripts

Scalar quantitiesin IDL can be thought of as the first element of an array with one
dimension. They can be subscripted with a zero reflecting the first and only position.
Therefore,

; Assign the value of 5 to A.
A =5
; Print the value of the first element of A.
PRINT, A[O]
IDL prints:
5
If weredefinethefirst element of A:

; Redefine the first element of A.
A[0] =6

PRINT, A

IDL prints:

6

Note
You cannot subscript avariable that has not yet been defined. Thus, if the variable
has not been previoudy defined, the statement:

B[0] =9

will fail with the error “variable is undefined.”

Subscripting Arrays Using Scalar Values

The subscripted variable can have either a scalar or array subscript with the form:
Variable[Subscripts] = Scalar Expression

If the subscript expression is a scalar value, asingle element of the specified array is
set to the value of the scalar expression. The expression can be of any type and is
converted, if necessary, to the type of the variable. The variable on the left side must
be either an array or afile variable. Some examples of assigning scalar expressions to
subscripted variables are;

; Set element 100 of data to value.

Using Scalar Values as Subscripts Application Programming

Chapter 15: Arrays 311

data[99] = 1.234999

; Store string in an array. aName must be a string array or an
; error will result.
aName [index] = 'Joe'

; Set element [X, Y] of the 2-dimensional array image to the value
; contained in pixel.
image[X, Y] = pixel

If the subscript expression is an array, the scalar value is stored in the elements of the
array whose subscripts are elements of the subscript array. For example, the
following statement zeroes the four specified elements of data: data[3], data[5],
data[7] and data[9]:

datal[[3, 5, 7, 91] =0

The subscript array is converted to integer type if necessary before use. Elements of
the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error isto use a negative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

When a subscripted variable reference appearsin an expression, the values of the
selected array elements are extracted. For example, the following statements extract
the first two values from array by subscripting with a second array (indices) and
store the valuesin the variable new_array:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
indices = [0, 1]

new_array = array[indices]

PRINT, new_array

IDL prints:
1.0 2.0

See the following sections for more information on array subscripts and clipping.

Application Programming Using Scalar Values as Subscripts

312 Chapter 15: Arrays

Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the subscript array
selects an element in the subscripted array. When subscript arrays are used in
conjunction with subscript ranges (as discussed in “ Combining Subscripts’ on

page 322), more than one element may be selected for each element of the subscript

array.

If no subscript ranges are present, the length and dimensionality of the result is the
same as that of the subscript expression. The type of the result is the same as that of
the subscripted array. If only one subscript is present, all subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript array, the process can be described as follows:

Vg if 0<S<n

VI[S] = vV, if S <0 forO<i<m
V,_qif Szn

Here, the vector V has n elements, and the subscript array Shas m elements. The
result V[§ has the same dimensionality and number of elementsas S. If the subscript
expression applied to the variable is an array and an array appears on the right side of
the statement:

Variable[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. Note the use of array subscripts (double
brackets). For example, the statement

BI[[2, 4, 6 11 = [4, 16, 36]

is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36

Using Arrays as Subscripts Application Programming

Chapter 15: Arrays 313

For another example, consider the statements:

A =106, 5, 1, 8, 4, 3]
B = [0, 2, 4, 1]

C = A[B]

PRINT, C

This produces the following outpult:
6 1 4 5

Thefirst element of c is 6 because that is the number in the O position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A isa 10 x n matrix, the element A[i, j] has the subscript i+10*].

When there is an array expression on theright, it isinserted into the array appearing
on the left side of the equal sign starting at the point designated by the scalar
subscript. For example, the following creates intarr, a5 column by 2 row integer
array of zeros. Insert array B into intArr beginning at the position designated by the
scalar subscript (note the use of single brackets).

A = INTARR(5,2)

B = [222, 333, 444]

A[l] = B

PRINT, A

0 222 333 444 0

0 0 0 0 0
Note

The subscript array is converted to longword type before use if necessary.
Regardless of structure, this subscript array isinterpreted as a vector.

Clipping

If an element of the subscript array islessthan or equal to zero, the first element of
the subscripted array is selected. If an element of the subscript array is greater than or
equal to the last subscript in the subscripted array, the last element is selected.

Note
Elements of the subscript array that are negative or larger than the highest subscript
are clipped to the target array boundaries. Note that a common error isto use a
negative scalar subscript (e.g., A[-1]). Using this type of subscript causes an error.
Negative array subscripts (e.g., A[[-1]]) do not cause errors.

Application Programming Using Arrays as Subscripts

314 Chapter 15: Arrays

This clipping of out of bounds elements can be disabled within aroutine by using the
STRICTARRSUBS option to the COMPILE_OPT statement. (See the documentation
for “COMPILE_OPT” (IDL Reference Guide) for details.) If STRICTARRSUBS isin
force, then array subscripts that refer to out of bounds elements will instead cause

IDL toissue an error and stop execution, just as an out-of-range scalar subscript does.

Examples Using Arrays as Subscripts

One way to create a square n x nidentity matrix is as follows:

A = FLTARR(N, N)

A[INDGEN(N) * (N + 1)] = 1.0
The expression INDGEN (N) * (N + 1) resultsinavector containing the subscripts of
the diagona elements [0, N+1, 2N+2, ..., (N-1)*(N+1)].Thefollowing

statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] =1

Yet another way isto use two array subscripts. The statements:

A = FLTARR(N, N)

A[INDGEN(N), INDGEN(N)] = 1.0
create the array subscripts [(0,01, [1,11, ..., [n-1, n-111.
Assumethe variable A isa 10 by 10 array. Here, the subscripts of the diagona
dements(a[0,01, A[1,1], ..., A[9, 9])areequal toO, 11,22, ...,99. The

elements of the vector INDGEN (10) *11 aso areequal to 0, 11, 22, ..., 99, so the
expression A[INDGEN(10) * 11] yieldsa10-element vector containing to the

diagonal elements of A.

Using Arrays as Subscripts Application Programming

Chapter 15: Arrays 315

Conditionally Altering Array Elements

The WHERE function can be used to select array elements that meet certain
conditions. For example, the statement:

data [WHERE (data LT 0)] = -1

sets all negative elements of data to -1 without changing the positive elements. The
result of the function, WHERE (data LT 0), isavector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.

Similarly, the WHERE function can be used to select elements of an array using
expressionssimilar to A [WHERE (A GT 0) 1, which resultsin avector composed only
of the elements of a that are greater than 0.

The following statements create and display a 5x5 identity matrix, which consists of
ones along adiagonal, and zeros everywhere else:

A = FLTARR(5, 5)
A[INDGEN(5) * 6] =1
PRINT, A

The following statement sets elements of a with values of zero or lessto -1:

A[WHERE(A LE 0)] = -1
PRINT, A

In this example, assume that the vector data contains data elements and that a data
drop-out is denoted by a negative value. In addition, assume that there are never two
or more adjacent drop-outs. The following statements replace al drop-outs with the
average of the two adjacent good points:

; Subscript vector of drop-outs.
bad = WHERE (data LT 0)

; Replace drop-outs with average of previous and next point.
data[bad] = (datalbad - 1] + datalbad + 11) / 2

In this example, the following actions are performed:

WeusetheLT (lessthan) operator to create an array, with the same
dimensions as data, that contains a 1 for every element of data that is less than
zero and a zero for every element of datathat is zero or greater. We use this
“drop-out array” as a parameter for the WHERE function, which generates a
vector that contains the one-dimensional subscripts of the el ements of the
drop-out array that are nonzero. The resulting vector, stored in the variable
bad, contains the subscripts of the elements of datathat are less than zero.

Application Programming Conditionally Altering Array Elements

316 Chapter 15: Arrays

e Theexpressiondatalbad - 1] isavector that contains the subscripts of the
points immediately preceding the drop-outs; while similarly, the expression
data[bad + 1] isavector containing the subscripts of the points
immediately after the drop-outs.

* The average of these two vectorsis stored in data [bad], the points that
originally contained drop-outs.

Note
Also see “Example—Using Array Operators and WHERE” on page 195 for an
additional example.

Conditionally Altering Array Elements Application Programming

Chapter 15: Arrays 317

Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges.

Note
Processing subscript ranges is inefficient. When possible, use an array or scalar
subscript instead of specifying a subscript range where the beginning and ending
subscripts are separated by the colon character. See “Avoid Using Range
Subscripts’ on page 321 for details.

There are six types of subscript ranges:

Subscript

Format Description

[*] All elements of adimension.

Thisform is used with multidimensional arrays to select all
elements along the dimension. For example, if arr isa 10-
column by 12-row array, arr[*, 11] isthelast row of arr,
composed of elements [arr[0,11], arr[l,11], ...,
arr[9,1111, and isal1l0-element row vector. Similarly,
arr[0, *] isthefirstcolumnof arr, [arr[0,0],
arr[0,1],..., arr[0,11]],anditsdimensionsare 1
column by 12 rows.

[ep:e] Subscript range from e to e;.

This denotes all elements whose subscripts range from the
expression g through e; (g5 must not be greater than e;). For
example, if the variable vec is a 50-element vector,
vec[5:9] isafive-element vector composed of vec [5]
through vec[9].

Table 15-3: Subscript Range Forms

Application Programming Subscript Ranges

318

Chapter 15: Arrays

Subscript
Format

Description

[e0*]

A range from given element to the last element of dimension.

This denotes all elements from a given element to the last
element of the dimension. If the variable vec is a 50-€lement
vector, vec [10: *] isa40-element vector made from
vec[10] throughvec[49].

[eere]

Every exth element in arange of subscripts from e to e;.

This denotes every e,th element within the range of subscripts
€ through e; (ey must not be greater than e;). e, isreferred to
asthe subscript stride. The stride value must be greater than or
equal to 1. If it is set to the value 1, the resulting subscript
expression isidentical in meaning to [ey:e;], as described
above. For example, if the variable vec isa50-element vector,
vec[5:13:2] isafive-element vector composed of vec[5],
vec[7],vec[9],vec[1l],andvec[13].

[eg*:€)

Every exth element from element e to the end of dimension.

This denotes every esth element from a given element to the
last element of the dimension, written as [ey:*:e,] where e, is
referred to as the subscript stride. The stride value must be
greater than or equal to 1. If it is set to the value 1, the
resulting subscript expression isidentical in meaning to [ey:*],
as described above. If the variable vec is a50-element vector,
vec[10:*:4] isalO-element vector made from every fourth
element between vec [10] through vec[49].

[n]

A simple subscript.

When used with multidimensional arrays, simple subscripts
specify only elements with subscripts equal to the given
subscript in that dimension.

Table 15-3: Subscript Range Forms (Continued)

Multidimensional subarrays can be specified using any combination of the above
forms. For example, if arr isalOx10array, arr[*, 0:41 ismadefromall columns
of rows 0to 4 of arr or a 10-column, 5-row array.

Subscript Ranges

Application Programming

Chapter 15: Arrays 319

Dimensionality of Subarrays

The dimensions of an extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensionsis
equal to the number of subscripts and subscript ranges. The size of the n-th dimension
is equal to oneif asimple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. If arr
isa10-column by 12-row array, the expression arr [*, 111 resultsin arow vector
with asingle dimension. (The result of the expression is a 10-column by 1-row array;
the last dimension is degenerate and is removed.) On the other hand, the expression
arr[0, *] became acolumn vector with dimensions of [1, 12], showing that the
structure of columnsis preserved because the dimension with a size of one does not
appear at the end.

To see this, enter the following statementsin IDL:

arr = INDGEN(10,12)
HELP, arr

HELP, arr[*,11]
HELP, arr[O0, *]

In the following examples, vec is a 50-element floating-point vector, and arr isa
10-column by 12-row integer array. Some typical subscript range expressions are as

follows:
vec = FINDGEN(50)
arr = INDGEN(10,12)

; Elements 5 through 10 of vec, a six-element vector.
vec[5:10]

; A three-element vector.
vec[I - 1:I + 1]

; The same vector.
[vec[I - 1], vec[I], vec[I + 11]

; Elements from vec[4] to the end, a 46-element (50-4) vector.
vec[4:*]

; Values of the elements with even subscripts in vec.
vec[0:*:2]

Application Programming Subscript Ranges

320

Chapter 15: Arrays

; Values of the elements with odd subscripts in vec:
vec[l:*:2]

; The fourth column of arr, a 1 column by 12 row vector.
arr[3, *]

; The first row of arr, a l0-element row vector. Note, the last
; dimension was removed because it was degenerate.

[arr[3, 0], arr[3, 11, ..., arr[3, 11]]

arr[*, 0]

; The nine-point neighborhood surrounding arr[X,Y], a 3 by 3 array.
arr[X - 1:X + 1, Y - 1:¥Y + 1]

; Three columns of arr, a 3 by 12 subarray:
arr[3:5, *]

To insert the contents of an array called a into array B, starting at point B[13, 24], use
the following statement:

B[13, 24] = A

If o isa5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:
B[100, 200] = B[200:300, 300:400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Assuming the variable B isa 512 x 512-byte array, some examples are as follows:

; Store 1 in every element of the i-th row.
array[*, I] =1

; Store 1 in every element of the j-th column.
array[J, *] =1

; Zero all the rows of columns 200 through 220 of array.
array[200:220, *] =0

; Store the value 100 in all the elements of array.
array[*] = 100

Subscript Ranges Application Programming

Chapter 15: Arrays 321

Avoid Using Range Subscripts

It is possible to use range subscripts in an assignment statement, however, when
possible, you should avoid using range subscriptsin favor of using scalar or array
subscripts. This type of assignment statement takes the following form:

Variable[Subscript_Range] = Expression

A subscript range specifies a beginning and ending subscripts, which are separated by
the colon character. An ending subscript equal to the size of the dimension minus one
can be written as*. For example, arr [1:J] denotes those pointsin the vector arr
with subscripts between 1 and J inclusive. T must be less than or equal to J and
greater than or equal to zero. J denotesthe pointsin arr fromarr[1] to thelast
point and must be less than the size of the dimension arr [I:*]. See"Subscript
Ranges’ on page 317 for more details on subscript ranges.

When possible, you should avoid using range subscripts in favor of using scalar or
array subscripts. In the following example, the array elements of x are inserted into
array A. The dow way uses subscript ranges, specifying the insertion of x array

e ementsinto the 5th through 7th elements of a. The fast way uses a scalar subscript
specifying the first element (the 5th) to be replaced with the elements of a.

X [1,1,1

PRINT, 'A

; Slow way:

t = SYSTIME(1l) & FOR i=0L,100000 DO A[4:6] = X &
PRINT, 'Slow way: ', SYSTIME(1l)-t

PRINT, 'A ="', A

; Correct way is 4 times faster!!:

A INTARR(10)
]

", A

t = SYSTIME(1) & FOR i=01,100000 DO A[4] = X &
PRINT, 'Fast way: ', SYSTIME(1l)-t
PRINT, 'A = ', A
IDL prints:
A= 0 0 0 O 0O 0 0 0 0 0
Slow way: 0.47000003
A= 0 0 0O O 1 1 1 0 0 0
Fast way: 0.12100005
A= 0 0 0O O 1 1 1 0 0 0
Thestatement A[4]1 = X, wherex isathree-element array, causes IDL to start at

index 4 of array a, and replace the next three elements in A with the elementsin x.
Because of theway itisimplementedinIDL, a[4] = x ismuch more efficient than
Al4:6] = X.

Application Programming Avoid Using Range Subscripts

322

Chapter 15: Arrays

Combining Subscripts

Subscript arrays can be combined with subscript ranges, simple scalar subscripts, and
other subscript arrays.

When IDL encounters a multidimensional subscript expression that contains one or
more subscript arrays, ranges, or scalars, it builds a subscript array by processing
each element in the subscript expression from left to right. The resulting subscript
array isthen applied to the variable to be subscripted. As with other subscript
operations, trailing degenerate dimensions (those with a size of 1) are eliminated.

Subscript Ranges

When combining a subscript array with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elementsin the corresponding subscript array or range.

For example, the expressiona[[1, 3, 51, 7:9]isanine-element, 3 x 3 array
composed of the following elements:

A1,7 A3,7 A5,7

A1,8 A3,8 A5,8

A1,9 A3,9 A5,9

Each element of the three-element subscript array [1, 3, 5] is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of a two-
dimensional n x marray:

; Zero the first and last rows.
A[*, [0, M-1]] =0

; Zero the first and last columns.
A[[0, N - 1], *] =0

Combining Subscripts Application Programming

Chapter 15: Arrays 323

Other Subscript Arrays

When combining two subscript arrays, each element of the first subscript array is
combined with the corresponding element of the second subscript array. The two
subscript arrays must have the same number of elements. The resulting subscript
array has the same number of elements as its constituents. For example, the
expressiona[[1, 31, [5, 91] yieldstheelementsa[1,5] andA[3,9].

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expressiona[[1, 3, 51, 8] yiddsthethree-
element vector composed of the elementsa(1,81,a[3,8],anda[5,8]. The
second dimension of theresult is 1 and is eliminated because it is degenerate. The
expressiona[8, [1, 3, 5]1]isthelx 3-columnvectora(s,1],a([8,31,and
A[8, 5], illustrating that leading dimensions are not eliminated.

Application Programming Combining Subscripts

324 Chapter 15: Arrays

Manipulating Arrays

IDL provides avariety of mechanisms for working with multidimensional data sets.
Understanding these mechanisms requires a familiarity with linear algebra and the
concept of atwo-dimensional data set.

Note
There are two terms commonly used to refer to two-dimensional data sets: array
and matrix. People who work with images tend to call two-dimensional data sets
arrays, while mathematicians tend to call two-dimensional data sets matrices. The
terms are interchangeable, but the different conventions assumed by people who use
them may lead to confusion.

Consider atwo-dimensional data set, with dimensions mand n. In acomputer, the
datafrom this data set is stored in a unidimensional set of memory addresses; what
makes the data “two-dimensiona” is the way the individual elements are indexed by
the software that accesses the datain memory. Thistopic is discussed in detail in
“Columns, Rows, and Array Majority” on page 330; if you are unsure of your
understanding of the process of mapping multidimensional data into unidimensional
computer memory, please read that section carefully.

There are two possible ways to depict atwo-dimensional data set on paper — row by
row or column by column. For example, the standard mathematical representation of
an mx n data set is shown in Figure 15-1, with m rows and n columns:;

AO,O AO,l AO,n—l
Al,O Al,l Al,n—l

Figure 15-1: An m x n Array Represented in Mathematical Notation

Here, the first dimension (m) represents the row index, and the second dimension (n)
represents the column index. Thus, if the data set is represented using this notation,
theterm array[3, 2] refersto an element that is four rows down from the top row
and three columns to the right of the leftmost row. (Note that indices are zero-based.)

Manipulating Arrays Application Programming

Chapter 15: Arrays 325

Figure 15-4 depicts the standard image-processing representation of the same data
set, with m columns and n rows:

AO,O Al,O Am—l,O
AO,l Al,l Am—l,l

AO,n—l Al,n—l Am—l,n—l

Figure 15-2: An m x n Array Represented in Image-processing Notation

Here, the first dimension (m) represents the column index, and the second dimension
(n) represents the row index. Thus, if the data set is represented using this notation,
theterm array[3, 2] refersto an element that is four columnsto the right of the
leftmost column and three rows down from the top row. Thisis the representation
used by IDL.

It isimportant to understand that these are two views of the same data; all that has
changed is the notational convention applied. Why is this notational convention
important? Because when reading or writing data in a two-dimensional data set,
performance improvesif elements that are contiguous in the computer’s memory are
accessed consecutively. Incrementing the index of the first dimension by one shifts
one “dot” in computer memory, whereas incrementing the index of the second
dimension by one shifts a number of “dots’ at least as large as the size of the first
dimension.

Note
The terms column-major and row-major are commonly used to define which
dimension of atwo-dimensional array represents the column index and which
represents the row index. These terms are defined and discussed in detail in
“Columns, Rows, and Array Majority” on page 330.

Transposing Arrays
You should be aware that many numerical algorithms — especially those that are

written in arow-major language such as C or C++ — assume datais indexed (row,
column). Since IDL assumes data is indexed (column, row), it isimportant to keep

Application Programming Manipulating Arrays

326 Chapter 15: Arrays

this distinction in mind. In order to work with dataindexed (row, column), you can
use IDL’s TRANSPOSE function to interchange the order of the indices.

Note that it is possible for an array to be indistinguishable from its transpose. In this
case the number of columns and rows are identical and there is a symmetry between
the rows of the array and the columns of its transpose. Arrays satisfying this
condition are said to be symmetric. When dealing with symmetric arrays the use of
the TRANSPOSE function is unnecessary, since AT = A.

Multiplying Arrays
IDL hastwo operators used to multiply arrays. To illustrate the difference between

the two operators, consider the following two arrays:

; A 3-column by 2-row array:
A=1[1[0, 1, 21,8
[3, 4, 5]]

>

2-column by 3-row array:
[[0, 11,5$

(2, 31,$

[4, 51 1

The # Operator

W o~
Il

The # operator computes array elements by multiplying the columns of thefirst array
by the rows of the second array. The resulting array has the same number of columns
as thefirst array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.

For example, consider the arrays defined above:

01

A:FlﬂBzzs
345

45

We obtain the elements of A # B asfollows:

Ao 0BootAp1B1o AroBootA11Bro Az 0BootA21B1o
ApoBo1tApi1B11 ApoBo1tA1L1Br1 AyoBoi1tA1Bia

ApoBo2tAp1B12 AL oBo2tAL1Bro AyoBo2atAL1B1

Manipulating Arrays Application Programming

Chapter 15: Arrays 327

Or, using the actual values from the arrays:

0O)+(3)(1) DO +HID) (DO +(3)(D)
0@+ DD+ AB) (2(2)+(5)(3)
O@H+B)B) DA +EAB) (2D +(5)(5)

Therefore, when we issue the following command:

PRINT, A#B

IDL prints:
3 4 5
9 14 19
15 24 33
Tip

If one or both of the arrays are also transposed, such as TRANSPOSE(A) # B, it is
more efficient to usethe MATRIX_MULTIPLY function, which does the transpose
simultaneously with the multiplication.

Note on the Definition of Matrix Multiplication

While the definition of the IDL # operator may appear to be at odds with the standard
mathematical definition of matrix multiplication — namely, that the operator
multiplies each row of the first matrix by each column of the second matrix — thisis
acase of dlightly imprecise terminology. The confusion arises from the mappings of
the words “row” and “column” — which refer to elementsin atwo-dimensional
entity called an array or amatrix — to the one-dimensional vector of values stored in
computer memory. In reality, what the matrix multiplication operator doesis
multiply the elements of the first dimension of the first array/matrix by the elements
of the second dimension of the second array/matrix. IDL’s convention isto consider
thefirst dimension to be the column and the second dimension to be the row, whereas
the standard mathematical convention considers the first dimension to be the row and
the second dimension to be the column. For a more complete discussion of thistopic,
see “Columns, Rows, and Array Magjority” on page 330.

The ## Operator

The ## operator computes array elements by multiplying the rows of thefirst array by
the columns of the second array. The resulting array has the same number of rows as
thefirst array and the same number of columns as the second array. The second array
must have the same number of rows as the first array has columns.

Application Programming Manipulating Arrays

328 Chapter 15: Arrays

For example, consider the arrays defined above:

01

A = [012},5: ”a
4

345 45

We obtain the elements of A ## B asfollows;

Ao 0BootA1L0Bo1tA20Bo2 AgoBrotArLoBiitA2 0B
Ap1BootA11Bo1tA,1Boo AgiBiotAg By it+tA, 1B,

Or, using the actual values from the arrays.

[<O><O>+<1><2>+<2><4> <0><1>+<1><3>+<2><5>}
(3)(0) + (4)(2) + (5)(4) (3)(1) +(4)(3) + (5)(5)

Therefore, when we issue the following command:

PRINT, A##B

IDL prints:
10 13
28 40

Multiplying Vectors

When using the # and ## operators to multiply vectors, note the following:

e For A#B,where A and B are vectors, IDL performs A # TRANSPOSE(B). In
thiscase, C = A # B isamatrix with Cij = Ai Bj. Mathematically, thisis
equivalent to the outer product, usually denoted by A ® B.

e For A ##B, where A and B arevectors, IDL performs TRANSPOSE(A) ## B.
In this case, C = A ## B isamatrix with Cij = Bi Aj.

» To compute the dot product, usually denoted by A - B, use
TRANSPOSE(A) #B.

Manipulating Arrays Application Programming

Chapter 15: Arrays 329

Notes on the # and ## Operators

Note the following with regard to the array multiplication operators:
e The# and ## operators are order specific.
e A#B=B##A
- A#B=(B'T#ANT
Routines for Multiplying Arrays

The MATRIX_MULTIPLY and MATRIX_POWER routines are also available:

e MATRIX_MULTIPLY calculates the value of the # operator applied to two
(possibly transposed) arrays. See “MATRIX_MULTIPLY” (IDL Reference
Guide) for details.

* MATRIX_POWER computes the product of a matrix with itself. See
“MATRIX_POWER” (IDL Reference Guide) for details.

Note
Also see “Array Manipulation” (IDL Quick Reference) for alist of other array

mani pul ation routines.

Application Programming Manipulating Arrays

330 Chapter 15: Arrays

Columns, Rows, and Array Majority

Computer hardware does not directly support the concept of multidimensional arrays.
Computer memory is unidimensional, providing memory addresses that start at zero
and increase serially to the highest available location. Multidimensiona arrays are
therefore a software concept: software (IDL in this case) maps the elements of a
multi-dimensional array into a contiguous linear span of memory addresses. There
are two ways that such an array can be represented in one-dimensional linear
memory. These two options, which are explained below, are commonly called row
major and column major. All programming languages that support multidimensional
arrays must choose one of these two possibilities. This choice is afundamental
property of the language, and it affects how programs written in different languages
share data with each other.

Before describing the meaning of these terms and IDL'’s relationship to them, it is
necessary to understand the conventions used when referring to the dimensions of an
array. For mnemonic reasons, people find it useful to associate higher level meanings
with the dimensions of multi-dimensiona data. For example, a 2-D variable

contai ning measurements of 0zone concentration on auniform grid covering the earth
might associate latitude with the first dimension, and longitude with the second
dimension. Such associations help people understand and reason about their data, but
they are not fundamental properties of the language itself. It isimportant to realize
that no matter what meaning you attach to the dimensions of an array, IDL isonly
aware of the number of dimensions and their size, and does not work directly in terms
of these higher order concepts. Another way of saying thisisthat arr [d1, d2]
addresses the same element of variable arr no matter what meaning you associate
with the two dimensions.

In the IDL world, there are two such conventions that are widdly used:

* Inimage processing, the first dimension of an image array is the column, and
the second dimension isthe row. IDL iswidely used for image processing, and
has deep rootsin this area. Hence, the dominant convention in IDL
documentation is to refer to the first dimension of an array as the column and
the second dimension as the row.

* Inthe standard mathematical notation used for linear algebra, the first
dimension of an array (or matrix) is the row, and the second dimension is the
column. Note that thisis the exact opposite of the image processing
convention.

Columns, Rows, and Array Majority Application Programming

Chapter 15: Arrays 331

In computer science, the way array elements are mapped to memory is always
defined using the mathematical [row, column] notation. Much of the following
discussion utilizes the mx n array shown in Figure 15-3, with mrows and n columns;

AO,O AO,l AO,n—l
Al,O Al,l Al,n—l

Figure 15-3: An m x n array represented in mathematical notation.

Given such a 2-dimensiona matrix, there are two ways that such an array can be
represented in 1-dimensional linear memory — either row by row (row major), or
column by column (column major):

Contiguous First Dimension (Column Major): In this approach, all elements
of the first dimension (min this case) are stored contiguously in memory. The
1-D linear address of element Ay; ¢y istherefore given by the formula

(d2*m + di).Asyou move linearly through the memory of such an array,
thefirst (Ieftmost) dimension changes the fastest, with the second dimension
(n, in this case) incrementing every time you come to the end of the first
dimension:

AO,O' Al,O' ey Am—l,O- AO,l’ Al,l’ ey Am_]_’]_,

Computer languages that map multidimensional arraysin this manner are
called column major, following the mathematical [row, column] notation. IDL
and Fortran are both examples of column-major languages.

Contiguous Second Dimension (Row M ajor): In this approach, all elements
of the second dimension (n, in this case) are stored contiguously in memory.
The 1-D linear address of element Ay, , istherefore given by the formula
(di*n + d2).Asyou move linearly through the memory of such an array,
the second dimension changes the fastest, with the first dimension (min this
case) incrementing every time you come to the end of the second dimension:

AO,O’ AO,l’ veay Ao,n-l’ Al,O’ Al,l’ veny Al,n-11

Computer languages that map multidimensional arraysin this manner are
known as row major. Examples of row-major languages include C and C++.

Application Programming Columns, Rows, and Array Majority

332

Chapter 15: Arrays

The terms row major and column major are widely used to categorize programming
languages. It isimportant to understand that when programming languages are
discussed in this way, the mathematical convention — in which the first dimension
represents the row and the second dimension represents the column — isused. If you
use the image-processing convention — in which the first dimension represents the
column and the second dimension represents the row — you should be careful to
make note of the distinction.

Note
IDL users who are comfortable with the IDL image-processing-oriented array
notation [column, row] frequently follow the reasoning outlined above and
incorrectly conclude that IDL is arow-major language. The often-overlooked cause
of this mistake is that the standard definition of the terms row major and column
major assume the mathematical [row, column] notation. In such cases, it can be
helpful to look beyond the row/column terminology and think in terms of which
dimension is contiguous in memory.

Note that the m x n array discussed above could be represented with equal accuracy
as having m columns and n rows, as shown in Figure 15-4. This correspondsto the
image-processing [column, row] notation. It's important to note that while the
representation shown is the transpose of the representation in Figure 15-3, the data
stored in the computer memory are identical. Only the two-dimensional
representation, which takes its form from the notational convention used, has
changed.

AOO Al,O Am—l,O

H

AOl Al,l Am—l,l

H

_AO,n—l Al,n—l Am—l,n—

=

Figure 15-4: An m x n array represented in image-processing notation.

IDL’s choice of column-major array layout reflects its roots as an image processing
language. The fact that the elements of the first dimension are contiguous means that
the elements of each row of an image array (using [column, row] notation, as shown
in Figure 15-4) are contiguous. Thisisthe order expected by most graphics hardware,
providing an efficiency advantage for languages that naturally store data that way.

Columns, Rows, and Array Majority Application Programming

Chapter 15: Arrays 333

Also, this ordering minimizes virtual memory overhead, since images are accessed
linearly.

It should be clear that the higher-level meanings associated with array dimensions
(row, column, latitude, longitude, etc.) are nothing more than a human notational
device. In general, you can assign any meaning you wish to the dimensions of an
array, and as long as your use of those dimensionsis consistent, you will get the
correct answer, regardless of the order in which IDL chooses to store the actua array
elementsin computer memory. Thus, it is usually possible to ignore these issues.
There are times however, when understanding memory layout can be important:

Sharing Data With Other Languages — If binary data written by a row major
language is to be input and used by IDL, transposition of the datais usually required
first. Similarly, if IDL iswriting binary datafor use by a program written in arow
major language, transposition of the data before writing (or on input by the other
program) is often required.

Calling Code Written In Other Languages — When passing IDL datato code
written in arow major language viadynamic linking (CALL_EXTERNAL,
LINKIMAGE, DLMs), it is often necessary to transpose the data before passing it to
the called code, and to transpose the results.

Matrix Multiplication — Understanding the difference between the IDL # and ##
operators requires an understanding of array layout. For a discussion of how the
ordering of such datarelatesto |DL mathematics routines, see “ Manipulating Arrays’
on page 324.

1-D Subscripting Of Multidimensional Array — IDL allows you to index
multidimensiona arrays using asingle 1-D subscript. For example, given atwo
dimensional 5x7 array, ARRAY[2,3] and ARRAY [17] refer to the same array
eement. Knowing this requires an understanding of the actual array layout in
memory (d2*m + di, or 3*5+2, which yields 17).

Efficiency — Accessing memory in the wrong order can impose a severe
performance penalty if your datais larger than the physical memory in your
computer. Accessing elements of an array along the contiguous dimension minimizes
the amount of memory paging required by the virtual memory subsystem of your
computer hardware, and will therefore be the most efficient. Accessing memory
across the non-contiguous dimension can cause each such accessto occur on a
different page of system memory. Thisforces the virtual memory subsystem into a
cyclein which it must continually force current pages of memory to disk in order to
make room for new pages, each of which is only momentarily accessed. This
inefficient use of virtual memory is commonly known as thrashing.

Application Programming Columns, Rows, and Array Majority

334 Chapter 15: Arrays

Columns, Rows, and Array Majority Application Programming

Chapter 16
Structures

The following topics are covered in this chapter:

Overview of Structures 336
Creating and Defining Structures 337
Structure References 340
Using HELP with Structures 342
Parameter Passing with Structures 343

Application Programming

Arraysof Structures 345
Structure Input/Output 347
Advanced StructureUsage 350
Automatic Structure Definition 352
Relaxed Structure Assignment 354

335

336 Chapter 16: Structures

Overview of Structures

IDL supports structures and arrays of structures. A structureisacollection of scalars,
arrays, or other structures contained in avariable. Structures are useful for
representing datain anatural form, transferring datato and from other programs, and
containing agroup of related items of varioustypes. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of hamed structure is defined by a unique structure name. The first
time a structure nameis used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and adefinition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If astructure definition contains no name, an anonymous structureis created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of atag name and atag definition that contains the type
and structure of the data contained in the field. A field isreferred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field's type, structure, and value. Aswith
structure definitions, afield definition is fixed and cannot be changed. The contents
of afield can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic datatypes, and even other structures or arrays of structures.

Overview of Structures Application Programming

Chapter 16: Structures 337

Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name; : Tag_Definition,, ..., Tag_Name, : Tag_Definition,}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Namel : Tag_Definition, , ..., Tag_Name,, : Tag_De¢finition,}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names may not be IDL Reserved Words, and must be unique within a given
structure, although the same tag name can be used in more than one structure.
Structure names and tag names follow the rules of IDL identifiers: they must begin
with aletter; following characters can be letters, digits, or the underscore or dollar
sign characters; and caseisignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to itstag
definition.

A named structure that has already been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Sructure_ Name}
Theresult of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data.

Application Programming Creating and Defining Structures

338 Chapter 16: Structures

Also, when making a named structure that has already been defined, the tag names
need not be present:

{Structure_Name, expressiony, ..., expression,}
All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one as follows:

A = {one, datala:0, datalb:0L }

we can define a second structure two that includes the tags from the one structure
with the following definition statement:

B = { two, INHERITS one, data2:0.0 }
Thisisthe same as defining the structure two with the statement:
B = { two, datala:0, datalb:0L, data2:0.0 }

Note that the fields of the one structure are included in the two structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag names in the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If astructure inherits tags from another structure that is not yet defined, IDL
will search for aroutine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 352. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERITS specifier isused in aclass
structure definition, it has the added effect of defining the inheriting object as a
subclass of the inherited class. For adiscussion of object-oriented IDL programming,
see Chapter 13, “ Creating Custom Objectsin IDL” (Object Programming).

Creating and Defining Structures Application Programming

Chapter 16: Structures 339

Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for a star contains the
following information: star name, right ascension, declination, and an intensity
measured each month over the last 12 months. A structure for thisinformation is
defined with the following IDL statement:

A = {star, name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

This structure definition is the basis for all examplesin this chapter. The statement
above defines a structure type named star, which contains four fields. The tag names
are name, ra, dec, and inten. Thefirst field, with the tag name, containsa scalar string
as given by itstag definition. The following two fields each contain floating-point
scalars. The fourth field, inten, contains a 12-element, floating-point array. Note that
the type of the constants, 0.0, isfloating point. If the constants had been written as 0,
the fidlds ra and dec would contain short integers.

The same structure is created as an anonymous structure by the statement:

A = {name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}
or by using the CREATE_STRUCT function:
A = CREATE_STRUCT('name', '', 'ra', 0.0, 'dec', 0.0, S

'inten', FLTARR(12))

Application Programming Creating and Defining Structures

340 Chapter 16: Structures

Structure References

The basic syntax of areference to afield within a structure is as follows:
Variable Name.Tag_Name

Variable_Name must be a variable that contains a structure. Tag_Name is the name
of the field and must exist in the structure. If the field referred to by the tag nameis
itself astructure, the Tag_Name can optionally be followed by one or more additional
tag names, as shown by the following example:

var.tagl.tag?2

Each tag name, except possibly the last, must refer to afield that contains a structure.
Subscripted Structure References

A subscript specification can be appended to the variable or tag names if the variable
isan array of structures or if the field referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable_Name. Tag_Name[Subscripts]
Variable Name] Subscripts] . Tag_Name...
Variable_Name[Subscripts]. Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If avariable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structures is referenced without a subscript but with
atag name, the designated field in all array elementsis affected. The complete syntax
of referencesto structures follows. (Optional items are enclosed in braces, {}.)

Sructure_reference:= Variable Name{[Subscripts]}.Tags
Tags:= { Tags.} Tag
Tag:= Tag_Name{[Subscripts] }

For example, al of the following are valid structure references:

A.B
A.B[N, M]
A[l2].B

Structure References Application Programming

Chapter 16: Structures 341

A[3:5].B[*, N]
A[12].B.CI[X, *]

The semantics of storing into a structure field using subscript rangesis slightly
different than that of simple arrays. Thisis because the structure of arraysin fieldsare
fixed. See “ Storing Into Array Fields’ on page 343 for details.

Examples of Structure References

The name of the star contained in A isreferenced as A.NAME. The entire intensity
array isreferred to as A.INTEN, while the n-th element of A.INTEN isA.INTEN[N].
Thefollowing are valid IDL statements using the STAR structure:

;Store a structure of type STAR into variable A. Define the values
;of all fields.
A = {star, name:'SIRIUS', ra:30., dec:40., inten:INDGEN(12)}

;Set name field. Other fields remain unchanged.
A.name = 'BETELGEUSE'

;Print name, right ascension, and declination.
PRINT, A.name, A.ra, A.dec

;Set Q to the value of the sixth element of A.inten. Q will be a
;floating-point scalar.
Q = A.inten|[5]

;Set ra field to 23.21.
A.ra = 23.21

;Zero all 12 elements of intensity field. Because the type and size
;of A.inten are fixed by the structure definition, the semantics of
;assignment statements is different than with normal variables.
A.inten = 0

;Store fourth thru seventh elements of inten field in variable B.
B = A.inten[3:6]

;The integer 12 is converted to string and stored in the name field
;because the field is defined as a string.
A.name = 12

;Copy A to B. The entire structure is copied and B contains a STAR

; Structure.
B = A

Application Programming Structure References

342

Chapter 16: Structures

Using HELP with Structures

Use the HEL B/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A
prints the following information:

** Structure STAR, 4 tags, length=40:

NAME STRING 'SIRIUS'
RA FLOAT 30.0000
DEC FLOAT 40.0000
INTEN INT Array(12)

Using HEL P with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HEL P with the STRUCTURE keyword
and no parameters prints alist of all defined, named structure types and their tag
names.

Using HELP with Structures Application Programming

Chapter 16: Structures 343

Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the
structure field A.name:

PRINT, A.name

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A.nameis an expression and is passed by value. Thisworks as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A.name

does not read into A.name but interprets its parameter as a prompt string. The proper
code to read into the field is as follows.

;Copy type and attributes to variable.
B = A.name

;Read into a simple variable.
READ, B

;Store result into field.
A.name = B

Storing Into Array Fields

As mentioned previously, the semantics of storing into structure array fieldsis
dightly different than storing into simple arrays. The main difference is that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not arange specification. Other differences occur
because the size and type of afield are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rulesfor
storing into array fields are as follows:

VAR.ARRAY _TAG = Scalar_Expression
All elements of VAR.tag are set to Scalar_Expression. For example:

;Set all 12 elements of A.inten to 100.
A.inten = 100

Application Programming Parameter Passing with Structures

344

Chapter 16: Structures

VAR.TAG = Array_Expression

Each element of Array_Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an error
results. If it contains fewer elements than VAR.TAG, the unmatched el ements remain
unchanged. For example:

;Set A.inten to the 12 numbers 0, 1, 2,..., 11.
A.inten = FINDGEN(12)

;Set A.inten[0] to 1 and A.inten[l] to 2. The other elements
;remain unchanged.
A.inten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression

The value of the scalar expression issimply copied into the designated element of the
destination. If Subscript isan array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth element of A.inten to 100.
A.inten[5] = 100

;Set elements 2, 4, and 6 to 100.
A.inten[[2, 4, 6]]1 = 100
VAR.TAG[Subscript] = Array_Expression
Unless VAR.tag is an array of structures, the subscript must be an array. Each

element of Array_Expression is copied into the element given by the corresponding
element subscript. For example:

;Set elements 2, 4, and 6 to the values 5, 7, and 9 respectively.
A.inten[[2, 4, 6]1]1 = [5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression
The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elements 8, 9, 10, and 11 to the value 5.
A.inten[8:*] = 5

VAR.TAG[Subscript_Range] = Array_Expression

Each element of the array expression is stored into the element designated by the
subscript range. The number of elementsin the array expression must agree with the
size of the subscript range. For example:

;Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and 3,
;respectively.
A.inten[3:6] = FINDGEN (4)

Parameter Passing with Structures Application Programming

Chapter 16: Structures 345

Arrays of Structures

An array of structuresissimply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structuresisto use the REPLICATE function.
Thefirst parameter to REPLICATE is areference to the structure of each element.
Using the examplein “Examples of Structure References’ on page 341 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLICATE({star}, 100)
Alternatively, since the variable A contains an instance of the structure STAR, then
cat = REPLICATE (A, 100)

Or, to define the structure and an array of the structure in one step, use the following
statement:

cat = REPLICATE({star, name:'', ra:0.0, dec:0.0, $
inten:FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are alowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

;Set the name field of all 100 elements to "EMPTY."
cat.name = 'EMPTY'

;Set the i-th element of cat to the contents of the star structure.
cat[I] = {star, 'BETELGEUSE', 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat([l].ra, ..., 99.0 into
;cat[99] .ra
cat.ra = INDGEN(100)

;Prints name field of all 100 elements of cat, separated by commas

Application Programming Arrays of Structures

346

Chapter 16: Structures

; (the last field has a trailing comma) .
PRINT, cat.name + ','

;Find index of star with name of SIRIUS.
I = WHERE (cat.name EQ 'SIRIUS')

;Extract intensity field from each entry. Q will be a 12 by 100
;floating-point array.
Q = cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

;Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2:8]

;Sort the array into ascending order by names. Store the result
;back into cat.
cat = cat (SORT(cat.name))

;Determine the monthly total intensity of all stars in array.
;monthly is now a l2-element array.
monthly = cat.inten # REPLICATE(1,100)

Arrays of Structures Application Programming

Chapter 16: Structures 347

Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate datatype. The
entire structureis enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first example in this chapter,
resultsin the following output.

{SIRIUS 30.0000 40.0000 01 2 3 45 6 7 8 9 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default
formats. The length of string elementsis determined by the format specification (i.e,
to read the next 10 charactersinto a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL datatype, except strings, has afixed length expressed in
bytes. This length (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is also the number of bytesread or written for each element. (For
more information, see “ASSOC” (IDL Reference Guide)).

All instances of structures contain an even number of bytes. On machines whose
native C compilersforce short integersto begin on an even byte boundary, IDL begins
fieldsthat are not of type byte on an even byte boundary. Thus, a“ padding byte” may
appear (when using ASSOC for 1/0) after a byte field to cause the following non-
byte-type field to begin on an even byte. A padding byte is never added before a byte
or byte array field.

Application Programming Structure Input/Output

348

Chapter 16: Structures

For example, the structure:
{example, tl:1b, t2:1}

occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t1 to cause the
integer field t2 to begin on an even-byte boundary. For more information, see
“ASSOC” (IDL Reference Guide).

Strings

Strings are exceptions to the above rules because the length of strings within
structuresis not fixed. For example, oneinstance of the { star} structure can contain a
name field with a five-character name, while another instance of the same structure
can contain a 20-character name. When reading into a structure field that contains a
string, IDL reads the number of bytes given by the length of the string. If the string
field contains a 10-character string, 10 characters are read. If the data read contains a
null byte, the length of the string field is truncated, and the null and following
characters are discarded. When writing fields containing strings with the unformatted
procedure WRITEU, IDL writes each character of the string and does not append a
terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
able to read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem isusing the STRING
function with aformat specification that sets the length of all elements to some
maximum number. For example, it is easy to set the length of al namefieldsin the
cat array to 20 characters by using the following statement.

cat.name = STRING (cat.name, FORMAT = ' (A20)"')

This statement will truncate nameslonger than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in aformat suitable to be read by C or FORTRAN programs.

Structure Input/Output Application Programming

Chapter 16: Structures 349

For example, to read into the cat array from afile in which each name field occupies
26 bytes, use the following statements.

;Make a 100-element array of {STAR} structures, storing a

;26-character string in each name field.

cat = REPLICATE({star, STRING(' ', FORMAT = '(A26)'), $
FLTARR(0., 0.12)}, 100)

;Read the structure. As mentioned above, 26 bytes will be read for
;each name field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.

READU, 1, cat

Application Programming Structure Input/Output

350 Chapter 16: Structures

Advanced Structure Usage

Facilities exist to process structures in a general way using tag numbers rather than
tag names. A tag can be referenced using itsindex, enclosed in parentheses, as
follows:

Variable_Name.(Tag_Index)...

The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be atag position. In
order for the IDL parser to understand that thisis the case, you must enclose the
Tag_Index in parentheses. Thisis not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fields in a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the/LENGTH keyword.

Names of Structure Tags

Thefunction TAG_NAMES(Structure) returns a string array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the
/ISTRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, from the keyboard with
;prompts.
PRO READ_STRUCTURE, S

;Get the names of the tags.

NAMES = TAG_NAMES(S)

;Loop for each field.

FOR I = 0, N_TAGS(S) - 1 DO BEGIN
;Define variable A of same type and structure as the i-th field.
A = S.(I)

Advanced Structure Usage Application Programming

Chapter 16: Structures 351

;Use HELP to print the attributes of the field. Prompt user with
;tag name of this field, and then read into variable A. S.(I) =
;A. Store back into structure from A.

HELP, S.(I)
READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR

END

Note
In the above procedure, the READ procedure reads into the variable A rather than

S.(1) because S. (1) isan expression, not asimple variable reference. Expressions
are passed by value; variables are passed by reference. The READ procedure
prompts the user with parameters passed by value and reads into parameters passed
by reference.

Application Programming Advanced Structure Usage

352 Chapter 16: Structures

Automatic Structure Definition

In versions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5to
allow the automatic definition of named structures.

When IDL encounters areference to an undefined named structure, it will
automatically search the directories specified in 'PATH for a procedure named
Name__ DEFINE, where Name is the actual name of the structure. If this procedureis
found, IDL will cal it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro exists in the directories specified by
IPATH. A call to the HELP procedure produces the following output:

HELP, { mystruct }, /STRUCTURE
IDL prints:

% Attempt to call undefined procedure/function:'MYSTRUCT__DEFINE'.
% Structure type not defined: MYSTRUCT.
% Execution halted at: SMAINS

Suppose now that we define a procedure named mystruct__define.pro as follows, and
placeit in one of the directories specified by 'PATH:

PRO mystruct__define
tmp = { mystruct, a:1.0, b:'string' }
END

With this structure definition routine available, the call to HEL P produces the
following output:

HELP, { mystruct }, /STRUCTURE
IDL prints:

% Compiled module: MYSTRUCT__DEFINE.

** Structure MYSTRUCT, 2 tags, length=12:
A FLOAT 0.00000
B STRING

Automatic Structure Definition Application Programming

Chapter 16: Structures 353

Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either via automatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain values after creation.

Application Programming Automatic Structure Definition

354 Chapter 16: Structures

Relaxed Structure Assignment

The IDL “=" operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, asfollows:

source = { SRC, A:FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A:INDGEN(2), C:20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT Array[2]>, SRC.
% Execution halted at: SMAINS

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.
The STRUCT_ASSIGN procedure performs “ relaxed structure assignment,” which is
afield-by-field copy of astructure to another structure. Fields are copied according to
the following rules:

1. Any fieldsfound in the destination structure that are not found in the source
structure are “zeroed” (set to zero, the empty string, or anull pointer or object
reference depending on the type of field).

2. Any fieldsin the source structure that are not found in the destination structure
are quietly ignored.

3. Any fieldsthat are found in both the source and destination structures are
copied one at atime. If necessary, type conversion is done to make their types
agree. If afield in the source structure has fewer data el ements than the
corresponding field in the destination structure, then the “ extra” elementsin
the field in the destination structure are zeroed. If afield in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSIGN, source, dest, /VERBOSE

Relaxed Structure Assignment Application Programming

Chapter 16: Structures 355

IDL prints:

% STRUCT_ASSIGN: SRC tag A is longer than destination.
The end will be clipped.
% STRUCT_ASSIGN: Destination lacks SRC tag B. Not copied.

If we check the variable dest, we see that it has the definition of the dest structure and
the data from the source structure:

HELP, dest, /STRUCTURE

IDL prints:
** Structure DEST, 2 tags, length=6:
A INT Array[2]
C INT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where this
type of structure definition is very useful isin restoring object structuresinto an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves data in structures. Your
application may use the IDL SAVE routine to save the data structures to disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
alows you to make relaxed assignments in such cases.

To see how thisworks, try the following exercise:

1. Start IDL, create anamed structure, and use the SAVE procedureto saveittoa
file:

mystruct = { STR, A:10, B:20L, C:'a string' }
SAVE, mystruct, FILE='test.dat'

2. Exitandrestart IDL.

3. Create anew structure definition with the same name you used previoudly:

newstruct = { STR, A:20L, B:10.0, C:'a string', D:ptr_new() }

Application Programming Relaxed Structure Assignment

356 Chapter 16: Structures

4. Attempt to restore the variable mystruct from the test.dat file:
RESTORE, 'test.dat'

IDL prints:

oe

Wrong number of tags defined for structure: STR.
% RESTORE: Structure not restored due to conflict with
existing definition: STR.

5. Now use relaxed structure definition when restoring:
RESTORE, 'test.dat', /RELAXED_STRUCTURE_ASSIGNMENT
6. Check the contents of mystruct:

HELP, mystruct, /STRUCTURE

IDL prints:
** Structure STR, 4 tags, length=20:
A LONG 10
B FLOAT 20.0000
C STRING 'a string'
D POINTER <NullPointer>

The structurein the variable mystruct now uses the definition from the new version of
the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of afield has changed, the data type of the old data element has
been converted to the new data type. Fields in the new structure definition that do not
correspond to fields in the old definition contain “zero” values (zeroes for numeric
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).

Relaxed Structure Assignment Application Programming

Chapter 17
Pointers

The following topics are covered in this chapter:

Overview of Pointers 358
Heap Variables 359
Creating Heap Variables
Saving and Restoring Heap Variables 362
Pointer Heap Variables 363
IDL Pointers

Application Programming

Operationson Pointers 367
Dangling References 371
Heap Variable Leakage 372
Pointer Validity 374
FreeingPointers 375
Pointer Examples 376

357

358 Chapter 17: Pointers
Overview of Pointers

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the

variable that actually holds the data must be separate from the lifetime of the tokens
that are used to accessiit.

Beginning with IDL version 5, IDL includes a new pointer datatype to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it isimportant
to understand that they are not the same thing. IDL pointers are ahigh level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of thefiles
mentioned are located in the examples/doc/language subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See “!PATH” (IDL
Reference Guide) for information on IDL's path.

Overview of Pointers Application Programming

Chapter 17: Pointers 359

Heap Variables

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 13, “Creating
Custom Objectsin IDL” (Object Programming) for more information on IDL
objects.) In IDL documentation of pointers and objects, heap variables accessible via
pointers are called pointer heap variables, and heap variables accessible via object
references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.

e Providefull support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

« Aremanipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

e Can be used to construct arbitrary, fully general data structuresin conjunction
with pointers.

Application Programming Heap Variables

360 Chapter 17: Pointers

Note
If you have used versions of IDL prior to version 5, you may be familiar with

handles. Because IDL pointers provide amore complete and robust way of building
dynamic data structures, we recommend that you use pointers rather than handles
when developing new code. See Appendix |, “Obsolete Features’ (IDL Reference
Guide) for adiscussion of our policy on language features that have been
superseded in this manner.

Heap Variables Application Programming

Chapter 17: Pointers 361

Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ NEW. (See Chapter 13, “ Creating Custom Objectsin
IDL” (Object Programming) for a discussion of object creation.) Copying a pointer
or abject reference does not create a new heap variable. Thisis markedly different
from the way IDL handles “regular” variables. For example, with the statement:

A =1.0

you create anew IDL floating-point variable with avalue of 1.0. The following
statement:

B = A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:
C = PTR_NEW(2.0d)

the variable C contains not the double-precision floating-point value 2.0, but a
pointer to a heap variable that contains that value. Copying the variable C with the
following statement:

D =2C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HEL P command would reveal:

% At SMAINS

A FLOAT = 1.00000
B FLOAT = 1.00000
C POINTER = <PtrHeapVarl>
D POINTER = <PtrHeapVarl>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in “Dereference” on page 367).

Destroying or redefining either C, D, or both variables would | eave the contents of
the heap variable unchanged. When all pointers or references to a given heap variable
are destroyed, the heap variable still exists and holds whatever memory has been
alocated for it. See “Heap Variable Leakage” on page 372 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist, but
will beinvalid. See “Dangling References’ on page 371.

Application Programming Creating Heap Variables

362 Chapter 17: Pointers

Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. By default, when IDL saves a pointer or object referencein
asavefile, it recursively saves the heap variables that are referenced by that pointer
or object reference. SAVE handles circular data structures correctly. You can build a
large, complicated, self-referential data structure, and then save the entire construct
with acall to SAVE to save the single pointer or object reference that pointsto the
head of the structure. For example, you can save a pointer to the root of abinary tree
and the entire tree will be saved.

Theinternal identifier of a given heap variable is dynamically alocated at run time,
and will differ between IDL sessions. Asaresult, the RESTORE operation maps all
saved pointers and object references to their new valuesin the current session.

In some cases, you may want to save the pointer or object reference, but not the heap
variable that are referenced by that pointer or object reference. You can specify that
the heap variable associated with a pointer or object reference not be saved using the
HEAP_NOSAVE procedure or the HEAP_SAVE function. See the documentation for
HEAP_SAVE for additional details.

Saving and Restoring Heap Variables Application Programming

Chapter 17: Pointers 363

Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, itis
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 13, “Creating
Custom Objectsin IDL” (Object Programming).

Application Programming Pointer Heap Variables

364

Chapter 17: Pointers

IDL Pointers

IDL Pointers

Asillustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of anull pointer.

Null Pointers

The Null Pointer isaspecia pointer value that is guaranteed to never point at avalid
heap variable. It isused by IDL to initialize pointer variables when no other
initializing valueis present. It is also a convenient value to use at the end nodesin
data structures such as trees and linked lists.

It isimportant to understand the difference between anull pointer and a pointer to an
undefined or invalid heap variable. The second caseisavalid pointer to a heap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

; The variable A contains a null pointer.

A = PTR_NEW()

;The variable B contains a pointer to a heap variable with an
;undefined value.

B = PTR_NEW (/ALLOCATE_HEAP)

HELP, A, B, *B

IDL prints:
A POINTER = <NullPointer>
B POINTER = <PtrHeapVarl>

<PtrHeapVarl> UNDEFINED = <Undefined>

The primary difference isthat it is possible to write a useful value into a pointer to an
undefined variable, but thisis never possible with anull pointer. For example,
attempt to assign the value 34 to the null pointer:

*A = 34
IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAINS

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRINT, *B

Application Programming

Chapter 17: Pointers 365

IDL prints:
34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(0) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Use the PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptrl = PTR_NEW(FINDGEN (10))

creates a new heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variable in ptrl.

Note that the argument to PTR_NEW can be of any IDL datatype, and can include
any IDL expression, including callsto PTR_NEW itself. For example, the command:

ptr2 = PTR_NEW({name:'', next:PTR_NEW() })

creates a pointer to a heap variable that contains an anonymous structure with two
fields: thefirst field is a string, the second is a pointer. We will develop thisidea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be anull pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See “PTR_NEW?” (IDL Reference Guide) for further details.
The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2,2)

;Display the contents of the ptarray variable, and of the first

;array element.
HELP, ptarray, ptarray(0,0)

Application Programming IDL Pointers

366 Chapter 17: Pointers

IDL prints:
PTARR POINTER = Array (2, 2)
<Expression> POINTER = <NullPointer>

If you want each element of the array to point to a new heap variable (as opposed to
being anull pointer), use the ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See “PTRARR” (IDL Reference Guide) for further details.

IDL Pointers Application Programming

Chapter 17: Pointers 367

Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate datafor the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and proceduresin IDL do work with pointer
variables. Examplesare SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting
that the only 1/0 allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
Thisis merely adebugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variablesis not
allowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of this type of 1/0.

Assignment

Assignment works in the expected manner—assigning a pointer to a variable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW (FINDGEN(10))
B =A
HELP, A, B

A and B both point at the same heap variable and we see the outpult:

A POINTER = <PtrHeapVarl>
B POINTER = <PtrHeapVarl>
Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, whichis* (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:

PRINT, *B

Application Programming Operations on Pointers

368 Chapter 17: Pointers

IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires ascalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create athree-element pointer array, allocating anew heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE_HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR I = 0,2 DO *ptarr[I] = I
Note
The dereference operator is dereferencing only element | of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
a by the pointersin ptarr, you might be tempted to try the following:

PRINT, *ptarr

IDL prints:

o

Expression must be a scalar in this context: PTARR.
% Execution halted at: SMAINS

To print the contents of the heap variables, use the statement:

FOR I = 0, N_ELEMENTS (ptarr)-1 DO PRINT, *ptarr[I]
Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW (PTR_NEW (47))

assignsto A apointer to a pointer to a heap variable containing the value 47.

Operations on Pointers Application Programming

Chapter 17: Pointers 369

To print this value, use the following statement:

PRINT, **A
Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new(20.0)}

you would use the following command to print the value of the heap variable pointed
a by the pointer in the pointer field:

PRINT, *struct.pointer

Defining pointersto structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEW (struct)

you would use the following command to print the value of the heap variable pointed
a by the pointer field of the struct structure, which is pointed at by ptstruct:

PRINT, * (*pstruct) .pointer
Note that you must dereference both the pointer to the structure and the pointer within
the structure.
Dereferencing the Null Pointer
It isan error to dereference the NULL pointer, aninvalid pointer, or a non-pointer.
These cases all generate errorsthat stop IDL execution. For example:
PRINT, *45
IDL prints:

% Pointer type required in this context: <INT(45)>.
% Execution halted at: S$MAINS

For example:
A = PTR_NEW() & PRINT, *A
IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAINS

For example:

A = PTR_NEW(23) & PTR_FREE, A & PRINT, *A

Application Programming Operations on Pointers

370 Chapter 17: Pointers

IDL prints:
% Invalid pointer: A.
% Execution halted at: SMAINS$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to see if they point at the
same heap variable. For example:

;Make A a pointer to a heap variable containing 23.
A = PTR_NEW(23)

;B points at the same heap variable as A.
B = A

;C contains the null pointer.
C = PTR_NEW()

PRINT, 'A EQ B: ', A EQ B & $

PRINT, 'ANE B: ', ANE B & $

PRINT, 'A EQ C: ', AEQC & S

PRINT, 'C EQ NULL: ', C EQ PTR_NEW() & S

PRINT, 'C NE NULL:', C NE PTR_NEW()
IDL prints:

A EQ B: 1

A NE B: 0

A EQ C: 0

C EQ NULL: 1

C NE NULL: O

Operations on Pointers Application Programming

Chapter 17: Pointers 371

Dangling References

If aheap variableis destroyed, any remaining pointer variable or object reference that
still refersto it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap variable.
A = PTR_NEW(23)
;Print A and the value of the heap variable A points to.
PRINT, A, *A

IDL prints:
<PtrHeapVarl3> 23

For example:
;Destroy the heap variable.
PTR_FREE, A
;Try to print again.
PRINT, A, *A

IDL prints:

% Invalid pointer: A.
% Execution halted at: $MAINS

There are several possible approaches to avoiding such errors. The best optionisto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.

Application Programming Dangling References

372 Chapter 17: Pointers

Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.

For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is lost.
A =0
Use the HEAP_VARIABLES keyword to the HEL P procedure to view alist of heap
variables currently in memory:

HELP, /HEAP_VARIABLES
IDL prints:
<PtrHeapVarl4d> INT = 23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see
“PTR_VALID” (IDL Reference Guide)), or do manual “Garbage Collection” and use
the HEAP_GC command to destroy all inaccessible heap variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See“OBJ VALID” (IDL Reference Guide) for more information.

The HEAP_GC procedure causes IDL to hunt for all unreferenced heap variables and
destroy them. It isimportant to understand that thisis a potentially computationally
expensive operation, and should not be relied on by programmers as away to avoid
writing careful code. Rather, the intent is to provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makesit possible to determine when variables have
leaked, and it provides some hint as to their origin.

Warning
HEAP_GC uses arecursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such aslarge linked lists, a

Heap Variable Leakage Application Programming

Chapter 17: Pointers 373

potentially large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, istoo slow to be
provided automatically by IDL, and careful programming can easily avoid this pitfall.
Furthermore, implementing a reference counted data structure on top of IDL pointers
is easy to do in those cases where it is useful, and such reference counting could take
advantage of its domain specific knowledge to do the job much faster than the
general case.

Another approach would be to write allocation and freeing routines—layered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the alocated pointers. Such afacility could offer the ability to allocate
pointers in named groups, and might provide aroutine that frees all heap variablesin
agiven group. Such an operation would be very efficient, and is easier than reference
counting.

Application Programming Heap Variable Leakage

374 Chapter 17: Pointers

Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointersto
existing heap variables. If supplied with asingle pointer asits argument,
PTR_VALID returns TRUE (1) if the pointer argument points at avalid heap
variable, or FALSE (0) otherwise. If supplied with an array of pointers, PTR_VALID
returns an array of TRUE and FAL SE values corresponding to the input array. If no
argument is specified, PTR_VALID returns an array of pointersto all existing pointer
heap variables. For example:

;Create a new pointer and heap variable.
A = PTR_NEW(10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:
A points to a valid heap variable.
For example:

;Destroy the heap variable.
PTR_FREE, A

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:
A does not point to a valid heap variable.

See “PTR_VALID” (IDL Reference Guide) for further details.

Pointer Validity Application Programming

Chapter 17: Pointers 375

Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied asits arguments. Any memory used by the heap variable is released, and the
heap variable ceases to exist. PTR_FREE isthe only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointersremain to referenceit.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References’ on page 371.

See“PTR_FREE” (IDL Reference Guide) for further details.

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
al array elements and structure fields. When avalid pointer or object referenceis
encountered, that heap variable is marked for removal, and then isrecursively
examined for additional heap variablesto be freed. In thisway, all heap variables that
arereferenced directly or indirectly by the input argument are located. Once all such
heap variables areidentified, HEAP_FREE releasesthem in afinal pass. Pointers are
released asif the PTR_FREE procedure was called. Objects are released aswith acall
to OBJ_DESTROY.

HEAP_FREE is recommended when:

» Thedatastructuresinvolved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

e Thedatastructures are opaque, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE" (IDL Reference Guide) for further details.

Application Programming Freeing Pointers

376 Chapter 17: Pointers

Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examplesisto illustrate
simply and clearly how pointers are used. As such, they may not represent the “ best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointersto create and manipulate alinked list. One
procedure reads string input from the keyboard and creates a list of pointers to heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of thelinked list. A third procedure uses a modified
“bubble sort” algorithm to reorder the values so the strings are in alphabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing alist

el ement—an anonymous structure with two fields; one to hold the string dataand one
to hold apointer to the next list element. Any number of strings can be entered. When
the user isfinished entering strings, the program can be exited by entering a period by
itself at the “Enter string:” prompt.

Example Code
The source code for this example can be found in thefileptr_read.pro inthe
examples/doc/language subdirectory of the IDL distribution. Run the example
procedure by enteringptr_read at the IDL command prompt or view thefilein an
IDL Editor window by entering .EDIT ptr_read.pro.

Run the PTR_READ program by entering the following command at the IDL prompt:
ptr_read, first

Type astring, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time astring is entered, PTR_READ creates
anew list element with that string as its value.

For example, you could enter the following three strings (used in the rest of this
example):

Pointer Examples Application Programming

javascript:doIDL("ptr_read")

javascript:doIDL(".edit ptr_read.pro")

Chapter 17: Pointers 377

Enter a list of names.

Enter a period (.) to stop list entry.
Enter string: wilma

Enter string: biff

Enter string: cosmo

Enter string:

The following figure shows one way of visualizing the linked list that we've created.

_ name: next: name: next: name;: next:
firstt—»| wilma —7»| biff cOsSmo null

A 4

Table 17-1: One way of visualizing the linked list created by the PTR_READ
procedure

Printing the Linked List

The next program in our example accepts the pointer to the first element of the linked
list and prints all the valuesin the list in order. To illustrate how thelist islinked, we
will aso print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

Example Code
The source code for this example can be found in thefileptr_print.pro inthe
examples/doc/language subdirectory of the IDL distribution. Run the example
procedure by entering ptr_print at the IDL command prompt or view thefilein
an IDL Editor window by entering .EDIT ptr_print.pro.

If werunthe PTR_PRINT program with the list generated in the previous example:
IDL> ptr_print, first
IDL prints:

<PtrHeapVarl>, named wilma, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named biff, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named cosmo, has a pointer to: <NullPointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves the
values so that they are in aphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with

Application Programming Pointer Examples

javascript:doIDL("ptr_print")
javascript:doIDL(".edit ptr_print.pro")

378 Chapter 17: Pointers

the last element in the list and letting lower values “rise” to the top, this example
starts at the top of the list and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that thisis not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL's SORT
function.

Example Code
The source code for this example can be found in thefileptr_sort.pro inthe
examples/doc/language subdirectory of the IDL distribution. Run the example
procedure by enteringptr_sort at the IDL command prompt or view thefilein an
IDL Editor window by entering .EDIT ptr_sort.pro.

To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:
ptr_print, first

IDL prints:

<PtrHeapVarl>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named cosmo, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named wilma, has a pointer to: <NullPointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary
Trees

Two more-complicated example programs demonstrate the use of IDL pointers to
create and search a simple tree structure.

Example Code
Thesefiles, named 1d1l_tree.pro and tree_example.pro, can befound in the
examples/doc/language Ssubdirectory of the IDL distribution. Run these
example procedures by entering idl_tree Of tree_example at thelDL
command prompt or view thefilein an IDL Editor window by entering .EDIT
idl_tree.pro Or .EDIT tree_example.pro.

To run the tree exampl es, enter the following commands at the IDL prompt:

; Compile the routines in idl_tree. The example routine calls the
; routines defined in this file.

Pointer Examples Application Programming

javascript:doIDL("ptr_sort")
javascript:doIDL(".edit ptr_sort.pro")
javascript:doIDL("idl_tree")
javascript:doIDL(".edit idl_tree.pro")
javascript:doIDL(".edit idl_tree.pro")
javascript:doIDL("tree_example")
javascript:doIDL(".edit tree_example.pro")

Chapter 17: Pointers 379

.run idl_tree

; Run the tree_example.
tree_example

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time’ and
“Data’. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and deletes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routines is beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.

Application Programming Pointer Examples

380 Chapter 17: Pointers

Pointer Examples Application Programming

Chapter 18

Files and Input/Output

The following topics are covered in this chapter:

Overview of FileAccess 382 Using Explicitly Formatted Input/Output 404
Formatted and Unformatted Input/Output . 384 FormatCodes 409
OpeningFiles....................... 387 Using Unformatted Input/Output 447
ClosingFiles 388 Portable Unformatted Input/Output 454
Understanding (LUNS) 389 Associated Input/Qutput 459
Returning Information About aFile Unit . 392 File Manipulation Operations.......... 465
File Unit Manipulations............... 395 Reading and Writing FORTRAN Data .. 466

Reading and Writing Very Large Files ... 397 Platform-Specific File I/O Information .. 470
Using Free Format Input/Output 399

Application Programming 381

382

Chapter 18: Files and Input/Output

Overview of File Access

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on datafiles by IDL, and there isno unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of programs
which read and write datausing IDL, C, and FORTRAN.

Thefirst section of this chapter provides a description for how IDL input/output
works. It isintentionally brief and isintended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhaps
the largest single difference between platforms is input/output. The majority of this
chapter coversinformation that is required in all of the environments IDL supports.
Operating system specific information is concentrated in the final sections of this
chapter.

About Opening Files

Before any file input or output can be performed, it is necessary to open afile. Thisis
done using either the OPENR (Open for Reading), OPENW (Open for Writing), or
OPENU (Open for Update) procedures. When afileis opened, it is associated with a
Logical Unit Number, or LUN. All file input and output routinesin IDL usethe LUN
rather than the filename, and most require that the LUN be explicitly specified. Once
afileis opened, several input/output routines are available for use. Each routine fills
aparticular need — the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing input/output
onit. Threefiles are aways open —in fact, the user is not allowed to close them.
These files are the standard input (usually the keyboard), the standard output
(usually the IDL log window), and the standard error output (usually the terminal
screen). These three files are associated with LUNsO, -1, and -2, respectively.
Because thesefiles are always open, there is no need to open them prior to using them
for input/output. The READ and PRINT procedures automatically use these files, so
basic formatted input/output is extremely simple.

Overview of File Access Application Programming

Chapter 18: Files and Input/Output 383

Simple I/O Examples

It is easy to use input/output using the default input and output files. The IDL
command:

PRINT, 'Hello World.'
causes IDL to print the line:
Hello World.

on the terminal screen. This happens because PRINT formatsits arguments and prints
them to LUN -1, which is the standard output file. It isonly dightly more
complicated to use other files. The following IDL statements show how the above
“Hello World” example could be sent to afile named hello.dat:

;Open LUN 1 for hello.dat with write access.
OPENW, 1, 'hello.dat'

;Do the output operation to the file.
PRINTF, 1, 'Hello World.'

;Close the file.
CLOSE, 1

Routines for Input/Output

See the categories under the functional heading “Input/Output” (IDL Quick
Reference) for a complete list of available routines.

Application Programming Overview of File Access

384 Chapter 18: Files and Input/Output

Formatted and Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly between
memory and the file. Formatted output converts the internal binary representation of
the datato ASCII characters which are written to the output file. Formatted input
reads characters from the input file and converts them to internal form. Formatted 1/0
can be either “Free” format or “Explicit” format, as described below.

Advantages and Disadvantages of Unformatted 1/O

Unformatted input/output is the simplest and most efficient form of input/output. It is
usually the most compact way to store data. Unformatted input/output is the least
portable form of input/output. Unformatted data files can only be moved easily to and
from computers that share the sasmeinternal data representation. It should be noted
that XDR (eXternal Data Representation) files, described in “ Portable Unformatted
Input/Output” on page 454, can be used to produce portable binary data. Unformatted
input/output is not directly human readable, so you cannot type it out on a terminal
screen or edit it with atext editor.

Advantages and Disadvantages of Formatted 1/O

Formatted input/output is very portable. It isasimple process to move formatted data
files to various computers, even computers running different operating systems, as
long as they all use the ASCII character set. (ASCII isthe American Standard Code
for Information Interchange. It is the character set used by almost all current
computers, with the notable exception of large IBM mainframes.) Formatted files are
human readable and can be typed to the terminal screen or edited with atext editor.

However, formatted input/output is more computationally expensive than
unformatted input/output because of the need to convert between internal binary data
and ASCI|I text. Formatted data requires more space than unformatted to represent the
same information. Inaccuracies can result when converting data between text and the
internal representation.

Formatted and Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 385

Free Format 1/0O

With free format input/output, IDL uses default rules to format the data.
Advantages and Disadvantages of Free Format 1/O

The user isfree of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with aminimum of effort. However, the
default formats used are not always exactly what is required. In this case, explicit
formatting is necessary.

See “Using Free Format Input/Output” on page 399 for more information.
Explicit Format 1/O

Explicit format 1/0 allows you to specify the exact format for input/output.
Advantages and Disadvantages of Explicit I/O

Explicit formatting allows a great deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used in
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codes are supported. In addition, IDL formats have been extended to provide many of
the capabilities found in the scanf () and printf () functions commonly found in the C
language runtime library.

However, there are some disadvantages to using Explicit 1/0. Using explicitly
specified formats requires the user to specify more detail—they are, therefore, more
complicated to use than free format.

Thetype of input/output to use in agiven situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestions are intended to give a rough idea of the issues involved, though there are
aways exceptions:

* Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

» Datathat need to be human readabl e should be written using formatted
input/output.

Application Programming Formatted and Unformatted Input/Output

386 Chapter 18: Files and Input/Output

» Datathat need to be portable should be written using formatted input/output.
Another option is to use unformatted XDR files by specifying the XDR
keyword with the OPEN procedures. Thisis especially important if moving
between computerswith markedly different internal binary dataformats. XDR
is discussed in “Portable Unformatted I nput/Output” on page 454.

» Freeformat input/output is easier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often a good choice for
small files where there is no strong reason to prefer one method over another.

e Specia well-known complex file formats are usually supported directly with
specia IDL routines (e.g. READ_JPEG for JPEG images).

See “Using Explicitly Formatted Input/Output” on page 404 for more information
and examples.

Formatted and Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 387
Opening Files

Before afile can be processed by IDL, it must be opened using one of the procedures
described in the following table. All open files are associated with aLUN (Logical
Unit Number) within IDL, and all input/output routines refer to files viathis number.
For example, to open the file named data.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'

The OPENR/OPENU/OPENW procedures can be used with certain keywordsto
modify their normal behavior. Some keywords are generally applicable, while others
only have effect under a given operating system. Some operating system specific
keywords are allowed (and ignored) under other operating systemsin order to
facilitate writing portable routines.

Procedure Description
OPENR Opens an existing file for input only.
OPENW Opens a new file for input and output. If the named file already

exists, its old contents are overwritten.

OPENU Opens an existing file for input and output.

Table 18-1: IDL File Opening Commands
Platform-Specific Keywords to the OPEN Procedure
Different computers and operating systems perform input/output in different ways.

See “OPENR/OPENU/OPENW" (IDL Reference Guide) for keywords to the OPEN
procedures that apply under UNIX or Microsoft Windows.

Application Programming Opening Files

388

Chapter 18: Files and Input/Output

Closing Files

Closing Files

After work involving the file is complete, it should be closed. Closing a file removes
the association between the file and its unit number, thus freeing the unit number for
use with adifferent file. Thereisusually an operating system-imposed limit on the
number of files a user may have open at once. Although this number islarge enough
that it rarely causes problems, situations can occur where afile must be closed before
another file may be opened. In any event, it is good style to only keep needed files
open.

There are three ways to close afile;
e Usethe CLOSE procedure.

e Usethe FREE_LUN procedure on aLUN that has been allocated by
GET_LUN.

e ExitIDL. IDL closesal open fileswhen it exits.

Calling the CLOSE procedure is the most common way to close afile unit. For
example, to close file unit number 1, use the following statement:

CLOSE, 1

In addition, if FREE_LUN is called with afile unit number that was previously
alocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finally, all
open files are automatically closed when IDL exits.

Application Programming

Chapter 18: Files and Input/Output 389

Understanding (LUNS)

IDL Logica Unit Numbers (LUNSs) fall within the range —2 to 128. Some LUNs are
reserved for special functions as described below.

The Standard Input, Output, and Error LUNs

The three LUNs described below have special meanings that are operating system
dependent:

UNIX

Logical Unit Numbers 0, -1, and -2 are tied to stdin, stdout, and stderr, respectively.
Thismeans that the normal UNIX file redirection and pipe operationswork with IDL.
For example, the shell command

%idl < idl.inp >& idl.out &

will cause IDL to execute in the background, reading its input from thefileidl.inp
and writing its output to the file idl.out. Any messages sent to stderr are also sent to
idl.out.

When using the IDL Workbench, Logical Unit Numbers O, -1, and -2 aretied to stdin
(the command line), stdout (the log window), and stderr (the log window),
respectively.

Windows

Logical Unit Numbers 0, -1, and -2 are tied to stdin (the command line), stdout (the
log window), and stderr (the log window), respectively.

These special file units are described in more detail below.
File Unit O

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:
READ, X

is equivalent to the following:

READF, 0, X

Application Programming Understanding (LUNS)

390 Chapter 18: Files and Input/Output

File Unit -1

ThisLUN representsthe standard output stream, which isusually the terminal screen.
Therefore, the IDL statement:

PRINT, X
is equivalent to the following:

PRINTF, -1, X
File Unit -2

This LUN represents the standard error stream, which is usually the terminal screen.
File Units (1-99)

These are the file units for normal interactive use. When using IDL interactively, the
user arbitrarily selects the file units used. The file unitsfrom 1 to 99 are available for
this use.

File Units (100-128)

These are thefile units managed by the GET_LUN and FREE_LUN procedures. If an
IDL procedure or function that uses files is written to explicitly use a given file unit,
thereis achancethat it will conflict with other routines that use the same unit. It is
therefore necessary to avoid explicit file unit numbers when writing IDL procedures
and functions. The GET_LUN and FREE_LUN procedures provide a standard
mechanism for IDL routines to obtain unique file units. GET_LUN allocates afile
unit from a pool of free unitsin the range 100 to 128. This unit will not be allocated
again until it isreleased by acall to FREE_LUN. Meanwhile, it is available for the
exclusive use of the program that allocated it. A typical procedure that needs afile
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNIT, /GET_LUN

;Body of program goes here.

;Return file unit.
FREE_LUN, UNIT

Understanding (LUNS) Application Programming

Chapter 18: Files and Input/Output 391

;Since the file is still open, FREE_LUN will automatically call
; CLOSE.
END
Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LUN
to obtain file units. Furthermore, the file units between 100 and 128 should never be
used unless previously allocated by GET_LUN.

Application Programming Understanding (LUNS)

Chapter 18: Files and Input/Output

Returning Information About a File Unit

Information about currently open file unitsis available by using the FILES keyword
with the HEL P procedure, or using the FSTAT function. If no arguments are
provided, information about all currently open user file units (units 1-128) is given.
For example, the following command can be used to get information about the three
special units (-2, -1, and 0):

HELP, /FILES, -2, -1, O

This command results in output similar to the following:

Unit Attributes Name

-2 Write, New, Tty, Reserved <stderr>
-1 Write, New, Tty, Reserved <stdout>
0 Read, Tty, Reserved <stdin>

See “HELP” (IDL Reference Guide) for details.

Using FSTAT

The FSTAT function can be used to retrieve information about afile that is currently
open (that is, for which thereisan IDL Logical Unit Number available). It returns a
structure expression of type FSTAT or FSTAT64 containing information about the
file. For example, to get detailed information about the standard input, use the
following command:

HELP, /STRUCTURES, FSTAT(0)
This displays the following information:

** Structure FSTAT, 17 tags, length=64:

UNIT LONG 0
NAME STRING '<stdin>"'
OPEN BYTE 1
ISATTY BYTE 0
ISAGUI BYTE 1
INTERACTIVE BYTE 1
XDR BYTE 0
COMPRESS BYTE 0
READ BYTE 1
WWRITE BYTE 0
ATIME LONG64 0
CTIME LONG64 0
MTIME LONG64 0
TRANSFER_COUNT LONG 0
CUR_PTR LONG 0

Returning Information About a File Unit Application Programming

Chapter 18: Files and Input/Output 393

SIZE LONG 0
REC_LEN LONG 0

On some platforms, IDL can support files that are longer than 2°31-1 bytesin length.
If FSTAT isapplied to such afile, it returns an expression of type FSTAT64 instead of
the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

The fields of the FSTAT and FSTAT64 structures provide various information about
the file, such asthe size of the file, and the dates of |ast access, creation, and |ast
modification. For more information on the fields of the FSTAT and FSTAT64
structures, see “FSTAT” (IDL Reference Guide).

An Example Using FSTAT

Thefollowing IDL function can be used to read single-precision, floating-point data
from a stream file into a vector when the number of elementsin the fileis not known.
It uses the FSTAT function to get the size of the file in bytes and divides by four (the
size of asingle-precision, floating-point value) to determine the number of values.

;READ_DATA reads all the floating point values from a stream file
;and returns the result as a floating-point vector.
FUNCTION READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /GET_LUN, unit, file

;Get file status.
status = FSTAT (unit)

;Make an array to hold the input data. The SIZE field of status
;gives the number of bytes in the file, and single-precision,
;floating-point values are four bytes each.

data = FLTARR(status.size / 4)

;Read the data.
READU, unit, data

;Deallocate the file unit. The file also will be closed.
FREE_LUN, unit

RETURN, data

END

Application Programming Returning Information About a File Unit

394 Chapter 18: Files and Input/Output

Assuming that afile named data.dat exists and contains 10 floating-point values,
the READ_DATA function could be used as follows:

;Read floating-point values from data.dat.
A = READ_DATA('data.dat"')

; Show the result.
HELP, A

The following output is produced:

A FLOAT = Array (10)

Returning Information About a File Unit Application Programming

Chapter 18: Files and Input/Output 395

File Unit Manipulations

The following sections describe common tasks when working with file units.
Flushing File Units

For efficiency, IDL buffersitsinput/output in memory. Therefore, when data are
output, there isawindow of time during which data are in memory and have not been
actually placed into the file. Normally, this behavior is transparent to the user (except
for the improved performance). The FLUSH routine exists for those rare occasions
where a program needs to be certain that the data has actually been written to thefile
immediately. For example, use the statement,

FLUSH, 1
to flush file unit one.
See“FLUSH” (IDL Reference Guide) for details.

Positioning File Pointers

Each open file unit has a current file pointer associated with it. Thisfile pointer
indicates the position in the file at which the next input/output operation will take
place. Thefile position is specified as the number of bytes from the start of thefile.
Thefirst position in the file is position zero. The following statement will rewind file
unit 1 to its start:

POINT_LUN, 1, O
The following sequence of statements will position it at the end of the file:

tmp = FSTAT(1)
POINT_LUN, 1, tmp.size

POINT_LUN has the following operating-system specific behavior:

« UNIX: the current file pointer can be positioned arbitrarily — moving to a
position beyond the current end-of-file causes the file to grow out to that point.
The gap created isfilled with zeroes.

* Windows: the current file pointer can be positioned arbitrarily —moving to a
position beyond the current end-of-file causes the file to grow out to that point.
Unlike UNIX, the gap created isfilled with arbitrary datainstead of zeroes.

See “POINT_LUN” (IDL Reference Guide) for details.

Application Programming File Unit Manipulations

396 Chapter 18: Files and Input/Output

Testing for End-Of-File

The EOF function is used to test afile unit to seeif it is currently positioned at the
end of thefile. It returns true (1) if the end-of-file condition is true and false (0)
otherwise.

For example, to read the contents of afileand print it on the screen, use the following
statements:

;O0pen file demo.doc for reading.
OPENR, 1, 'demo.doc'

;Create a variable of type string.
LINE = "'

;Read and print each line until the end of the file is encountered.
WHILE(~ EOF(1)) DO BEGIN READF,1,LINE & PRINT,LINE & END

;Done with the file.
CLOSE, 1

See “EOF” (IDL Reference Guide) for details.

File Unit Manipulations Application Programming

Chapter 18: Files and Input/Output 397

Reading and Writing Very Large Files

IDL on al platformsis able to read and write data from files up to 2311 bytesin

length. On some platforms, it is also able to read and write data from files longer than
this limit.

To seeif IDL on your platform supports large files, use the following:
PRINT, !VERSION.FILE_OFFSET_BITS

If IDL prints the number 64, the platform supports large files. For more information,
see “1VERSION” (IDL Reference Guide).

Warning
Macintosh systems that use the UNIX File System (UFS) rather than the default
Mac OS Extended Filesystem (HFS+) will not be able to access large files, even
though IDL itself will report the ability to do so. Thisisalimitation of thefile
system, not of IDL.

When reading and writing to files smaller than thislimit, thereis no differencein
behavior between the platformsthat can and those that cannot handle larger files. IDL
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) and
keywords, as before. However, when dealing with files that exceed this limit, IDL
uses signed 64-bit integersin order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW, 1, 'test.dat'

;Initial position should be 0.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

;Move the file pointer past the signed 32-bit boundary.
POINT_LUN, 1, 'O00QOOQffffffffff'x

;The position is now too large to represent as a longword.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

CLOSE, 1

Application Programming Reading and Writing Very Large Files

398

Chapter 18: Files and Input/Output

Executing these statements results in the following output:

POS LONG
POS LONG64

0
1099511627775

Initially, the file position is 0, which fits easily into a 32-bit integer. Once thefile
position exceeds the range of a signed 32-bit number, IDL automatically shiftsto the
64-bit integer type.

Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood by
the IDL programmer:

On any platform, the amount of datathat IDL can transfer in asingle operation
islimited by the amount of memory it can allocate. On most platforms, IDL is
a 32-bit program, and as such, can theoretically address up to 2/31-1 bytes of
memory (approximately 2.3GB). On these 32-bit platforms, reading, writing,
and processing data larger than this limit must be done in multiple operations.
Most systems do not have 2.3 GB of memory available, and other programs
running on the system also compete for the same memory, so the actual
memory availableislikely to be considerably smaller.

To seeif your platform is 32- or 64-bit, use the following:
PRINT, !VERSION.MEMORY_BITS

IF“32" isreturned, your platform is 32-bit. If “64” isreturned, your platform
is 64-bit. For more information, see “!VERSION” (IDL Reference Guide).

The ability to read or writeto very largefilesis constrained by the ability of
the underlying file system to support such files. Many platforms can only
support large files on certain file systems. For example, many platforms will
be unable to support these operations on NFS mounted file systems because
NFS version 3 and later must be in use on both client and server. Some
platforms can only support such operations on special large file systems, and
only if they are mounted using the appropriate mount options. Consult your
system documentation to determine the limitations present on your system and
the procedures for supporting very large file.

Reading and Writing Very Large Files Application Programming

Chapter 18: Files and Input/Output 399

Using Free Format Input/Output

Use of formatted datais most appropriate when the data must be in human readable
form, such aswhen it isto be prepared or modified with a text editor. Formatted data
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discussed,
the STRING function can be used to generate formatted output that is sent to a string
variable instead of afile. The READS procedure can be used to read formatted input
from astring variable.

The exact format of the character data may be specified to these routines by
providing aformat string viathe FORMAT keyword. If no format string is given,
default formats for each type of data are applied. This method of formatted
input/output is called free format. Free format input/output is suitable for most
applications involving formatted data. It is designed to provide input/output abilities
with a minimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output. The
default format for displaying structure data isto surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A:2, B:3, C:'A String' }
and then use default formatted output viathe PRINT command:
PRINT, struct
IDL prints:
{ 2 3 A String}

You might suppose that default formatted input would recognize that the curly braces
are part of the formatting and ignore them. Thisis not the case, however. By defaullt,

to read the third field in the structure (the string field) IDL will read from the “A” to

the end of the line, including the closing brace.

This behavior, while unsymmetric, seems to be the best choice for default behavior—
displaying the result of the PRINT statement on the computer screen. We recommend
that you use explicitly formatted input/output when reading and writing structuresto
disk files, so as not to have to explicitly code around the possibility that your
structure may include strings.

Application Programming Using Free Format Input/Output

400 Chapter 18: Files and Input/Output

Free Format Input

The following rules are used by IDL to perform free format inpuit:

1. Inputisperformed on scalar variables. Array and structure variables are treated
as collections of scalar variables. For example,

A = INTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable A.

2. If the current input line is empty and there are variables | eft requiring input,
read another line.

3. If thecurrent input line is not empty but there are no variables left requiring
input, the remainder of the lineisignored.

4. Input data must be separated by commas or white space (tabs, spaces, or new
lines).

5. When reading into avariable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the input
into a value of the expected type. Decimal points are optional and exponential
(scientific) notation is allowed. If afloating-point datum is provided for an
integer variable, the value is truncated.

7. When reading into avariable of complex type, thereal and imaginary parts are
separated by acomma and surrounded by parentheses. If only asinglevalueis
provided, it istaken asthe real part of the variable, and the imaginary part is
set to zero. For example:

;Create a complex variable.
A = COMPLEX(0)

; IDL prompts for input with a colon:
READ, A

;The user enters "(3,4)" and A is set to COMPLEX (3, 4).
: (3, 4)

; IDL prompts for input with a colon:
READ, A

;The user enters "50" and A is set to COMPLEX(50, 0).
:50

Using Free Format Input/Output Application Programming

Chapter 18: Files and Input/Output

Free Format Output

401

The following rules are used by IDL to perform free format output:

1. Theformat used to output numeric datais determined by the datatype. The
formats used are summarized in the table below. The formats are specified in
the FORTRAN:-like style used by IDL for explicitly formatted input/output.

Data Type Format
Byte 14
Int, Ulnt 18
Long, ULong 112
Float G13.6
Long64, ULong64 122
Double G16.8
Complex '(, G136,',, G13.6, ")’

Double-precision Complex

(', G16.8,",, G16.8,)’

String

Output full string on current line.

Table 18-2: Formats Used for Free-Format Output

2. Thecurrent output line isfilled with characters until one of the following

happens:

A. Thereisno more datato output.

B. Theoutput lineisfull. When output isto afile, the default line width is 80
columns (you can override this default by setting the WIDTH keyword to
the OPEN procedure). When the output is to the standard output, IDL uses
the current width of your tty or command log window.

C. Anentirerow isoutput in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” and

“1” characters.

Application Programming

Using Free Format Input/Output

402 Chapter 18: Files and Input/Output

Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statements
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure named "types" that contains seven of the basic
;IDL data types, as well as a floating-point array.
A = {TYPES, A:0B, B:0, C:0L, D:1.0, E:1D, S

F:COMPLEX(0), G: 'string', E:FLTARR(5)}

;Read free-formatted data from input
READ, A

; IDL prompts for input with a colon. We enter values for the first
;six numeric fields of A and the string.
: 12345 (6,7) EIGHT

Notice that the complex value was specified as (6, 7). If the parentheses had been
omitted, the complex field of A would have received the value COMPLEX (6, 0), and
the 7 would have been input for the next field. When reading into a string variable,
IDL starts from the current point in the input and continues to the end of the line.
Thus, we do not enter values intended for the rest of the structure on this line.

;There are still fields of A that have not received data, so IDL
;prompts for another line of input.
: 9 10 11 12 13

; Show the result.
PRINT, A

Executing these statements results in the following outpuit:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) eight
9.00000 10.0000 11.0000 12.0000 13.0000

}

When producing the output, IDL uses default rules for formatting the values and
attempts to place as many items as possible onto each line. Becausethe variablea isa
structure, braces{} are placed around the output. As noted above, when IDL reads
strings it continues to the end of the line. For thisreason, it is usually convenient to
place string variables at the end of thelist of variablesto be input.

Using Free Format Input/Output Application Programming

Chapter 18: Files and Input/Output 403

For example, if s isastring variable and 1 is an integer:

;Read into the string first.
READ, S, I

;IDL prompts for input. We enter a string value followed by an
;integer.
Hello World 34

;The entire previous line was placed into the string variable S,

;and I still requires input. IDL prompts for another line.
34

Application Programming Using Free Format Input/Output

404 Chapter 18: Files and Input/Output

Using Explicitly Formatted Input/Output

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The standard syntax of IDL format
stringsis similar to that used in FORTRAN; a C printf()-style syntax isalso
supported, as described in “ C printf-Style Quoted String Format Code” on page 435.

Note
IDL usesthe standard /O function sprintf to do its formatting. Different
platforms implement this function in different ways, which may lead to slight
inconsistencies in the appearance of the output.

The format string specifies the format in which dataisto be transferred as well asthe
data conversion required to achieve that format. The format specification strings
supplied by the FORMAT keyword have the form:

FORMAT = '(qgifysqifysy ... f,a,)"

where q, f, and s are described below.
Record Terminators

g iszero or more slash (/) record terminators. On output, each record terminator
causes the output to move to anew line. On input, each record terminator causes the
next line of input to be read.

Format Codes

fisaformat code. Some format codes specify how data should be transferred while
others control some other function related to how input/output is handled. The code f
can also be a nested format specification enclosed in parentheses. Thisiscalled a
group specification and has the following form:

... [n](g1fys1f3sy ... £,0,)

A group specification consists of an optional repeat count n followed by a format
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specification:

FORMAT = ‘("Result: l|’ l|<l|,I5,ll>ll, l|<l|,15,l|>l|)l
can be written more concisely using a group specification:

FORMAT = ' ("Result: ", 2("<",I5,">"))"

Using Explicitly Formatted Input/Output Application Programming

Chapter 18: Files and Input/Output 405

If the repeat count is 1 or is not given, the parentheses serve only to group format
codes for usein format reversion (discussed in the next section). Format codes and
their syntax are described in detail in “Format Codes’ on page 409.

Field Separators

sisafield separator. A field separator consists of one or more commas (,) and/or
slash record terminators (/). The only restriction is that two commas cannot occur
side-by-side.

The arguments provided in acall to aformatted input/output routine are called the
argument list. The argument list specifies the data to be moved between memory and
thefile. All data are handled in terms of basic IDL components. Thus, an array is
considered to be acollection of scalar data elements, and a structure is processed in
terms of its basic components. Complex scalar values are treated as two floating-
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rules to process explicitly formatted input/output:

1. Traversetheformat string from left to right, processing each record terminator
and format code until an error occurs or no dataisleft in the argument list. The
commafield separator serves no purpose except to delimit the format codes.

2. Itisanerror to specify an argument list with aformat string that does not
contain aformat code that transfers datato or from the argument list because
an infinite loop would result.

3. When adash record terminator (/) is encountered, the current record is
completed, and a new one is started. For output, this meansthat anew lineis
started. For input, it means that the rest of the current input record isignored,
and the next input record is read.

Application Programming Using Explicitly Formatted Input/Output

406 Chapter 18: Files and Input/Output

4. When aformat code that does not transfer datato or from the argument list is
encountered, process it according to its meaning. The format codes that do not
transfer datato or from the argument list are summarized here.

Code Action

Quoted String | On output, the contents of the string are written out. On input,
quoted strings are ignored.

The colon format code in aformat string terminates format
processing if no more items remain in the argument list. It has no
effect if data still remains on the list.

$ On output, if as format code is placed anywhere in the format
string, the new line implied by the closing parenthesis of the
format string is suppressed. On input, the $ format codeisignored.

NH FORTRAN-style Hollerith string. Hollerith strings are treated
exactly like quoted strings.

nx Skips n character positions.

N Tab. Sets the character position of the next item to the n-th
position in the current record.

TLN Tab Left. Specifies that the next character to be transferred to or
from the current record is the n-th character to the left of the
current position.

TRN Tab Right. Specifies that the next character to be transferred to or
from the current record is the n-th character to the right of the
current position.

Table 18-3: Format Codes That Do Not Transfer Data

5. When aformat code that transfers datato or from the argument list is
encountered, it is matched up with the next datum in the argument list. The
format codes that transfer data to or from the argument list are summarized in
the following table.

Using Explicitly Formatted Input/Output Application Programming

Chapter 18: Files and Input/Output 407

Code Action

A Transfer character data.

B Transfer binary data.

CO Transfer calendar (Julian date and/or time) data

D Transfer double-precision, floating-point data.

E Transfer floating-point data using scientific (exponential) notation.

F Transfer floating-point data.

G Use F or E format depending on the magnitude of the value being
processed.

I Transfer integer data.

@] Transfer octal data.

Q Obtain the number of charactersin the input record remaining to
be transferred during aread operation. In an output statement, the
Q format code has no effect except that the corresponding
input/output list element is skipped.

Z Transfer Hexadecimal data.

Table 18-4: Format Codes That Transfer Data

6. Oninput, read datafrom the file and format it according to the format code. If
the data type of the input data does not agree with the data type of the variable
that is to receive the result, do the type conversion if possible; otherwise, issue
atype conversion error and stop.

7. On output, write the data according to the format code. If the data type does
not agree with the format code, do the type conversion prior to doing the
output if possible. If the type conversion is not possible, issue atype
conversion error and stop.

Application Programming Using Explicitly Formatted Input/Output

408

Chapter 18: Files and Input/Output

8. If thelast closing parenthesis of the format string is reached and there are no
data left on the argument list, then format processing terminates. |f, however,
there are till datato be processed on the argument list, then part or all of the
format specification is reused. This processis called format reversion.

Format Reversion

In format reversion, the current record is terminated, a new oneisinitiated, and
format control reverts to the group repeat specification whose opening parenthesis
matches the next-to-last closing parenthesis of the format string. If the format does
not contain a group repeat specification, format control returns to the initial opening
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = ' ("The values are: ", 2("<", I1, ">"))', $
INDGEN (6)

results in the output

The values are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is as follows:
1. Output the string “The values are: .

2. Processthe group specification and output the first two values. The end of the
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", I1, ">")
by format reversion.

3. Repeat Step 2 until no data remain. End the output record. Format processing
is complete.

Using Explicitly Formatted Input/Output Application Programming

Chapter 18: Files and Input/Output 409

Format Codes

Format codes specify either how data should be transferred or how input/output is

handled.

Syntax of Format Codes

The syntax of an IDL format codeis:

[n]FC[+] [-] [width]
Where:
n is an optional repeat count (1 < n) specifying the number of

times the format code should be processed. If nis not
specified, arepeat count of one is used.

FC

isthe format code. See “Available Format Codes’, below.

is an optional flag that specifies that positive numbers should
be output with a“+" prefix. The“+” flagisonly valid for
numeric format codes. Normally, negative numbers are output
with a“-" prefix and positive numbers have no sign prefix.
Non-decimal numeric codes (B, O, and Z) allow the
specification of the “+” flag, but ignoreiit.

is an optional flag that specifies that string or numeric values
should be output with the text left-justified. Normally, output
isright-justified.

width

is an optional width specification. Width specifications and
default values are format-code specific, and are described in
detail along with the format code.

See “Padding and Natural Width Formatting”, below, for
additional information on how output values are formatted
based on the width parameter.

Application Programming

Format Codes

410 Chapter 18: Files and Input/Output

Padding and Natural Width Formatting

The value being formatted may be shorter than the output width specified by the
width parameter. When this happens, IDL will adjust either the contents of the output
value or the width of the field, using the following mechanisms:

Whitespace Padding

By default, if the value being formatted uses fewer characters than specified by the
width parameter, IDL pads the value with whitespace characters on the |eft to create a
string of the specified width. For example, the following IDL statement

PRINT, FORMAT=' (I12)', 300
produces the following output:
bbbbbbbbb3 00
where b represents a space character.
Zero Padding

For numeric format codes, if the first digit of the width parameter is a zero, IDL will
pad the value with zeroes rather than blanks. For example:

PRINT, FORMAT='(I08)', 300
produces the following output:
00000300
When padding values with zeroes, note the following:

1. If you specify the*-" flag to left-justify the output, specifying aleading zeroin
the width parameter has no effect, since there are no unused spaces to the | eft
of the output value.

2. If you specify an explicit minimum width value (viathe mwidth parameter)
for an integer format code, specifying aleading zero in the width parameter has
no effect, since the output value is dready padded with zeroes on the left to
create an output value of the specified minimum width.

Natural Width Formatting

If the numeral zero is specified for the width parameter, IDL usesthe “natural” width
for the value. The value isread or output using a default format without any leading
or trailing whitespace, in the style of the standard C library print £ () function.

Format Codes Application Programming

Chapter 18: Files and Input/Output 411

Using avalue of zero for the width parameter is useful when reading tables of datain
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99.845
23.723 200.02 141.93

Setting the format to:
FORMAT = ' (3F0) '

ensures that the correct number of digits are read or output for each element.
Available Format Codes

IDL supports the following format codes:

Format Code Description
A Format Code (page 413) Transfers character values
: Format Code (page 414) Terminates processing
$ Format Code (page 415) Suppresses newlines in output

F, D, E, and G Format Codes (page 416) | Transfer floating-point values

B, I, O, and Z Format Codes (page 419) Transfer integer values

Q Format Code (page 422) Returns the number of characters that
remain to be transferred during aread
operation

Quoted String and H Format Codes (page | Output string values directly

423)

T Format Code (page 424) Specifies the absolute position within
arecord

TL Format Code (page 425) Moves the position with arecord to
the left

TR and X Format Codes (page 426) Move the position within arecord to
theright

Table 18-5: Format Codes

Application Programming Format Codes

412

Chapter 18: Files and Input/Output

Format Code

Description

C() Format Code (page 427)

Transfers caendar data

C printf-Style Quoted String Format Code
(page 435)

Provides an alternative syntax for
specifying the format of an output
string

Table 18-5: Format Codes (Continued)

Format Code Examples

For examples using different format codes, see:

* “Example: Reading Formatted Table Data” on page 441

« “Example: Reading Records With Multiple Array Elements’ on page 443

Format Codes

Application Programming

Chapter 18: Files and Input/Output 413

A Format Code

The 2 format code transfers character data.
The syntax is:
[n]A[-][w]

where the parameters “n” and “-" are as described in “ Syntax of Format Codes’ on
page 409 and the width specification is as follows:

w isan optional width (0 < w) specifying the number of charactersto be
transferred. If wis not specified, the entire string istransferred. On
output, if wis greater than the length of the string, the string isright
justified. On input, IDL strings have dynamic length, so w specifies the
resulting length of input string variables. See “ Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

For example, the IDL statement,
PRINT, FORMAT = ' (A6)', '123456789"
generates the following output:

123456

Application Programming A Format Code

414 Chapter 18: Files and Input/Output

: Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list.

The syntax is:

For example, the IDL statement,
PRINT, FORMAT = '(6(I1, :, ", "))', INDGEN(6)

will output the following comma-separated list of integer values:
0, 1, 2, 3, 4, 5

The use of the colon format code prevented a comma from being output following the
final item in the argument list.

: Format Code Application Programming

Chapter 18: Files and Input/Output 415

$ Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a“$" format code isfound in the format
specification, this default newlineis not output. The “$” format code is only used on
output; it isignored during input formatting.

The syntax is:
$

Oneusefor the“$” format codeisin prompting for user input in programsthat run in
atty rather than in the graphical IDL Workbench. For example, the following simple
program show the difference between strings formatted with and without the “$’
format code. The first PRINT statement prompts the user for input without forcing
the user’s response to appear on a separate line from the prompt; the second PRINT
statement makes the user enter the response on a separate line.

IDL> .run

- PRO format_test

- name="'"

- age=0

- PRINT, FORMAT='(S$, "Enter name")'
- READ, name

- PRINT, FORMAT=' ("Enter age")'

- READ, age

- PRINT, FORMAT='("You are ", I0, " years old, ", A0)', age, name
END

o0 |

Compiled module: FORMAT TEST.
Running the procedure looks like this:

IDL> format_test

Enter name: Pat

Enter age

: 29

You are 29 years old, Pat
IDL>

where the values in italics were entered by the user in response to the prompts.

Application Programming $ Format Code

416 Chapter 18: Files and Input/Output

F, D, E, and G Format Codes

TheF, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file.

The syntax is:
[n]F[+][-1[w][.d]
[n]D[+][-][w] [.d]
[R]E[+][-][w] [.d] [Ee]
[n]1G[+][-1[w] [.d] [Ee]

where the parameters“n”, “+”, and “-” are as described in “ Syntax of Format Codes”
on page 409 and the width specification is as follows:

w is an optional width specification (0 < w < 255). The variable w specifies
the number of digitsto be transferred. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

d isan optional width specification (1 < d <w). For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the
G format code, d specifies the number of significant digits displayed.

e isan optional width (1 < e < 255) specifying the width of exponent part
of thefield. IDL ignores this value—it is allowed for compatibility with
FORTRAN.

Oninput, the F, D, E, and G format codes all transfer w characters from the external
field and assign them as areal value to the corresponding input/output argument list
datum.

The F and D format codes are used to output values using fixed-point notation. The
value isrounded to d decimal positions and right-justified into an external field that is
w characters wide. The value of w must be large enough to include aminus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, and d
digitsto theright of the decimal point. The code D isidentical to F (except for its
default values for w and d) and existsin IDL primarily for compatibility with
FORTRAN.

F, D, E, and G Format Codes Application Programming

Chapter 18: Files and Input/Output 417

The E format code is used for scientific (exponential) notation. The value is rounded
to d decimal positions and right-justified into an external field that is w characters
wide. The value of w must be large enough to include a minus sign when necessary,
at least one digit to the left of the decimal point, the decimal point, d digitsto theright
of the decimal point, a plus or minus sign for the exponent, the character “€” or “E”,
and at least two characters for the exponent.

Note
IDL usesthe standard C library function snprintf () to format numbers and their
exponents. As aresult, different platforms may print different numbers of exponent
digits.

The G format code uses the F output style when reasonable and E for other values,
but displays exactly d significant digits rather than d digits following the decimal
point.

Overflow

On output, if the field provided is not wide enough, it isfilled with asterisks (*) to
indicate the overflow condition.

Default Values of the w, d, and e Parameters

If w, d, or e are omitted, the values specified in the following table are used.

Data Type w d e
Float, Complex 15 7 2 (3 for Windows)
Double 25 16 2 (3 for Windows)
All Other Types 25 16 2 (3 for Windows)

Table 18-6: Floating Format Defaults

Format Code Examples

The following table shows the results of the application of various format codes to
given data values. Note that normally, the case of the format code isignored by IDL.

Application Programming F, D, E, and G Format Codes

418

Chapter 18: Files and Input/Output

However, the case of the E and G format codes determines the case used to output the
exponent in scientific notation.

Format Internal Value Formatted Output

F 100.0 bbbb100.0000000

F 100.0D bbbbb100.0000000000000000

F10.0 100.0 bbbbbb1o0.

F10.1 100.0 bbbbb100.0

F10.4 100.0 bb100.0000

F2.1 100.0 *

ell.4 100.0 b1.0000e+02
1.0000e+002 (Windows)
Note that “€10.4” displays
fHFEEIFAE R under Windows
because the extra“ 0" added after the
“€" makes the string longer than 10
characters.

E11.4 100.0 b1.0000E+02
1.0000E+002 (Windows)

gl0.4 100.0 bbbbb100.0

gl0.4 10000000.0 b1.000e+07
1.000e+007 (Windows)

G10.4 10000000.0 b1.000E+07
1.000E+007 (Windows)

F, D, E, and G Format Codes

Table 18-7: Floating-Point Output Examples
(“b” represents a blank space)

Application Programming

Chapter 18: Files and Input/Output 419

B, I, O, and Z Format Codes

TheB, I, O, and Z format codes are used to transfer integer values to and from the
specified file. The B format code is used to output binary values, | isused for decimal
values, O is used for octal values, and Z is used for hexadecimal values.

The syntax is:

[n]B[-]1[w]l[.m
(n]T[+]1[-]1[w]
[n]O[-1[wl[.m
(n]1Z[-]([w](

.m]
- w .

where the parameters“n”, “+”, and “-" are as described in “ Syntax of Format Codes”
on page 409 and the width specification is as follows:

w is an optional width specification (0 < w < 255). The variable w specifies
the number of digitsto be transferred. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 < m< 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

Overflow

On output, if the field provided is not wide enough, it isfilled with asterisks (*) to
indicate the overflow condition.

Application Programming B, I, O, and Z Format Codes

420 Chapter 18: Files and Input/Output

Default Values of the w Parameter

The default values used by thel, O, and Z format codes if w is omitted are specified

in the following table:

Data Type w
Byte, Int, UInt 7
Long, ULong, Float 12
Long64, ULong64 22
Double 23
All Other Types 12

Table 18-8: Integer Format Defaults

(1, O, and Z format codes)

The default values used by the B format code if w is omitted are specified in the

following table:

Data Type W
Byte 8
Int, Ulnt 16
Long, ULong 32
Long64, ULong64 64
All Other Types 32

Table 18-9: Integer Format Defaults

(B format code)

B, I, O, and Z Format Codes

Application Programming

Chapter 18: Files and Input/Output

Format Code Examples

421

The following table shows the results of the application of various format codes to
given data values. Note that normally, the case of the format code isignored by IDL.

However, the case of the Z format codes determines the case used to output the

hexadecimal digits A-F.

Format Dk, Formatted Output
Value
B 3000 bbbb101110111000
B15 3000 bbb101110111000
B14.14 3000 00101110111000
I 3000 bbb3000
16.5 3000 b03000
15.6 3000 FHRKIAK
12 3000 *
O 3000 bbb5670
06.5 3000 b05670
05.6 3000 ok
02 3000 >
z 3000 bbbbbb8
z 3000 bbbbBB8
Z6.5 3000 bOOBB8
Z5.6 3000 FHKAK
Z2 3000 **

Application Programming

Table 18-10: Integer Output Examples
(“b” represents a blank space)

B, I, O, and Z Format Codes

422

Chapter

Q Format Code

18: Files and Input/Output

The Q format code returns the number of charactersin the input record remaining to
be transferred during the current read operation. It isignored during output
formatting.

The syntax is:

a

Format Q is useful for determining how many characters have been read on aline.
For example, the following IDL statements count the number of charactersin file
demo.dat:

Q Format Code

;O0pen file for reading.
OPENR, 1, "demo.dat"

;Create a longword integer to keep the count.
N = 0L

;Count the characters.

WHILE(~ EOF (1)) DO BEGIN
READF, 1, CUR, FORMAT = '(g)' & N = N + CUR
ENDWHILE
;Report the result.
PRINT, FORMAT = '("counted", N, "characters."

;Close file.
CLOSE, 1

) '

Application Programming

Chapter 18: Files and Input/Output 423

Quoted String and H Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the output.
On input, they are ignored.

The syntax for a quoted string is:
"string" or 'string'
where string is the string to be output.

Note
Quoted strings must be enclosed in either single or double quotation marks; use the
type of quotation mark that is not used to enclose the entire format string.

For example, the IDL statement,

PRINT, FORMAT = ' ("Value: ", I0)', 23
results in the following output:

Value: 23

Note that it would have been equally correct to use double quotes around the entire
format string and single quotes around the quoted string “Value: ”.

Another way to specify a quoted string is with a Hollerith constant.
The syntax for aHollerith constant is:

anlC'Z C3 .. Cp

where
n isthe number of charactersin the constant (1 < n < 255).
Ci is the characters that make up the constant. The number of characters
must agree with the value provided for n.

For example, the following IDL statement,
PRINT, FORMAT = ' (7HValue: , IO0)', 23
results in the following output:
Value: 23

See “C printf-Style Quoted String Format Code” on page 435 for an aternate form of
the Quoted String Format Code that supports C print £-style capabilities.

Application Programming Quoted String and H Format Codes

424 Chapter 18: Files and Input/Output

T Format Code

The T format code specifies the absolute position in the current record.

The syntax is:
Tn
where
n is the absolute character position within the record to which the current

position should be set (1 < n).

The T format code differsfromthe TL, TR, and X format codes primarily in that it
specifies an absolute position rather than an offset from the current position. For
example,

PRINT, FORMAT = ' ("First", 20X, "Last", T10, "Middle")'
produces the following output:
FirstbbbbMiddlebbbbbbbbbbLast

where “b” represents a blank space.

T Format Code Application Programming

Chapter 18: Files and Input/Output 425

TL Format Code

The TL format code moves the current position in the external record to the left.

The syntax is:
TLn
where
n isthe number of characters to move left from the current position (1 < n).

If the value of nisgreater than the current position, the current positionis
moved to column one.

The TL format code is used to move backwards in the current record. It can be used
on input to read the same data twice or on output to position the output
nonsequentially. For example,

PRINT, FORMAT = ' ("First", 20X, "Last", TL1l5, "Middle")'
produces the following output:
FirstbbbbbbbbbMiddlebbbbbLast

where “b” represents a blank space.

Application Programming TL Format Code

426 Chapter 18: Files and Input/Output

TR and X Format Codes

The TR and X format codes move the current position in the record to the right.

The syntax is:
TRn
nXx
where
n is the number of charactersto skip (1 < n). Oninput, n charactersin the

current input record will be passed over. On output, the current output
position is moved n characters to the right.

The TR or X format codes can be used to |eave whitespace in the output or to skip
over unwanted data in the input. For example, either

PRINT, FORMAT = '("First", 15X, "Last")'
or

PRINT, FORMAT = '("First", TR15, "Last")'
results in the following output:

FirstbbbbbbbbbbbbbbbLast
where “b” represents a blank space.

These two format codes differ in one way. Using the X format code at the end of an
output record will not cause any characters to be written unlessit is followed by
another format code that causes characters to be output. The TR format code always
writes charactersin this situation. Thus,

PRINT, FORMAT = ' ("First", 15X)'
results in the following output:

First
whereas

PRINT, FORMAT = '("First", TR15)'
results in the following output:

Firstbbbbbbbbbbbbbbb

where “b” represents a blank space. The X code does not cause the blanks to be
output unless there is additional output following the blanks.

TR and X Format Codes Application Programming

Chapter 18: Files and Input/Output 427

C() Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data.
The syntax is:
[n]C([cg,Cqrsvt./ Cxl)

where the parameter “n” is as described in “ Syntax of Format Codes’ on page 409

and:
Ci represents optional calendar format subcodes, or any of the standard
format codes that are allowed within a calendar specification, as
described below

If no ¢; are provided, the data will be transferred using the standard 24-character
system format that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979
For input, this default is equivalent to:

C(CbwA, X, CMoA, X, CDI, X, CHI, X, CMI, X, CSI, CYI5)
For output, this default is equivalent to:

C(CbwA, X, CMoA, X, CDI2.2, X, CHI2.2, ":", CMI2.2, ":", CSI2.2,

CYI5)

Note
The C() format code represents an atomic data transfer. Nesting within the
parenthesesis not allowed.

Note
For input using the calendar format codes, asmall offset is added to each Julian date
to eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS* Julian, where Julian
isthe integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10710 (which corresponds to
5x10™° seconds). This offset ensures that if the Julian date is converted back to
hour, minute, and second, then the hour, minute, and second will have the same
integer values as were originally input.

Application Programming C() Format Code

428 Chapter 18: Files and Input/Output

Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

Calendar Format Subcodes

Thefollowing is alist of the subcodes allowed within the parenthesis of the C()
format code.

Note
The calendar format subcodes are based on the A, |, and F format codes, and share
the same options. See “ Syntax of Format Codes’ on page 409 for additional
information on the parameters not described explicitly in this section. Note that the
default values of the w and d parameters are different in the calendar format
subcodes than in the base A, |, and F format codes.

CMOA Subcodes
The CMOA subcodes transfers the month portion of a date asa string. The format for
an all upper case month string is:
CMOA [-] [w]
The format for a capitalized month string is:
CMoA[-] [w]
The format for an all lower case month string is.
CmoA[-] [w]

where;

w isan optional width (0 < w) specifying the number of characters of the
month name to be transferred. If w is not specified, three characters will
be transferred. See“Padding and Natural Width Formatting” on page 410
for additional details on the output width of aformatted value.

Note
The case of the*M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routineis explicitly set.

C() Format Code Application Programming

Chapter 18: Files and Input/Output 429

CMOI Subcode

The CMOI subcode transfers the month portion of a date as an integer. The format is

asfollows:
CMOT [+] [~] [w] [.m]
where:
w isan optional width (0 < w < 255) specifying the width of the field in

characters. The default width is 2. See “ Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m isan optional minimum number (1 < m < 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

CDI Subcode

The CDI subcode transfers the day portion of a date as an integer. The format is:
CDI[+] [-][w][.m]

where:

w isan optional width (0 < w < 255) specifying the width of the field in
characters. The default width is 2. See “ Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m isan optional minimum number (1 < m < 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

Application Programming C() Format Code

430 Chapter 18: Files and Input/Output

CYI Subcode

The CY | subcode transfers the year portion of adate as an integer. The format is as
follows:
CYI[+][-1[w][.m]

where:

w isan optional width (0 < w < 255) specifying the width of the field in
characters. The default width is 4. See “ Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m isan optional minimum number (1 < m < 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

CHI Subcodes
The CHI subcodes transfer the hour portion of adate as an integer. The format for a
24-hour based integer is.
CHI[+] [-][w][.m]
The format for a 12 hour based integer is:
ChI[+][-][w][.m]

where;

w isan optional width (0 < w < 255) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m isan optional minimum number (1 < m < 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

C() Format Code Application Programming

Chapter 18: Files and Input/Output 431

Note
For the Chl (12 hour format), the CAPA Subcodes may be used to specify A.M.
versus PM. For CHI (24 hour format), the CAPA subcode isignored.”

CMI Subcode

The CMI subcode transfers the minute portion of a date as an integer. The format is:
CMI[+][-][w][.m]

where:

w isan optional width (0 < w < 255) specifying the width of thefield in
characters. The default width is 2. See “ Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m isan optional minimum number (1 < m < 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

CSI Subcode

The CSI subcode transfers the seconds portion of a date as an integer. The format is:
CST[+][-1[w]l[.m]

where:

w isan optional width (0 < w < 255) specifying the width of thefield in
characters. The default width is 2. See “ Padding and Natural Width
Formatting” on page 410 for additional details on the output width of a
formatted value.

m isan optional minimum number (1 < m < 255) of nonblank digitsto be
shown on output. Thefield is zero-filled on the left if necessary. If mis
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter isignored if wis zero.

Application Programming C() Format Code

432 Chapter 18: Files and Input/Output

CSF Subcode

The CSF subcode transfers the seconds portion of adate as a floating-point value.

Theformat is:
CSF[+][-][w][.d]
where:
w is an optional width specification (0 < w < 255). The variable w specifies

the number of charactersin the external field; the default is 5. See
“Padding and Natural Width Formatting” on page 410 for additional
details on the output width of aformatted value.

d isan optional width specification (1 < d <w). The variable d specifiesthe
number of positions after the decimal point; the default is 2.

Overflow

The value of w must be large enough to include at least one digit to the left of the
decimal point, the decimal point, and d digitsto theright of the decimal point. On
output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

CDWA Subcodes

The CDWA subcodes transfers the day of week portion of adataasastring. The
format for an all upper case day of week string is:
CDWA[-] [w]
The format for a capitalized day of week stringis:
CDwA[-] [w]
The format for an all lower case day of week string is:
CawA [-] [w]

where;

w isan optional width (0 < w), specifying the number of characters of the
day of week nameto be transferred. If wis not specified, three characters
will be transferred. See “Padding and Natural Width Formatting” on
page 410 for additional details on the output width of aformatted value.

C() Format Code Application Programming

Chapter 18: Files and Input/Output 433

Note
The case of the D’ and ‘W’ of these subcodes will beignored oninput, or if the

DAYS OF WEEK keyword for the current routine is explicitly set.

CAPA Subcodes

The CAPA subcodes transfersthe A.M. or PM. portion of adate asastring. The
format for an all-uppercase A.M. or PM. string is:
CAPA[-] [w]
The format for acapitalized A.M. or PM. gtring is:
CApA[-] [w]
The format for an all-lowercase A.M. or PM. stringis.
CapA[-] [w]

where;

w isan optional width (0 < w), specifying the number of characters of the
A.M. or PM. string to be transferred. If w is not specified, two characters
will be transferred. See “Padding and Natural Width Formatting” on
page 410 for additional details on the output width of aformatted value.

Note
The case of thefirst ‘A’ and ‘P of these subcodes will be ignored on input, or if the

AM_PM keyword for the current routine is explicitly set.

Note
The CAPA subcode is only used if the Chl (12 hour format) subcode is also being
used. The CAPA subcode isignored if the CHI (24 hour format) subcode is being
used.

Standard Format Codes Allowed Within a Calendar
Specification

None of these subcodes are allowed outside of a C() format specifier. In addition to
the subcodes listed above, only quoted strings, “TL”, “TR”, and “ X" format codes are
alowed inside of the C() format specifier.

Example:

To print the current date in the default format:

Application Programming C() Format Code

434

Chapter 18: Files and Input/Output

PRINT, FORMAT='(C())', SYSTIME (/JULIAN)
The printed result should look something like:
Fri Aug 14 12:34:14 1998

Example:

To print the current date as atwo-digit month value followed by a slash followed by a
two-digit day value:

PRINT, FORMAT=' (C(CMOI,"/",CDI))"',SYSTIME (/JULIAN)
The printed result should look something like:
8/14

Example:

To print the current time in hours, minutes, and floating-point seconds, all zero-filled
if necessary, and separated by colons:

PRINT, $
FORMAT="' (C(CHI2.2,":",CMI2.2,":",CSF05.2))"',SYSTIME (/JULIAN)

The printed result should look something like:
09:59:07.00

Note that to do zero-filling for the floating-point seconds, it is necessary to specify a
leading O in the width to the CSF format code.

C() Format Code Application Programming

Chapter 18: Files and Input/Output 435

C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functions such asprintf () and
snprintf (). Most programmers are very familiar with such formats. In this style,
text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and write in
common simple cases.

IDL supports the use of print £-style formats within format specifications, using a
special variant of the Quoted String Format Code (discussed in “ Quoted String and H
Format Codes’ on page 423) in which the opening quote starts with a % character
(e.g. %" or %' rather than “ or *). The presence of this % before the opening quote
(with no whitespace between them) tells IDL that thisisaprint £-style quoted string
and not a standard quoted string.

Asasimple example, consider the following IDL statement that uses normal quoted
string format codes:

PRINT, FORMAT=' ("I have ", I0, " monkeys, ", A, ".")', $
23, 'Scott'

Executing this statement yields the output:
I have 23 monkeys, Scott.

Using aprintf-style quoted string format code instead, this statement could be
written:

PRINT, FORMAT=' (%"I have %d monkeys, %s.")', 23, 'Scott'

These two statements are completely equivalent in their action. In fact, IDL compiles
both into an identical internal representation before processing them.

Theprintf-style quoted string format codes can be freely mixed with any other
format code, so hybrid formats like the following are allowed:

PRINT, S
FORMAT="' (%"I have %d monkeys, %s,", " and ", I0, " parrots.")',K$
23, 'Scott', 5

This generates the output:

I have 23 monkeys, Scott, and 5 parrots.

Application Programming C printf-Style Quoted String Format Code

436

Supported “%” Formats

Chapter 18: Files and Input/Output

The following table lists the % format codes allowed within aprint £-style quoted
string format code, as well as their correspondence to the standard format codes that
do the same thing. In addition to the format codes described in the table, the special
sequence %% causes a single % character to be written to the output. This% is
treated as aregular character instead of as aformat code specifier. Finally, the flags
and the width padding options described in “ Syntax of Format Codes’ on page 409
are also available when using print £-style format codes.

Normal Style Described

Printf-Style Normal-Style in Section

%[w.d]e or %[w.d]E ew.d] or E[w.d] “F, D, E, and G Format
Codes’ on page 416
%[w]b or %[w]B B[w] “B, I, O, and Z Format
%[w.m]|b or %[w.m]|B B[w.m] Codes’ on page 419
%[w]d or %[w]D I[w] “B, I, O, and Z Format
%[w.m]|D or %[w.m|D I[w.m] Codes” on page 419
%[w]i or %[w]l I[w]
%[w.m]i or %[w.m]l [[w.m]
%[w]f or %o[w]F Flw] “F, D, E, and G Format
ve[w.d]f or %[w.d]F Flw.d] Codes’ on page 416
%[w]g or %[w]G glw] or G[w] “F, D, E, and G Format
%w.d]g or %[w.d]G g[w.d] or G[w.d] Codes’ on page 416
%[w]o or %[w]O Oo[w] “B, I, O, and Z Format
%[w.m]o or %[w.m]O O[w.m] Codes” on page 419
%[w]s or %[w]S Alw] “A Format Code” on
page 413

%[w]x or %[w] X Z[w] “B, I, O, and Z Format
%[w.m]x or %[w.m] X Z[w.m] Codes” on page 419
%[w]z or %[w]Z Z[w]
%[w.m]z or %[w.m|Z Z[w.m]

Table 18-11: Supported “%” Formats

C printf-Style Quoted String Format Code

Application Programming

Chapter 18: Files and Input/Output 437

Asindicated in the above table, there is a one to one correspondence between each
printf-style % format code and one of the normal format codes documented earlier
in this chapter. When reading this table, please keep the following considerationsin
mind:

e The %d (or %D) format isidentical to the %i (or %l) format. Note that %D
does not correspond to the normal-style D format.

e Thew, d, m, and e parameters listed as optional parameters (i.e. between the
sguare brackets, []) are the same values documented for the normal-style
format codes, and behave identically to them.

e Thedefault value for the w parameters for print f-style formatting is 0,
meaning that print f-style output produces “natural” width by default. For
example, a%d format code corresponds to a normal format code of 10 (not I,
which would use the default value for w based on the data type). Similarly, a
%e format code corresponds to a normal format code of €0 (not €).

* TheE and G format codes allow the following styles for compatibility with
FORTRAN:

E[w.dEe] or el[w.dEe]
G[w.dEe] or glw.dEe]

These styles are not available using the print £-style format codes. In other
words, the following formats are not allowed:

%$[w.dEel]E or %$[w.dEe]e
%[w.dEe]G or %[w.dEelg

* Normal-style format codes allow repetition counts (e.g., 510). The
printf-style format codes do not alow this. Instead, each print £-style
format code has an implicit repetition count of 1.

e Like normal format codes (but unlike the C language printf () function),
printf-style format codes are allowed to be upper or lower case (e.g. %d and
%D mean the same thing). Whether or not case has an influence on the
resulting output depends on the specific format code. The specific behavior is
the same as with the normal -style version for each code.

Application Programming C printf-Style Quoted String Format Code

438 Chapter 18: Files and Input/Output

Supported “\” Character Escapes

The C programming language allows “ escape sequences’ that start with the backslash
character, \, to appear within strings. These escapes are used in several ways:

1. To specify characters that have no printed representation. For example, \n
means linefeed, and \r means carriage return.

2. Toremove any special meaning that a character might normally have. For
example, \" allows you to create a string containing a double-quote character
even though double-quote normally delimits a string. Note that backslash can
also be used to escape itself, so "\\" corresponds to a string containing asingle
backslash character.

3. Tointroduce arbitrary charactersinto a string using octal or hexadecimal
notation. For example, if the hexadecimal value b1 represents the + character
in the current font, then the following statement:

print, format='(%"I have \xbl%d monkeys")', 5
results in the following output:
I have *5 monkeys

Although IDL does not normally support backslash escapes within strings, the
escapes described in the following table are allowed within print £-style quoted
string format codes. If a character not specified in thistable is preceded by a
backslash, the backslash is removed and the character isinserted into the output
without any special interpretation. This meansthat \" putsasingle" character into the
output and that " does not terminate the string constant. Another useful exampleis
that \% causes a single % character to be placed into the output without starting a
format code. Hence, \% and %% mean the same thing: a single % character with no
special meaning.

Sggﬁiﬂie ASCII code
\a BEL (7B)
\b Backspace (8B)
\f Formfeed (12B)
\n Linefeed (10B)

Table 18-12: Supported “\" Character Escapes

C printf-Style Quoted String Format Code Application Programming

Chapter 18: Files and Input/Output 439

Sggﬁiﬁie ASCII code
\r Carriage Return (13B)
\t Horizontal Tab (9B)
\v Vertical Tab (11B)
\ooo Octal value ooo (Octal value of 1-3 digits)
\xhh Hexadecimal value hh (Hex value of 1-2 digits)

Table 18-12: Supported “\" Character Escapes (Continued)

Note
Caseisignored in escape sequences: either “\n” or “\N” specifies alinefeed
character.

Differences Between C printf() and IDL printf-Style Formats

IDL’sprint f-style quoted string format code is very similar to asimplified C
language printf () format string. However, there are important differences that an
experienced C programmer should be aware of :

e ThelDL PRINT and PRINTF procedures implicitly add an end-of-line
character to the end of the line (unless suppressed by use of the $ format code).
Hence, the use of \n at the end of the format string to end the line is neither
necessary nor recommended.

e Only the % format sequences listed in the table under “ Supported “ %"
Formats’ on page 436 are understood by IDL. Most C printf functions
accept more codes than these, but those codes are not necessary in IDL.

For example, the C print f/scanf functions require the use of the %u format
code to indicate an unsigned value, and also use type modifiers (h, I, Il) to
indicate the size of the data being processed. IDL uses the type of the
arguments being substituted into the format to determine this information.
Therefore, theu, h, |, and Il codes are not required in IDL and are not accepted.

The% and\ sequencesin IDL print f-style strings are case-insensitive. C
printf iscase-sengitive (e.g. \n and \N do not both mean the linefeed
character asthey doin IDL).

Application Programming C printf-Style Quoted String Format Code

440

Chapter 18: Files and Input/Output

The C printf function alows the use of %n$d notation to specify that
arguments should be substituted into the format string in a different order than
they are listed. IDL does not support this.

The C print £ function allows the use of %*d notation to indicate that the
field width will be supplied by the next argument, and the argument following
that supplies the actual value. IDL does not support this.

IDL printf-style formats alow %z for hexadecimal output as well as %ox.
The C printf () function does not understand %z. This deviation from the
usual implementation isalowed by IDL because IDL programmers are used to
treating Z as the hexadecimal format code.

IDL printf-style formats allow %b for binary output. The C printf ()
function does not understand %b.

C printf-Style Quoted String Format Code Application Programming

Chapter 18: Files and Input/Output

Example: Reading Formatted Table Data

Application Programming

441

IDL explicitly formatted input/output has the power and flexibility to handle almost

any kind of formatted data. A common use of explicitly formatted input/output

involves reading and writing tables of data. Consider a data file containing employee

data records. Each employee has a name (String, 32 columns) and the number of

years they have been employed (Integer, 3 columns) on thefirst line. The next two
lines contain each employee's monthly salary for the last twelve months. A sample

file named employee.dat with this format might look like the following:

Bullwinkle 10

1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0
Boris 11

400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
Natasha 10

950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11

1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

Thefollowing IDL statements read data with the above format and produce a
summary of the contents of thefile:

;Open data file for input.
OPENR, 1, 'employee.dat'

;Create variables to hold the name, number of years, and monthly

;salary.
name = '' & years = 0 & salary = FLTARR(12)

;Output a heading for the summary.
PRINT, FORMAT=' ("Name", 28X, "Years", 4X, "Yearly Salary")'

;Note: The actual dashed line is longer than is shown here.
PRINT, '========"'

;Loop over each employee.
WHILE (~ EOF (1)) DO BEGIN

;Read the data on the next employee.
READF, 1, S
FORMAT = ' (A32,I3,2(/,6F10.2))', name, years, salary

Example: Reading Formatted Table Data

442 Chapter 18: Files and Input/Output

;Output the employee information. Use TOTAL to sum the monthly
;salaries to get the yearly salary.
PRINT, FORMAT='(A32,I5,5X,F10.2)', name, years, TOTAL(salary)

ENDWHILE

CLOSE, 1

The output from executing these statements on employee.dat is as follows:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Borris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50

Example: Reading Formatted Table Data Application Programming

Chapter 18: Files and Input/Output 443

Example: Reading Records With Multiple Array
Elements

Freguently, data are written to files with each record containing single el ements of
more than one array. One example might be a file consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing a
value for each of the four variables. Because IDL has no equivalent of the FORTRAN
implied DO list, special procedures must be used to read or write this type of file.

Thefirst approach, which isthe simplest, may be used only if al of the variables have
the same data type. An array is created with as many columns as there are variables
and as many rows as there are elements. The data are read into this array, the array is
transposed storing each variable as arow, and each row is extracted and stored into a
variable which becomes a vector. For example, the FORTRAN program which writes
the data and the IDL program which reads the data are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)

OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')

WRITE (1, ' (4(1x,g15.5))")
(ALT(I),PRES(I),TEMP(I),VELO(I),I=1,100)

IDL Read:

;O0pen file for input.
OPENR, 1, 'test'

;Define variable (NVARS by NOBS) .
A = FLTARR(4,100)

;Read the data.
READF, 1, A

; Transpose so that columns become rows.
A = TRANSPOSE (A)

;Extract the variables.
ALT = A[*, 0]

PRES = A[*, 1]
TEMP = A[*, 2]
VELO = A[*, 3]

Application Programming Example: Reading Records With Multiple Array Elements

444 Chapter 18: Files and Input/Output

Note that this same example may be written without the implied DO list, writing all
elements for each variable contiguously and simplifying matters considerably:

FORTRAN Write:

DIMENSION ALT (100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE (1,'(4(1x,G15.5))') ALT,PRES, TEMP,VELO

IDL Read:

;Define variables.

ALT = FLTARR(100)

PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'

READF, 1, ALT, PRES, TEMP, VELO

A different approach must be taken when the columns contain different data types or
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writing a
loop to read each line into the scalars, and then storing the scalar valuesinto each
array. For example, assume that a fifth variable, the name of an observer whichis of
string type, is added to the variable list. The FORTRAN output routine and IDL input
routine are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)

CHARACTER * 10 OBS(100)

OPEN (UNIT = 1, STATUS = 'NEW', FILE = 'TEST')

WRITE (1,'(4(1X,G15.5),2X,A)")
(ALT(I),PRES(I),TEMP(I),VELO(I),OBS(I),I=1,100)

IDL Read:

;Access file. Read files containing from 1 to 200 records.
OPENR, 1, 'test'

;Define vector, make it large enough for the biggest case.
ALT = FLTARR(200)

;Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

;Define string array.
OBS = STRARR(200)

;Define scalar string.

Example: Reading Records With Multiple Array Elements Application Programming

Chapter 18: Files and Input/Output 445

OBSs = "'

;Initialize counter.
I =0

WHILE ~ EOF (1) DO BEGIN
;Read scalars.
READF, 1, $

FORMAT = ' (4(1X, G15.5), 2X, Al0)', $
ALTS, PRESS, TEMPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
VELO[I] = VELOS & OBS[I] = OBSS

;Increment counter and check for too many records.
IF I LT 199 THEN I = I + 1 ELSE STOP, 'Too many records'
ENDWHILE

If desired, after the file has been read and the number of observationsis known, the
arrays may be truncated to the correct length using a series of statements similar to
the following:

ALT = ALT[0:I-1]

The above statement represents aworst case example. Reading is greatly simplified
by writing data of the same type contiguously and by knowing the size of thefile.
One frequently used technique is to write the number of observationsinto the first
record so that when reading the data the size is known.

Application Programming Example: Reading Records With Multiple Array Elements

446 Chapter 18: Files and Input/Output

Warning
It might be tempting to implement aloop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR I = 0, 99 DO READF, 1, ALT[I], PRES[I], TEMP[I], VELO[I]

This statement is incorrect. Subscripted elements (including ranges) are temporary
expressions passed as values to procedures and functions (READF in this example).
Parameters passed by value do not pass results back to the caller. The proper
approach isto read the datainto scalars and assign the values to the individual array
elements as follows:

A=0.&P=0.&T=20. &V =20.
FOR I = 0, 99 DO BEGIN

READF, 1, A, P, T, V

ALT[I] = A & PRES[I] = P & TEMP[I] = T & VELO[I] =V
ENDFOR

Example: Reading Records With Multiple Array Elements Application Programming

Chapter 18: Files and Input/Output 447

Using Unformatted Input/Output

Unformatted input/output involves the direct transfer of data between afile and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency isimportant and portability isnot anissue. It is
faster and requires less space than formatted input/output. IDL provides three
procedures for performing unformatted input/output:

READU

Reads unformatted data from the specified file unit.
WRITEU

Writes unformatted data to the specified file unit.
ASSOC

Maps an array structure to alogical file unit, providing efficient and convenient direct
access to data

This section discusses READU and WRITEU, while ASSOC is discussed in
“Associated Input/Output” on page 459. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit, Var;, ..., Var,
WRITEU, Unit, Var;, ..., Vary
where

Unit — The logical file unit with which the input/output operation will be performed.
Var; — One or more IDL variables (or expressionsin the case of output).

The WRITEU procedure writes the contents of its arguments directly to the file, and
READU reads exactly the number of bytesrequired by the size of its arguments. Both
cases directly transfer binary data with no interpretation or formatting.

Unformatted Input/Output of String Variables

Strings are the only basic IDL datatype that do not have afixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it is always possible to know the length of the

Application Programming Using Unformatted Input/Output

448 Chapter 18: Files and Input/Output

other types, string variables are a special case. IDL usesthe following rules to
determine the number of charactersto transfer:

Input

Input enough bytes to fill the original length of the string. The length of the resulting
string is truncated if the string contains a null byte.

Output
Output the number of bytes contained in the string. This number is the same number
returned by the STRLEN function and does not include a terminating null byte.

Note that these rulesimply that when reading into a string variable from afile, you
must know the length of the origina string so asto be ableto initialize the destination
string to the correct length. For example, the following IDL statements produce the
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an l1ll-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, O

;Prepare a nine-character string.
A = :

;Read back in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1
produce the following, because the receiving variable A was not long enough:
Hello Wor

The only solution to this problem is to know the length of the string being input. The
following IDL statements demonstrate a useful “trick” for initializing stringsto a
known length:

;Open a file.
OPENW, 1, 'temp.tmp'

Using Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 449

;Write an l1ll-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, O

;Create a string of the desired length initialized with blanks.
;REPLICATE creates a byte array of 11 elements, each element
;initialized to 32, which is the ASCII code for a blank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 blanks.

A = STRING (REPLICATE(32B,11))

;Read in the string.
READU, 1, A

; Show what was input.
PRINT, A

CLOSE, 1

This example takes advantage of the special way in which the BY TE and STRING
functions convert between byte arrays and strings. See the description of the BY TE
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data
with IDL

The following C program produces afile containing employee records. Each record
stores the first name of each employee, the number of years he has been employed,
and his salary history for the last 12 months.

#include <stdio.h>
main ()

{

static struct rec {

char name[32]; /* Employee's name */

int years; /* # of years with company */

float salary[12]; /* Salary for last 12 months */
} employees[] = {

{ {B','u','1','1",'w','i",'n", 'k",'1",'e'}, 10,
{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000.0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} 1},{
{'B','o",'r','x','i",'s"}, 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,
200.0, 100.0, 100.0, 50.0, 60.0, 0.25} 1},

Application Programming Using Unformatted Input/Output

450 Chapter 18: Files and Input/Output

{ {'N','a','t','a','s"','h', 'a'}, 10,
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,
2600.0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} },
{ {'R','0",'c','k','y'}, 11,
{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,
5000.0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}

Y
FILE *outfile;

outfile = fopen("data.dat", "w");
(void) fwrite(employees, sizeof (employees), 1, outfile);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the employee records. The
following IDL statements can be used to read and print thisfile:

;Create a string with 32 characters so that the proper number of
;characters will be input from the file. REPLICATE is used to
;create a byte array of 32 elements, each containing the ASCII code
;for a space (32). STRING turns this byte array into a string
;containing 32 blanks.

STR32 = STRING (REPLICATE(32B, 32))

;Create an array of four employee records to receive the input

;data.

A = REPLICATE ({EMPLOYEES, NAME:STR32, YEARS:0L, $
SALARY:FLTARR(12) 1}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'

;Read the data.
READU, 1, A

CLOSE, 1

;Show the results.
PRINT, A

Using Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 451

Executing these IDL statements produces the following output:

{ Bullwinkle 10
1000.00 9000.97 1100.00 0.00000 0.00000 2000.00
5000.00 3000.00 1000.12 3500.00 6000.00 900.000
}{Borris 11
400.000 500.000 1300.10 350.000 745.000 3000.00
200.000 100.000 100.000 50.0000 60.0000 0.250000
}{ Natasha 10
950.000 1050.00 1350.00 410.000 797.000 200.360
2600.00 2000.00 1500.00 2000.00 1000.00 400.000
}{ Rocky 11
1000.00 9000.00 1100.00 0.00000 0.00000 2000.37
5000.00 3000.00 1000.01 3500.00 6000.00 900.120

}

Example: Reading IDL-Generated Unformatted Data
with C

The following IDL program creates an unformatted datafile containing a5 x 5 array
of floating-point values:

;Open a file for output.
OPENW, 1, 'data.dat'

;Write 5x5 array with each element set to its l-dimensional index.
WRITEU, 1, FINDGEN(5, 5)

CLOSE, 1
Thisfile can be read and printed by the following C program:

#include <stdio.h>

main ()
{
float datal[5]I[51;
FILE *infile; int 1, j;
infile = fopen("data.dat", "r");
(void) fread(data, sizeof(data), 1, infile);
(void) fclose(infile);
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
printf("%8.1f", datalilljl);
printf ("\n");

Application Programming Using Unformatted Input/Output

452

Running this program gives the following output:

0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0
10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0

Chapter 18: Files and Input/Output

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows how to
read such an image and display it using IDL. In the interest of keeping the example
brief, anumber of simplifications are made, no error checking is performed, and only
8-bit deep rasterfiles are handled. See the READ_SRF procedure (thefile
read_srf.pro inthe 1ib subdirectory of the IDL distribution) for a complete
example. The format used for rasterfilesis documented in the C header file
/usr/include/rasterfile.h. That file provides the following information:

Each file starts with a fixed header that describes the image. In C, this header is

defined as follows:

struct rasterfile{

int ras_magic; /* magic number */

int ras_width; /* width (pixels) of image */

int ras_height; /* height (pixels) of image */

int ras_depth; /* depth (1, 8, or 24 bits) */

int ras_length; /* length (bytes) of image */

int ras_type; /* type of file */

int ras_maptype; /* type of colormap */

int ras_maplength; /* length(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image data

follows directly after the color map.

The following IDL statements read an 8-bit deep image from thefile ras . dat:

;Define IDL structure that matches the Sun-defined rasterfile
;structure. A C int variable on a Sun corresponds to an IDL LONG

;int.
h {rasterfile,
length: 0L,

magic:0L, width:0L,

;Open the file,

OPENR, unit, file, /GET_LUN

;Read the header information.
READU, unit, h

Using Unformatted Input/Output

height:0L, depth: O0L,S

type:0L, maptype:0L, maplength:0L}

allocating a file unit at the same time.

Application Programming

Chapter 18: Files and Input/Output 453

;Is there a color map?
IF ((h.maptype EQ 1) AND (h.maplength NE 0)) THEN BEGIN

;Calculate length of each vector.
maplen = h.maplength/3

;Create three byte vectors to hold the color map.
r=(g=(b=BYTARR (maplen, /NOZERO)))

;Read the color map.
READU, unit, r, g, b

ENDIF

;Create a byte array to hold image.
image = BYTARR (h.width, h.height, /NOZERO)

;Read the image.
READU, unit, image

;Free the previously-allocated Logical Unit Number and close the

;file.
FREE_LUN, unit

Application Programming Using Unformatted Input/Output

454

Chapter 18: Files and Input/Output

Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differencesin the way various machines represent binary
data. However, it is possible to produce binary files that are portable by specifying
the XDR keyword with the OPEN procedures. XDR (for eXternal Data
Representation) is a scheme under which all binary datais written using a standard
“canonical” representation. All machines supporting X DR understand this standard
representation and have the ability to convert between it and their own internal
representation.

XDR represents a compromise between the extremes of unformatted and formatted
input/output:

It is not as efficient as purely unformatted i nput/output because it does involve
the overhead of converting between the external and internal binary
representations.

It is still much more efficient than formatted input/output because conversion
to and from ASCII charactersis much more involved than converting between
binary representations.

It is much more portable than purely unformatted data, although it is still
limited to those machinesthat support XDR. However, XDR isfreely available
and can be moved to any system.

XDR Considerations

The primary differencesin the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

To use XDR, you must specify the XDR keyword when opening thefile.

The only input/output data transfer routines that can be used with afile opened
for XDR are READU and WRITEU.

XDR converts between the internal and standard external binary
representations for data instead of simply using the machine’s internal
representation.

Since XDR adds extra“ bookkeeping” information to data stored in thefile and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using XDR.

Portable Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 455

* OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at atime. Thus, using these
procedures with the XDR keyword results in afile open for output only.
OPENR works in the usual way.

e Thelength of stringsis saved and restored along with the string. This means
that you do not have to initialize a string of the correct length before reading a
string from the XDR file. (Thisis necessary with normal unformatted
input/output and is described in “Using Unformatted | nput/Output” on
page 447).

« For efficiency reasons, byte arrays are transferred as a single unit; therefore,
byte variables must beinitialized to the correct number of elementsfor the data
to beinput, or an error will occur. For example, given the statements,

;Open a file for XDR output.
OPENW, /XDR, 1, 'data.dat’

;Write a 10-element byte array.
WRITEU, 1, BINDGEN(10)

;Close the file and re-open it for input.
CLOSE, 1 & OPENR, /XDR, 1, 'data.dat’

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:
% READU: Error encountered reading from file unit: 1.

Instead, it is necessary to read the entire byte array back in one operation using
a statement such as:

;Read the whole array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.
IDL XDR Conventions for Programmers
IDL uses certain conventions for reading and writing XDR files. If your only use of

XDRisthrough IDL, you do not need to be concerned about these conventions
because IDL takes care of it for you. However, programmers who want to create IDL -

Application Programming Portable Unformatted Input/Output

Chapter 18: Files and Input/Output

compatible XDR files from other languages need to know the actual XDR routines
used by IDL for various data types. The following table summarizes this information.

Data Type XDR routine
Byte xdr_bytes()
Integer xdr_short()
Long xdr_long()
Float xdr_float()
Double xdr_double&()
Complex xdr_complex()
String xdr_counted_string()

Double Complex

xdr_dcomplex()

Unsigned Integer

xdr_u_short()

Unsigned Long

xdr_u_long()

64-bit Integer

xdr_long_long_t()

Unsigned 64-bit | nteger

xdr_u_long_long_t()

Table 18-13: XDR Routines Used by IDL

Theroutines used for type COMPLEX, DCOMPLEX, and STRING are not primitive
XDR routines. Their definitions are as follows:

bool_t xdr_complex(xdrs, p)

XDR *xdrs;

struct complex { float r,

{

i} *p;

return (xdr_float (xdrs, (char *) &p->r) &&
xdr_float (xdrs, (char *) &p->i));

}
bool_t xdr_dcomplex(xdrs,
XDR *xdrs;

struct dcomplex { double r, i} *p;

{
return (xdr_double (xdrs,
xdr_double (xdrs,

}

bool_t xdr_counted_string(xdrs,

XDR *xdrs;

Portable Unformatted Input/Output

(char *) &p->r) &&
(char *) &p->1i));

p)

Application Programming

Chapter 18: Files and Input/Output 457

char **p;

int input = (xdrs->x_op == XDR_DECODE) ;
short length;

/* If writing, obtain the length */
if (!input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short (xdrs, (char *) &length)) return(FALSE);

/* If reading, obtain room for the string */
if (input)
{
*p = malloc((unsigned) (length + 1));
pllength] = '\0'; / Null termination */
}
/* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);
}

Example: Reading C-Generated XDR Data with IDL

The following C program produces afile containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#include <stdio.h>
#include <rpc/rpc.h>
[xdr_complex () and xdr_counted_string() included here]

main ()
{
static struct { /* Output data */
unsigned char c;
short s;
long 1;
float f;
double d;
struct complex { float r, i } cmp;
char *str;
}
data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int c_len = sizeof (unsigned char); /* Length of a char */

char *c_data = (char *) &data.c; /* Addr of byte field */
FILE *outfile; /* stdio stream ptr */
XDR xdrs; /* XDR handle */

/* Open stdio stream and XDR handle */

Application Programming Portable Unformatted Input/Output

458 Chapter 18: Files and Input/Output

outfile = fopen("data.dat", "w");
xdrstdio_create (&xdrs, outfile, XDR_ENCODE) ;

/* Output the data */

(void) xdr_bytes (&xdrs, &c_data, &c_len, c_len);
void) xdr_short (&xdrs, (char *) &data.s);
void) xdr_long(&xdrs, (char *) &data.l);

)

)

)
void) xdr_float (&xdrs, (char *) &data.f);

id)

)

)

xdr_double (&xdrs, (char *) &data.d);
void) xdr_complex(&xdrs, (char *) &data.cmp);
void) xdr_counted_string(&xdrs, &data.str);

/* Close XDR handle and stdio stream */
xdr_destroy (&xdrs) ;
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data. The
following IDL statements can be used to read this file and print its contents:

;Create structure containing correct types.
DATA={S, C:0B, S:0, L:0L, F:0.0, D:0.0D, CMP:COMPLEX(0), STR:'"'}

;Open the file for input.
OPENR, /XDR, 1, 'data.dat’

;Read the data.
READU, 1, DATA

;Close the file.
CLOSE, 1

;Show the results.
PRINT, DATA

Executing these IDL statements produces the outpult:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine.
Sun users should consult their Network Programming manual.

Portable Unformatted Input/Output Application Programming

Chapter 18: Files and Input/Output 459

Associated Input/Output

Unformatted data stored in files often consists of a repetitive series of arrays or
structures. A common example is a series of images. IDL-associated file variables
offer a convenient and efficient way to access such data.

An associated variable is a variable that maps the structure of an IDL array or
structure variable onto the contents of afile. Thefileistreated as an array of these
repeating units of data. Thefirst array or structure in the file has an index of zero, the
second has index one, and so on. Such variables do not keep datain memory like a
normal variable. Instead, when an associated variable is subscripted with the index of
the desired array or structure within thefile, IDL performs the input/output operation
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays or
structures), associated file variables offer the foll owing advantages over READU and
WRITEU for unformatted input/output:

» Input/output occurs when an associated file variable is subscripted. Thus, itis
possible to perform input/output within an expression without a separate
input/output statement.

* Thesizeof the data set islimited primarily by the maximum possible size of
the file containing the data instead of the maximum memory available. Data
sets too large for memory can be accessed.

e Thereisno need to declare the maximum number of arrays or structures
contained in the file.

» Associated variables offer transparent access to data. Direct access to any
element in the file is rapid and simple—there is no need to calcul ate offsets
into the file and/or position the file pointer prior to performing the input/output
operation.

An associated file variable is created by assigning the result of the ASSOC function
to avariable. See “ASSOC” (IDL Reference Guide) for details.

Example of Using Associated Input/Output

Assumethat afile named data.dat exists, and that thisfile contains aseries of 10 x 20
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to the file:

;Open the file.
OPENU, 1, 'data.dat'

Application Programming Associated Input/Output

460

Chapter 18: Files and Input/Output

;Make a file variable. Using the NOZERO keyword with FLTARR
;increases efficiency.
A = ASSOC(1l, FLTARR(10, 20, /NOZERO))

The order of these two statementsis not important—it would be equally valid to call
ASSOC first, and then open thefile. Thisis because the association is between the
variable and the logical file unit, not thefileitself. It is also legitimate to close the
file, open anew file using the same LUN, and then use the associated variable
without first executing a new ASSOC. Naturally, an error occursif the file is not
open when thefile variable is subscripted in an expression or if thefileis open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with afile opened for read-only access).

Asaresult of executing the two statements above, the variable A is now an associated
file variable. Executing the statement,

HELP, A
gives the following response:
A FLOAT = File<data.dat> Array (10, 20)

The associated variable A maps the structure of a 10 x 20, floating-point array onto
the contents of the file data.dat. Thus, the response from the HEL P procedure shows
it as having the structure of atwo-dimensional array. An associated file variable only
performsinput/output to the file when it is subscripted. Thus, the following two IDL
statements do not cause input/output to happen:

B =A

This assignment does not transfer data from the file to variable B because A is not
subscripted. Instead, B becomes an associated file variable with the same structure,
and to the same logical file unit, asA.

B = 23

This assignment does not result in the value 23 being transferred to the file because
variable B (which became afile variable in the previous statement) is not subscripted.
Instead, B becomes a scalar integer variable containing the value 23. It isno longer
an associated file variable.

Reading Data from Associated Files

Once avariable has been associated with afile, data are read from the file whenever
the associated variable appears in an expression with a subscript. The position of the
array or structure read from the fileis given by the value of the subscript. The

Associated Input/Output Application Programming

Chapter 18: Files and Input/Output 461

following IDL statements assume that the associated file variable A isdefined asin
the previous section, and give some examples of using file variables:

;Copy the contents of the first array into normal variable Z. Z is
;now a 10 x 20, floating-point array.
Z = A[0]

;Form the sum of the first 10 arrays. (Z was initialized in the
;previous statement to the value of the first array. This statement
;adds the following nine to it.) Note the use of the compound
;operator += to avoid creating a new copy of Z each time we add a
;new array.

FOR I =1, 9 DO Z += A[I]

;Read fourth array and plot it.
PLOT, A[3]

;Subtract array four from array five, and plot the result. The
;result of the subtraction is then discarded.
PLOT, A[5] - A[4]

Writing Data to Associated Files

When a subscripted associated variable appears on the | eft side of an assignment
statement, the expression on the right side is written into the file at the given array
position:

;Sets sixth record to zero.

A[5] = FLTARR(10, 20)

;Write ARR into sixth record after any necessary type conversions.
A[5] = ARR

;Averages records J and J+1, and writes the result into record J.
A[J] = (A[J] + A[J + 11)/2

Multiple Subscripts With Associated File Variables

Usually, when subscripts are used with associated file variables, only asingle
subscript is present, specifying an array within the associated file. Thisis the most
efficient way to access associated file variables. However, IDL alows you to specify
individua elements within the selected array using multiple subscripts. When
multiple subscripts are present with an associated file variable, the rightmost
subscript selects the array within the file, and the other subscripts specify the specific
element within that array.

Application Programming Associated Input/Output

462 Chapter 18: Files and Input/Output

For example, consider the following statement using the variable A defined above:
Zz = A[0,0,1]

This statement assigns the value of element [0,0] of the second array within thefileto
the variable Z. The rightmost subscript is interpreted as the subscript of the array
within thefile, causing IDL to read the entire array into memory. Thisresulting array
expression is then further subscripted by the remaining subscripts.

Similarly, the statement:
A[2,3,4] = 45

assigns the value 45 to element [2,3] of the fifth array within the file. When afile
variableis referenced, the last (and possibly only) subscript denoting the element
within that array must be a simple subscript. Other subscripts and subscript ranges,
except the last, have the same meaning as when used with normal array variables.

Animplicit extraction of an element or subarray in a data record can also be
performed. For example:

; Variable A associates the file open on unit 1 with the records of
;200-element, floating-point wvectors.
A = ASSOC(1l, FLTARR(200))

; Then, X is set to the first 100 points of record number 2, the
; third record of the file.
X = A[0:99, 2]

; Set the 24th point of record 16 to 12.
A[23, 16] = 12

; Increment points 10 to 199 of record 12. Points 0 to 9 of the
; record remain unchanged.
A[10, 121 = A[10:*, 121+1

Note
Although the ability to directly refer to array elements within an associated file can
be convenient, it can also be very slow because every access to an array element
causes the entire array to be transferred to or from memory. Unless only one
operation on the array isrequired, it is faster to assign the contents of the array to a
normal variable by subscripting the file variable with a single subscript, and then
access the individual array elements within the normal variable as needed. If you
make changes to the value of the normal variablethat should be reflected in thefile,
afinal assignment to the associated variable, indexed with asingle subscript, can be
used to update the file and complete the operation.

Associated Input/Output Application Programming

Chapter 18: Files and Input/Output 463

Files with Multiple Structures

The same file may be associated with a number of different structures. Assume a
number of 128 x 128-byte images are contained on afile. The statement,

ROW = ASSOC(1l, BYTARR(128))

will map the file into rows of 128 bytes each. rRow[3] isthe fourth row of the first
image, whilerow[128] isthefirst row of the second image. The statement,

IMAGE = ASSOC(1l, BYTARR(128, 128))

maps the file into entireimages; tMaGE [4] will be the fifth image.
Offset Parameter

The Offset parameter to ASSOC specifies the position in the file at which the first
array starts. This parameter is useful when afile contains a header followed by data
records. For example, if afile usesthefirst 1,024 bytes of the file to contain header
information, followed by 512 x 512-byte images, the statement,

IMAGE = ASSOC(1, BYTARR(512, 512), 1024)

sets the variable IMAGE to access the images while skipping the header.
Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the block
size of the filesystem holding the file. Common values are powers of 2, such as 512,
2K (2048), 4K (4096), or 8K (8192) bytes. For example, on a disk with 512-byte
blocks, one benchmark program required approximately one-eighth of the time
required to read a 512 x 512-byte image that started and ended on a block boundary,
as compared to asimilar program that read an image that was not stored on even
block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to thefile. Therefore, if arecord isto be accessed more than a
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to the file if
necessary.

Application Programming Associated Input/Output

464 Chapter 18: Files and Input/Output

Unformatted Data from UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extralong word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. Thisistrue even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
isgivenin “Using Unformatted Input/Output” on page 447.

Associated Input/Output Application Programming

Chapter 18: Files and Input/Output 465

File Manipulation Operations

IDL provides avariety of routines that allow you to retrieve information about and
mani pul ate files and directories. See the following topics:

e Chapter 3, “Importing and Writing Datainto Variables” (Using IDL) describes
various methods of accessing files

* “General File Access’ (IDL Quick Reference) provides a complete list of
routines that allow you to access, locate, modify, and get information about
files

Working with UNIX Links

On UNIX platforms, you can create file links, both regular (hard) and symbolic. A
hard link is a directory entry that references afile. UNIX allows multiple such links
to exist simultaneously, meaning that a given file can be referenced by multiple
names. The following limitations on hard links are enforced by the operating system:

e Hard links may not span file systems, as hard linking is only possible within a
singlefile system.

« Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical Unix file
system. Such loops will confuse many system utilities, and can even causefile
system damage.

A symboliclink isanindirect pointer to afile; itsdirectory entry contains the name of
thefile to which it islinked. Symbolic links may span file systems and may refer to
directories.

Usethe FILE_LINK procedure to create hard and soft links on UNIX systems. See
“FILE_LINK” (IDL Reference Guide) for details.

Usethe FILE_READLINK procedure to retrieve the path to afile referenced by a
UNIX symbolic link. See “FILE_READLINK” (IDL Reference Guide) for details.

Use the FILE_SAME function to determine whether two file names refer to the same
underlying file. See “FILE_SAME" (IDL Reference Guide) for details.

Application Programming File Manipulation Operations

466 Chapter 18: Files and Input/Output

Reading and Writing FORTRAN Data

The standard FORTRAN unformatted sequential file input/output mechanism
performsfileinput and output by reading and writing blocks of datafrom (or to) afile
aslogical records. To read data, the FORTRAN program asks for the next logical
record from an open file; the operating system is then responsible for determining
how much data should be retrieved from the file. This system works well for
operating systems like VM, which organize files into records and can thus keep
track of where logical blocks of data begin and end.

In contrast, the UNIX and Microsoft Windows operating systems supported by IDL
treat files as an uninterrupted stream of bytes. In order to reconcile the FORTRAN
need for logical records with these stream files, FORTRAN compilersfor UNIX and
Microsoft Windows provide a mechanism to add alongword integer count of the
number of bytesin each logical record. This mechanism allows FORTRAN-
generated data files that treat data as a series of logical records to be read on
platforms that use stream files.

The F77_UNFORMATTED keyword to the OPEN proceduresinforms IDL that the
file contains unformatted data demarcated by logical record identifiers. When afileis
opened with thiskeyword, IDL interprets the longword counts properly and is able to
read the logical records. Similarly, IDL can write data using the logical record format
using the F77_UNFORMATTED keyword.

Usethe F77_UNFORMATTED keyword if your IDL program is reading data that
contain embedded longword logical record separators, or if your program iswriting
datathat will be read by a FORTRAN program that reads unformatted sequential
files.

Note
On 64-bit machines, some Fortran compilers will insert record markers that are 64-
bit integers instead of the standard 32-bit integers. When reading FORTRAN data,
IDL will attempt to recognize the presence of 64-bit record markers and switch to
the appropriate format. When writing unformatted Fortran files, IDL will continue
to use 32-bit record markers.

Note
Direct-access FORTRAN 1/0 does not write data using logical records, but simply
transfers binary datato or from thefile.

Reading and Writing FORTRAN Data Application Programming

Chapter 18: Files and Input/Output 467

Reading Data from a FORTRAN File

The following FORTRAN program, when run on a UNIX or Microsoft Windows
system (that is, an operating system that uses stream files), produces afile containing
afive-column by three-row array of floating-point values with each element set toits

one-dimensional subscript:

PROGRAM ftn2idl

INTEGER i, J
REAL data(5, 3)

OPEN (1, FILE="ftn2idl.dat", FORM="unformatted")
DO 100 j =1, 3
DO 100 i =1, 5
data(i,j) = ((3 - 1) * 5) + (1 - 1)
print *, data(i,j)
100 CONTINUE
WRITE (1) data
END

Running this program creates the file ftn2idl.dat containing the unformatted array.
Thefollowing IDL statements can be used to read thisfile and print out its contents:

;Create an array to contain the fortran array.
data = FLTARR(5,3)

;Open the fortran-generated file. The F77_UNFORMATTED keyword 1is
;necessary so that IDL will know that the file contains unformatted

;data produced by a UNIX FORTRAN program.
OPENR, 1lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;Read the data in a single input operation.
READU, lun, data

;Release the logical unit number and close the fortran file.
FREE_LUN, lun

; Print the result.
PRINT, data

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000

Because unformatted data produced by FORTRAN unformatted WRITE statements
on an operating system that uses stream files are interspersed with extrainformation

Application Programming Reading and Writing FORTRAN Data

468 Chapter 18: Files and Input/Output

before and after each logical record, it isimportant that the IDL program read the data
in the same way that the FORTRAN program wrote it. For example, consider the
following attempt to read the above data file one row at atime:

;Create an array to contain one row of the FORTRAN array.
data = FLTARR (5, /NOZERO)

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;One row at a time.
FOR I = 0, 4 DO BEGIN

;Read a row of data.
READU, lun, data

;Print the row.
PRINT, data
ENDFOR

;Close the file.
FREE_LUN, lun

Executing these IDL statements produces the outpult:

0.00000 1.00000 2.00000 3.00000 4.00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.daté6
% Execution halted at S$MAINS(0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program asif it were written in five separate records. IDL hit the end of the file after
reading the first five values of the first record.

Writing Data to a FORTRAN File

Thefollowing IDL statements create a five-column by three-row array of floating-
point values with each element set to its one-dimensional subscript, and writes the
array to adatafile suitable for reading by a FORTRAN program:

;Create the array.
data = FINDGEN (5, 3)

;O0pen a file for writing. Note that the F77_UNFORMATTED keyword is
;necessary to tell IDL to write the data in a format readable by a
; FORTRAN program.

OPENW, lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORMATTED

;Write the data.
WRITEU, lun, data

Reading and Writing FORTRAN Data Application Programming

Chapter 18: Files and Input/Output

;Close the file.
FREE_LUN, lun

The following FORTRAN program reads the data file created by IDL:

100

Application Programming

PROGRAM idl2ftn

INTEGER i, jJ
REAL data(5, 3)

OPEN (1, FILE="idl2ftn.dat", FORM="unformatted")
READ (1) data
DO 100 j =1, 3
DO 100 i =1, 5
PRINT *, data(i,j)
CONTINUE
END

469

Reading and Writing FORTRAN Data

470 Chapter 18: Files and Input/Output

Platform-Specific File I/O Information

Special considerations for file access on UNIX and Windows platforms are covered
in the following sections:

UNIX-Specific Information

Under UNIX, afileisread or written as an uninterrupted stream of bytes— thereis
no record structure at the operating system level. (By convention, records of text are
simply terminated by the linefeed character, which isreferred to as “newline.”) It is
possible to move the current file pointer to any arbitrary position in the file and to
begin reading or writing data at that point. This simplicity and generality form a
system in which any type of file can be manipulated easily using a small set of file
operations.

Windows-Specific Information

Under Microsoft Windows, afileisread or written as an uninterrupted stream of
bytes— there is no record structure at the operating system level. Linesin a
Windows text file are terminated by the character sequence CR LF (carriage return,
line feed).

The Microsoft C runtime library considers afile to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs.
Programmers familiar with this situation may be concerned about how IDL handles
read and write operations. IDL is not affected by this quirk of the C runtime library,
and no specia action isrequired to work around it. Read/write operations are handled
the same in Windows as in Unix: when IDL performs aformatted I/O operation, it
reads/writes the CR/LF line termination. When it performs a binary operation, it
simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
keywords to the OPEN procedures were provided to allow the user to change IDL's
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.

Platform-Specific File 1/0O Information Application Programming

Chapter 19
Using Language
Catalogs

The following topics are covered in this chapter:

What IsalLanguage Catalog? 472 UsingthelDLffLangCat Class. 476
Creating aLanguage Catalog File 473 WidgetExample 479

Application Programming 471

472 Chapter 19: Using Language Catalogs

What Is a Language Catalog?

A language catalog is a set of text stringsin a particular language, created as key
name/value pairs. Applications can use these catalogs to fill in the names of menu
items, buttons, and other elements of a user interface, for example. The use of
different language catal ogs, then, can support an application’s internationalization:
for example, letting a user decide what language to use for installing and running the
application.

There are two main advantages of using a language catalog in a separate file, rather
than having these strings embedded in the application:

e Thestrings do not consume memory until the application |oads them

* You can edit the catalog to add new languages and new strings without directly
involving the application

In addition, because the language catalogs are in XML format, you can easily read
and edit the files in any text editor.
Implementing language catal og functionality requires two parts:

* Thecreation of alanguage catalog (. cat) file, which contains the name/value
pairsin the desired languages. See “Creating a Language Catalog File” on
page 473 for information on requirements for alanguage catalog file's
structure.

e Thecreation of an IDLffLangCat object, which provides access and use of the
keysin the catalog file. See “Using the IDLffLangCat Class’ on page 476 for
information on creating and using a language catalog object.

What Is a Language Catalog? Application Programming

Chapter 19: Using Language Catalogs 473

Creating a Language Catalog File

A language catalog (. cat) file contains the XML that defines the text strings as key
name/value pairs within asingle <IpLffLangCat> tag. The tag can contain four
optiona attributes, as described in Table 19-1.

Attribute Description
APPLICATION Name of the application that will use the
keysin thefile
VERSION Version of IDLffLangCat for which the
file was created
DATE Date of thefile's creation or last

modification, as desired

AUTHOR Author of thefile

Table 19-1: IDLffLangCat Tag Attributes

Note
You cannot perform queries on VERSION, DATE, and AUTHOR. These attributes are
more like XML comments on the tag; they are informational only.

Note
For more information on XML, see “About XML" on page 484.

The following XML snippet, extracted from the iTools menu catalog file that comes
with the IDL installation, illustrates the basic file structure:

<IDLffLangCat APPLICATION="itools menu" VERSION="1.0"
AUTHOR="ITT">
<LANGUAGE NAME="English">
<KEY NAME="Menu:File">File</KEY>
<KEY NAME="Menu:File:New">New</KEY>
<KEY NAME="Menu:File:Open">Open...</KEY>
</LANGUAGE>
</IDLffLangCat>

The <IDLffLangCat> tag can contain any number of LANGUAGE tags. Each
LANGUAGE tag must have aNaME attribute denoting the language contained therein.

Each 1.ANGUAGE tag can contain any number of kEY tags. Each kEy tag must have a
NAME attribute denoting the name of the key.

Application Programming Creating a Language Catalog File

474

Chapter 19: Using Language Catalogs

Note
All text between the open and close kY tags will be part of the string returned by
the query, including any line feeds, carriage returns, and spaces.

The catalog file can contain keys for one or more languages. Whether thereisasingle
catal og file containing multiple languages, or multiple catal og files, each containing a
single language, is personal preference.

By keeping each language separate in the tag definition, you can easily cut and paste
an entire block and then change the strings of one language to another language while
keeping all the keys intact. Thistechnique also allows for the possibility of having
different languages in separate files. Note that the keysin any one language need not
match those of another language (although in most cases they will).

Note
IDL supports catalog files written in 8-bit strings (which can be encoded for
languages using special marks; see below). Also, you must have the corresponding
fonts installed on your machine before you can use a particular language.

Note
If your language has accent marks such as those in French, you might need to
modify the catal og file to support those encodings. In general, you should use the
encoding appropriate for your catalog’s language. For more information, see
“IDLffLangCat” (IDL Reference Guide).

Storing and Loading Language Catalog Files

The catalog filesincluded with IDL areinthe /resource/langcat directory of the
IDL installation and end in a. cat extension. These files contain the English keys for
iTools menus, dialogs, and messages and are provided to support the use of
applications using i Tools functionality in other languages. All catalog files must end
with the . cat extension if APP_NAME is used to locate the files.

You can create custom catalog files and place them in alocation of your choice. You
typically use afull path to access these catal og files through the creation of an
IDLffLangCat object (see “Using the IDLffLangCat Class’ on page 476 for more
information).

You can specify acatalog either by giving the full path of the catalog file or files, or
by providing an application name or names and, optionally, an application path or
paths. If no path is specified, only the current directory is searched. For all

Creating a Language Catalog File Application Programming

Chapter 19: Using Language Catalogs 475

application paths, al . cat filesfound in any of the directories listed are searched for
al given applications.

On asimilar note, if IDL finds a duplicate key name while loading keys, IDL will use
the string corresponding to the last key found with the given name.

Application Programming Creating a Language Catalog File

476 Chapter 19: Using Language Catalogs

Using the IDLffLangCat Class

You use the IDLffLangCat class to find and load an XML language catalog. The
class aso provides methods for retrieving text strings by matching key names.

Creating a Language Catalog Object
The IDL installation comes with an English language catal og for the iTools menu,

called itoolsmenu_eng.cat, inthe /resource/langcat directory of the IDL
installation. To load the keys in thisfile:

oLangCat = OBJ_NEW('IDLffLangCat', 'ENGLISH', $
APP_NAME='itools menu', $
APP_PATH=FILEPATH('', $
SUBDIRECTORY=['resource', 'langcat', 'itools']), /VERBOSE)

This command searches the given directory for language catalog keys in English that
match the application of ‘itools menu.’ Infact, if there are any other language catalog
files, besides i toolsmenu_eng. cat, containing keys whose LANGUAGE valueis
‘ENGLISH’ and apPL.ICATION Valueis ‘itools menu, the object adds those keys as
well. The matches must be exact in that ‘itools menu2, for example, is not a match;
however, the matching is not case-sensitive (i.e., 'ENGLISH’ and ‘English’ are both
matches for LANGUAGE).

Note
Whenever the object encounters a key (or language) that already exists, the key (or
language) is overwritten with the new value.

The vErRBOSE flag on the command sends al catal og-loading messages to the IDL
Workbench output window. This list contains details resulting from the object’s
initialization (the names and numbers of keys loaded, keys overwritten, etc.).

Adding Application Keys
You might want to add keys for a different application to an existing language catal og

object. To do so:

retval = oLangCat->AppendCatalog(APP_NAME='itools ui', $
APP_PATH=FILEPATH('', $
SUBDIRECTORY=['resource', 'langcat', 'itools']))

This command searches the given directory for keys matching an APPL.TCATTION
value of ‘itools ui’ and appends them to oLangCat. The method returns avalue
indicating success or failure of the operation.

Using the IDLffLangCat Class Application Programming

Chapter 19: Using Language Catalogs 477

Getting and Setting Languages

To return the available languages in alanguage catal og object:
oLangCat->GetProperty, AVAILABLE_LANGUAGES=availLangs
This command storesthelist of available languagesasastring array in availLangs.

To set the current language of alanguage catalog object (the language used for query
searches and matching):

oLangCat->SetProperty, LANGUAGE='English'

You can use these two methods for getting and setting other properties of alanguage
catalog object. For thelist of available object properties, see “I DLffLangCat
Properties’ in the IDL Reference Guide manual.

Comparisons such as those done with the Query method (see “Performing Queries’
on page 477) are case insensitive, but the values returned by the GetProperty method
are exactly as the last encountered value. The exception isthat all key names are
returned in uppercase. For example, if File 1 has LANGUAGE="English' and File 2
has LANGUAGE="engLISh', then 'engLIsh' will be returned, athough only one
ENGLISH language exists in the current catal og.

Performing Queries

To populate the text fields of awidget or other interface object, for example, you can
query alanguage catalog object for key valuesit contains. IDL performs the search
on the NaME attribute of the keys, matches are not case-sensitive.

keyVal = oLangCat->Query('Menu:File:New',6 $
DEFAULT_ STRING='Key not found')

This command searches oL.angCat for keys with the NamME value of
‘Menu:FileNew’ and returnsthe matchin keyval. If oLangcat findsamatchinthe
current language, keyval will hold that value string. If a given key does not exist in
the current language, the default language is queried (if one exists). If there are still
no matches, the default string is returned.

You can use more than one key in aquery by passing an array of stringsto the Query
method (e.g., ['Menu:File:New', 'Menu:File:Open']). Similarly, you can
supply an array of strings for the bEFAULT_STRING keyword. In such a case, only
those values in the array whose indices match the missing keys will be returned. If
you do not specify DEFAULT_STRING, anull string will be returned instead.

Application Programming Using the IDLffLangCat Class

478 Chapter 19: Using Language Catalogs

Destroying a Language Catalog Object

You can destroy a catalog object as you would any other IDL object, as follows:
OBJ_DESTROY, oLangCat

Destroying alanguage catal og object does not affect any files from which the object
drew its keys.

Using the IDLffLangCat Class Application Programming

Chapter 19: Using Language Catalogs 479

Widget Example

This example creates a widget with two buttons whose text strings change between
two languages, depending on the selection from a drop-down list.

The following language catalogs are two separate files (as denoted by the
<IDLffLangCat> tag for each) and should be placed on your system as such.

<?xml version="1.0"7?>
<!-- $Id: myButtonsText.eng.cat,v 1.1 2004 rsiDoc Exp $ -->
<IDLffLangCat APPLICATION="myOpenButtons" VERSION="1.0"
AUTHOR="ITT">
<LANGUAGE NAME="English">
<KEY NAME="Button:OpenFile">Open File</KEY>
<KEY NAME="Button:0OpenFolder">0Open Folder</KEY>
</LANGUAGE>
</IDLffLangCat>

<?xml version="1.0"7?>
<!-- $Id: myButtonsText.fr.cat,v 1.1 2004 rsiDoc Exp $ -->
<IDLffLangCat APPLICATION="myOpenButtons" VERSION="1.0"
AUTHOR="ITT">
<LANGUAGE NAME="French">
<KEY NAME="Button:OpenFile">Ouvrir le Fichier</KEY>
<KEY NAME="Button:OpenFolder">Ouvrir le Dossier</KEY>
</LANGUAGE>
</IDLffLangCat>

To use the following code, saveitina .pro file. You do not haveto run it from the
same directory containing the language catalog files.

; Routine to change the language of the button labels.
PRO button_language_change, pstate
vLangString = (*pstate).vlang

; Access the language catalog to retrieve string values.

oLangCat = OBJ_NEW('IDLffLangCat', vLangString, $
APP_NAME='myOpenButtons' , APP_PATH=(*pstate) .vpath)

; Access and store language-specific strings in the structure.

strOpenFile = oLangCat->Query('Button:OpenFile')

strOpenFolder = oLangCat->Query('Button:OpenFolder')

WIDGET CONTROL, (*pstate).pbl, SET VALUE=strOpenFile

WIDGET_CONTROL, (*pstate).pb2, SET VALUE=strOpenFolder

END

; Event handler for 'Open File' button.

PRO button_file, event
sFile = DIALOG_PICKFILE(TITLE='Select image file')

Application Programming Widget Example

480

Widget Example

Chapter 19: Using Language Catalogs

END

; Event handler for 'Open Folder' button.
PRO button_folder, event
sFolder = DIALOG_PICKFILE(/DIRECTORY, $
TITLE='Choose the directory in which to store the data')
END

; Event handler for 'Language' droplist.

PRO button_language_event, event
WIDGET_ _CONTROL, event.top, GET_UVALUE = pstate
; Access user's language selection and store it in the pointer.
IF event.index EQ 0 THEN (*pstate).vlang = 'English'
IF event.index EQ 1 THEN (*pstate).vlang = 'French'
; Call the procedure to change the button text.
button_language_change, pstate

END

; Widget-creation procedure
PRO button_language
; Prompt for path to catalog files
vpath=dialog_pickfile(TITLE='Select directory that ' + $
'contains *.cat files', /DIRECTORY)
IF vpath EQ '' THEN return

; Create a top level base. Not specifying tab mode uses default

; value of zero (do not allow widgets to receive or lose focus).

tlb = WIDGET_BASE(/COLUMN, TITLE = "Language Change", $
XSIZE=220, /BASE_ALIGN_CENTER)

; Create the button widgets.

bbase = WIDGET BASE(tlb, /COLUMN)

pbl = WIDGET_BUTTON(bbase, VALUE='Open File', $
UVALUE='openFile', XSIZE=105, EVENT_PRO='button_file')

pb2 = WIDGET_BUTTON(bbase, VALUE='Open Folder',6 $
UVALUE="'openFolder', XSIZE=105, EVENT_PRO='button_folder')

; Create a drop-down list indicating available catalogs.

vLangList = ['English', 'French']

langDrop = WIDGET_DROPLIST(tlb, VALUE=vLangList, $
TITLE="'Language')

; Draw the widgets and activate events.

WIDGET_CONTROL, tlb, /REALIZE

; Create the state structure.
state = { $

pbl:pbl, $
pb2:pb2, $
vlang:'', $

vpath:vpath $

Application Programming

Chapter 19: Using Language Catalogs 481

pstate = PTR_NEW(state, /NO_COPY)
WIDGET_CONTROL, tlb, SET UVALUE=pstate
XMANAGER, 'button_language', tlb

; Clean up pointers.
PTR_FREE, pstate
END

Application Programming Widget Example

482 Chapter 19: Using Language Catalogs

Widget Example Application Programming

Chapter 20

Using the XML Parser

Object Class

The following topics are covered in this chapter:

About XML ... i 484
Usingthe XML Parser 486
Example: Reading DataInto an Array ... 491

Application Programming

Example: Reading Data Into Structures .. 498

Building Complex Data Structures

505

483

484

Chapter 20: Using the XML Parser Object Class

About XML

About XML

XML (eXtensible Markup Language) provides a set of rules for defining semantic
tags that can describe virtually any type of datain atext file. Data stored in XML-
format filesis both human- and machine-readable, and is often relatively easy to
interpret either visually or programmatically. The structure of data stored in an XML
fileis described by either a Document Type Definition (DTD) or an XML schema,
which can either be included in the file itself or referenced from an external network
location.

The IDL parsers support the following encodings: UTF-8, USASCII, 1SO8859-1,
UTF-16, UTF-16BE, UTF-16LE, UCS-4, UCS-4BE, UCS-4LE, WINDOWS-1252,
IBM 1140, IBM037, and IBM 1047.

Note
IDL can parse XML documents that are stored using any of the above encodings.
When an IDL application reads string data from the XML document using either the
SAX or DOM parser, the string data is transcoded from the document's encoding
into the encoding appropriate for IDL string variables. In order to read the string
data correctly, the XML string data must be mappable into an IDL string. The IDL
XML parsers may return an empty string if the XML string data cannot be
converted into an IDL string.

Since IDL strings use 1-byte characters, the XML strings must be transcodable into
strings that use 1 byte per character. Further, they must be transcodable into strings
that use the current character encoding. For example, on Windows, the current
character encoding is often | SO8859-1. On OS X, it might be UTF-8. On most Unix
platforms, the encoding is often 7-bit USASCI|I as selected by the C locale.
Therefore, it might be possible for IDL to read strings from XML files that contain
special 8-bit characters on the Windows and OS X platforms. It might not be
possible to read these strings on Unix platforms because USASCII isa 7-bit
encoding.

It is beyond the scope of this manual to describe XML in detail. Numerous third-
party books and electronic resources are available. The following texts may be
useful:

* http://www.w3.org — information about many web standards, including
XML related technol ogies.

e http://www.w3schools.com— tutorials on all manner of XML-related
topics.

Application Programming

http://www.w3.org
http://www.w3schools.com

Chapter 20: Using the XML Parser Object Class 485

* http://www.saxproject.org— information about the Simple API for
XML, the event-based XML parsing technology used by IDL.

« Brownell, David. SAX2. O'Rellly & Associates, 2002. ISBN: 0-596-00237-8.

e Harold, Eliotte Rusty. XML Bible. IDG Books Worldwide, 1999. ISBN:
0-7645-3236-7

About XML Parsers

There are two basic types of parsersfor XML data:
e Tree-based parsers
* Event-based parsers.

Tree-Based Parsers

Tree-based parsers map an XML document into a tree structure in memory, allowing
you to select elements by navigating through the tree. Thistype of parser is generally
based on the Document Object Modedl (DOM) and the treeis often referred to asa
DOM tree. The IDLffXMLDOM object classes implement atree-based parser; for
more information, see Chapter 21, “Using the XML DOM Object Classes’.

Tree-based parsers are especially useful when the XML datafile being parsed is
relatively small. Having access to the entire data set at one time can be convenient
and makes processing data based on multiple data values stored in the tree easy.
However, if the tree structure is larger than will fit in physical memory or if the data
must be converted into anew (local) data structure before use, then tree-based parsers
can be slow and cumbersome.

Event-Based Parsers

Event-based parsers read the XML document sequentially and report parsing events
(such asthe start or end of an element) as they occur, without building an internal
representation of the data structure. The most common examples of event-based

XML parsersusethe Simple API for XML (SAX), and are often referred to asa SAX
parsers.

Event-based parsers allow the programmer to write callback routines that perform an
appropriate action in response to an event reported by the parser. Using an event-
based parser, you can parse very large data files and create application-specific data
structures. The IDLfFXMLSAX object class implements an event-based parser based
on the SAX version 2 API.

Application Programming About XML

http://www.saxproject.org

486

Chapter 20: Using the XML Parser Object Class

Using the XML Parser

IDL’s XML parser object class (IDLffXMLSAX) implements a SAX 2 event-based
parser. The object’s methods are a set of callback routines that are called
automatically when the parser encounters different constituents of an XML
document. For example, when the parser encounters the beginning of an XML
element, it callsthe startElement method. When the startElement method
returns, the parser continues.

The IDLfFXMLSAX object’'s methods are completely generic. As provided, they do
nothing with the items encountered in the XML file. To use the parser object to read
datafrom an XML file, you must write a subclass of the IDLffXMLSAX class,
overriding the superclass's methods to accomplish your objectives. This requirement
that you subclass the object makes the IDLffXMLSAX class unlike any other object
class supplied by IDL.

For a detailed discussion of IDL object classes, subclassing, and method overriding,
see Chapter 13, “ Creating Custom Objectsin IDL” (Object Programming). For a
description of the parser object class and its methods, see “IDLffXMLSAX” (IDL
Reference Guide).

Subclassing the IDLIffXMLSAX Object Class

Writing a subclass of the IDLffXMLSAX object classis similar to writing a subclass
of any of IDL’s other object classes. The basic steps are:

1. Define aclass structure for your subclass, inheriting from the IDLfEXMLSAX
object class.

2. Write methods to override the IDLfEXMLSAX object class methods as
necessary.

3. Write additional methods required for your application.
4. Create aclass definition routine for your XML parser object.

Let'slook at these steps individually:

Define a Class Structure

Every object class has a unique class structure that defines the instance data contained
in the object. (See “Creating an Object Class Structure” (Chapter 13, Object
Programming) for details.) When writing your own parser object (a subclass of the
IDLffXMLSAX object), you must first determine what instance data you need your
parser object to contain, and define a class structure accordingly.

Using the XML Parser Application Programming

Chapter 20: Using the XML Parser Object Class 487

Note
Your parser object’s class structure must inherit from the IDLFFXMLSAX class
structure. See “Inheritance” (Chapter 13, Object Programming) for details.

For example, suppose you want to use your parser to extract an array of data from an
XML file. You might choose to define your class structure to include an IDL pointer
that will contain the data array. For this case, your class structure definition might
look something like

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

Within your subclass's methods, this data structure will always be available viathe
implicit se1f argument (see “ Creating Custom Object Method Routines’ (Chapter
13, Object Programming) for details). Setting the value of se1f.ptr withina
method routine sets the instance data of the object.

In most cases, your class structure definition will be included in aroutine that does
Automatic Structure Definition (see “Automatic Class Structure Definition” (Chapter
13, Object Programming) for details).

Override Superclass Methods

For your XML parser to do any work, you must override the generic methods of the
IDLffXMLSAX object class. Overriding a method is as simple as defining a method
routine with the same name as the superclass's method. When your parser encounters
an item in the parsed XML file that triggers one of the IDLffXMLSAX methods, it
will look first for a method of the same name in the definition of your subclass of the
IDLffXMLSAX object class. See “Method Overriding” (Chapter 13, Object
Programming) for details.

For example, suppose you want your parser to print out the element name of each
XML element it encountersto IDL’s output. You could override the startElement
method of the IDLfFXMLSAX class as follows:

PRO myParser::StartElement, URI, Local, Name
PRINT, Name

END
Note
The new method must take the same parameters as the overridden method.

When your parser encounters the beginning of an XML element, it will look for a
method named startElement and call that method with the parameters specified

Application Programming Using the XML Parser

488

Chapter 20: Using the XML Parser Object Class

for the IDLff XML SAX::StartElement method. Since your subclass's StartElement
method is found before the superclass’'s StartElement method, your method is used.

Note
You do not necessarily need to override all of the IDLffXMLSAX object methods.
Depending on your application, it may be sufficient to override four or five of the
superclass’'s methods. See the parser definitions later in this chapter for examples.

Overriding the IDLffXMLSAX methods is the heart of writing your own XML
parser. To write an efficient parser, you will need detailed knowledge of the structure
of the XML file you want to parse.

See “Example: Reading Data Into an Array” on page 491 and “ Example: Reading
Data Into Structures’ on page 498 for examples of how to work with parsed XML
data and return the datain IDL variables.

Write Additional Methods

Depending on your application, you may need to write additional object methods to

work with the instance data retrieved from the parsed XML file. Like the overridden
object methods, any new methods you write have access to the object’s instance data
viatheimplicit self parameter.

Create a Class Definition Routine

If you combine your class definition routine with your class's method routinesin a
file, you can use IDL’s Automatic Structure Definition feature to automatically
compile the class routines when an instance of your classis created viathe
OBJ_NEW function. Keep the following in mind when creating the . pro file that
will contain the definition of your class structure and method routines:

e Theroutinethat creates your class structure should be named with the
characters“__defing” appended to the end of the class name. For example, if
your parser object classis named “myParser” and its class structure is the one
described in “Define a Class Structure” on page 486, the routine definition
would be:

PRO myParser__define
void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW() }

END

* The .pro file should be named after the class structure definition routine. In
this case, the name would be myParser define.pro.

Using the XML Parser Application Programming

Chapter 20: Using the XML Parser Object Class 489

* Theclass structure definition routine should be the last routinein the . pro file.
Using Your Parser

Once you have written the class definition routine for your parser, you are ready to
parse an XML file. The processis straightforward:

1. Create an instance of your parser object.

2. Call therarseFile method onyour object instance with the name of an XML
file asthe parameter.

For example, if your parser object isnamed myParser and the object class definition
fileisnamed myParser__define.pro, you could use the following IDL
statements:

xmlFile = OBJ_NEW('myParser')
xmlFile->ParseFile, 'data.xml'

The first statement creates a new XML parser based on your class definition and
places areference to the parser object in the variable xm1File. The second statement
callsthe rparseFile method on that object with the filename data . xm1.

What happens next depends on your application. If your object definition stores
values from the parsed file in the object’s instance data, you will need some way to
retrieve the valuesinto IDL variables that are accessible outside the object. See
“Example: Reading Data Into an Array” on page 491 and “ Example: Reading Data
Into Structures’ on page 498 for examples that return data variables that are
accessible to other routines.

Validation

An XML document is said to be valid if it adheresto a set of constraints set forth in
either a Document Type Definition (DTD) or an XML schema. Both DTDs and
schemas define which elements can be included in an XML file and what values
those elements can assume. XML schemas are a newer technology that is designed to
replace and be more robust than DTDs. In working with existing XML files, you are
likely to encounter both types of validation mechanisms.

Ensuring that afile contains valid XML helpsin writing an efficient parsing
mechanism. For example, if your validation method specifiesthat element B can only
occur inside element A, and the XML document you are parsing is known to be valid,
then your parser can assume that if it encounters element B it isinside element A.

Application Programming Using the XML Parser

490 Chapter 20: Using the XML Parser Object Class

The IDLfFXMLSAX parser object can check an XML document using either
validation mechanism, depending on whether aDTD or a schema definition is
present. By default, if either is present, the parser will attempt to validate the XML
document. See SCHEMA_CHECKING and VALIDATION_MODE under
“IDLffXMLSAX Properties’ (IDL Reference Guide) for details.

Using the XML Parser Application Programming

Chapter 20: Using the XML Parser Object Class 491

Example: Reading Data Into an Array

This example subclasses the IDLFEXMLSAX parser object class to create an object
classnamed xml_to_array. Thexml_to_array object classis designed to read
numerical values from an XML file with the following structure:

<array>
<number>0</number>
<number>1</number>

</$££ay>
and place those values into an IDL array variable.

Note
Thisexampleis avery simple example. It is designed to illustrate how an event-
based XML parser is constructed using the IDLffXMLSAX object class. An
application that reads real datafrom an XML file will most likely be quite a bit
more complicated.

Creating the xml_to_array Object Class

In order to read the XML file and return an array variable, we will need to create an
object class definition that inherits from the IDLfFXMLSAX object class, and
override the following superclass methods: Tnit, Cleanup, StartDocument,
Characters, StartElement, and EndElement. Since this example does not
retrieve data using any of the other IDLffXMLSAX methods, we do not need to
override those methods. In addition, we will create a new method that allows usto
retrieve the array data from the object instance data.

Example Code
Thisexampleisincluded inthefilexml_to_array define.prointhe
examples/doc/file_io subdirectory of the IDL distribution. Run the example
procedure by entering xml_to_array__define atthelDL command prompt or
view thefilein an IDL Editor window by entering . EDIT
xml_to_array define.pro.

Object Class Definition

The following routine is the definition of the xm1_to_array object class:

PRO xml_to_array_ define

Application Programming Example: Reading Data Into an Array

javascript:doIDL("xml_to_array__define")
javascript:doIDL(".edit xml_to_array__define.pro")
javascript:doIDL(".edit xml_to_array__define.pro")

492 Chapter 20: Using the XML Parser Object Class

void = {xml_to_array, $
INHERITS IDLffXMLSAX, $
charBuffer:'', S
pArray:PTR_NEW() }

END

The following items should be considered when defining this class structure:

e Thestructure definition usesthe INHERI TS keyword to inherit the object class
structure and methods of the IDLffXMLSAX object.

* ThecharBuffer structurefield is set equal to an empty string.

e Theparray structure field is set equal to an IDL pointer. We will use this
pointer to store the numerical array datawe retrieve.

e Theroutine nameis created by adding the string “__define” (note the two
underscore characters) to the class name.

Why do we store the array datain a pointer variable? Because the fields of a named
structure (xm1_to_array, in this case) must always contain the same type of data as
when that structure was defined. Since we want to be able to add values to the data
array aswe parsethe XML file, we will need to extend the array with each new value.
If we began by defining the size of the array in the structure variable, we would not
be able to extend the array. By holding the data array in a pointer, we can extend the
array without changing the format of the xm1_to_array object class structure.

Note
Although we describe this routine first here, the xml_to_array__define routine
must be the last routineinthe xml_to_array__define.pro file

Init Method

The tnit methodis called whenthe an xm1_to_array parser object is created by a
call to OBJ_NEW. The following routine is the definition of the 1nit method:

FUNCTION xml_to_array::Init
self.pArray = PTR_NEW(/ALLOCATE_HEAP)
RETURN, self->IDLffxmlsax::Init()

END

Example: Reading Data Into an Array Application Programming

Chapter 20: Using the XML Parser Object Class 493

We do two things in this method:
« Weinitialize the pointer in the parray field of the class structure variable.

Note
Within amethod, we can refer to the class structure variable with the implicit

parameter self. Remember that self isactually areference to the
xml_to_array Object instance.

e Thereturn value from thisfunction is the return value of the superclass's Init
method, called on the self object reference.

Note
Theinitiaization task (setting the value of the parray field) is performed before

calling the superclass's Init method.

See“IDLfFXMLSAX::Init” (IDL Reference Guide) for details on the method we are
overriding.

Cleanup Method

The cleanup method is called when the xm1_to_array parser object is destroyed
by acall to OBJ DESTRQOY. The following routine is the definition of the c1eanup

method:

PRO xml_to_array: :Cleanup
IF (PTR_VALID(self.pArray)) THEN PTR_FREE, self.pArray
self->IDLffXMLSAX: :Cleanup

END

Here, we release the parray pointer, if it exists, and call the superclass cleanup
method.

See“IDLFFXMLSAX::Cleanup” (IDL Reference Guide) for details on the method we
are overriding.
Characters Method

The characters method iscaled when the xml_to_array parser encounters
character datainside an element. The following routine is the definition of the
Characters method:

PRO xml_to_array::characters, data

Application Programming Example: Reading Data Into an Array

494 Chapter 20: Using the XML Parser Object Class

self.charBuffer = self.charBuffer + data

END

Asit parses the character datain an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLfFXMLSAX::Characters’ (IDL Reference Guide) for details on the method
we are overriding.

StartDocument Method

The startbocument method iscalled when the xml_to_array parser encounters
the beginning of the XML document. The following routine is the definition of the
StartDocument method:

PRO xml_to_array: :StartDocument

IF (N_ELEMENTS (*self.pArray) GT 0) THEN $
void = TEMPORARY (*self.pArray)

END

Here, we check to seeif the array pointed at by the parray pointer contains any data.
Since we are just beginning to parse the XML document at this point, it should not
contain any data. If datais present, we reinitialize the array using the TEMPORARY
function.

Note
Since pArray isapointer, we must use dereferencing syntax to refer to the array.

See“IDLfFXMLSAX::StartDocument” (IDL Reference Guide) for details on the
method we are overriding.

StartElement Method

The startElement method iscaled when the xml_to_array parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_array::startElement, URI, local, strName, attr, value

CASE strName OF
"array": BEGIN
IF (N_ELEMENTS (*self.pArray) GT 0) THEN $
void = TEMPORARY (*self.pArray);; clear out memory
END

Example: Reading Data Into an Array Application Programming

Chapter 20: Using the XML Parser Object Class 495

"number" : BEGIN
self.charBuffer = "'
END
ENDCASE

END

Here, we first check the name of the e ement we have encountered, and use a CASE
statement to branch based on the element name:

« If theelementisan <array> element, we check to seeif the array pointed at
by the parray pointer is empty. Since we are just beginning to read the array
data at this point, there should be no data. If data already exists, we reinitialize
the array using the TEMPORARY function.

* If theelement isa<number> element, we reinitialize the charBuffer field.
Since we are just beginning to read the number data, nothing should bein the
buffer.

See“IDLfFXMLSAX::StartElement” (IDL Reference Guide) for details on the
method we are overriding.

EndElement Method

The EndElement method is called when the xm1_to_array parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_array::EndElement, URI, Local, strName

CASE strName OF
"array":
"number": BEGIN
idata = FIX(self.charBuffer);
IF (N_ELEMENTS (*self.pArray) EQ 0) THEN $
*self.pArray = iData $
ELSE $
*self.pArray = [*self.pArray,iData]
END
ENDCASE

END

Aswiththe startElement method, we first check the name of the element we have
encountered, and use a CA SE statement to branch based on the e ement name:

« If theelement isan <array> element, we do nothing.

Application Programming Example: Reading Data Into an Array

496 Chapter 20: Using the XML Parser Object Class

« If theelement isa <number> element, we must get the data stored in the
charBuffer field of the instance data structure and placeit in the array:

e Firgt, we convert the string datain the charBuf fer into an IDL integer.

* Next, we check to seeif the array pointed at by parray isempty. If itis
empty, we simply set the array equal to the data value we retrieved from
the charBuffer.

« If thearray pointed at by parray isnot empty, we redefine the array to
include the new data retrieved from the charBuffer.

See“IDLffXMLSAX::EndElement” (IDL Reference Guide) for details on the method
we are overriding.

Note
In both the startElement and EndElement methods, we rely on the validity of
the XML datafile. Our CASE statements only need to handle the element types
described in the XML file's DTD or schema (in this case, the only elements are
<array> and <number>). We do not need an EL SE clause in the CA SE statement.
If an unknown element isfound in the XML file, the parser will report avalidation
error.

GetArray Method
The cetarray method alows us to retrieve the array data stored in the parray
pointer variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_array::GetArray

IF (N_ELEMENTS (*self.pArray) GT 0) THEN $
RETURN, *self.pArray $
ELSE RETURN , -1

END

Here, we check to see whether the array pointed at by parray contains any data. If it
does contain data, we return the array. If the array contains no data, we return the
value -1.

Example: Reading Data Into an Array Application Programming

Chapter 20: Using the XML Parser Object Class 497

Using the xml_to_array Parser

To seethe xml_to_array parser in action, you can parse the filenum_array.xmil,
found in the examples/data subdirectory of the IDL distribution. This
num_array.xml file contains the fragment of XML like the one shown in the
beginning of this section, and includes 20 extra <number> elements. The
num_array.xml file also includesaDTD describing the structure of thefile.

Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_array')

xmlFile = FILEPATH('num_array.xml', $
SUBDIRECTORY = ['examples', 'data'])

xmlObj->ParseFile, xmlFile

myArray = xmlObj->GetArray ()

OBJ_DESTROY, xmlObj

HELP, myArray

PRINT, myArray

IDL prints:

MYARRAY INT = Array[20]
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19

Application Programming Example: Reading Data Into an Array

498 Chapter 20: Using the XML Parser Object Class

Example: Reading Data Into Structures

This example subclasses the IDLfFXMLSAX parser object class to create an object
classnamed xm1_to_struct. Thexml_to_struct object classisdesigned to read
datafrom an XML file with the following structure:

<Solar_System>
<Planet NAME='Mercury'>
<Orbit UNITS='kilometers' TYPE='ulong64'>579100000</Orbit>
<Period UNITS='days' TYPE='float'>87.97</Period>
<Satellites TYPE='int'>0</Satellites>
</Planet>

</Solar_System>

and place those values into an IDL array containing one structure variable for each
<Planet> element. We use a structure variable for each <p1anet> element so we
can capture data of several datatypesin asingle place.

Note
While this example is more complicated than the previous example, it is still rather
simple. It is designed to illustrate a method whereby more complex XML data
structures can be represented in IDL.

Creating the xml _to_struct Object Class

To read the XML file and return a structure variable, we will need to create an object
class definition that inherits from the IDLffXMLSAX object class, and override the
following superclass methods: Tnit, Characters, StartElement, and
EndElement. Since this example does not retrieve data using any of the other
IDLffXMLSAX methods, we do not need to override those methods. In addition, we
will create a new method that allows us to retrieve the structure data from the object
instance data.

Notice that the elements of the XML data file include attributes. While we will
retrieve and use some of the attribute data from the file, we will ignore some of it.

Note
When parsing an XML datafile, you can pick and choose the data you wish to pull
into IDL. This ability to selectively retrieve data from the XML fileis one of the
great advantages of an event-based parser over atree-based parser.

Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 499

Example Code

Thisexampleisincluded inthefilexml_to_struct__define.prointhe
examples/doc/file_io subdirectory of the IDL distribution. Run the example
procedure by entering xm1_to_struct__define at the DL command prompt or
view thefilein an IDL Editor window by entering . EDIT
xml_to_struct__define.pro.

Object Class Definition

The following routine is the definition of the xm1_to_struct object class:

void
void

PRO xml_to_struct__define

{PLANET, NAME: "", Orbit: Oull, period:0.0, Moons:0}
{xml_to_struct, $

INHERITS IDLffXMLSAX, $

CharBuffer:"", $

planetNum:0, $

currentPlanet: {PLANET}, $

Planets : MAKE_ARRAY (9, VALUE = {PLANET})}

END

The following items should be considered when defining this class structure:

Before creating the object class structure, we define a structure named
PLANET. We will use the PLANET structure to store data from the
<Planet> elements of the XML file.

The object class structure definition uses the TNHERTTS keyword to inherit the
object class structure and methods of the IDLffXMLSAX object.

The charBuffer structurefield is set equal to a string value. We will use this
field to accumulate character data stored in XML elements.

The planetNum structurefield is set equal to an integer value. We will use
thisfield to keep track of which array element we are currently populating.

The currentPlanet structurefield is set equal to aPLANET structure.

The Planets structure field is set equal to a nine-element array of PLANET
structures.

The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.

Application Programming Example: Reading Data Into Structures

javascript:doIDL("xml_to_struct__define")
javascript:doIDL(".edit xml_to_struct__define.pro")
javascript:doIDL(".edit xml_to_struct__define.pro")

500 Chapter 20: Using the XML Parser Object Class

We have explicitly defined our P1anets structure field as a nine-element array of
PLANET structures, which we can do because we know exactly how many
<Planet> elementswill beread from our XML file. Specifying the exact size of the
dataarray in the class structure definition is very efficient (since we create the array
only once) and eliminates the need to free the pointer in the c1eanup method.
However, it has the following consequences:

» Wemust explicitly keep track of the index of the array element we are
populating, and increment it after we have finished with a given element (see
the EndE1lement method below).

* We must know in advance how many elements the array will hold. If the size
of thefinal array isunknown, it is more efficient to use apointer to an array, as
we did in the previous example, and allow the array to grow as elements are
added. See “Building Complex Data Structures’ on page 505 for additional
discussion of ways to configure the instance data structure.

Note
Although we describe thisroutine here first, the xm1_to_struct__define
routine must be the last routineinthe xml_to_struct__define.pro file.

Init Method
The tnit method is called when the an xm1_to_struct parser object is created by
acall to OBJ NEW. The following routine is the definition of the tTnit method:

FUNCTION xml_to_struct::Init

self.planetNum = 0
RETURN, self->IDLffXMLSAX::Init ()

END
We do two things in this method:

* Weinitialize the planetNum field with the value of zero. We will increment
this value as we populate the Planets array.

Note
Within amethod, we can refer to the class structure variable with the implicit
parameter self. Remember self isactually areferenceto the
xml_to_struct Object instance.

* Thereturn value from thisfunction is the return value of the superclass's Init
method, called on the self object reference.

Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 501

Note

We perform our own initialization task (setting the value of the planetNum field)
before calling the superclass's Init method.

See “IDLfEXMLSAX::Init” (IDL Reference Guide) for details on the method we are
overriding.

Characters Method

The characters method iscaled whenthexml to_struct parser encounters
character datainside an element. The following routine is the definition of the
Characters method:

PRO xml_to_struct::characters, data
self.charBuffer = self.charBuffer + data

END

Asit parses the character datain an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See“IDLfFXMLSAX::Characters’ (IDL Reference Guide) for details on the method
we are overriding.

StartElement Method

The startElement method is called when the xml_to_struct parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_struct::startElement, URI, local, strName, attrName,
attrvalue

CASE strName OF

"Solar_System": ; Do nothing

"Planet" : BEGIN
self.currentPlanet = {PLANET, "", Oull, 0.0, O}
self.currentPlanet.Name = attrValue[O0]

END

"Orbit" : self.charBuffer = '

"Period" : self.charBuffer = '’

"Moons" : self.charBuffer = "'

ENDCASE

END

Application Programming Example: Reading Data Into Structures

502 Chapter 20: Using the XML Parser Object Class

Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

e Ifthedlementisa<sSolar_System> element, we do nothing.
e |ftheelementisa<rlanet> element, we do the following things:

* Setthevalue of the currentPlanet field of the sel f instance data
structure equal to a PLANET structure, setting the values of the structure
fields to zero values.

* Set the value of the Name field of the PLANET structure held in the
currentPlanet field equal to the value of the Name attribute of the
element. Thisfield contains the name of the planet whose data we are
reading.

* |ftheelementisan <orbit>, <Period>, Of <Moons> € ement, wereinitialize
the value of the charBuf fer field of the self instance data structure.

See “IDLFEXMLSAX::StartElement” (IDL Reference Guide) for details on the
method we are overriding.

EndElement Method

The EndElement method is called whenthexml_to_struct parser encountersthe
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_struct::EndElement, URI, Local, strName

CASE strName of
"Solar_System":
"Planet": BEGIN

self.Planets[self.planetNum] = self.currentPlanet
self.planetNum = self.planetNum + 1
END
"Orbit" : self.currentPlanet.Orbit = self.charBuffer
"Period" : self.currentPlanet.Period = self.charBuffer
"Moons" : self.currentPlanet.Moons= self.charBuffer
ENDCASE

END

Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 503

Aswiththe startElement method, we first check the name of the element we have
encountered, and use a CA SE statement to branch based on the element name:

e |Ifthedlementisa<sSolar_System> element, we do nothing.

+ |ftheelementisa<pPlanet> element, we set the element of the Planets
array specified by planetNum equal to the PLANET structure contained in
currentPlanet. Then, weincrement the planetNum counter.

« Iftheelementisan <Orbit>, <Period>, Or <Satellites> element, we
place the value in the charBuffer field into the appropriate field within the
PLANET structure contained in currentPlanet.

See“IDLffXMLSAX::EndElement” (IDL Reference Guide) for details on the method
we are overriding.

Note
In both the startElement and EndElement methods, werely on the validity of
the XML datafile. Our CASE statements only need to handle the element types
described inthe XML file sDTD or schema. We do not need an EL SE clausein the
CASE gtatement. If an unknown element is found in the XML file, the parser will
report a validation error.

GetArray Method
The GetArray method allows usto retrieve the array of structures stored in the
Planets Vvariable. The following routine is the definition of the Getarray method:

FUNCTION xml_to_struct::GetArray

IF (self.planetNum EQ 0) THEN $
RETURN, -1 $
ELSE RETURN, self.Planets[0:self.planetNum-1]

END

Here, we check to see whether the planetNum counter has been incremented. If it
has been incremented, we return as the number of array elements specified by the
counter. If the counter has not been incremented (indicating that no data has been
stored in the array), we return the value -1.

Application Programming Example: Reading Data Into Structures

504

Chapter 20: Using the XML Parser Object Class

Using the xml_to_struct Parser

Toseethe xml_to_struct parser in action, you can parse thefileplanets.xmi,
found in the examples/data subdirectory of the IDL distribution. The
planets.xml file contains the fragment of XML like the one shown at the
beginning of this section, and includes a <p1anet> element for each planet in the
solar system. Theplanets.xml filealso includesa DTD describing the structure of
thefile.

Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_struct')

xmlFile = FILEPATH('planets.xml', $
SUBDIRECTORY = ['examples', 'data'])

xmlObj->ParseFile, xmlFile

planets = xmlObj->GetArray ()

OBJ_DESTROY, xmlObj

Thevariable planets now holds an array of PLANET structures, one for each
planet. To print the number of moons for each planet, you could use the following
IDL statement:

FOR i1 = 0, (N_ELEMENTS(planets.Name) - 1) DO $
PRINT, planets[i].Name, planets[i].Moons, $
FORMAT = '(A7, " has ", I2, " moons")'

IDL prints:

Mercury has 0 moons

Venus has 0 moons

Earth has 1 moons

Mars has 2 moons

Jupiter has 16 moons
Saturn has 18 moons
Uranus has 21 moons
Neptune has 8 moons
Pluto has 1 moons

To view al the information about the planet Mars, you could use the following IDL
statement:

HELP, planets[3], /STRUCTURE

IDL prints:
** Structure PLANET, 4 tags, length=32, data length=26:
NAME STRING 'Mars'
ORBIT ULONG64 227940000
PERIOD FLOAT 686.980
MOONS INT 2

Example: Reading Data Into Structures Application Programming

Chapter 20: Using the XML Parser Object Class 505

Building Complex Data Structures

Few limitations exist regarding the complexity of the data structures that can be
represented in an XML datafile. Writing a parser to read data from such complex
structures into IDL can be achallenge. If you are designing a parser to read a very
complex or deeply nested XML file, keep the following conceptsin mind.

Use Dynamically Sized Arrays if Necessary

If you don’'t know the final size of your data array, or if the size of the array will
change, store the data array in an IDL pointer in the instance data structure. This
technique allows you to change the size of the data array without changing the
definition of the instance data structure. The downside of extending the data array in
this manner is performance. Each time the array is extended, IDL must hold two
copies of the entire array in memory. If the array becomes large, this duplication can
cause performance problems.

In “Example: Reading Data Into an Array” on page 491, we extended our data array
as we added each element despite the fact that we knew the number of data elements.
We used a pointer to illustrate the technique, and to make it clear that if you use
pointers to store your instance data, you must free the pointersin your subclass's
Cleanup method.

Use Fixed-Size Arrays When Possible

If you will be building alarge data array, and you know in advance how many
elementsit will contain, create the array when defining the class data structure and
use array indexing to place datain the appropriate elements. Using afixed-size array
eliminates the need to copy the full array each time it is extended, and can lead to
noticeable performance improvements when large arrays are involved.

In “Example: Reading Data Into Structures’ on page 498, we illustrated the
technique of using a pre-defined array to store our instance data.

Using Nested Structures

If your data structure is complex, you may be inclined to represent your data as a set
of nested IDL structure variables. While nesting structure variables can help you
create a data structure that emulates the structure of your XML file, deeply nested
structures can make your code more difficult to create and maintain. Consider storing
datain several arrays of structures rather than a single, deeply-nested structure.

If you have a good reason to create nested structures, and also need to extend them
dynamically, you should use the CREATE_STRUCT function.

Application Programming Building Complex Data Structures

506 Chapter 20: Using the XML Parser Object Class

The same caveats apply to extending a structure with CREATE_STRUCT as apply to
extending an array. With large datasets, the process of duplicating the structures may
cause performance problems.

Building Complex Data Structures Application Programming

Chapter 21

Using the XML DOM
Object Classes

The following topics are covered in this chapter:

About the Document Object Moddl 508 Usingthe XML DOM Classes 518
About the XML DOM Object Classes ... 511 TreeWakingExample............... 524

Application Programming 507

508 Chapter 21: Using the XML DOM Obiject Classes

About the Document Object Model

The Document Object Model (DOM) describes the content of XML datain the form
of adocument object, which contains other objects that describe the various data
elements of the XML document. The DOM &l so specifies an interface for interacting
with the objects in the model. Thisis the interface exposed to the IDL user.

Note
For more information on XML, see “About XML" on page 484.

When to Use the DOM

There are two basic types of parsersfor XML data: object-based and event-based.
The DOM is object-based and as such has advantages in certain situations over an
event-based parser such as SAX. In general, use the DOM:

e Toaccessan XML document in any order (SAX must parsein file order)
* Towriteto afile (SAX does not support modifying or creating XML data)

For more information on the difference between the two parsers, see “About XML
Parsers’ on page 485.

About the DOM Structure

Here is an example of an XML file that is used in an application to define a weather-
monitoring plug-in component:

<?xml version="1.0" encoding="UTF-8"?>
<plugin type="tab-iframe">
<name>Weather.com Radar Image [DEN]</name>
<description>600 mile Doppler radar image for DEN</description>
<version>1.0</version>
<tab>
<icon>weather.gif</icon>
<tooltip>DEN Doppler radar image</tooltip>
</tab>
</plugin>

The contents of thisfile constitute an XML document. When you want to work with
this data, you can use IDL to load thefile, parseit, and store it in memory in DOM
format. The samplefile listed above is stored in the DOM structure as shown in
Figure 21-1.

About the Document Object Model Application Programming

Chapter 21: Using the XML DOM Object Classes 509

Document
Element Attr
plugin [] type, tab-iframe
|
Element Element Element Element
name description version tab
Text Text Text
Weather.com... 600 mile... 1.0

Element Element
icon tooltip
Text Text
weather.gif DEN Doppler...

Figure 21-1: XML DOM Tree Structure: Plug-in Example

The DOM structure is atree of nodes, where each nodeis represented as abox in the
figure. The type of each nodeisin boldface. The contents of the node are in normal

type.

Note that whitespace and newline characters can appear in thistree as text nodes, but
are omitted in this picture for clarity. It isimportant to keep thisin mind when
exploring the DOM tree. There are parsing options available that can prevent the
creation of ignorable-whitespace nodes (see “Working with Whitespace” on

page 522).

The attribute node (Attr) is not actually a child of the element node, but is still
associated with it, asindicated by the dotted line.

Application Programming About the Document Object Model

510

Chapter 21: Using the XML DOM Obiject Classes

How IDL Uses the DOM Structure

To access the XML datain the structure, you need to create a set of IDL objects that
correspond to the portion of the DOM tree in which you are interested. You use the
following process to create the DOM tree and the corresponding IDL objects:

1. Create an IDLffXMLDOM Document object.

2. Loadthe XML file. This step parsesthe XML datafrom thefile and createsthe
DOM tree in memory.

3. Usethe IDLffXMLDOMDocument object to create IDLFffXMLDOM objects
that essentially mirror portions of the DOM tree, as shown in Figure 21-2.

You then use the IDLfFXMLDOM objects to access the actual XML data contained

in the DOM tree.

DOM object tree
(parsed from XML data
loaded into memory)

Document

Element

Attr

Element

Element

Text

Comment

IDL object tree
(created from object classes
after loading XML data)

(Document)
(B (A)

(Element)(Element)

(Text) (Comment)

Figure 21-2: The DOM and IDL Trees

The creation and destruction of the IDL objectsdo not alter the DOM structure. There
are explicit methods for modifying the DOM structure. The IDL objects are merely
access objects that are used to manipulate the DOM tree nodes.

About the Document Object Model

Application Programming

Chapter 21: Using the XML DOM Object Classes 511

About the XML DOM Object Classes

TheIDL XML DOM support is provided by a set of IDL object classes, al starting
with IDLFFXMLDOM. These classes provide access to the XML document viathe
DOM. The IDLffXMLDOM objects do not in themselves maintain a copy of the
document data. Instead, they provide access to the data stored in the DOM document
structure.

IDLFfXMLDOMNode Class Hierarchy

One of the key object classesis IDLffXMLDOMNode. Becauseit isan abstract class,
you will never create an instance of this class. The node is the basic DOM data
structure used to map each DOM data element. The nodes are organized in aclassic
tree structure, according to the layout of the data in the document.

The following classes are derived from IDLffXMLDOMNode, where each classis
named |DLffXML<node type> (e.g., IDLffEXMLDOMALtr):

Application Programming About the XML DOM Object Classes

512 Chapter 21: Using the XML DOM Obiject Classes

—C CharacterData

Text CDATA Section)

Document

—(DocumentFragment)

—(DocumentType)

Element

Entity

—< EntityReference)

4(Processinglnstruction >

Figure 21-3: The IDLffXMLDOMNode Class Hierarchy

These classes represent the data that can be stored in an XML document. Except for
the IDLffXMLDOM Document class, you do not instantiate any of them directly. To
begin working with the IDL XML DOM interface, you use the OBJ_NEW function
to create an IDLffXMLDOM Document object. You then use this object to browse
and modify the document. This document object also creates objects using the
derived classes to give you access to the various parts of the document.

About the XML DOM Object Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 513

For example:
oChild = oMyDOMDocument->GetFirstChild()

creates an IDL object of one of the node types, depending on what the first child in
your document actually is. The newly created IDL object refersto thefirst child node
of the document and does not modify the document in any way.

You then use the ochi1d object’s methods to get data from the node, modify the
node, or find another node.

Because of the class hierarchy, all the methods in a superclass are available to its
subclasses. For example, to determine which methods are available for use by an
object of the IDLffXMLDOM Text class, you would have to look at the methods
belonging to the IDLFfXMLDOMText, IDLffXMLDOM CharacterData, and
IDLffXMLDOMNode classes.

Note
The IDLffXMLDOM CharacterData class is a special abstract class that provides

character-handling facilities for its subclasses. You will never create an instance of
this class.

IDLFfXMLDOM Object Helper Classes

IDL provides a set of other classesto assist you in navigating the DOM tree. These
classes are:

e IDLffXMLDOMNodelterator — navigates in a depth-first, document-order
traversal.

e IDLffXMLDOMTreeWaker — navigatesin atree-walking traversal.

* |IDLffXMLDOMNodeList — contains alist of children of anode. You can
create node lists using the GetElementsBy TagName and GetChildNodes
methods, for example.

e IDLffXMLDOMNamedNodeMap — contains alist of attributes from an
element node that are looked up by attribute name.

The IDLffXMLDOMNodelterator and IDLfFXMLDOM TreeWalker classes do not
contain lists used in tree traversal. Instead, they each operate by creating anode
object for accessing a DOM node and then destroying that node object as the iterator
or walker is moved to another DOM node. Conceptually, both node iterators and tree
walkersare” current” node pointersinto the DOM tree. For more information, see the
classes' respective documentation in the IDL Reference Guide.

Application Programming About the XML DOM Object Classes

514 Chapter 21: Using the XML DOM Obiject Classes

The IDLFffXMLDOMNodeList and IDLffXMLDOMNamedNodeMap classes
contain nodes that are subclasses of IDLffXMLDOMNode. Node lists and named
node maps are active collections of nodes that are updated asthe DOM treeis
modified. That is, they are not static snapshots of aDOM tree in a given state; the list
contents are modified as the DOM tree is modified. While this dynamic updateis
useful because you do not have to take specific action to update alist after modifying
the tree, it can be confusing in some situations.

Suppose you want to delete all the children of an element node. The following code
seems to make sense:

oList = oElement->GetChildNodes ()
n = oList->GetLength()
FOR i=0, n-1 DO $
oDeleted = oElement->RemoveChild(oList->Item(i))

This approach does not work as expected because after the first child is deleted, the
list isupdated so it contains one fewer object, and the indexes of all remaining objects
are decremented by one. As the loop continues, some items are not deleted, and
eventually an error occurs when the loop index i exceeds the length of the shortened
list.

The following code performs the intended del etion, by changing the parameter to the
Item method from i to O:

oList = oElement->GetChildNodes ()
n = oList->GetLength()
FOR i=0, n-1 DO $
oDeleted = oElement->RemoveChild(oList->Item(0))

This code works because each time the first child is deleted, the list is automatically
updated to place another object in the first position.

The following approach might be more appealing:

oList = oElement->GetChildNodes ()
n = oList->GetLength()
FOR i=n-1, 0, -1 DO $
oDeleted = oElement->RemoveChild(oList->Item(i))

This code works because it deletes items from the end of thelist, rather than from the
beginning.

IDL Node Ownership
Whenever you create an IDLfFXMLDOM node object with a method such as

IDLffXMLDOMNode::GetFirstChild, you are also creating an ownership
relationship between the created node object and the node object that created it.

About the XML DOM Object Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 515

Working from the previous plug-in example (see “About the DOM Structure” on
page 508), suppose that you have an object reference, oName, to an instance of the
IDLffXMLDOMElement class that refersto thefirst child of the plug-in node:

oName = oDocument->GetFirstChild()
Using oName, You can issue the following call:
oDescription = oName->GetNextSibling ()

The description and name DOM nodes are siblings of each other in the DOM tree, as
shown in Figure 21-2. The IDL object obescription refersto the description node
inthe DOM tree, and the IDL object oName refersto the name nodein the DOM tree.
However, the obescription object is owned by the oName object because oName
created oDescription.

You might understand this relationship better by realizing that the parent/sibling
relationships in the DOM tree reflect the DOM tree structure and that the ownership
relationships among the IDL access objects are due to the creation of the IDL access
objects. Because oName created obDescription, oName destroys oDescription
when oName is destroyed, even though they refer to siblingsin the DOM tree. Bear in
mind that destroying these access objects does not affect the DOM tree itself.

This parent relationship among IDLffXMLDOM objects is useful for cleaning them
up. Because all of the objects that might have been created during the exploration of a
DOM tree are al ultimately descendants of an IDLffXMLDOM Document node,
simply destroying the document object is sufficient to clean up all the nodes. Unless
you are concerned with cleaning up some access objects at a particular time (to save
memory, for example), you can simply wait to clean them all up when you are
finished with the data by destroying the IDLffXMLDOM Document node.

To reduce memory requirements, you can destroy node objects that are no longer
needed. For example, if you wanted to explore al the children of a given element
oElement, you might use the following code:

oFirstChild = oElement->GetFirstChild()
oChild = oFirstChild
WHILE OBJ_VALID(oChild) DO BEGIN
PRINT, oChild->GetNodeValue ()
oChild = oChild->GetNextSibling()
ENDWHILE
OBJ_DESTROY, oFirstChild

This approach works well because all the node objects created during the exploration
of the children by the GetNextSibling method are destroyed when oFirstChildis
destroyed. While it would seem that objects “lost” to the reassignment of ochild
would not be accessible for destruction, the chain of ochi1d objects keeps track of

Application Programming About the XML DOM Object Classes

516 Chapter 21: Using the XML DOM Obiject Classes

them and destroys them all when the head of the chain, saved in oFirstchild, is
destroyed.

Trying to destroy node objects inside the loop as follows does not work as expected:

oChild = oElement->GetFirstChild()

WHILE OBJ_VALID(oChild) DO BEGIN
PRINT, oChild->GetNodeValue ()
oNext = oChild->GetNextSibling()
OBJ_DESTROY, oChild
OChild = oNext

ENDWHILE

This code fails because when ochi1d is destroyed for the first time, it also destroys
oNext, causing the loop to exit after the first iteration.

If thereisavery large number of children, waiting until the end of the loop to destroy
the list might be too inefficient. Using anode list, asin the following code, isan
alternative:

oList = oElement->GetChildNodes ()
n = oList->GetLength()
FOR 1=0, n-1 DO BEGIN
oChild = oList->Item(i)
PRINT, oChild->GetNodeValue ()
OBJ_DESTROY, oChild
ENDFOR
OBJ_DESTROY, oList

Although oList requires some spaceto maintain thelist, thereisonly onevalid node
connected to ochild in memory each time through the loop.

You can change the node deletion policy so that nodes created by a node are not
deleted when the node is destroyed. This change lets the following code work

properly:

oDocument->SetProperty, NODE_DESTRUCTION_POLICY=1
oChild = oElement->GetFirstChild()
WHILE OBJ_VALID(oChild) DO BEGIN
PRINT, oChild->GetNodeValue ()
oNext = oChild->GetNextSibling()
OBJ_DESTROY, oChild
oChild = oNext
ENDWHILE

Now, the oBJ_DESTROY call no longer destroys the object to which oNext refers,
and the loop proceeds as expected.

About the XML DOM Object Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 517

Saving and Restoring IDLffXMLDOM Objects

IDL does not save IDLfXMLDOM objectsin aSAVE file. If you restore a SAVE file
that contains object referencesto IDLfFXMLDOM objects, the object references are
restored, but are set to null object references.

The IDLfEXMLDOM objects are not saved because they contain stateinformation for
the external Xerceslibrary. This state information is not available to IDL and cannot
berestored. The contents of the XML file might also have changed, which would also
make any saved state invalid.

It is recommended that applications either complete any DOM operations before
saving their datain a SAVE file or reload the DOM document as part of restoring
their state.

Application Programming About the XML DOM Object Classes

518 Chapter 21: Using the XML DOM Obiject Classes

Using the XML DOM Classes

Continuing from the weather plug-in example (see “About the DOM Structure” on
page 508), this section describes how to usethe IDL XLM DOM object classes,
namely how to do the following actions:

e Load an XML document

¢ Read XML datafrom a document
e Moaodify existing XML data

* Create new XML data

e Destroy IDLffXMLDOM objects

Loading an XML Document

Although the DOM tree structure isin memory after the XML fileisloaded, you
cannot directly access the data from IDL until you have created IDLfFXMLDOM
objects to access them. The DOM loads and parses the XML datainto atree
structure, but you need to create a document object to access that data through a
mirroring IDL tree structure.

To prepare the interface, load the document:

oDocument = OBJ_NEW (' IDLffXMLDOMDocument ')
oDocument->Load, FILENAME='sample.xml'

This code causes the DOM tree structure to be formed in memory. You could also
perform the same action in one line:

oDocument = OBJ_NEW ('IDLffXMLDOMDocument', FILENAME='sample.xml')

Be aware that either of these examples will discard an existing DOM tree referenced

by obocument. You can load and reload an XML file as often as desired, but each

loading action will overwrite, not add to, the existing tree and remove its objects from

memory.

Tip
You can read from and write to IDL variables rather than disk files, see
“IDLffXMLDOM Document::Init” (IDL Reference Guide) for more details.

Using the XML DOM Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 519

Reading XML Data

Suppose that you want to print the name of the plug-in. The plug-in element nodeis
the first and only child of the document node. A document node can have only one
element child node, which represents the containing element for the entire document
(for comparison, consider that an HTML file has only one <HTML></HTML> pair).
The name of the element node is the first element child of the plug-in element. There
may be several waysto locate adesired piece of data using the IDL XML DOM
classes. The following example illustrates one way to find the plug-in name.

First, access the first child of the document, which is the plug-in element:
oPlugin = oDocument->GetFirstChild()

The GetFirstChild method creates an IDLffXMLDOM Element node object and
returns its object reference, which is stored in oP1ugin.

Next, ask the plug-in for alist of al of its child element nodes. The oP1ugin object
creates an IDLFFXMLDOMNodeL st object and places al the child element nodesin
thelist. You could have asked for only the name element, but by asking for them all,
you will have the other elementsin the list in case you need to look at them later.

oNodeList = oPlugin->GetElementsByTagName ('*"')

You know from the design of the XML data, perhaps as defined inaDTD, that the
name element must always be the first child of aplug-in element. You can access the
name as follows:

oName = oNodeList->Item(0)

You also know that the name element can only contain atext node. Getting access to
the text node lets you print the data that you want.

oNameText = oName->GetFirstChild()
PRINT, oNameText->GetNodeValue ()

This command prints out:
Weather.com Radar Image [DEN]

Note that the oP1ugin and the oName objects are of type IDLffXMLDOMElement,
and the oNameText object is of type IDLFfXMLDOM Text. The oName and
oNameText Objects are created by the GetFirstChild and Item methods, using the
object classthat is appropriate for the type of datain the DOM tree. You used the
GetElementsBy TagName method to get the child elements of the plug-in, without
having to sort through the whitespace text nodes that are present.

At this point, you have four IDL objectsin addition to the root document object that
give you access to only the portion of the DOM tree to which these objects

Application Programming Using the XML DOM Classes

520 Chapter 21: Using the XML DOM Obiject Classes

correspond. You can create additional objects to explore other parts of the tree and
destroy objects for parts that you are no longer interested in.

Modifying Existing Data

You can also modify XML data and write the result back out to afile.

oDocument = OBJ_NEW (' IDLffXMLDOMDocument ')
oDocument->Load, FILENAME='sample.xml'

oPlugin = oDocument->GetFirstChild()

oNodeList = oPlugin->GetElementsByTagName ('*"')

oName = oNodeList->Item(0)

oNameText = oName->GetFirstChild()
oNameText->SetNodeValue, 'Weather.com Radar Image [PDX]'
oDocument->Save, FILENAME='sample2.xml'

OBJ_DESTROY, oDocument

This code modifies the name node to change the airport to Portland, Oregon, and
writes the modified XML to anew file. Please note that if you save to an existing file
(e.g., using sample.xml instead of sample2.xml at the end of this example), the
current XML datawill replace the file entirely.

Creating New Data

You can create an IDLffXMLDOM Document object and start adding nodes to it
without loading afile.

oDocument = OBJ_NEW (' IDLffXMLDOMDocument ')
oElement = oDocument->CreateElement ('myElement')
oVoid = oDocument->AppendChild(oElement)
oDocument->Save, FILENAME='new.xml'

OBJ_DESTROY, oDocument

This code creates the following XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<myElement/>

Note that <myElement /> iS XML shorthand for <myElement></myElement>.
Destroying IDLffXMLDOM Objects

Suppose that you are done with the name node and want to look at the description.

OBJ_DESTROY, oName

oDesc = oNodeList->Item(1)
oDescText = oDesc->GetFirstChild()
PRINT, oDescText->GetNodeValue ()

Using the XML DOM Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 521

This code destroys the oName object and oNameText with it because it was created
by oName’s GetFirstChild method. This automatic destruction cleans up al the
objects that you might have created from the oname node. You can then fetch the
description element from the node list and print its name in the same manner. The
name node s still in the node list and can be fetched again from the node list with the
Item method, if needed.

Finally,
OBJ_DESTROY, oDocument

destroys the top-level object that you originally created with the OBJ_NEW function
and also destroys any other abjects that were created directly or indirectly from the
oDocument Object.

You can write the first code sample above more compactly because of the ability of
the IDLffXMLDOM Document object to clean up all the objects it and its children
created:

oDocument = OBJ_NEW (' IDLffXMLDOMDocument ')
oDocument->Load, FILENAME='sample.xml'

PRINT, ((((oDocument->GetFirstChild())-> $
GetElementsByTagName ('name'))-> $
Item(0))->GetFirstChild ())->GetNodeValue ()

OBJ_DESTROY, oDocument

Under normal circumstances, the three object references created by the calls to the
GetFirstChild and GetElementsBy TagName methods would be lost because the
object references to these three objects were not stored in IDL user variables.
However, these objects are cleaned up by the document object when it is destroyed.

For additional information, see “ Orphan Nodes’ on page 523.
Please note:

e Ingeneral, you should not use the OBJ NEW function to create any
IDLffXMLDOM objects except for the top-level document object. Use the
methods such as GetFirstChild to create the objects.

¢ You can destroy objects obtained from the various methods (e.g.,
GetFirstChild) at any time by the OBJ_DESTROY procedure.

» Objects destroyed by the OBJ DESTROY procedure also destroy objects that
they created.

» Destroying objects does not modify the DOM structure. That is, destroying
any of the IDLffXMLDOM objects does not modify the datain the DOM tree.
There are explicit methods for modifying DOM tree data. Destroying

Application Programming Using the XML DOM Classes

522 Chapter 21: Using the XML DOM Obiject Classes

IDLffXMLDOM objects only removes your ability to access the DOM tree
data.

Working with Whitespace

The XML parser is very particular about whitespace because all charactersin an
XML document define the content of that document. Whitespace consists of spaces,
tabs, and newline characters, all of which are commonly used to format documentsto
make them easier to work with. In many cases, this whitespace is unimportant with
respect to the document content. It is there only for presentation and does not affect
the actual data stored in the XML document. However, in some cases, for example
with CDATA or text node information, the whitespace might be important.

When whitespace is not important, IDL can treat it asignorable. In many
circumstances, you might want the parser to skip over this ignorable whitespace and
not placeit in the DOM tree so that you do not need to deal with it when visiting
nodesin the DOM tree.

For example, the following two XML fragments produce different DOM trees when
parsed with the default parser settings:

<stateList>
<state>Colorado</state>
</stateList>

<stateList><state>Colorado</state></stateList>

In the first fragment, the stateList element has two child nodes that the second
fragment does not. They are text nodes containing whitespace, a newline, and some
tabs or spaces.

For the parser to distinguish between non-ignorable and ignorable whitespace, there
must be a DTD associated with the XML document, and it must be used to validate
the document during parsing. Thisimpliesthat a VALIDATION_MODE of 1 or 2
must be used when loading the XML document with the

IDLffXMLDOM Document::L oad method.

Once validation is established, you can either:

* Téell the parser not to include ignorable text nodesin the DOM tree by
setting the EXCLUDE_IGNORABLE_WHITESPACE keyword in the
IDLffXMLDOMDocument::Load method. If you select this option, the
DOM treesfor each of the above two fragments are the same.

e Check each text node in the DOM tree with the
IDLffXMLDOM Text::IslgnorableWhitespace method.

Using the XML DOM Classes Application Programming

Chapter 21: Using the XML DOM Object Classes 523

Orphan Nodes

You can remove hodes from the DOM tree by using the
IDLffXMLDOMNode::RemoveChild and IDLffXMLDOMNode::ReplaceChild
methods. When these nodes are removed from the tree, they are owned by the DOM
document directly and have no parent (since they are not in the tree anymore).
Similarly, when these methods are used, the IDLffXMLDOM objects ownership is
changed as well because the IDL tree (made by creating the document interface and
adding nodes) must mirror the underlying DOM tree.

If you issue the following command:
oMyRemovedChild = oMyElement->RemoveChild (oMyChild)

oMyChild isno longer owned by oMmyElement and becomes owned by the
document object to which all these nodes belong. Here, oMyRemovedchild and
oMyChi1d are actually object references to the same object. The function method
syntax provides a convenient way to create a new object reference variable with a
new name that reflects the new status of the removed object, and you can use either
name to access the orphaned node.

After removal, the orphan node is loosely associated with the document viathe
ownership relationship and would not be included in the output if the DOM tree were
written to afile. You can insert the node back into the DOM tree with an InsertBefore
or AppendChild method.

If the document that contains orphan nodes is destroyed, the orphan nodes are lost.
More specifically, DOM tree orphan nodes are not written out to afile if they are
orphans at the time that the IDLffXMLDOM Document::Save method is used to save
the tree, and the IDL node objects referring to the orphans are destroyed when the
document object is destroyed.

Application Programming Using the XML DOM Classes

524 Chapter 21: Using the XML DOM Obiject Classes

Tree-Walking Example

The following code traverses a DOM tree using pre-order traversal.

PRO sample_recurse, oNode, indent

; "Visit" the node by printing its name and value
PRINT, indent GT 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $
oNode->GetNodeName (), ':', oNode->GetNodeValue ()

; Visit children

0Sibling = oNode->GetFirstChild()

WHILE OBJ_VALID(oSibling) DO BEGIN
SAMPLE_RECURSE, o0Sibling, indent+3
0Sibling = o0Sibling->GetNextSibling()

ENDWHILE

END

PRO sample
oDoc = OBJ_NEW ('IDLffXMLDOMDocument"')
oDoc->Load, FILENAME="sample.xml"
SAMPLE_RECURSE, oDoc, 0
OBJ_DESTROY, oDoc

END

This program generates the following output for the plug-in file (see “About the
DOM Structure” on page 508):

#document:
plugin:
#text:

name:
#text:Weather.com Radar Image [DEN]
#text:

description:
#text:600 mile Doppler radar image for DEN
#text:
version:
#text:1.0
#text:

tab:
#text:

icon:

Tree-Walking Example Application Programming

Chapter 21: Using the XML DOM Object Classes 525

#text:weather.gif
#text:

tooltip:
#text:DEN Doppler radar image

#text:

#text:
The program above created an IDLfFXMLDOM abject for every node it encountered
and did not destroy them until the document was destroyed. Another approach,
illustrated in the program below, cleans up the nodes as it proceeds:

PRO sample_recurse2, oNode, indent
"Visit" the node by printing its name and value

indent gt 0 ? STRJOIN(REPLICATE(' ', indent)) : , S
':', oNode->GetNodeValue ()

PRINT,
oNode->GetNodeName () ,

;3 Visit children
oNodeList = oNode->GetChildNodes ()
n = oNodeList->GetLength ()

for i=0, n-1 do $
SAMPLE_RECURSE2, oNodeList->Item(1i),

OBJ_DESTROY, oNodeList
END

indent+3

PRO sample2
oDoc = OBJ_NEW (' IDLffXMLDOMDocument ')

oDoc->Load, FILENAME="sample.xml"
SAMPLE_RECURSE2, oDoc, 0
OBJ_DESTRQOY, oDoc
END
Please note that document and text nodes do not have node names, so the
GetNodeName method always returns ‘#document’ and ‘#text, respectively.

Application Programming Tree-Walking Example

526 Chapter 21: Using the XML DOM Obiject Classes

Tree-Walking Example Application Programming

Part Ill: Creating
Applications in IDL

Chapter 22
Providing Online Help
For Your Application

The following topics are covered in this chapter:

Overview of Creating Application Help .. 532 About IDL’s Online Help System 538
Providing Help Within the User Interface . 533 Using Other Online Help Viewers 539
Displaying TextFiles................. 536 Usingthe DL Assistant Help System ... 545
Using an External Viewer 537

Application Programming 531

532 Chapter 22: Providing Online Help For Your Application

Overview of Creating Application Help

IDL gives you the ability to display help information for your applications, routines,
etc. using avariety of mechanisms:

» Using tooltips, status bars, and text widgets to display small amounts of help
information within an application’s interface.

e Using the XDISPLAY FILE procedure to display text filesin an IDL window
separate from your application.

e Using the SPAWN procedure to display afilein an external editor or viewer.

e Using IDL'sown online help facilities, viathe ONLINE_HELP procedure, to
display Windows Help files, Adobe Portable Document Format files, or
HTML files.

These techniques vary in complexity, cost, and level of integration with IDL and your
own application. The following sections describe each option in detail.

Overview of Creating Application Help Application Programming

Chapter 22: Providing Online Help For Your Application 533

Providing Help Within the User Interface

There are numerous ways to supply help and feedback to users of awidget
application without the need to display ahelp filein an external window. The
following techniques can augment, if not necessarily replace, amore complete online

help file.
Tooltips

Tooltips are short text strings that appear when the mouse cursor is positioned over a
button or draw widget for afew seconds. Often atooltip is enough to remind a user of
the function of a button, eliminating the need for the user to consult more extensive

documentation.

1=

Do This | Do That | Do Something Else |

About this butkon

Figure 22-1: A Tooltip

Tooltips are created by specifying atext string as the value of the TOOLTIP keyword
to the WIDGET_BUTTON function:

DoneButton = WIDGET_BUTTON (base, VALUE='Done', $
TOOLTIP='Click here to close the application')

Note
Draw widgets can also display tooltips.

Status Lines
You can give users feedback about the status of an operation or the function of an

interface element by updating a status line included in your widget interface. Status
lines are generally located at the bottom of the interface, and can be updated as the

Application Programming Providing Help Within the User Interface

534 Chapter 22: Providing Online Help For Your Application

user moves the mouse cursor over interface elements or as the status of the
application changes.

C T - [5] x

Button 1 |

Buttan 2 - |

|Eutt|:|n Two clozes the application

Figure 22-2: A status line.

The following example demonstrates how a status line can be updated as the mouse
cursor moves over a set of buttons. Similar code could update the value of the label
widget as other events occur. To view the results, paste the code into an IDL editor
window and save it as 1abel_update.pro, then compile and run.

; Event-handler routine
PRO label_update_event, ev

; If the event is a tracking event, update the label widget.
IF (TAG_NAMES (ev, /STRUCTURE) EQ 'WIDGET_ TRACKING') THEN BEGIN
WIDGET_CONTROL, ev.TOP, GET_UVALUE=label
WIDGET_CONTROL, ev.ID, GET VALUE=val, GET_UVALUE=uval
WIDGET_CONTROL, label, SET VALUE=uval
WIDGET_CONTROL, label, SET VALUE=uval
ENDIF

; If the event is a button event, and comes from Button 2,
; then destroy the application.
IF (TAG_NAMES (ev, /STRUCTURE) EQ 'WIDGET_BUTTON') THEN BEGIN
WIDGET_CONTROL, ev.ID, GET VALUE=val
IF (val EQ 'Button 2') THEN WIDGET_ CONTROL, ev.TOP, /DESTROY
ENDIF

END

; Widget creation routine
PRO label_update

base=WIDGET_BASE (/COLUMN, XSIZE=200)
; Set the button widgets to generate tracking events, so we

; know when the mouse cursor is over them.
bl = WIDGET_BUTTON (base, VALUE='Button 1', $

Providing Help Within the User Interface Application Programming

Chapter 22: Providing Online Help For Your Application 535

UVALUE='Button One does nothing', /TRACKING_EVENTS)
b2 = WIDGET_BUTTON (base, VALUE='Button 2', $

UVALUE='Button Two closes the application', /TRACKING_EVENTS)
label = WIDGET_LABEL (base, XSIZE=190, /SUNKEN_FRAME)

; Set the user value of the base widget equal to the widget ID
; of the label widget.
WIDGET_CONTROL, base, SET_UVALUE=label

; Realise the widgets and call XMANAGER.
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'label_update', base

Text Widgets

To display larger amounts of text than will fit conveniently in astatus line, you can
include atext widget in your application’s interface. The process of updating the text
widget's value depending on user actionsis similar to the process described in the
status line example, above.

To display larger blocks of text that would not fit conveniently within the body of
your application’sinterface, consider using the XDISPLAY FILE procedure as
described in “Displaying Text Files’ on page 536.

Application Programming Providing Help Within the User Interface

536 Chapter 22: Providing Online Help For Your Application
Displaying Text Files

The IDL XDISPLAY FILE procedure displays an ASCI| text file using a predefined
widget interface. To see an example, enter the following statement at the IDL
command prompt:

XDISPLAYFILE, FILEPATH('relnotes.txt')

This command displays the current release notes file for your IDL installation in a
widget interface.

To display your own text file, create a“Help” button of some sort in your widget
interface and configure the button’s event handling procedure to call
XDISPLAY FILE with the full path to the text file.

See “XDISPLAYFILE” (IDL Reference Guide) for more details.

Note
By default, the XDISPLAY FILE window exists separately from your application,
and will not be closed when your application exits. To ensure that the
XDISPLAY FILE window closes when your application exits, set the value of the
GROUP keyword equal to the widget ID of your application’s top-level base. See
“Using Multiple Widget Hierarchies” (Chapter 3, Widget Application
Programming) for a discussion of widget grouping.

Displaying Text Files Application Programming

Chapter 22: Providing Online Help For Your Application 537

Using an External Viewer

If you are certain that a specific viewing application is present on the system on
which your application will run, you can use the IDL SPAWN procedure to display a
help file using that application.

Note that you must have some fairly explicit information about the system on which
your application will run to use this technique. You must know:

» that the application you wish to use isinstalled on the system, and
« thefull path to the application’s executable file.

(If your application is complex enough to have an installation program or procedure,
you might be able to query the user for the path to the external viewer at installation
time.)

Note
If you want to display HTML or Portable Document Format (PDF) files, see“Using

Other Online Help Viewers’ on page 539.

For example, suppose you know that your application will run on a Windows system,
you could open atext file in the Notepad application, which is aways located in the
Windows system directory and can be invoked without specifying a full path:

SPAWN, 'notepad.exe D:/myapp/myfile.txt', /NOSHELL, /NOWAIT

For more information, see “ SPAWN” (IDL Reference Guide).

Application Programming Using an External Viewer

538 Chapter 22: Providing Online Help For Your Application

About IDL's Online Help System

Beginning with IDL version 7.0, IDL’s context-sensitive online help system is built
on the user assistance infrastructure provided by the Eclipse framework on which the
IDL Workbench is built. Help content for IDL is provided in a set of help plugins —
. jar archives that contain HTML help content files and XML documents that
control how the content is presented.

IDL’s online help system is described in detail from a user’s point of view in Using
IDL Help — located, appropriately enough, in the IDL online help system.

InIDL 7.0, it isnot possible for IDL developersto write help content to be displayed
in IDL’s own help system. We hope to provide this capability to IDL developersin a
future release. In the meantime, see “Using Other Online Help Viewers” on page 539
for options on providing help for your IDL applications.

About IDLs Online Help System Application Programming

../com.rsi.idl.doc.wb/Using_IDL_Help.html
../com.rsi.idl.doc.wb/Using_IDL_Help.html

Chapter 22: Providing Online Help For Your Application 539

Using Other Online Help Viewers

You can use the ONLINE_HELP procedure to display help filesin several formats.
Thetype of help file or files you choose to create will depend on the platforms on
which your IDL application will be used, and on your own preferences.

e |DL Assistant Help Systems

e Microsoft Windows Help

* Portable Document Format Files
e HTML Files

IDL Assistant Help Systems

IDL versions 6.2 through 6.4 used a cross-platform help viewer — IDL Assistant —
based on the help viewer used by the Qt development toolkit from Trolltech.
Although the IDL Assistant help viewer has been replaced as IDL’s default help
viewer inversion 7.0, itis still included in IDL distributions as an option for user-
created help systems.

The process of creating help systems for that use the IDL Assistant is somewhat
complex. See “Using the IDL Assistant Help System” on page 545 for complete
details.

Microsoft Windows Help

There are currently two Windows online help formats in wide use: WinHelp and
HTML Help. WinHelp is the older of the two, and many applications still provide
help in this format, which can be distinguished by the file extension “ . h1p”.
HTML Help isthe newer format, and provides (among other things) the ability to
include links to documents in various formats, both local and network-based.
HTML Help files use thefile extension “ . chm”. Viewersfor both types of online
help are included in al relatively current versions of Windows, and IDL's
ONLINE_HELP procedure will invoke the correct viewer for either type of file.

Creating Windows Help Files

Microsoft Windows help files arerelatively easy to create. Filesin a specified format
(the Rich Text Format, (RTF) for WinHelp, or awider variety of formatsfor HTML
Help) are compiled with ahelp compiler from Microsoft. The help compiler is part of
the Windows Software Developer’s Kit, and is now included in several Microsoft
programming products, including the Visual C++ development environment. The

Application Programming Using Other Online Help Viewers

540

Chapter 22: Providing Online Help For Your Application

help compiler may also be available from the Microsoft Web site or other Microsoft
online software libraries at little or no cost.

It is beyond the scope of this manual to discuss the preparation and compilation of
Windows help files. Microsoft provides useful information about its help-system
products as part of the Microsoft Developer’s Network; try searching the MSDN site
a http://msdn.microsoft.com with the search term “HTML Help” or
“WinHelp”. There are also numerous third-party books on creating Windows help
systems available.

Calling Windows Help Files

To call aWindows help file of either type from within IDL, usethe ONLINE_HELP
procedure. Specify the name of your help file using the BOOK keyword, and
optionally specify a search term in the Value argument. Alternatively, you can
specify a context number in the Value argument and include the CONTEXT
keyword. See “ONLINE_HELP”" (IDL Reference Guide) for details.

Depending on where your application and its help files are installed, you may also
need to specify the full path to the file and the FULL_PATH keyword.

Example 1

Suppose you have created an HTML Help file named myapp . chm to accompany
your IDL application. Use thefollowing call to openthe HTML Help viewer and load
the search term “controls’ into the Index dialog:

ONLINE_HELP, 'controls', BOOK='path\myapp.chm', /FULL_PATH

where path is the full path to the file myapp . chm.
Example 2

Suppose you have created a WinHelp file named myapp . h1p and placed it in the
Help subdirectory of your IDL installation. If you know that the context number of
the topic you wish to display is 250, use the following call to open the WinHelp
viewer to the correct topic:

ONLINE_HELP, 250, BOOK='myapp', /CONTEXT

If no file extension isincluded in the value of the BOOK keyword, IDL will search
each directory in 'HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: . chm (Windows only), .hip (Windows
only), .pdf, .html, .htm. See “Pathsfor Help Files’ on page 561 for details on
setting the help path.

Using Other Online Help Viewers Application Programming

Chapter 22: Providing Online Help For Your Application 541

Cross-Platform Issues

Windows help files (of either format) are viewable only on Microsoft Windows
platforms. If your IDL application will be available on UNIX platforms as well as
Microsoft Windows platforms, you have severa options:

e Create help content suitable for use by the cross-platform IDL Assistant help
viewer. See “About IDL’s Online Help System” on page 538 for details on
creating help content that will display in IDL Assistant.

» Create separate help files (one in Windows Help format, onein PDF or HTML
format) and issue the appropriate call to ONLINE_HELP based on the current
platform. If you name the fileswith the same base name (but with different file
extensions), IDL will automatically select the correct file for the platform.

e Createasinglehelpfilein PDF or HTML format, and caution your users that
they must have athe appropriate viewing application installed in order to use
your help file. In addition, UNIX users must ensure that the viewing
application is properly configured for use by IDL, as described in “Displaying
HTML and PDF Files under UNIX” under “ONLINE_HELP” (IDL Reference
Guide).

Portable Document Format Files

You can use the ONLINE_HELP procedure to display a PDF file on any system that
has a PDF-display application installed.

Note
IDL launches a stand-alone version of the PDF viewing application. Files are not
displayed in the Windows help viewer or any other browser application.

Creating PDF Files

To create PDF files for use with IDL’s online help system, you will need an
application that allows you to author PDF files or convert filesin other formats to
PDF. Most commonly, source files are created with a text-editor, word-processor, or
other document-production program, printed to a PostScript file, and run through a
program that distills the PostScript into PDF. Adobe’'s commercial Acrobat package
includes the Acrobat Distiller, which provides a convenient GUI interface to the
distillation process. Other third-party software to distill PostScript filesinto PDF is
also available; GhostScript (www.ghostscript. com) isone freely available
alternative.

Application Programming Using Other Online Help Viewers

542 Chapter 22: Providing Online Help For Your Application

It is beyond the scope of thismanual to discuss creation of PDF filesin detail ; consult
the documentation for your PDF authoring system or distilling software for details.

Calling PDF Files

To call aPDF help file from within IDL, use the ONLINE_HELP procedure. Specify
the name of your PDF file using the BOOK keyword. Depending on where your
application and its help files are installed, you may also need to specify the full path
to thefile and the FULL_PATH keyword.

See“ONLINE_HELP’ (IDL Reference Guide) for details.
Example 1

Suppose you have created a PDF file named myapp . pdf to accompany your |DL
application. Use the following call to open the PDF viewer and display the first page
of thefile:

ONLINE_HELP, BOOK='path\myapp.pdf', /FULL_PATH

where path is the full path to the file myapp . pdf.
Example 2

If themyapp . pdf fileislocated in one of the directoriesincluded in IDL's
IHELP_PATH system variable, you do not need to include either the . pdf extension
or the FULL_PATH keyword:

ONLINE_HELP, BOOK='myapp'

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in 'HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: . chm (Windows only), .hip (Windows
only), .pdf, .html, .htm. See “Pathsfor Help Files’ on page 561 for details on
setting the help path.

Cross-Platform Issues

If you intend to use PDF files to supply online help for your cross-platform
application, you should caution your users that they must have a the appropriate PDF
viewing application installed in order to use your help file. In addition, UNIX users
must ensure that the viewing application is properly configured for use by IDL, as
described in “Displaying HTML and PDF Files under UNIX” under
“ONLINE_HELP” (IDL Reference Guide).

Using Other Online Help Viewers Application Programming

Chapter 22: Providing Online Help For Your Application 543

HTML Files

You can use the ONLINE_HELP procedure to display an HTML file on any system
that has a Web-browser installed. On UNIX systems, the browser’s executable file
must aso bein adirectory included in the paTH environment variable.

Creating HTML Files

It is beyond the scope of this manua to discuss HTML authoring in detail. Use any
technique you are comfortable with to create HTML filesfor display in a normal
Web browser.

Note
You can usethe MK_HTML_HELP procedure to create HTML-formatted
documentation for your application from standard IDL documentation headers. See
“MK_HTML_HELP" (IDL Reference Guide) for details.

Calling HTML Files

To call an HTML file from within IDL, use the ONLINE_HEL P procedure. Specify
the name of your HTML file using the BOOK keyword. Depending on where your
application and its help files are installed, you may also need to specify the full path
to thefile and the FULL_PATH keyword.

See “ONLINE_HELP" (IDL Reference Guide) for details.

Example 1

Suppose you have created an HTML file named myapp . html to accompany your
IDL application. Use the following call to open the default Web browser and display
the file, positioned to the HTML anchor tag anchor1:

ONLINE_HELP, 'anchorl', BOOK='path\myapp.html', /FULL_PATH
where path is the full path to the file myapp . html.

Example 2

If themyapp .html fileislocated in one of the directoriesincluded in IDL's
IHELP_PATH system variable, you do not need to include the . htm1 extension or
the FULL_PATH keyword:

ONLINE_HELP, BOOK='myapp'

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in 'HELP_PATH until it finds a matching file with one of the

Application Programming Using Other Online Help Viewers

544 Chapter 22: Providing Online Help For Your Application

following file extensions, in this order: . chm (Windows only), .hi1p (Windows
only), .pdf, .html, .htm. See “Pathsfor Help Files’ on page 561 for details on
setting the help path.

Cross-Platform Issues

If you intend to use HTML files to supply online help for your cross-platform
application, keep the following things in mind:

» IDL does not require that a Web browser be installed. Whileit is unlikely that
you will encounter systems that do not include a Web browser, you may wish
to inform your users in advance that your application uses a Web browser to
supply help.

e OnUNIX systems, it may be necessary to modify IDL's default HTML
browser configuration script to use alocally-preferred browser. See
“Displaying HTML and PDF Files under UNIX” under “ONLINE_HELP’
(IDL Reference Guide) for details.

» Different browsers contain different display engines, and may display HTML
in different ways. Thisis especialy trueif you use features that have only
recently been added to the HTML specification. Check for display issuesusing
as many browsers as you reasonably can.

Using Other Online Help Viewers Application Programming

Chapter 22: Providing Online Help For Your Application 545

Using the IDL Assistant Help System

IDL versions 6.2 through 6.4 used a cross-platform help viewer — IDL Assistant —
based on the help viewer used by the Qt development toolkit from Trolltech.
Although the IDL Assistant help viewer has been replaced as IDL’s default help
viewer inversion 7.0, it is still included in IDL distributions as an option for user-
created help systems.

This section discusses the following topics relating to creating help systems for the
IDL Assistant help viewer:

e “Using the IDL Assistant Help Viewer” on page 545

e “Format of an IDL Assistant Help System” on page 552
e “Creating Help Content” on page 552

e “Creating an Assistant Document Profile” on page 553
e “Optiona Help System Files” on page 559

» “Displaying Help Topics’ on page 560

e “Pathsfor Help Files’ on page 561

Using the IDL Assistant Help Viewer

This section describes how to use the IDL Assistant application. For information on
creating help content that uses the IDL Assistant for your own IDL applications, see
the sections that follow.

The Main Window

The IDL Assistant main window contains the text of the current topic. Within the
main window you can:

» Follow hypertext links to other topics, or to sections within the current topic

« Navigate to the next or preceding topic using arrows at the top of the topic
screen

» Display multiple topics simultaneously using the tabbed interface

» Create new tabs and close existing tabs using icons to the right and left of the
tabs

Application Programming Using the IDL Assistant Help System

546 Chapter 22: Providing Online Help For Your Application

e Perform common tasksincluding display of the next/previous topic, tab
management, text sizing, copying text to the clipboard, and finding text within
the topic using the context menu

The Sidebar

The IDL Assistant sidebar provides four tabs that allow you to navigate through the
specified documentation set. All of the tabs provide a context menu that allows you to
open the selected topic the current tab, a new tab, or a new window.

The Contents Tab

The Contentstab displays ahierarchical listing of the contents of the various books
in the specified documentation set.

The Index Tab

The Index tab provides a keyword index of the contents of the specified
documentation set. Enter atext string in the Look For: field to see keywords that
match the string.

The Search Tab

The Search tab allows you to search the text of the specified documentation set for

words or phrases. Text matching your search string is highlighted when atopic is

displayed in the main window.

Tip
Words or phrases entered in the Sear ch tab are not case sensitive.

To search for words, enter one or more strings in the Sear ching for: field, separated
by spaces and click Search. IDL Assistant displaysalist of topics that contain all of
the words you entered.

To search for a phrase, enclose the phrase in single or double quote marks.

The list of topics containing the search words or phrase is displayed as alist ranked
roughly according to the number of occurrences of the words or phrases, with the
topics containing the largest number of occurrences listed given higher rankings.

Allowed Characters
The following characters are allowed in the Sear ch tab:
e Letters (upper- and lower-case)

e Numbers (0-9)

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 547

e Quotemarks (single ('), double (), backwards (*))
e Exclamation marks (1), colons (:), and periods (.)

e Spaces

* Hyphens(-)

e Underscores(_)

e Asterisk (*) asawildcard matching one or more unspecified characters

Note
The * character cannot be used within quotes or at the beginning of a string.

All other characters are disallowed; you cannot enter them in the Sear ching for:
field.

Warning
Searches that contain single-character strings (such as“a’ or “8") are not allowed
and will return no results. Thisis true even when the single character is combined
with a punctuation character such as ahyphen. For example, searching for the string
“8-bit” will return no results.

Examples
convol List al topics that contain the word “convol”
convol* List al topics that contain aword beginning with “convol”
base widget List al topics that contain the word “base” and the word

13 Wi dga"
"base widget" Listal topicsthat contain the phrase “base widget”

The Bookmarks Tab

The Bookmarkstab alows you to save links to specific topicsin the IDL
documentation set for easy reference.

Application Programming Using the IDL Assistant Help System

548 Chapter 22: Providing Online Help For Your Application

The Menu Bar

The IDL Assistant menu bar runs across the top of the IDL Assistant window, and
provides access to the features listed below. Keyboard shortcuts to invoke various
menu items are listed in the menus themselves.

Menu Item Function
File New Window | Open anew IDL Assistant window.
Add Tab Open a new tab displaying the same topic as the
currently selected tab.
Close Tab Close the currently selected tab.
Print Print the contents of the currently selected tab. See
“Printing” on page 551 for details.
Close Close the current IDL Assistant window.
Exit Close al IDL Assistant windows.
Edit Copy Copy text selected in the main window to the

system clipboard.

Find in Text... | Search for atext string in the currently displayed

topic.

Find Next Find the next instance of the text string in the
currently displayed topic.

Find Previous | Find the previous instance of the text string in the
currently displayed topic.

Settings... Display the Settings dialog. See “ Settings’ on

page 551 for details.

Table 22-1: IDL Assistant Menus

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 549

Menu Item Function
View Zoom in Increase the text size in the main window. See
“Text Zoom” on page 550 for important notes.
Zoom out Decrease the text size in the main window. See
“Text Zoom” on page 550 for important notes.
Views... Control display of the Sidebar and Standard
toolbar.
Note - The Line Up feature realigns the toolbar if
it has been moved.
Go Previous Display the current tab’s previous topic.
Next Display the current tab’s next topic.
Home Display the IDL online help Home page.
Next Tab Select the tab to the right of the current tab, if any.
PreviousTab | Select the tab to the left of the current tab, if any.
Bookmark | Add Create a bookmark for the currently selected topic.
Bookmark
Bookmark list | Existing bookmarks are displayed at the bottom of
this menu.
Help IDL Assistant | Display this help topic.
Manual
About Display information about IDL Assistant.
IDL Assistant
What's This? | Display context-sensitive pop-up help about some

portions of the IDL Assistant interface.

Application Programming

Table 22-1: IDL Assistant Menus

Using the IDL Assistant Help System

550

The Tool Bar

Chapter 22: Providing Online Help For Your Application

The IDL Assistant tool bar provides quick access to a subset of the features available
via the menubar.

Icon Name Function
& Previous Display the current tab’s previous topic.
B Next Display the current tab’'s next topic.
Yy Home Display the IDL online help Home page.
@ Copy Copy text selected in the main window to the system
clipboard.
oy Find in Text Search for atext string in the currently displayed
topic.
0 Print Print the contents of the currently selected tab. See
“Printing” on page 551 for details.
Q Zoomin Increase the text size in the main window. See “ Text
Zoom™ on page 550 for important notes.
@; Zoom out Decrease the text size in the main window. See “ Text
Zoom” on page 550 for important notes.
2 What'sthis? | Display context-sensitive pop-up help about some
) portions of the IDL Assistant interface.
Table 22-2: IDL Assistant Toolbar
Text Zoom

Sdlect Zoom in or Zoom out from the View menu to change the size of the text in the

IDL Assistant main window.

The smoothness of the text zoom operation depends on the ability of the operating
system to provide fonts of the appropriate size for the zoomed text. On platformsthat
provide robust font-management mechanisms, the Zoom operations will work
smoothly. On platforms that provide more limited font support, a single Zoom
operation may, depending on the current text size and font support, change the text
size for only some text elementsin the main window, or none at al. In these cases,
repeated applications of the Zoom operations may change the text size.

Using the IDL Assistant Help System

Application Programming

Chapter 22: Providing Online Help For Your Application 551

If you find that the text zooming feature does not work adequately with the default
fonts, try changing the fonts used by IDL Assistant (see “ Settings’ on page 551 for
details.) On platforms that use a set of fixed-size fonts, choosing a font with alarger
number of available sizeswill allow smoother text zooming.

Printing

Select Print from the File menu or toolbar to display a platform-native Print dialog
that allows you to select a printer on which to print.

Note
Currently, the only text range option available is All. Printing all will print the
entire contents of the topic currently displayed in the main window.

Tip
The quality of the printed output from IDL Assistant depends on the platform and
printer in use. For high-quality printed output, consider printing from the PDF
version of the document you are viewing.

Settings

Select Settings from the Edit menu to display atabbed dialog that allows you to
control several IDL Assistant settings.

General Tab

The General tab alows you to select fonts for text display in the main window. By

default, the Font is set to Helvetica, and the Fixed Font is set to Courier.

Tip
Depending on the configuration of your system, you may be able to select alternate
fonts that provide better appearance or smoother zooming behavior than the
defaults. Thisis especially true on UNIX systems that have alimited set of fonts
available. Trying different font settings may improve both the legibility of the text
and the ability to zoom in the IDL Assistant viewer.

The General tab also allows you to select a color for hyperlinks and specify whether
the links should be underlined. Depending on your platform, changing these values
may not produce the effect you expect.

Application Programming Using the IDL Assistant Help System

552

Chapter 22: Providing Online Help For Your Application

Web Tab

The Web tab allows you to define the web browser that should be invoked when you
click on a hyperlink that refersto aweb site rather than to afilein the IDL
documentation set.

The Web tab also alows you to specify an HTML file that should be displayed when
you select Home from the Go menu or click the Home toolbar icon.

PDF Tab

The PDF tab allows you to define a Portable Document Format (Adobe Acrobat) file
browser that should be invoked when you click on a hyperlink that refersto a PDF
file.

Note
If you choose to define your PDF file browser as Adobe Acrobat, you must use
version 7 or later.

Format of an IDL Assistant Help System

The IDL Assistant help viewer displays basic HTML-format files that use a subset of
the tags defined by the HTML 3.2 specification. The help viewer does not handle
Cascading Style Sheets, Javascript, or frames. Basic HTML tables are supported, but
some table features defined in HTML 3.2 — notably the <capTION> tag and explicit
control of table column widths — are not supported.

An IDL Assistant help system consists of:

« HTML content files and image files that are referenced by the HTML filesvia
the <1MG> tag. See“Creating Help Content” below.

* AnAssistant Document Profile (. adp) file that defines both the hierarchical
structure of the documentation (the table of contents) and its keyword index.
See “ Creating an Assistant Document Profile” on page 553.

» Severa optiond files, described in “Optional Help System Files’ on page 559.

Creating Help Content

You can create HTML-format help content using any text editor or HTML authoring
tool. Make sure that HTML files you intend to display in the IDL Assistant help
viewer do not incorporate Javascript, JScript, ActiveX elements, or frames.

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 553

HTML Formatting

You can use most of the text formatting tags supported by the HTML 3.2 format in
filesintended for display in the IDL Assistant help viewer. If you include Cascading
Style Sheet information, it will be quietly ignored by the help viewer.

Directory Structure and File Naming

Place al of the HTML content files for your help system in the same directory that
contains your . adp file. You are free to choose any file naming convention you
prefer for your help system’s HTML files. Note, however, that IDL will interpret the
Value argument to the ONLINE_HELP procedure as the name of an HTML filein
the same directory asyour . adp file. See“ONLINE_HELP” (IDL Reference Guide)
for additional details related to how IDL interprets the Value argument.

Image Files

Image files referenced by your help system’s HTML files can bein PNG, GIF, or
JPEG format. Image files do not need to be in the same directory asthe HTML
content files for your help system; by convention, image files are stored in a
subdirectory of the content directory.

Creating an Assistant Document Profile

The . adp fileisan XML-format file that defines properties of your help system,
constructs a hierarchical table of contents, and provides keyword index terms for
your help topics.

You must ensure that your help system'’s . adp fileisavalid XML file. This means
that each element must contain values for all required attributes and must be properly
closed. If the structure of the . adp fileisnot valid, IDL Assistant will fail to load the
information in the . adp file, and no table of contents or index will be available for
your help system.

Thefollowing is avery simple example of an . adp file that defines the help system
properties and a single help topic with two keyword index terms:

<!DOCTYPE DCF>
<assistantconfig version="3.3.0">
<profile>

<property name="name">MyApp Version 1.2</property>
<property name="title">My Help System</property>
<property name="startpage">home.html</property>
<property name="aboutmenutext">About My App</property>
<property name="abouturl">about_my app.txt</property>

Application Programming Using the IDL Assistant Help System

554 Chapter 22: Providing Online Help For Your Application

<property name="assistantdocs">.</property>
</profile>
<DCF ref="my_home.html" title="My Help">
<section ref="Topicl.html" title="Topicl">
<keyword ref="Topicl.html">Index one</keyword>
<keyword ref="Topicl.html#anchor">Index two</keyword>
</section>
</DCF>
</assistantconfig>

The individual XML elements that make up an . adp file are described below.
<IDOCTYPE> Element

The . adp file must begin with an XML <! pocTyPE> element that definesthefile as
being of type “DCF.” Thefirst line of an . adp file must always be:

<!DOCTYPE DCF>

Element Value

Elements of this type do not contain an element value, and do not need to be closed.
<assistantconfig> Element

All of the content of the . adp fileisenclosed in an <assistantconfig> €lement.

Element Value

Elements of this type contain <profile> and <DCF> elements.

version Attribute

When creating content for the IDL Assistant help viewer, set the version attribute
to thevalue “3.3.0":

<assistantconfig version="3.3.0">

<profile> Element

The <profile> e ement contains aset of <property> elements that define values
used by the entire help system. The allowed attribute values are described in the
<property> Element section, below.

Element Value

Elements of this type contain <property> elements.

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 555

<property> Element

Each <property> element defines a value used to configure the help viewer
application.

Element Value

The element value is atext string. Each element must include aname attribute with
one of the attribute values listed bel ow.

name

The value of a<property> element with the name attribute set equal to “name’ is
the identifier for the help system. IDL Assistant will use this value when creating
index, full-text search, and bookmark filenames for your help system. For example,
the following <property> element defines the name of the help system as “MyApp
Version 1.2":

<property name="name">MyApp Version 1.2</property>

title

The value of a<property> element with the name attribute set equal to “title” is
string displayed in the title bar of the IDL Assistant help viewer application window.
For example, the following <property> element definesthetitle as“My Help
System”:

<property name="title">My Help System</property>
startpage

Thevalue of a<property> element with the name attribute set equal to “startpage”
isaURL (relativeto the . adp file) to the HTML file that will be displayed when a

user clicksthe IDL Assistant Home button or selects Home from the Go menu. For
example, the following <property> element defines the start page as “home.html”:

<property name="startpage">home.html</property>

Note
When the ONLINE_HELP procedure opens a help system, if no HTML fileis
specified for display viathe Value argument, the help viewer will attempt to open a
file named home . html in the same directory asthe . adp file. Asaresult, in most
cases the value of the <property> element with the name attribute set equal to
“startpage” should be home . html.

Application Programming Using the IDL Assistant Help System

556

Chapter 22: Providing Online Help For Your Application

aboutmenutext

The value of a<property> element with the name attribute set equal to
“aboutmenutext” defines a string that will be included as a menu item in the

IDL Assistant Help menu. Selecting the menu item displays the contents of thefile
defined by a <property> dement with the name attribute set equal to “abouturl” in
amodal dialog. For example, the following <property> element defines the Help
menu item string as “About My App”:

<property name="aboutmenutext">About My App</property>

This element isoptional. If no <property> element with the name attribute set
equal to “aboutmenutext” exists, the menu item is not displayed in the IDL Assistant
Help menu.

abouturl

The value of a<property> element with the name attribute set equal to “abouturl”
isaURL (relativeto the . adp file) to atext or HTML file that will be displayed in a
modal dialog when the user selects the menu item defined by a<property> eement
with the name attribute set equal to “aboutmenutext”. For example, the following
<property> element defines the “About My App” menu item URL as
“about_my_app.txt”:

<property name="abouturl">about_my_ app.txt</property>

This element isoptional. If no <property> element with the name attribute set
equal to “aboutmenutext” exists, there is no need to define this element.

Warning
The“about” dialog isintended to display a small block of text. Some basic HTML
text formatting is allowed, including font face, style, and point size. Thereisno
explicit control over the size or configuration of the dial og.

assistantdocs

The value of a<property> element with the name attribute set equal to
“assistantdocs’ isthe path to the directory that containsthe file assistant .htmil,
which containsinformation on the use of the IDL Assistant help viewer. The path can
be either absolute or relative to the directory that containsthe . adp file. Thisfileis
displayed when the user selects IDL Assistant Manual from the Help menu.

Theassistant.html fileused by IDL Assistant itself islocated in the
help/online_help subdirectory of the IDL distribution. If you know the relative
path from your . adp file to thislocation, you can includeit in the <property>
element and users of your help system will be ableto display the “help on help”

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 557

content from the IDL online help system. If you do not know the relative path
(perhaps because you do not know where users of your application will install it), you
may wish to create your own assistant.html file containing “help on help”
information.

Note
Thefile must be named assistant.html. The <property> € ement contains
only the path to the directory that contains thisfile.

For example, suppose you know that your application (along with its help system)

will only beinstalled on UNIX systemsthat have IDL installed in the default location

(/usr/local/itt). You could set the value of the <property> element asfollows

to allow your usersto view the “help on help” topic from the IDL online help system:
<property name="assistantdocs">

/usr/local/itt/idl/help/online_help
</property>

Similarly, if you choose to create your own assistant . html file and place it
alongside your other help system content, you could set the value of the <property>
element asfollows:

<property name="assistantdocs">.</property>

<DCF> Element

A <DCF> element represents a single “book” in the help system, and encloses all of
the <section> elements that make up the book. In the IDL Assistant help viewer, a
<DCF> element is represented by a collapsible book icon in the Contents tab.
Clicking on the book icon displays the topic associated with the <pcF> element in the
main help window and either displays or collapses the hierarchy contained within the
element in the Contentstab.

Element Value
Elements of this type contain <section> elements.
ref Attribute

Theref attribute of a <pcF> element specifies the path to the HTML file that will be
displayed in the main window when the user clicks on the book icon in the Contents
tab.

The path to the HTML file should be relative to the . adp file. You can optionally
include an HTML anchor tag after the file name.

Application Programming Using the IDL Assistant Help System

558

Chapter 22: Providing Online Help For Your Application

title Attribute

The title atribute of a<pDCF> element specifies the text that will be displayed next
to the book icon for the element in the Contents tab.

For example, the following <pcF> element specifies that the book icon for the
enclosed group of topicswill betitled “What's New” and will display thefile
whatsnew.html positioned to the HTML anchor tag anchor1:

<DCF ref="./whatsnew.html#anchorl" title="What's New">

<section> Element

A <section> element represents asingle topic in the help system. Topic titles are
displayed in the table of contents. <section> elements can be nested; the hierarchy
defined by the nested section elementsis reflected in the Table of Contents display.

Clicking on the section title displays the topic associated with the <section>
element in the main help window and either displays or collapses the hierarchy
contained within the element in the Contents tab.

Element Value
Elements of thistype contain <section> and <keyword> elements.
ref Attribute

The ref attribute of a <section> element specifies the path to the HTML file that
will be displayed in the main window when the user clicks on the topic title in the
Contents tab.

The path to the HTML file should be relative to the . adp file. You can optionally
include an HTML anchor tag after the file name.

title Attribute

The title attribute of a<section> element specifiesthe text that will be displayed
asthe section title in the Contents tab.

For example, the following nested <section> elements define three topics
“contained” by the topic titled “ Chapter 1":

<section ref="chapl.html" title="Chapter 1">
<section ref="chapla.html#anchorl" title="Subhead 1"></section>
<section ref="chaplb.html#anchorl" title="Subhead 2"></section>
<section ref="chaplb.html#anchor2" title="Subhead 3"></section>
</section>

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 559

<keyword> Element

A <keyword> element defines an entry in the help system’s keyword index.
Keyword index entries are displayed in the Index tab.

Element Value

The element value is atext string that contains the keyword index entry text.

The keyword index may be hierarchical. If a<keyword> element’s value string
includes the colon character, the text will be treated as a multi-level index entry.
Thus, the value

top level entry:subentryl
would be displayed in the Index tab as

top level entry
subentryl

When the <keyword> element values are displayed in the Index tab, they are
alphabetized by level. All of the top-level entries are a phabetized, and each top-level
entry’s subentries are then al phabetized.

ref Attribute

The ref attribute of a <keyword> element specifies the path to the HTML file that
will be displayed in the main window when the user clicks on the entry in the Index
tab.

The path to the HTML file should be relative to the . adp file. You can optionally
include an HTML anchor tag after the file name.

For example, the following <keyword> element defines an index entry with thetitle
“Thingamajig” that correspondsto the HTML anchor thingamajiginthe HTML
filemyroutinesl.html:

<keyword ref="myroutinesl.html#thingamajig">Thingamajig</keyword>
Optional Help System Files

The files described in this section are not required for your help system to function,
but may be useful.

About file

The“about” fileis displayed when the user chooses the “about” entry from the
IDL Assistant Help menu, if it exists. If you choose to create thisfile, it can be either

Application Programming Using the IDL Assistant Help System

560 Chapter 22: Providing Online Help For Your Application

atext fileor an HTML file containing basic HTML tags. See “aboutmenutext” and
“abouturl” under “ <property> Element” on page 555 for details.

TopicNotFound.html

The TopicNotFound.html fileis displayed when the Value argument to the
ONLINE_HELP procedure is supplied, but the specified file is not found. See
“Displaying Help Topics’ below for additional information.

Displaying Help Topics

To display atopic within your help system, use the ONLINE_HELP procedure,
specifying name of your . adp file asthe value of the BOOK keyword. For example,
if your . adp fileis named myapp . adp, and you have placed the help system in a
directory that isincluded in IDL’s help path, you would use the following
ONLINE_HELP command:

ONLINE_HELP, BOOK="myapp.adp"

See “Paths for Help Files” on page 561 for more on setting IDL’s help path.
Alternatively, if you know the full path to the . adp file, you could use an
ONLINE_HELP command like the following:

ONLINE_HELP, BOOK="/usr/local/myapp/help/myapp.adp", /FULL_PATH

In most cases, it is more appropriate to set IDL's help path to include your help
system when your application runs, as described in “Adding a Directory to the Help
Path at Runtime” on page 562.

To display a specific topic from your help system, include the Value argument to the
ONLINE_HELP procedure:

ONLINE_HELP, "InterestingTopic", BOOK="myapp.adp"
When IDL executes this command, it will do the following things:

1. Attempt to locate the myapp . adp file in adirectory contained in IDL’s help
path. If it cannot locate the . adp file, ONLINE_HELP exits with an error.

2. Look in thedirectory that contains myapp . adp for afile named
INTERESTINGTOPIC With the extension . html or .HTML. If IDL findsthis
file, it isdisplayed in the help viewer's main pane, and the search ends.

3. Look inthe directory that contains myapp . adp for afile named
InterestingTopic withtheextension .html. If IDL findsthisfile, itis
displayed in the help viewer’s main pane, and the search ends.

Using the IDL Assistant Help System Application Programming

Chapter 22: Providing Online Help For Your Application 561

4. If neither version of the file specified by the Value argument is found, IDL
attemptsto display atopic named TopicNotFound.html inthehelp viewer's
main pane. Thisfile explains to the user that there is no file that matches the
Value argument.

In general, your end-users should never seethe TopicNotFound.html filg,
because you have control over the strings placed in the Value argument to the
ONLINE_HELP procedure. If the possiblity that your end-users might supply
aValue argument for afile that does not exist in your help system, create a
TopicNotFound.html fileandinclude it with your help system.

Paths for Help Files

You can specify the search path for help filesviathe HELP_PATH system variable.
Placing your help filesin adirectory included in the help path means that you do not
need to include the full path in your call to the ONLINE_HEL P procedure; supplying
the name of the help file is enough.

Note
IDL searches the directories specified by 'HELP_PATH and chooses the first
instance of afile that matches the name you specify viathe BOOK keyword to
ONLINE_HELP If no file extension is included in the value of the BOOK
keyword, IDL will search each directory in 'THELP_PATH until it finds a matching
file with one of the following file extensions, in this order: . adp, . chm (Windows
only), .hip (Windowsonly), .pdf, .html, .htm. YOUu can override this behavior
by explicitly specifying the desired file extension.

By default, 'HELP_PATH contains the he1p subdirectory of the main IDL directory.
To change the default value of 'HELP_PATH, change the value of the
IDL_HELP_PATH preference.

To change the value of 'HELP_PATH during asingle IDL session, simply assign a
new value to the system variable. For example, to add a directory of your choice to
the end of the default help path, you could use the following command:

'HELP_PATH=!HELP_PATH+ 'mypath'

where mypath is avalid path string, including the appropriate path el ement separator
character for your platform.

Application Programming Using the IDL Assistant Help System

562 Chapter 22: Providing Online Help For Your Application

Adding a Directory to the Help Path at Runtime

If you distribute your application to users who install it on their own systems, you
have no way of knowing in advance how to set the value of |HELP_PATH.

Suppose you have an application named myapp, installed in an unknown location
your end-user’s computer. The help system for myapp islocated in a subdirectory of
your application’s directory named help. Including the following block of codein
myapp . pro would be one way to determine the location of your help system at
runtime, and set the 'HELP_PATH system variable accordingly.

myapp_info ROUTINE_INFO('myapp', /SOURCE)

myapp_path FILE_DIRNAME (myapp_info.path)

myapp_help_path = myapp_path + PATH_SEP() + 'help’

'HELP_PATH = !HELP_PATH + PATH_SEP(/SEARCH_PATH) + myapp_help_path

Once the help path is set in this manner, you can simply provide the name of the
.adp file for your help system as the value of the BOOK keyword to the
ONLINE_HELP procedure.

Using the IDL Assistant Help System Application Programming

Chapter 23

Distributing Runtime
Mode Applications

This chapter describes the process of creating IDL runtime applications for distribution.

What Isan IDL Runtime Mode Application? 564
Limitations of Runtime Applications 567
Steps to Distribute a Runtime Application 568
Preferences for Runtime Applications. 569
RUNtimMeLiCenSiNgo oo ve et e e 573
EmbeddedLicensingciiiiiiiiiin... 577
Creating an Application Distribution 578
Starting aRuntime Application 579
Installing Your Application 582

Application Programming

563

564 Chapter 23: Distributing Runtime Mode Applications

What Is an IDL Runtime Mode Application?

An IDL runtime mode application is a program or set of programs written to use
IDL’s dataanalysis and display capabilities in a stand-alone mode, without access to
the IDL Workbench, the IDL command line, or the ability to compile IDL .pro files.
All IDL code for a runtime mode application must be pre-compiled and provided in
the binary SAVE file format. If aruntime mode application presents a user interface,
it must be exposed viathe IDL widget toolkit or iTools functionality, since no access
to the IDL command line or command output log is provided to the user.

Runtime mode applications are generally intended for users who do not have an IDL
development license, although users who do have a devel opment license can execute
runtime mode applications as well. Typically, a runtime mode application is
distributed along with an IDL distribution hierarchy containing al of the files
necessary to run the application. (The exception is an application written to berunin
the IDL Virtual Machine, which isinstalled separately from the IDL application
itself.)

Note
IDL applicationswritten to run with an IDL development license— onethat allows
the application to compile .pro files and access to the IDL command line — can,
of course, be distributed to other IDL users. Distributing applications that run with
an IDL development license can be as simple as providing the application files to
the end user along with instructions describing how to install the files and configure
the application.

This chapter describes the process of packaging an application written entirely in IDL
so that it can be distributed to end users who do not have an IDL development
license. The following chapters describe the process of packaging an application to
run in the IDL Virtual Machine and packaging a Callable IDL application. Much of
the information in these chaptersisrelevant whether or not your application end users
have an IDL development license, but the assumption isthat your end user will not
have such alicense.

What Is an IDL Runtime Mode Application? Application Programming

Chapter 23: Distributing Runtime Mode Applications 565

Types of IDL Runtime Applications

IDL applications can be written in IDL itself and distributed in IDL SAVE files, or
they can be written in another programming language and distributed in a compiled
binary format. IDL applications fall into the following two broad categories:

Native IDL applications— A native IDL application iswritten entirely in
IDL and saved in a SAVE file or series of SAVE filesthat can be restored and
run by an IDL distribution.

The process of creating applications written in IDL isthe topic of this manual.
This chapter describes the steps necessary to create and distribute an IDL
application that uses a runtime or embedded license. Chapter 24, “Distributing
Virtual Machine Applications” describes the steps necessary to package and
distribute an IDL application that runsin the IDL Virtual Machine.

Callable DL applications— A Callable IDL applicationiswritten in another
programming language, such as C or C++, and calls IDL as a subroutine. The
process of creating Callable IDL applicationsis covered in the External
Development Guide. Chapter 25, “ Distributing Callable IDL Applications’
describes the steps necessary to package and distribute a Callable IDL
application.

Licensing Options for IDL Runtime Applications

When you have an application that uses IDL and you want to distribute it to users
who do not have an IDL devel opment license, you have the following choices:

Ask your userstoinstall thefree IDL Virtual Machine and run your application
in the Virtual Machine

Purchase a runtime or embedded license from IDL that enables you to bundle
IDL with your application

If your end user has an existing runtime license for another application, your
application can run using that license

Free Runtime License (IDL Virtual Machine)

TheIDL Virtual Machineis aruntime version of IDL that can execute IDL SAVE
fileswithout an IDL license. Usersinstal the IDL Virtual Machine with the IDL
Installer available on an IDL distribution CD-ROM or from the IDL download Web

site.

See Chapter 24, “ Distributing Virtual Machine Applications’ for additional details.

Application Programming What Is an IDL Runtime Mode Application?

566 Chapter 23: Distributing Runtime Mode Applications

Purchased Runtime and Embedded Licenses

You can purchase runtime mode licenses from IDL. Runtime mode licenses provide a
way for you to include alicensed IDL installation with your IDL application or
Callable IDL application. There are two types of runtime mode licenses available:
runtime licenses and embedded licenses.

When you distribute alicensed version of IDL with your application, you provide
your users with IDL functionality, but do not provide access to the IDL command
line, the IDL Workbench, or the ability to compile IDL .pro files. Runtime and
embedded licenses are appropriate for:

* Vertical-market packages developed in IDL but which appear to the user as
stand-alone applications

» Software designed for use by operators or technicians who do not need
programmatic access to IDL’'s full range of analytical tools

e Situationsin which the you do not want end users to be able to modify
functions written in the IDL language

e Organizations with existing investmentsin IDL code, where some mixture of
distributable and development IDL licenses may be cost-effective

If your users need access to the full scope of IDL’s features or advanced analytical
tools outside the scope of your application, you might choose to distribute your
application with an IDL development license. Contact your sales representative to
purchase copies that you can distribute.

Runtime Licensing

A runtime license enables asingle user to run IDL SAVE files or Callable IDL
applications. Runtime licenses require that you have some advance information about
your users's computer. Runtime licenses come in two varieties:

* Node-locked licenses that can be installed only on a single machine
* Hoating licenses that can be installed on any machine

See “Runtime Licensing” on page 573 for details.

Embedded Licensing

An embedded license allows you to build license information into IDL SAVE files or
Callable IDL applications. Embedded licenses do not require you to have advance
information about your users' computers. See “Embedded Licensing” on page 577
for details.

What Is an IDL Runtime Mode Application? Application Programming

Chapter 23: Distributing Runtime Mode Applications 567

Limitations of Runtime Applications

IDL applicationsthat run without an IDL devel opment license — whether native IDL
or Callable IDL — do not have access to the IDL compiler and thus cannot compile
IDL source code from .pro files. Asaresult, operations that require the compiler
will not execute when a development license is not present. In addition, if you are
writing an IDL application to be distributed to users who do not have a development
IDL license, you should be aware of the following limitations.

Note
Since runtime applications do not provide access to the IDL command line, startup
files are not executed. See “Understanding When Startup Files are Not Executed”
for details.

Error Handling

Because the ON_ERROR procedure has the potentia to force the IDL interpreter into
an idle state when an error is encountered, use the CATCH procedure instead if your
application will be distributed to users without a development IDL license.

Working Directory of Runtime Applications

When a SAVE file is executed with aruntime or embedded license, IDL’s current
working directory will be the directory that contains the SAVE file.

IDL Help

Support for the IDL 7.0 help system is not included in a runtime distribution by
default. This means that applications that use the ONLINE_HELP procedure to
display IDL help topics will fail unlessyou explicitly include the required support. If
you use the MAKE_RT procedure to create a runtime distribution, you can use the
IDL_HELP keyword to include the necessary files. See Chapter 22, “Providing
Online Help For Your Application” (Application Programming) for additional
discussion of the IDL 7.0 help system.

Support for the IDL Assistant help viewer (IDL’s standard help viewer for releases
6.2 thorugh 6.4) is not included in aruntime distribution by default. If your
application usesan IDL Assistant help system (that is, if it includes a . adp fil€), you
will need to explicitly include the IDL Assistant help viewer. If you use the
MAKE_RT procedure to create a runtime distribution, you can use the
IDL_ASSISTANT keyword to include the necessary files.

Application Programming Limitations of Runtime Applications

568

Chapter 23: Distributing Runtime Mode Applications

Steps to Distribute a Runtime Application

To create and distribute an IDL runtime application, do the following:

1

Create your application using an IDL development license. Test the
application using the type of license you expect your end user to have.

If your application uses Callable IDL, see Chapter 25, “Distributing Callable
IDL Applications’ for information on creating a runtime distribution.

Decide on alicensing mechanism for your application. (For an overview of
licensing mechanisms, see“Licensing Optionsfor IDL Runtime Applications’
on page 565.) If you choose to distribute an application that will runin the free
IDL Virtual Machine, see Chapter 24, “ Distributing Virtual Machine
Applications’ for information on creating a runtime distribution.

Obtain licenses for your application from IDL. See “Runtime Licensing” on
page 573 or “Embedded Licensing” on page 577 for details.

Create an application distribution as described in “ Creating an Application
Distribution” on page 578.

Create invocation and use instructions for your application. See “ Starting a
Runtime Application” on page 579 for additional information.

Createan instaler, if desired, and installation instructions for your application.
See “Installing Your Application” on page 582 for additional information.

Steps to Distribute a Runtime Application Application Programming

Chapter 23: Distributing Runtime Mode Applications 569

Preferences for Runtime Applications

IDL’s preference system allows devel opers, administrators, and individual usersto
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

Note
Before attempting to use preferences to customize the runtime IDL environment,

you should have a clear understanding of how IDL loads and uses preference
values. See Appendix E, “IDL System Preferences’ (IDL Reference Guide) for a
detailed discussion of the preference system.

Preference Etiquette

IDL’s preference system routines PREF_SET and PREF_COMMIT provide
programmatic control over the values of preferences saved in an individual user’s
preferencesfile. In general, as an application author, you should not use these
routinesin IDL code. Since preference values set in the user preference file persist
between sessions, changes made by your application using these routines will affect
your end user’s IDL environment even when he or sheis running other applications.

Preference files loaded at application startup provide a much more user-friendly
mechanism for specifying preference values that apply only to your application. To
use this mechanism, create a preference file that contains the preference values you
wish to have in effect when your application runs, and include the name of the
preference file in the command that launches your application viathe -pref
command-line option. (See “Command Line Options for IDL Startup” (Chapter 1,
Using IDL) for details.)

Loading Preference Values at Application Startup

IDL provides the following mechanisms for loading preference values when an IDL
application starts:

» Specifying a preferencefile viathe -pref command line option.

e Providingan ial .pref filelocated in the same directory asthe IDL DLL file
(Windows only).

e Specifying individual preference values specified as command line options.

Application Programming Preferences for Runtime Applications

570

Chapter 23: Distributing Runtime Mode Applications

» Specifying individual preference values viathe values of corresponding
system environment variables.

e Modifyingtheidl .pref filein the resource/pref subdirectory of the
application distribution. This method is only useful if you are distributing an
IDL distribution to support your application — you should not modify an
existing id1.pref filein your end user'sinstalled IDL distribution.

Note
These mechanisms change the value of the specified preference or preferences for
the current IDL session only. Values are not written to the user’s preferencefile.

Specifying Preferences at the Command Line

Of these options the first — specifying a preference file viathe -pref command line
option — isthe most general and user-friendly. By specifying the values for
preferences used by your application in a separate, application-specific preferences
file, you can both control IDL’s runtime environment and provide your end users
with a mechanism to tune the IDL environment themselves. If one of your end users
can achieve better performance using a different preference value, all that user needs
to do is alter the value in the preference file loaded at startup.

Providing an idl.pref File (Windows Only)

The second option — providing an 1d1.pref filein the same directory asthe IDL
DLL — isonly available under Microsoft Windows.

There are three Windows-only runtime preferences:

e IDL_WINRT_FILE alows you to specify the name of a save file to be run
when IDL starts up

* IDL_WINRT_FILE_TY PE alows you to specify the licensing mode of a
runtime application

e IDL_WINRT_ICON allowsyou to specify the name of anicon file to use with
aruntime application

These preferences are honored only when the idirt . exe executableisin use. Their
values are described in detail in “Windows Runtime Preferences’ (Appendix E, IDL
Reference Guide).

Preferences for Runtime Applications Application Programming

Chapter 23: Distributing Runtime Mode Applications 571

Specifying Individual Preference Files

Specifying individual preference values at the command line provides little
advantage over specifying the name of a preference file, but may be useful if the
number of preferences to be specified is small.

Using Environment Variables

The technique of using environment variables to specify preference values can be
useful, but should be used with caution. Setting an environment variable provides a
relatively easy way for your end usersto override your preference settings without
the need to modify the preference file you distribute. Depending on how the value of
an environment variable is specified, however, the value may persist between
invocations of your application. Asaresult, end users might experience unexpected
behavior in other IDL applications (or in IDL itself) if an environment variable
specified for your applicationsisin effect when the other applications are run.

Modifying the Default Preferences File

You should only modify the resource/pref/idl.pref fileif you are creating
and distributing your own runtime application distribution.

See Appendix E, “IDL System Preferences’ (IDL Reference Guide) for adetailed
discussion of these options.

Examples

Suppose you have created an IDL runtime application named myapp that performs
numerous CPU-intensive cal culations that could potentially use multiple CPUson a
multiprocessor system. If you want to ensure that your application uses at most two
CPUs, you could include the following setting in a preference file named

myapp .pref:

IDL_CPU_TPOOL_NTHREADS : 2

On UNIX platforms, you could then invoke your runtime application with a
command line something like the following:

idl -rt=/myapp/myapp.sav -pref=/myapp/myapp.pref
On Windows platforms, you could create a preference file containing the following:

IDL_CPU_TPOOL_NTHREADS : 2
IDL_WINRT FILETYPE: 0
IDL_WINRT_ICON: c:\myapp\myapp.ico

Application Programming Preferences for Runtime Applications

572 Chapter 23: Distributing Runtime Mode Applications

These preference values specify the maximum number of CPUs, the need for a
runtime license for your application, and the application icon. If you name the
preferencesfile id1.pref and placeitinthebin/bin.plat form subdirectory of
your application distribution (where platformisyour platform-specific bin
directory), IDL will load the preferences when auser double-clicks on the application
icon.

Preferences for Runtime Applications Application Programming

Chapter 23: Distributing Runtime Mode Applications 573

Runtime Licensing

A runtime license alows you to run an IDL application that cannot display the IDL
Workbench or IDL command line and which cannot compile . pro files. Thistype of
licensing offers developers who have smaller customer bases the opportunity to buy
single distribution licenses as they are needed, paying a small fee for each license.
Thelicenseis either anode-locked license tied to the specific machine on which your
application will run (which means you will need to obtain information about your
customer’s machine), or amore costly but less restricted floating license that will run
on any machine.

When using runtime licensing, you can distribute licenses to your usersin two ways.

« If you wish to distribute a licensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but forcesyou to
create separate distributions for each customer.

< |f you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase alicense for each customer
and provide that license along with the information necessary for the customer
to license your application.

Ensuring That Your License is Used

To ensure that your application will run with your runtime license and not in the IDL
Virtual Machine, add code similar to the following to your application before
preparing your application distribution:
isVM = LMGR(/VM)
IF isVM THEN BEGIN
void = DIALOG_MESSAGE(['Please contact the author',6 $
'for licensing instructions'])

RETURN
ENDIF

Obtaining and Installing Runtime Licenses
Runtime applications are licensed using either node-locked licenses or floating

single-user licenses. Node-locked licenses are tied to the specific computer on which
the application will run, while floating licenses will run on any computer.

Application Programming Runtime Licensing

574

Chapter 23: Distributing Runtime Mode Applications

To license your runtime application, do the following:

1. Getinformation about the specific computer on which your application will
run. The process for retrieving the required information depends on the end
user’s operating system, as described bel ow.

2. Sendthisinformationto ITT Visual Information Solutions. We will generate a
license file and send it to you.

3. Install thelicensefileinalicense subdirectory inyour application’s
distribution, or provide instructions to your end user describing how to install
the license file.

Custom Features

You can request that your own custom feature license be added to your runtime
license. Using a custom feature license allows you to specify that your application
will only run if the custom feature license is present. Contact your ITT Visua
Information Solutions sales representative for information on adding custom features
to your runtime license.

Obtaining a Windows License

In order to obtain the information needed to generate a node-locked license file, your
end user must run the application 1mtools . exe on the machine for which your
application will be licensed. If your end user has already installed an unlicensed copy
of your application, he or she will have access to the 1mtools. exe application.
Otherwise, you will need to provide the end user with a copy of the Imtools.exe
file, which can be found inthe bin/bin.plat form directory of your IDL
distribution.

Provide your end user with the following instructions:

1. Inorder for Imtools.exe to be able to retrieve the correct information, your
system must have a properly-configured network interface card installed.

Run the Imtools. exe application. The L mtools dialog appears.

Select the System Settings tab.

Click the Save HOSTID Info to a File button, then save the information to
your desktop with the file namehostid. txt.

5. Sendthehostid.txt file saved in the previous step to your application
vendor.

When your end user has provided you with the information obtained by
lmtools.exe, eémail thisinformation to register@ITTvis . com or fax the

Runtime Licensing Application Programming

mailto:register@ittvis.com

Chapter 23: Distributing Runtime Mode Applications 575

information to ITT Visua Information Solutions at (303) 786-9909. If you did not
purchase IDL directly from ITT Visual Information Solutions, send the file to your
local distributor.

ITT Visua Information Solutions will then send you a license file called
license.dat.

Obtaining a UNIX License

In order to obtain the information needed to generate a node-locked license file, your
end user must run the application 1mhostid on the machine for which your
application will be licensed. If your end user has already installed a copy of IDL, he
or she will have accessto 1mhostid application.

If your end user does not already have an IDL installation, you can provide a copy of
the Imhostid file, located inthebin/bin.platform directory of your IDL
distribution where p1at form isthe platform-specific bin directory. Note that you
must provide the executable for the platform on which your end user will run IDL.

Provide the end user with the following instructions:

1. Executethe command lmhostid. If theuser has an IDL installation, the
1mhostid file can be found in the bin subdirectory of that installation. Text
similar to the following will be displayed:

The FLEX1m host ID of this machine is "80598a67"

2. Providethe host ID returned by 1mhostid, aong with the hostname of the
machine to your application vendor. (To abtain the hostname, enter the
command hostname.)

When your end user has provided you with the information returned by 1mhostid
and the hostname of the machine, e-mail thisinformation to
register@ITTvis.com Of fax theinformationto ITT Visual Information Solutions
at (303) 786-9909. If you did not purchase IDL directly from ITT Visual Information
Solutions, send the file to your local distributor.

We will then send you alicensefilecaled 1icense.dat.
Installing the License File

Onceyou havereceived alicense.dat filefrom ITT Visua Information Solutions,
you must ensure that it isinstalled in a 1icense subdirectory in your application’s
distribution. You can either:

* Create acustom distribution for each individual end user by placing the
license.dat fileinthe 1icense subdirectory of your application’s

Application Programming Runtime Licensing

576

Chapter 23: Distributing Runtime Mode Applications

distribution tree prior to packaging it for the end user. Your end user will not
need to perform any licensing steps manually. Thisis agood solution if you
have a small number of end users.

* Create asingle unlicensed distribution that you provide to all your end users
along with instructions to place the 1icense . dat file you provide separately
inthe 1icense subdirectory. Thisis agood solution if you have arelatively
large number of end users, since it removes the need to create a custom
distribution for each end user.

Caution: IDL_LMGRD_LICENSE_FILE and LM_LICENSE_FILE
Environment Variables

By default, when your application runs, IDL searchesfor adirectory named 1icense
that contains afile named 1icense.dat. It will usethefirst valid license it
encounters; if no licences are found, the application will either run in unlicensed
mode or exit.

If the end user has defined either the IDL_LMGRD_LICENSE_FILE or the
LM_LICENSE_FILE environment variable, IDL will check only the licensefiles
specified by the environment variable. This meansthat if the end user has defined
either theIDL_LMGRD_LICENSE_FILE or theLM_LICENSE_FILE environment
variable for any reason, IDL might not find your application’slicensefile even if itis
placed correctly in alicense subdirectory of your distribution.

See“License Sources” (Chapter 5, Installation and Licensing Guide) for adiscussion
of how the licensing environment variables interact.

Runtime Licensing Application Programming

Chapter 23: Distributing Runtime Mode Applications 577

Embedded Licensing

An embedded license allows your application to run without an IDL license. It can be
distributed to multiple users and will run on any system supported by IDL. Licensing
an IDL application with an embedded license is the simplest form of licensing.

In order to create applications with embedded licenses, you must purchase a special
IDL Developer’sKit license from ITT Visual Information Solutions. The
Developer’'s Kit license gives your copy of IDL the ability to automatically embed a
license in your application’s SAVE file. See “ Creating an Application Distribution”
on page 578 for information on embedding the license information in your
application’s SAVE file.

Note
Licensesfor Callable IDL applications are embedded directly in the application
code. See Chapter 25, “Distributing Callable IDL Applications’ for details.

Optional Embedded Features

When you purchase an IDL Developer'sKit license from ITT Visua Information
Solutions, you can request that one or more optional features be included in the
license. Optional feature licenses control accessto additional-cost IDL modules, such
asthe IDL DICOM toolkit or the IDL DataMiner.

When your application attempts to use an additional-cost IDL module, IDL first
checksto seeif alicense for the module isincluded in your application’s embedded
license. If no license for the module isincluded in the embedded license, IDL will
check any 1icense.dat fileslocated in 1icense directoriesin its search path, or in
files specified by the LM_LICENSE_FILE environment variable. (See “ Caution:
IDL_LMGRD_LICENSE_FILE and LM_LICENSE_FILE Environment Variables’
on page 576 for additional information about how IDL uses this environment
variable.) If no license for the module is avail able, attempts to use that module’'s
features will not succeed.

Application Programming Embedded Licensing

578 Chapter 23: Distributing Runtime Mode Applications

Creating an Application Distribution

If your IDL application isintended to be run in an installation with an IDL
development license, you do not need to create an IDL distribution. Simply package
up your application files (either .pro filesor . sav files, and any necessary data
files) and distribute it to your users along with instructions describing how to install
and launch the application.

If your application will be run by users who do not already have an IDL installation,
or who do not have the proper IDL version, you can create and distribute a runtime
application distribution. Runtime distributions are created using the MAKE_RT
procedure; the processis described in detail in Chapter 26, “Creating a Runtime
Distribution”.

Creating an Application Distribution Application Programming

Chapter 23: Distributing Runtime Mode Applications 579

Starting a Runtime Application

You must provide your end users with instructions describing how to start your
application. You may choose to provide users with the name and location of your
application executable along with alaunch command to execute, or (if you are using
an installer for your application) with shell scripts, shortcuts, or Start menu items.

The application startup process differs depending on whether you are supplying an
IDL runtime distribution (created using the IDL Project interface or themake_rt
script) or are relying on your user to install afull (if potentially unlicensed) IDL
distribution. The following sections describe the process for each of these situations.

Using an IDL Runtime Distribution

If you use the MAKE_RT procedure to create a runtime distribution, specifying a
SAVE file for your application, application launch scripts for your application are
created automatically. (You may need to modify the launch scripts.) If you do not use
MAKE_RT, you can still create application launch scripts based on generic scripts
included in the IDL distribution. See Chapter 26, “ Creating a Runtime Distribution”
for complete details.

Using an Existing IDL Distribution

If you are relying on your end user to install an IDL distribution (licensed or not)
before running your application, you can either give your users instructions based on
the following information or create scripts to launch your application. The specifics
depend on your end user’s platform.

Windows

To start aruntime application if you are not providing aruntime IDL distribution,
either change directoriesto 7DL,_DIR\bin\bin.platform directory (where
1Dpr,_DIRisthemain IDL directory and platformisthe platform-specific bin
directory) or ensure that this directory isincluded in the Windows PATH
environment variable. Do one of the following:

e If your application runsin the IDL Virtual Machine, enter the following:
idlrt -vm=<path><filename>

» If your application uses aruntime license, enter the following:
idlrt <path><filename>

« If your application uses an embedded license, enter the following:

Application Programming Starting a Runtime Application

580 Chapter 23: Distributing Runtime Mode Applications

idlrt -em=<path><filename>

where <path> is the path to the SAVE file, and <filename> is the name of the SAVE
file.

To simplify startup of your application, you can use the Windows launch script
described in “Runtime Application Launch Scripts’ in Chapter 26. Alternately, you
can create a batch file that changes directoriesto the IDL bin directory and invokes
id1lrt with the SAVE file name. Such abatch file might look something like the
following:

@ECHO OFF

REM This batch file launches the IDL runtime application myapp

cd C:\ITT\IDL70\bin\bin.x86
idlrt C:\mydir\myapp.sav

UNIX / Macintosh

To start aruntime application if you are not providing aruntime IDL distribution,
first ensure that the environment variable IDL_DIR is set to the path to the main
directory of the IDL installation. For example, if IDL isinstalled in
/usr/local/itt/id170, youwould set the IDL_DIR environment variableto this
value. When the IDL_DIR environment variable is set, do one of the following:

e If your application runsin the IDL Virtual Machine, enter the following:
idl -vm=<path><filename>
« If your application uses aruntime license, enter the following:
idl -rt=<path><filename>
« If your application uses an embedded license, enter the following:
idl -em=<path><filename>
where <path> is the path to the SAVE file, and <filename> is the name of the SAVE
file.

To simplify startup of your application, you can use the UNIX or Macintosh launch
script described in “ Runtime Application Launch Scripts’ in Chapter 26. Alternately,
you can create a shell script that setsthe IDL_DIR environment variable and calls
IDL with the correct flag and SAVE file name. Such a script might look something
like the following:

#!/bin/sh

This script launches the IDL runtime application myapp
IDL_DIR=/usr/local/itt/id1l70

idl -rt=/mydir/myapp.sav

Starting a Runtime Application Application Programming

Chapter 23: Distributing Runtime Mode Applications 581

Specifying Application Preferences at Startup

You can specify the values of IDL preferencesin your startup command by including
either the -pref command line option or by specifying individual preference values
on the command line.

For example, suppose your application isinstaled in the directory /mydir. To have
IDL load the preference values contained in afile named myapp . pref in the same
directory when the application starts, you might modify your the UNIX startup script
described above to read:

#!/bin/sh

This script launches the IDL runtime application myapp
IDL_DIR=/usr/local/itt/idl1l70

idl -rt=/mydir/myapp.sav -pref=/mydir/myapp.pref

Similarly, to force a Windows runtime application to use software rendering, you
could explicitly specify the preference value in abatch file that starts the application:

@ECHO OFF

REM This batch file launches the IDL runtime application myapp
cd C:\ITT\id170\bin\bin.x86

idlrt C:\mydir\myapp.sav -IDL_GR_WIN_RENDERER 1

See “Preferences for Runtime Applications’ on page 569 for details.

What Happens When IDL Runs Your Application

When you launch an IDL runtime application, IDL does the following:

» Restores the specified SAVE filg, if oneis specified at the command line or
when creating the distribution viathe IDL Project interface or make_rt script

e Under Microsoft Windows, if no SAVE fileis specified, restores the SAVE file
specified by the IDL_WIN_RT preference

e If no SAVE fileis specified, restoresthefile runtime. sav
IDL then calls the main procedure. Thisis one of the following:

e aprocedure named main in the restored SAVE file

e aprocedure with the same name asthe . sav file

When the main procedure returns, IDL exits.

Application Programming Starting a Runtime Application

582 Chapter 23: Distributing Runtime Mode Applications

Installing Your Application

Installation of your application on the end user’'s machine can be performed manually
by the user, or it can be automated using an installer. There are anumber of
commercial applications available to help you build installers.

In order to avoid any possible conflicts with existing versions of IDL, you should
warn your users NOT to install your application in the same directory as IDL x.X,
where IDL x.x isthe version used by your application.

Note
ITT Visua Information Solutions' Global Services group can create installation

packages for your application. Contact your ITT Visua Information Solutions sales
representative for additional information.

Installing Your Application Application Programming

Chapter 24

Distributing Virtual
Machine Applications

This chapter describes the process of creating IDL Virtual Machine applications for distribution.

What Is aVirtual Machine Application? 584
Limitations of Virtual Machine Applications 585
Stepsto Distribute Your Application 586
Preferences for Virtual Machine Applications 587
Creating Application SAVEFiles 589
Creating a Virtual Machine Distribution 591
Starting a Virtual Machine Application 592

Application Programming

583

584 Chapter 24: Distributing Virtual Machine Applications

What Is a Virtual Machine Application?

The IDL Virtual Machineis aruntime version of IDL that can execute IDL . sav
fileswithout an IDL license. It is designed to provide IDL users with asimple,
no-cost method for distributing IDL applications. It runs on al 1DL-supported
platforms, and does not require alicense to run. This utility allows you to easily
distribute IDL SAVE filesto your colleagues or your customers, without requiring
them to own an IDL runtime license.

Beginning with IDL 6.0, the IDL Virtual Machineisincluded with all IDL
distributions. During installation, you can chooseto install just the IDL Virtual
Machine or afull installation of IDL (which includesthe IDL Virtual Machine). For
the benefit of developers who need to debug applications designed to run in this
environment, the IDL Virtual Machine can be started explicitly. Otherwise, if a
SAVE file program is run without an IDL license, IDL defaultsto the IDL Virtua
Machine mode.

If You Are Running a Virtual Machine Application

If you have received an IDL Virtual Machine application from someone else and are
interested in running it on your own computer, do the following:

1. Install the DL Virtual Machine. If the application you received does not
include aruntime IDL distribution or installer, you can use an IDL installer
from ITT Visual Information Solutions. You do not need an IDL licenseto run
Virtual Machine applications.

2. Install the Application. Follow the application developer’s instructions to
install the Virtual Machine application on your computer.

3. Run the Application. Follow the application devel oper’sinstructions to start
the application, or see “ Starting a Virtual Machine Application” on page 592.

If You Are Creating a Virtual Machine Application
If you are creating an IDL Virtual Machine application, you should be familiar with

the entire contents of this chapter. You may also wish to familiarize yourself with
Chapter 23, “Distributing Runtime Mode Applications’.

What Is a Virtual Machine Application? Application Programming

Chapter 24: Distributing Virtual Machine Applications 585

Limitations of Virtual Machine Applications

The IDL Virtual Machine will run acompiled IDL SAVE fileevenif no IDL license
ispresent. ITT Visual Information Solutions' aim with the IDL Virtual Machineisto
facilitate IDL code collaboration and application distribution.

In addition to the limitations described in “Limitations of Runtime Applications’ in
Chapter 23, applications that run in the IDL Virtual Machine have the following
restrictions:

Note

The IDL Virtual Machine displays a splash screen on startup.
SAVE files must be created using IDL version 6.0 or later.

No accessto the IDL command line or IDL compiler is provided. Startup files
are only executed when acommand lineis present. See “ Understanding When
Startup Files are Not Executed” (Chapter 1, Using IDL) for details.

Theuse of the IDL EXECUTE function isdisabled. (In most cases, callsto the
EXECUTE function can be replaced with callsto the CALL_FUNCTION and
CALL_PROCEDURE routines.)

The Execute, GetVar, and SetVar methods to the IDL_IDLBridge object are
disabled.

The COM and Java IDL Export Bridge connector objects are disabled.
Callable IDL applications will not runin the IDL Virtual Machine.

The IDL Virtual Machine installation program does not install the IDL DataMiner,
IDLffDicomEX feature, IDL-Java bridge, or high resolution maps. If your
application uses any of these features, users must install the full version of IDL
(including the desired optional features) rather than the default IDL Virtual
Machine installation. Although an IDL license will not be required to run in IDL
Virtual Machine mode, certain features may require a special license,

Application Programming Limitations of Virtual Machine Applications

586 Chapter 24: Distributing Virtual Machine Applications

Steps to Distribute Your Application

To create and distribute an IDL Virtual Machine application, do the following:

1. Create your application using an IDL development license, observing the
limits described in “ Limitations of Virtual Machine Applications’ on
page 585. Test the application in the IDL Virtual Machine.

2. Create one or more SAVE files containing your application. See “ Creating
Application SAVE Files’ on page 589 for details.

3. Provide your users with instructions for installing an unlicensed copy of IDL,
or create an application distribution as described in “ Creating a Virtual
Machine Distribution” on page 591.

Provide your users with instructions for installing your IDL application.

Provide your users with instructions for running your IDL application in the
IDL Virtual Machine. See “ Starting a Virtual Machine Application” on
page 592.

Steps to Distribute Your Application Application Programming

Chapter 24: Distributing Virtual Machine Applications 587

Preferences for Virtual Machine Applications

IDL’s preference system allows devel opers, administrators, and individual usersto
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

See “Preferences for Runtime Applications’ in Chapter 23 for a discussion of using
preferencesin the context of any IDL runtime application, including applications that
runin the IDL Virtua Machine.

The process of specifying preferences for a Virtual Machine application is
complicated by the following facts:

Since you are relying on a standard IDL Virtual Machine distribution rather
than a distribution you create, it is more difficult to install a preferencesfilein
the application distribution.

On Microsoft Windows and Macintosh platforms, users may launch your
Virtual Machine application by clicking on the SAVE fileicon, or by dragging
the SAVE fileicon onto the Virtual Machine icon. This prevents you from
specifying preferences via a command line option.

Options for Windows Applications

If your Virtual Machine application runs under Microsoft Windows, you have the
following options:

Have your users launch the Virtual Machine application via the Windows
command line, and use the -pref command line option to specify a
preferences file or specify individual preferences.

Have your usersingtall an idl.pref fileinthe
IDL_DIR/bin/bin.platform directory where platformisthe platform-
specific bin directory, and then launch the application by clicking on the
SAVE fileicon or by dragging it to the Virtual Machineicon.

Instruct your users to set environment variables that correspond to the
preferences you need to specify.

If you are providing aruntime distribution for your application, you can install
an idl.pref fileinthe 101,_DIR/bin/bin.platform directory yourself.

Application Programming Preferences for Virtual Machine Applications

588 Chapter 24: Distributing Virtual Machine Applications

Options for UNIX/Macintosh Applications

If your Virtual Machine application runs under UNIX (including Mac OS X), you
have the following options:

» Haveyour userslaunch the Virtual Machine application viathe shell command
line, and use the -pref command line option to specify a preferencesfile or
specify individual preferences.

e Instruct your usersto set environment variables that correspond to the
preferences you need to specify.

Preferences for Virtual Machine Applications Application Programming

Chapter 24: Distributing Virtual Machine Applications 589

Creating Application SAVE Files

An IDL application created in IDL 6.0 or later that does not use the EXECUTE
function can be saved in one or more SAVE files that will runin the IDL Virtual
Machine. If an IDL applicationisto beruninthe IDL Virtual Machine, it is not
necessary to include an IDL distribution with the SAVE file because IDL Virtual
Machineisinstalled on the user's machine. The SAVE file need only include your
own code, creating asmaller file that is easier to distribute.

To create SAVE filesto run in the IDL Virtual Machine, do one of the following:

Note

Create SAVE files from one or more compiled .pro fileswith the SAVE
procedure. See “ Creating SAVE Files of Program Files’ on page 56 for details,
and refer to “SAVE” (IDL Reference Guide).

Create SAVE files from a project by selecting Project — Export with the
Save File (. sav) option specified.

Creating SAVE files of object-oriented programs requires the use of
RESOLVE_ALL with the CLASS keyword.

Single vs. Multiple SAVE Files

There are several ways to include the necessary routinesin your application:

For anative IDL application, include all routines in the main SAVE filethat is
restored when your application is started. This makes all routines available
without having to restore any additional SAVE files, and reduces the number
of SAVE files used by your application. The easiest way to do thisisto add all
.pro filesto aproject, and build the project.

Create a separate SAVE file containing all your routines. You might use this
method for a Callable application, if you want to keep certain routines separate
from your main SAVE filein anative IDL application, or if your application
includes routines provided to you as a SAVE file by another developer. To run
any routinesincluded in this SAVE file, you must restore the SAVE file by
either calling a routine with the same name as the . sav file or restore it
explicitly using RESTORE.

Create a separate SAVE file for each routine used by your application.
Assuming each . sav file uses the same name as the procedure or function it
contains, this allows you to call each routine without having to explicitly

Application Programming Creating Application SAVE Files

590 Chapter 24: Distributing Virtual Machine Applications

restore its SAVE file because IDL will search the current directory and the
defined 'PATH for the . sav file and restore it automatically when it
encounters thefirst call to the routine.

Version Compatibility of SAVE Files

The IDL Virtual Machine will execute IDL routines stored in SAVE files created with
IDL version 6.0 and later. Any SAVE files created with previous versions of |DL
must be recompiled using IDL 6.0 or later for them to run with the Virtual Machine.

Creating Application SAVE Files Application Programming

Chapter 24: Distributing Virtual Machine Applications 591

Creating a Virtual Machine Distribution

If your IDL Virtual Machine application is intended to be run by users who have a
full IDL installation (with or without an IDL license), you do not need to create an
IDL distribution. Simply package up your application files (. sav files and any
necessary datafiles) and distribute them to your users along with instructions
describing how to install and launch the application.

If your application will be run by users who do not already have an IDL installation,
or who do not have the proper IDL version, you can create and distribute a runtime
application distribution. Runtime distributions are created using the MAKE_RT
procedure; the processis described in detail in Chapter 26, “Creating a Runtime
Distribution”.

Application Programming Creating a Virtual Machine Distribution

592 Chapter 24: Distributing Virtual Machine Applications

Starting a Virtual Machine Application

Installations of IDL that have accessto a devel opment license can create compiled
binary versions of IDL applications; these compiled versions are stored in files with
the extension . sav. Many applications stored in . sav files can be executed by the
IDL Virtual Machine.

If you use the MAKE_RT procedure to create a runtime distribution, specifying a
SAVE file for your application, application launch scripts for your application are
created automatically. (You may need to modify the launch scripts.) If you do not use
MAKE_RT, you can still create application launch scripts based on generic scripts
included in the IDL distribution. See Chapter 26, “ Creating a Runtime Distribution”
for complete details.

Alternately, you can provide instructions for your users detailing how torun a . sav
fileinthe IDL Virtual Machine. The process depends on your operating system:

¢ \Windows

¢ UNIX

e MacOS X
Windows

Windows users can double-click on the . sav file, launch the IDL Virtual Machine
and open the . sav file, or launch the. sav filein the IDL Virtual Machine from the
command line.

Double-Click a .sav File

To run an application stored in a.sav file, simply double-click on the .sav fileicon in
the Windows Explorer. If adevelopment licenseis present, the application will runin
alicensed copy of IDL. If nolicenseis present, the IDL Virtual Machine window will
open; click anywhere in the window to run the application in the IDL Virtual
Machine.

Launch the IDL Virtual Machine

To open a . sav file from within the IDL Virtual Machine:

1. LaunchthelDL Virtual Machine and display the IDL Virtual Machine
window by selecting Start — Programs— IDL 7.0 — IDL Virtual Machine.

Starting a Virtual Machine Application Application Programming

Chapter 24: Distributing Virtual Machine Applications 593

2. Click anywherein the IDL Virtua Machine window to close the window and
display the file selection menu.

3. Locate and select the . sav file, and double-click or click Open to runit.
Running from the Windows Command Line

To run a . sav file from the command line prompt:

1. Open acommand line prompt. Select Run from the Start menu, and enter
cmd.

2. Changedirectory (cd) tothe 7pr,_DIR\bin\bin.platform directory where
platformisthe platform-specific bin directory.

3. Enter the following at the command line prompt:
idlrt -vm=<path><filename>

where <path> isthe path to the . sav file, and <fi 1ename> is the name of
the . sav file.

UNIX

UNIX users must launch the IDL Virtual Machine from the UNIX command line.
Toruna .sav fileinthe IDL Virtual Machine:
1. Enter the following at the UNIX command line:
idl -vm=<path><filename>

where <path> isthe complete path to the . sav file and <filename> isthe
name of the . sav file. The IDL Virtual Machine window is displayed.

2. Click anywherein the IDL Virtua Machine window to close the window and
runthe . sav file.

To launch the IDL Virtual M achine and use the file selection menu to locatethe . sav
fileto run:

1. Enter the following at the UNIX command line:
idl -vm
The IDL Virtual Machine window is displayed.

2. Click anywherein the IDL Virtua Machine window to close the window and
display the file selection menu.

3. Locate and select the . sav file and click OK.

Application Programming Starting a Virtual Machine Application

594 Chapter 24: Distributing Virtual Machine Applications

Mac OS X

Macintosh users can launch the IDL Virtual Machine and open the . sav file, or
launch the. sav filein the IDL Virtual Machine from the command line.

Using the IDL Virtual Machine Icon

To open a . sav filefrom the IDL Virtual Machine:

1. Double-click thelDL 7.0 Virtual Machineicon to display the IDL Virtual
Machine window.

2. Click anywherein the IDL Virtua Machine window to close the window and
display the file selection menu.

3. Locate and select the . sav file and click OK.
Running from the Command Line

To run the IDL Virtual Machine from the UNIX command line:

1. Enter the following at the UNIX command line:
idl -vm=<path><filename>

where <path> isthe complete path to the . sav file and <filename> isthe name
of the . sav file. The IDL Virtual Machine window is displayed.

2. Click anywhereinthe IDL Virtual Machine window to close the window and
run the . sav file.

To launch the IDL Virtual M achine and use the file selection menu to locatethe . sav
fileto run:

1. Enter the following at the UNIX command line:
idl -vm
The IDL Virtual Machine window is displayed.

2. Click anywherein the IDL Virtua Machine window to close the window and
display the file selection menu.

3. Locate and select the . sav file and click OK.

Starting a Virtual Machine Application Application Programming

Chapter 25

Distributing Callable
IDL Applications

This chapter describes the process of creating Callable IDL applications for distribution.

What IsaCallable IDL Application? 596
Limitations of Runtime Mode Callable IDL Applications .. 597
Stepsto Distribute a Callable IDL Application........... 598
Preferences for Callable IDL Applications 599
RuntimeLicensingovv vt i e s 600
EmbeddedLicensingciiiiiiiiiin... 601
Creating a Callable IDL Application Distribution 603
Starting aCallable IDL Application 606
Installing Your Callable IDL Application 607

Application Programming

595

596 Chapter 25: Distributing Callable IDL Applications

What Is a Callable IDL Application?

A Callable IDL application iswritten in another programming language, such as C or
C++, and calls IDL as asubroutine. The process of creating Callable IDL
applicationsis described in the External Development Guide.

Unlike applications written entirely in IDL, the process of creating an application
distribution for a Callable IDL application is the same whether the application’s end
user has an IDL development license or not. This chapter describes the packaging
process for Callable IDL applications using any licensing mechanism.

Callable IDL applications are packaged for distribution in much the same way as
native IDL applications. Before beginning the process of packaging your Callable
IDL application, you should be familiar with the contents of Chapter 23,
“Distributing Runtime Mode Applications’. This chapter describes the additional
steps necessary to create and distribute a Callable IDL application.

Licensing Options for Callable IDL Applications

When you have a Callable IDL application that you want to distribute to users who
do not have an IDL development license, you must purchase a runtime or embedded
license from ITT Visual Information Solutions. These options are described in detail
in “Runtime Licensing” and “Embedded Licensing” in Chapter 23, “ Distributing
Runtime Mode Applications”.

If your end user aready has an IDL development license, you can simply package
your Callable IDL application as described in this chapter and distribute it without
including alicense.

What Is a Callable IDL Application? Application Programming

Chapter 25: Distributing Callable IDL Applications 597

Limitations of Runtime Mode Callable IDL
Applications

IDL applicationsthat run without an IDL devel opment license — whether native IDL
or Callable IDL — do not have access to the IDL compiler and thus cannot compile
IDL source code from .pro files. Asaresult, operations that require the compiler
will not execute when a development license is not present. In addition, if you are
writing an IDL application to be distributed to users who do not have an IDL
development license, you should be aware of the restrictions described in
“Limitations of Runtime Applications’ in Chapter 23, “ Distributing Runtime Mode
Applications’.

Note
Startup files are not executed when you launch an IDL application without a

command line. See “Understanding When Startup Files are Not Executed” (Chapter
1, Using IDL) for details.

Application Programming Limitations of Runtime Mode Callable IDL Applications

598

Chapter 25: Distributing Callable IDL Applications

Steps to Distribute a Callable IDL Application

To create and distribute a Callable IDL application, do the following:

1

Create your application using an IDL development license. Test the
application using the type of license you expect your end user to have. See the
External Development Guide for information on creating Callable IDL
applications.

Decide on alicensing mechanism for your application. (For an overview of
licensing mechanisms, see “Licensing Optionsfor IDL Runtime Applications’
in Chapter 23.)

Obtain licenses for your application from ITT Visual Information Solutions.
See “Runtime Licensing” on page 600 or “Embedded Licensing” on page 601
for details.

Create an application distribution as described in “ Creating a Callable IDL
Application Distribution” on page 603.

Create invocation and use instructions for your application. See “ Starting a
Callable IDL Application” on page 606 for additional information.

Createaninstaler, if desired, and installation instructions for your application.
See “Installing Your Callable IDL Application” on page 607 for additional
information.

Steps to Distribute a Callable IDL Application Application Programming

Chapter 25: Distributing Callable IDL Applications 599

Preferences for Callable IDL Applications

IDL’s preference system allows devel opers, administrators, and individual usersto
control default values for many aspects of IDL’s environment and configuration.
Creators of runtime applications can take advantage of the preference system to
customize the environment in which a particular application runs.

See “Preferences for Runtime Applications’ in Chapter 23 for a discussion of using
preferences in the context of alDL runtime application.

The process of specifying preferences for a Callable IDL application is complicated
by the fact that users never launch IDL directly. This meansthat in order to specify
preference values, you must do one of the following:

e Modify theidl.pref fileinthe resource/pref subdirectory of the
application distribution. This method is only useful if you are distributing an
IDL distribution to support your application — you should not modify an
existing id1.pref filein your end user'sinstalled IDL distribution.

e Instruct your usersto set environment variables that correspond to the
preferences you need to specify, or explicitly set the variables yourself in a
startup script or batch file.

Application Programming Preferences for Callable IDL Applications

600 Chapter 25: Distributing Callable IDL Applications

Runtime Licensing

A runtime license alows you to run an IDL application that cannot display the IDL
Workbench or IDL command line and which cannot compile . pro files. Thistype of
licensing offers developers who have smaller customer bases the opportunity to buy
single distribution licenses as they are needed, paying a small fee for each license.
Thelicenseis either anode-locked license tied to the specific machine on which your
application will run (which means you will need to obtain information about your
customer’s machine), or amore costly but less restricted floating license that will run
on any machine of a given platform.

Note
It is beyond the scope of this manual to discuss the creation of Callable IDL
applications. See Chapter 16, “Callable IDL" (External Development Guide) for
details. Note that applications using a runtime license must set the
IDL_INIT_RUNTIME option when calling the IDL _Initialize() function, and
must call IDL_RuntimeExec() rather than IDL_Exec().

When using runtime licensing, you can distribute licenses to your usersin two ways.

« If you wish to distribute a licensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but forces you to
create separate distributions for each customer.

< |f you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase a license for each customer
and provide that license along with the information necessary for the customer
to license your application.

See “Obtaining and Installing Runtime Licenses’ on page 573 for information on
obtaining and installing runtime licenses for your Callable IDL application.

Runtime Licensing Application Programming

Chapter 25: Distributing Callable IDL Applications 601

Embedded Licensing

An embedded license allows your application to run without an IDL license. It can be
distributed to multiple users and will run on any system supported by IDL. Licensing
an IDL application with an embedded license is the simplest form of licensing.

Note
It is beyond the scope of this manual to discuss the creation of Callable IDL
applications. See Chapter 16, “Callable IDL" (External Development Guide) for
detalls.

In order to create applications with embedded licenses, you must purchase a special
IDL Developer’sKit license from ITT Visual Information Solutions. If you specify
that you will be distributing a Callable IDL application when you purchase your
Deveoper'sKit license, ITT Visual Information Solutions will provide you with a
license string and some initialization code to be embedded into your application code
before the application’sinitial call to IDL.

Obtaining Your Licensing Information
Contact ITT Visua Information Solutions for your license information. You will

need to provide the following information:

e Thelicense installation number for your embedded license. Note that this
number is different from the installation number for IDL itself.

e Your company hame.

e Application title (e.g., My App).

« Name of the application executable (e.g., myapp).

« IDL interface being called (Callable IDL).

e Cadlling program language (e.g., VB, C++, C, Fortran).

You will receive atext file containing afunction that IDL usesto retrieve the
licensing information.

Application Programming Embedded Licensing

602 Chapter 25: Distributing Callable IDL Applications

Modifying Your Application Code

After you receive your license information, make the following changes to your
application code, in the module from which you areinitializing IDL. These
instructions assume your code iswrittenin C.

1. Definethelicensing information for your application. Although your licensing
information isindividualized, it will resemble the following:

/* Callable Application license for: myapp, My App */
/* License built for IDL Version 7.0 */
static char *initStr[] = {

"12345678abcdabecd",

"12345678abcdabecd",

"12345678abcdabecd",

"12345678abcdabecd",

"12345678abcdabecd",

R

2. Allocate the following structure in the callable application.:
IDL_INIT DATA init_data;
3. Initialize the structure in the callable application before IDL initialization:

init_data.applic = initStr;
init_data.options |= IDL_INIT_APPLIC;

4. Initialize IDL with the following statement (all platforms):

if (!'IDL_Initialize(&init_data))
return (FALSE) ;

Embedded Licensing Application Programming

Chapter 25: Distributing Callable IDL Applications 603

Creating a Callable IDL Application
Distribution

This section discusses the process of creating an application distribution that includes
the files necessary to run IDL, allowing you to distribute your application to users
who do not already have IDL installed.

First, see “Creating an Application Distribution” in Chapter 23 for information on
creating an IDL application distribution. The steps you will take after creating the
IDL runtime distribution depend on the platform on which your Callable IDL
application will run.

Windows

Once you have created an IDL runtime distribution, you must do the following:

1. Addyour Callable IDL application executablesto thebin/bin.platform
subdirectory of the distribution where p1at form isthe name of the platform
for which you created the application.

2. If your application uses preferences, edit the resource/pref/idl .pref file
to contain the correct preference values.

3. If you are using the launch script generated by the MAKE_RT procedure,
modify the launcher’s . ini file to invoke your Callable IDL application rather
thanthe idlrt.exe executable. Alternately, you can simply provide
instructions detailing how to execute your Callable IDL executablefile.

UNIX

Once you have created an IDL runtime distribution, you must do the following:

1. Addyour Callable IDL application executablestothe bin.platform
directory, where platformisthe name of the platform for which you created
the application. If you are distributing your application on multiple platforms,
copy the executable for each platform to the corresponding bin.platform
directory. Placing your executablesinthebin.platformdirectory offersa
couple of advantages:

« It simplifies application startup, especialy if your application is
distributed for multiple platforms. The application startup script calls a
script in the bin directory. This script is designed to start the correct
executable, depending on the platform on which it is being executed. This

Application Programming Creating a Callable IDL Application Distribution

604 Chapter 25: Distributing Callable IDL Applications

alows the user to start the application on any platform by simply
executing the startup script in the top-level directory, thereby saving the
user from having to know the directory in which the executable is located.

* It savesthe user, or your installation script, from having to set the
LD_LIBRARY_PATH environment variable because sharable libraries
arelocated inthe bin.plat form directory.

2. Renamethe idl script. The idl scriptislocated in the bin directory of your
distribution. For Callable IDL applications, this script must use the same name
as your application executableinthebin. platformdirectory. For example,
if your application executableinthebin.platformdirectory is called
myapp, renamethe id1 script in the bin directory to myapp.

3. Edit the startup script. In the top-level directory of your application
distribution, there is a startup script with the name specified by the
startcommand parameter you specified when you ran themake_rt script.
Make the following changes to this script:

A. Edit the startup script to execute the script in the bin directory that you
renamed in the previous step. For example, if your application executable
inthebin.platformdirectory is called myapp, and you therefore
renamed the id1 script in the bin directory to myapp, you would edit the
startup script in the top-level directory asfollows:

. /bin/myapp

Note
The above command requires the user to execute the startup script from the
top-level directory of your application distribution. To allow the user to
launch your application from a different directory, the user (or your
installation script) could change the command to use the full path to the
script in the bin directory. See the example after the following step.

B. Inorder to alow your application to find the correct executable (either
IDL or aCallable IDL executable), the IDL_DIR environment variable
must be set on the user’s machine to point to the top-leve directory of your
application. Because this location is not known until the user installs your
application, IDL_DIR must be set by either an installation script or by the
user.

If there are other ITT Visual Information Solutions products installed on
the user’s machine, IDL_DIR may aready be set. For this reason,
IDL_DIR should be set for the instance of the shell that will be used to
start your application, but should not be set in the user’s login scripts such

Creating a Callable IDL Application Distribution Application Programming

Chapter 25: Distributing Callable IDL Applications 605

as .cshrcor .profile. ThisallowsIDL_DIR to be set properly for your
application, without conflicting with the IDL_DIR setting for other
products the user may have installed.

The most convenient way to set IDL_DIR on the user's machineisto have
your installation script (or the user) edit the startup script. This savesthe
user from having to manually set IDL_DIR prior to launching your
application. You can either provide the user with instructions on adding
the necessary commands to the startup script, or you can have your
install ation script modify the startup script. For example, if an application
called myapp isinstalled in the /home/apps directory, your startup script
would resembl e the following:

IDL_DIR=/home/apps
export IDL_DIR
/home/apps/bin/myapp

If you do not modify the startup script, the user must set IDL_DIR at the
command prompt prior to launching your application. For example, if your
application isinstalled in the user's /home /myapp directory, the user
could execute the following command at the C shell prompt:

setenv IDL_DIR /home/myapp

4. If your application uses preferences, edit the resource/pref/idl .pref file
to contain the correct preference values.

Application Programming Creating a Callable IDL Application Distribution

606

Chapter 25: Distributing Callable IDL Applications

Starting a Callable IDL Application

You must provide your end users with instructions describing how to start your
application. You may choose to provide users with the name and location of your
application executable along with alaunch command to execute, or (if you are using
an installer for your application) with shell scripts, shortcuts, or Start menu items.
The specific instructions you provide will depend on your end user’s platform.

Windows

To start aCallable IDL application if you have exported an IDL runtime distribution
using the MAKE_RT procedure, change directories to the
application\idldir\bin\bin.platformdirectory (where applicationis
the name of the directory that contains your exported distribution, id1diristhelDL
directory inside your application directory, and plat formiseither x86 or x86_64,
depending on the verison of IDL your application relies on) and double-click on the
executable file you created.

Alternately, you can use the Windows launch application described in “ Runtime
Application Launch Scripts’ on page 618.

Note
The executable file must reside in the bin\bin. platform subdirectory of your
exported application distribution. For your users’ convenience, you may want to
create a Windows shortcut to the executable file in another location.

UNIX

To start aCallable IDL application if you have exported an IDL runtime distribution
using the MAKE_RT procedure, change directories to the
application/idldir/bin directory (where application isthe name of the
directory that contains your exported distribution and id1dir isthe IDL directory
inside your application directory) and execute the renamed id1 script file.

Starting a Callable IDL Application Application Programming

Chapter 25: Distributing Callable IDL Applications 607

Installing Your Callable IDL Application

Installation of your application on the end user’'s machine can be performed manually
by the user, or it can be automated using an installer. There are anumber of
commercial applications available to help you build installers.

In order to avoid any possible conflicts with existing versions of IDL, you should
warn your users NOT to install your application in the same directory as IDL x.X,
where IDL x.x isthe version used by your application.

Note
ITT Visua Information Solutions' Global Services group can create installation

packages for your application. Contact your ITT Visua Information Solutions sales
representative for additional information.

Application Programming Installing Your Callable IDL Application

608 Chapter 25: Distributing Callable IDL Applications

Installing Your Callable IDL Application Application Programming

Chapter 26
Creating a Runtime
Distribution

This chapter discusses the process of creating an application distribution that includes the files
necessary to run IDL, allowing you to distribute your application to users who do not already have
IDL installed.

About Runtime Distributions. 610 Runtime Application Launch Scripts 618
Creating a Distribution Using MAKE_RT 611 Incorporating the IDL DataMiner 624
Working with the manifest_rt.txt File 616 Installing a Runtime Distribution 625

Application Programming 609

610 Chapter 26: Creating a Runtime Distribution

About Runtime Distributions

If your IDL application isintended to be run in an installation with an IDL
development license, you do not need to create an IDL distribution. Simply package
up your application files (either .pro filesor . sav files, and any necessary data
files) and distribute it to your users along with instructions describing how to install
and launch the application.

If, however, you intend to distribute your application to users who do not have an
existing IDL installation, or if you want your application to run directly from
removable media such as a CD- or DVD-ROM, you must create a runtime
distribution. A runtime distribution contains the IDL executable files, dynamically-
loaded library files, and resource files needed to execute an IDL application that has
been packaged in an application . sav file.

In versions of IDL prior to version 7.0, there were two methods available to create a
runtime distribution:

e using the Export feature of the IDL Development Environment’s Proj ect
interface (Windows and UNIX)

e using themake_rt script (UNIX only)

In IDL 7.0, these methods were replaced by the MAKE_RT procedure. MAKE_RT
provides a cross-platform mechanism for building runtime distributions for multiple
platforms. The MAKE_RT procedure itself is described in the IDL Reference Guide;
this chapter elaborates on some of the issues surrounding creating and distributing
runtime applications.

About Runtime Distributions Application Programming

Chapter 26: Creating a Runtime Distribution 611

Creating a Distribution Using MAKE_RT

The MAKE_RT procedure creates an IDL distribution for one or more target
platforms.

Note

You do not need to create a SAVE file in order to use MAKE_RT, but application
launch scripts will only be created if a SAVE fileisincluded.

To create aruntime distribution for your application, you will do the following:

a > L NP

Collect Required Information

Modify or Create a Manifest File

Run the MAKE_RT Procedure

Add Required Filesto Your Distribution
Modify the Launch Scripts

Collect Required Information

Before using the MAKE_RT procedureto create aruntime distribution, you will need
to collect the following information and make several decisions about how your
application will run. You will need to:

Choose a name for your runtime application. The application name will be
used as the name of the directory that contains the runtime distribution, and
will be used as the base name for any launch scripts created by MAKE_RT.

Know the full path to the output directory where your distribution will be
created. This directory must exist and you must have the appropriate
permissions to write filesinto it. A directory with the same name as your
application will be created in the output directory.

Know the full path to the SAVE file that contains your application code, if one
exigts. If you specify a SAVE file, launch scripts will be created to run the
application it contains.

Decide which platforms you want your application to run on. You must have
accessto aninstalled IDL distribution for every platform you want to include
in your runtime distribution. (Note that you do not need to have licenses for all
of the platforms; an installed distribution is al that isrequired.)

Application Programming Creating a Distribution Using MAKE_RT

612 Chapter 26: Creating a Runtime Distribution

e Decide whether your application should use an IDL license, if oneis available.
By default, MAKE_RT will create launch scriptsthat will usean IDL licenseif
oneis present; if no license is present, the application will runin the IDL
Virtual Machine. If you want to ensure that your application runsin the Virtual
Machine even if an IDL licenseis available, specify the VM keyword to the
MAKE_RT procedure.

* Know thefull path to your custom manifest file, if you are using one. Manifest
files are described in the following section.

Modify or Create a Manifest File

The default manifest file, 7D, DIR/bin/make_rt/manifest_rt.txt (Where
1pL,_DpIRisthe IDL installation directory) contains entries for al of thefiles
necessary to create aruntime | DL distribution for all supported platforms. In most
cases, you can usethemanifest_rt. txt file without modification, and the
MAKE_RT procedure will select the appropriate files to build the distribution you
specify.

In some cases, however, you may need to modify or add to the list of files contained
inmanifest_rt.txt. For more on the format of thisfile, see “Working with the
manifest_rt.txt File” on page 616.

Run the MAKE_RT Procedure

Run the MAKE_RT procedure to create the runtime distribution. The syntax and
options are described in the IDL Reference Guide.

Creating Mixed UNIX/Windows Distributions

The MAKE_RT procedure alows you to create a single runtime distribution that
supports multiple platforms. In order to created a mixed-platform distribution,
MAKE_RT must have access to an IDL installation directory that contains all of the
required files.

On UNIX platforms (Solaris, Macintosh OS X, and Linux), a single installation
directory can contain files for multiple operating systems. If you are running IDL on
aUNIX platform and wish to create a runtime distribution for one or more UNIX
platforms (but not Microsoft Windows), MAKE_RT can create the distribution in a
single operation. On Microsoft Windows platforms, an IDL installation directory can
only contain Windows files.

If you want to create a runtime distribution that includes both Microsoft Windows
and one or more UNIX platforms, you will need to run the MAKE_RT procedure at

Creating a Distribution Using MAKE_RT Application Programming

Chapter 26: Creating a Runtime Distribution 613

least twice: once to create the Windows distribution and one or more additional times
to create distributions for the UNIX platforms. You can use the same target directory
for al invocations of MAKE_RT; any filesthat are duplicated in the selected
platforms’ distributions will be quietly overwritten.

For example, suppose you want to create a runtime distribution that supports 32-bit
Windows, Macintosh OS X, and 32-bit Linux, and both 32- and 64-bit Solaris. IDL is
installed on the Windows machine, on the Macintosh machine, and in a shared
location for the Linux and Solaris machines. The process of creating a mixed runtime
distribution would look something like this:

1. Onthe Windows machine, run IDL and give the following command:
MAKE_RT, 'myApp', Outdir, SAVEFILE=sfile

where Outdir isadirectory on anetwork drive that is accessible to all systems,
and sfileisthe full path to the IDL SAVE file that comprises your application.

2. Onthe Macintosh, run IDL and give the following command:
MAKE_RT, 'myApp', Outdir, SAVEFILE=sfile

where Outdir isadirectory on a network drive that is accessibleto all systems,
and sfileisthe full path to the IDL SAVE file that comprises your application.

Note
Although your SAVE file has already been copied to the application
directory, you must include the SAVEFILE keyword to MAKE_RT again
here in order to create the Macintosh launch scripts.

3. Oneither aLinux or a Solaris machine, run IDL and give the following
command:

MAKE_RT, 'myApp', Outdir, SAVEFILE=sfile, /LIN32, /SUN32,
/SUN64

where Outdir isadirectory on a network drive that is accessibleto all systems,
and sfileisthe full path to the IDL SAVE file that comprises your application.

Note
Again, you must include the SAVEFILE keyword to MAKE_RT herein
order to create the UNIX launch script.

Application Programming Creating a Distribution Using MAKE_RT

614 Chapter 26: Creating a Runtime Distribution

Add Required Files to Your Distribution

After you have created a distribution using MAKE_RT, any filesthat are not part of
the IDL distribution, aswell as any required IDL files that you did not add to the
manifest, must be manually copied to your distribution. Do the following:

1. If your application requires any datafiles that are not in the IDL distribution,
including ASCII, binary, or image files, add them to your distribution.

2. If your application includes more than one SAVE file, add the filesto the
distribution.

3. If your application includes help files or other documentation, add the filesto
the distribution.

For information on creating and restoring SAVE files, see Chapter 4, “ Creating SAVE
Files of Programs and Data”.

Modify the Launch Scripts

If you specify avalue for the SAVEFILE keyword, the MAKE_RT procedure will
generate launch scripts for each of the platforms supported by your runtime
distribution. The launch scripts are named with the string specified as the Appname
argument to MAKE_RT, and several values within the launch scripts are modified.

Note
On Macintosh systems, the launch script created by MAKE_RT is atemplate that
you must modify before it will launch your application. On Windows, Linux, and
Solaris systems, the launch scripts will function unmodified, but you may want to
customize them.

The launch scripts are described in detail in “ Runtime Application Launch Scripts’
on page 618. This section describes some additional modifications you may want to
make.

Windows

The launch script for Windows platformsis named Appname . exe, where
Appname is the value of the Appname argument to MAKE_RT. The launch script is
configured viaan initialization file named Appname . ini. You may want edit
Appname . ini to modify the text used in the application launch dialog.

If your application runs on both 32- and 64-bit IDL, you may want to create separate
buttons to launch the different versions.

Creating a Distribution Using MAKE_RT Application Programming

Chapter 26: Creating a Runtime Distribution 615

See “Windows Launch Script” on page 618 for additional details.
Macintosh

The launch script for Macintosh platformsis an AppleScript named Appname . app,
where Appname is the value of the Appname argument to MAKE_RT.

See “Macintosh Launch Script” on page 621 for additional details.
Linux/Solaris

The launch script for Linux and Solaris platforms is a shell script named Appname,
where Appname is the value of the Appname argument to MAKE_RT.

See “Linux/Solaris Launch Script” on page 623 for additional details.

Application Programming Creating a Distribution Using MAKE_RT

616 Chapter 26: Creating a Runtime Distribution

Working with the manifest_rt.txt File

In many cases you can usethe 1DL,_DIR/bin/make_rt/manifest_rt.txt file
(where rpr,_pr1risthe IDL installation directory) without modification. If, however,
your application uses files that are not part of the IDL distribution, or if you want to
include features described in mani fest_rt . txt but commented out of the default
runtime distribution, you can create a custom manifest file. To create a custom
manifest file, begin by copying themanifest_rt.txt fileand giving your file a
new name, such aSmanifest_custom. txt.

Warning
Use atext editor such as vi, emacs, TextEdit, or the Windows Notepad to edit
manifest files. Blank lines and any text following acomment character (semicolon)
will beignored by the MAKE_RT procedure.

Format of the Manifest File

The manifest files used by the MAKE_RT procedure are plain text files that contain
onelinefor each filein the IDL installation directory that can potentially be copied to
the runtime distribution.

Each entry in the manifest file correspondsto afile that existsin the IDL distribution
for a particular platform. (Note that although filesfor all supported platforms are
included in the manifest file, the MAKE_RT procedure only attempts to copy files
for platforms specified when the procedureis run.)

In addition to editing the contents of the manifest file based on the keywords
specified at runtime, the MAKE_RT procedure applies the following rules when
creating its list of filesto copy to the runtime distribution:

e blank lines areignored
e linesthat begin with a semicolon are ignored
« text following a semicolon that is not at the beginning of aline isignored
Removing IDL Features
Some sections of themanifest_rt. txt fileare noted as optional. If your
application does not use the features contained in one or more of these sections, you

may be able to remove them from your custom manifest file, creating asmaller
runtime distribution.

Working with the manifest_rt.txt File Application Programming

Chapter 26: Creating a Runtime Distribution 617

Warning
If you choose to remove one or more optional features, be sure to test your
application thoroughly using the runtime distribution. Removing an optional feature
may reveal dependenciesin your code of which you were unaware.

Including Optional IDL Features

Themanifest_rt.txt fileincludes sections that are commented out (that is,
each line beginswith a semicolon). These sections correspond to features (support for
the IDL Dataminer, for example) that are rarely used or that require a special license.
To include these features in your runtime distribution, you will need to edit the
manifest file to remove the comment characters.

Note
Even if you uncomment all of the entries for a particular feature, only the files that

arerequired for the platforms you specify will be copied by MAKE_RT.

Including Non-IDL Files

To include features that are not described in themanifest_rt. txt file, add new
lines describing the location of the files. Note that paths specified in the manifest file
arerelativeto 101, DIR, and that files will have the same relative location with the
IDL runtime distribution as they have in the source distribution.

Note
When adding non-IDL files to amanifest file, use the forward dash (“ /") asthe
directory separator, even on Windows platforms.

Tip
If you are unable to place your extrafilesinto the source IDL distribution, you may
want to manually copy the files after the runtime distribution has been built, as
described in “Add Required Filesto Your Distribution” on page 614.

Application Programming Working with the manifest_rt.txt File

618 Chapter 26: Creating a Runtime Distribution

Runtime Application Launch Scripts

Thebin/make_rt subdirectory of the IDL installation directory contains generic
launch scripts for Windows, Macintosh, and Linux/Solaris applications. If you use
the MAKE_RT procedure to create a runtime distribution and specify avalue for the
SAVEFILE keyword, the appropriate launch scripts will be copied to your
distribution and renamed to match your application. For Windows and Linux/Solaris
platforms, the scripts are modified by MAKE_RT to launch the specified SAVEFILE
application. On Macintosh platforms you must manually edit the launch script.

This section describes the different launch scriptsin more detail, and explains how to
configure and use them. Note that while some of the steps described here are
performed by the MAKE_RT procedure, you may still need to modify the scriptsto
achieve the desired behavior.

Windows Launch Script

To use the application launcher, follow the steps outlined bel ow.

Note
If you use the MAKE_RT procedure and specify avalue for the SAVEFILE
keyword, the launch scripts are copied to your runtime distribution and renamed to
match the Appname argument automatically. The start_app_win. ini fileis
modified to run your SAVE file.

Copy and Rename the start_app_win.exe File

Copy thefile
IDIL, DIR\bin\make_rt\start_app_win.exe

(where IDL_DIRisyour IDL installation directory) to the location of your runtime
distribution. If you want, rename start_app_win. exe to reflect the name of your
application. (Be sure to retain the . exe extension.) For example, if your application
is named “HydroPlot,” you could renamethe start_app_win.exe fileas
hydroplot.exe.

Copy and Rename the start_app_win.ini File

When a user clicks on the executablefile (start_app_win.exe or whatever you
have renamed it), the executable searches for and reads a . ini file with the same
base name as the executable. If you renamed start_app_win.exe, you will also
need to renamethe . ini file with the same base name. For example, if you renamed

Runtime Application Launch Scripts Application Programming

Chapter 26: Creating a Runtime Distribution 619

start_app_win.exe aShydroplot.exe, you would rename
start_app_win.ini aShydroplot.ini.

Copy thefile
IDI,__DIR\bin\make_rt\start_app_win.ini

(where IDL_DIRisyour IDL installation directory) to the location of your runtime
distribution. Renamethe . ini file to match the name of the executable file, if you
have changed it from start_app_win.exe.

Modify the start_app_win.ini File

The .ini file(start_app_win.ini or whatever you have renamed it) specifies
what will happen when the user runsthe . exe file. If you usethe MAKE_RT
procedure and specify avalue for the SAVEFILE keyword, the . ini fileisrewritten
to launch your application. If you copy the . ini file manually, you must modify it
as described below.

Thestart_app_win.exe file can either run a single application immediately or
display a dialog with up to four buttons, each of which invokes a different
application. The configuration of the dialog (including whether or not it is displayed
a al) iscontrolled by the . ini file.

The . in1i file contains five sections, one labelled [DIaLoc] and four labelled
[BUTTONn] (where nisanumber between 1 and 4). The contents of each type of
section are described below.

DIALOG Section

[DIALOG]

Show=False

BackColor=&H6B1F29

Caption=<any string>
Picture=.\splash.bmp
DefaultAction=<path to application>

e Show — thisfield can contain the string True or the string False. If
Show=True, thedialogisdisplayed, and the DefaultaAction isnot executed.
If show=False, thedialog isnot displayed, and the DefaultaAction is
executed immediately when the user double-clicks on the
start_app_win.exe icon.

» BackColor — thisfield contains an RGB color triplet specified in
hexadecimal notation. This color will be used in any part of the dialog that is
not covered by the image specified asthe value of the Picture field. To make
the background white, set BackColor=&HFFFFFF.

Application Programming Runtime Application Launch Scripts

620

Chapter 26: Creating a Runtime Distribution

Caption — thisfield contains a string that will be displayed in the title bar of
thediaog, if show=True.

Picture — thisfield contains the relative path to a Windows bitmap file that
will be displayed in the dialog if show=True. The image will be positioned
with its upper left corner in the upper left corner of the dialog window. To
completely fill the dialog, the image contained in the bitmap file should be 480
x 335 pixels. Any areaof the dialog that is not filled by the image will be
displayed in the color specified in the Backcolor field.

DefaultAction — this field contains the command that should be executed
when start_app_win.exe iSrunif Show=False. In most cases, you will
need to specify the relative path to the id1rt . exe filein the IDL distribution
on your CD-ROM, followed by the -vm flag and the relative path to your
application’s SAVE file.

For example, if you have placed the SAVE file for the application
hydroplot.sav inthehydroplot directory of the CD-ROM along with the
start_app_win.exe application, the following Defaultaction launches
hydroplot.sav inthelDL Virtua Machine when the user double clicks on
the start_app win.exe icon:

DefaultAction=.\1id170\bin\bin.x86\idlrt.exe
-vm=hydro\hydroplot.sav

(The DefaultAction specification should be on asingle line.)

BUTTON Sections

There can beup tofour [BUTTON] sections. The format is the same for any section of
this type.

If the show field of the [DIALOG] section is set to False, no buttons will be
displayed, regardless of the content of the [BUTTON] sections.

[BUTTON1]

Show=True

Caption=<any string>
Action=<path to application>

Show — thisfield can contain the string True or the string False. If
Show=True, the button will be displayed on the dialog.

Caption — thisfield contains a string that will be displayed on the button, if
Show=True.

Runtime Application Launch Scripts Application Programming

Chapter 26: Creating a Runtime Distribution 621

* Action — thisfield contains the command that should be executed when the
user clicks on the button, if show=True. SeeDefault Action above for an
explanation of the format of the command string.

To create a button that simply closes the dialog without executing anything, set
Action=Exit on the button.

Copy and Modify the autorun.inf File

If you want your application to launch automatically when the user inserts your
CD-ROM, you must modify the autorun. inf file. Theautorun. inf file contains
the following lines:

[autorun]
open = start_app_win.exe
icon = idl.ico

If you want your application to launch automatically when the user inserts the
CD-ROM, copy thefile

IDI,_DIR\bin\make_rt\autorun.inf

(where IDL_DIRisyour IDL installation directory) into your runtime distribution
and modify the

open = start_app_win.exe

line to reflect the name of the executable file you want to launch automatically. For
example, if yourenamed start_app_win.exe t0 hydroplot.exe, changethe
line to read:

open = hydroplot.exe
If your executable file displays a dialog, you might want to modify the
icon = idl.ico

line to specify an icon that will be displayed in the Windows task bar. If you specify
aniconfileinyour autorun. inf file, you must ensure that theicon fileisincluded
in the root directory of your CD-ROM.

Macintosh Launch Script
Thebin/make_rt subdirectory of the IDL installation directory includes two

Applescripts that you can use to launch your application. To use the Applescripts,
follow the steps outlined below.

Application Programming Runtime Application Launch Scripts

622 Chapter 26: Creating a Runtime Distribution

Note
If you use the MAKE_RT procedure and specify avalue for the SAVEFILE

keyword, the launch scripts are copied to your runtime distribution automatically.
Thestart_app_mac . app fileisrenamed to match the Appname argument and
modified to run your SAVE file. You can edit the . app file using the AppleScript
editor.

A text version of the script named Appname_mac_script_source.txtis
also saved in the same directory asthe . app file. You can delete the . txt file.

Copy and Rename the Applescript Files

Use the Finder to copy thefiles

IDL_DIR/bin/make_rt/start_app_mac.app

IDL DIR/bin/make_rt/Utils_applescripts.scpt
(where IDL_DIRisyour IDL installation directory) to the location of your runtime
distribution. If you want, rename start_app_mac . app to reflect the name of your
application. For example, if your application is named “HydroPlot,” you could
renamethe start_app_mac.app fileashydroplot . app. DO not rename
Utils_applescripts.scpt.

Warning
If you copy the script files using the UNIX shell cp command rather than the
Finder, you must also copy the resource filesnamed ._start_app_mac.app and
._Utils_applescripts.scpt. Besuretorename . start_app_mac.app if
you rename its counterpart.

Modify the start_app_mac.app File

Use the Applescript editor to modify the value of the id1app and id1pir variables
inthe start_app_mac . app file (or whatever you have renamed it) as shown below:
(*
Specify the path to the IDL SAVE file that launches the virutal
machine application, relative to the location of the script
*)

set idlApp to "my_app.sav" as string

(*

Specify the path to the top directory of the IDL distribution,
relative to the location of the script.

*)

set idlDir to "idl70" as string

Runtime Application Launch Scripts Application Programming

Chapter 26: Creating a Runtime Distribution 623

wherethe IDL installation isin the directory id170 and the application isin a SAVE
filenamed my_app.sav.

Linux/Solaris Launch Script

Thebin/make_rt subdirectory of the IDL installation directory includes a bourne
shell script that you can use to launch your application. To use the script, follow the
steps outlined bel ow.

Note
If you use the MAKE_RT procedure and specify avalue for the SAVEFILE
keyword, the launch scripts are copied to your runtime distribution automatically.
The start_app_unix fileisrenamed to match the Appname argument and
modified to run your SAVE file.

Copy and Rename the start_app_unix File

Copy thefile
IDIL, DIR/bin/make_rt/start_app_unix

(where IDL_DIRisyour IDL installation directory) to the location of your runtime
distribution. If you want, rename start_app_unix to reflect the name of your
application. For example, if your application is named “HydroPlot,” you could
renamethe start_app_unix fileashydroplot

Modify the start_app_unix File

Using atext editor, modify the value of the idlapp and I1DL_DIR variablesin the
start_app_unix file (or whatever you have renamed it) as show below:

Specify the path to the IDL SAVE file that launches
the Virtual Machine application, relative to Stopdir.
idlapp=S$topdir/my_app.sav

Specify the path to the top directory of the IDL
distribution, relative to Stopdir.
IDL_DIR=Stopdir/idl70 ; export IDL_DIR

wherethe IDL installation isin the directory id170 and the application isin a SAVE
filenamed my_app . sav.

Note
If you use the MAKE_RT procedure and specify avalue for the SAVEFILE
keyword, the start_app_unix fileis rewritten to launch your application.

Application Programming Runtime Application Launch Scripts

624 Chapter 26: Creating a Runtime Distribution

Incorporating the IDL DataMiner

If your application uses IDL DataMiner, use the DATAMINER keyword to the
MAKE_RT routine. You will also need to add some files and move other files before
you distribute your application. The changes you make will depend on the operating
system you are using.

Windows

If your application uses IDL DataMiner, pleasecall ITT Visua Information Solutions
Technical Support for instructions.

e E-mail: support@ittvis.com
* Phone: (303) 413-3920

UNIX

You must modify the odbc . ini fileto include information about the drivers you are
using. Thisfileislocated in the resource/dm/<0s_NAME> directory of the
distribution tree you have just created. After modifying thisfile, it must be placed in
each user’s home directory. For details on the modifications you must make to the
odbc. ini file, seethe IDL DataMiner manual.

Incorporating the IDL DataMiner Application Programming

mailto:support@ittvis.com

Chapter 26: Creating a Runtime Distribution 625

Installing a Runtime Distribution

The runtime distribution you create using MAKE_RT can be distributed on
removable media such as a CD- or DVD-ROM, or copied directly to your end-user’'s
compuiter.

Note
Copying a runtime distribution onto the user’s hard disk does not “install” IDL in

the usual sense. No file associations or symboalic links are created.

Installation Issues: Windows

When you install IDL for Windows, the installation program ensures that all
Microsoft Windows system libraries required by IDL are installed. If you are
distributing a runtime application that will run on a Windows system that does not
have an installed version of IDL, it is possible (although somewhat unlikely) that the
required system libraries will not be present on your end-user’'s computer.

If your application does not run correctly on your user’s machine, the missing system
libraries may be the problem. The 7D, _DIR/bin/make_rt directory includes
two small installation programs that ensure the required system libraries are present.
You are free to distribute these to your own users. Instruct your users to run the
appropriate system library installer if they have problems:

e For 32-bit Windows systems, run systemdl1132_setup.exe.

e For 64-bit Windows systems, run systemdl164_setup.exe.

Note
The system library installers will only install the required librariesif the correct

versions (or later versions) are not already present. These installers will not
overwrite later versions of the libraries.

Application Programming Installing a Runtime Distribution

626 Chapter 26: Creating a Runtime Distribution

Installing a Runtime Distribution Application Programming

Index

Symbols

IEDIT_INPUT system variable
command recall, 36
IERROR_STATE system variable
MSG field
custom error messages, 152
SYS MSG field
custom error messages, 152
IHELP_PATH system variable
using, 561
operator, 222, 326
operator, 222, 327
###= operator, 235
#= operator, 235
$ character
operating system commands, 37
$MAINS program

Application Programming

command line, 22
defined, 22
text file, 23
variable scope, 22
% character, printf-style format code, 435
& & operator, 224
*= operator, 235
+= operator, 235
.sav files
defined, 21
executing, 67
saving data and variables, 52
/= operator, 235
< operator, 220
<= operator, 235
-= operator, 235
-> operator, 238
> operator, 220

627

628

>= operator, 235 array majority, 330

? character array-oriented language, 300
conditional expression, 238 arrays

?. ternary operator, 238 concatenation, 237

@ character, 47 definition, 300

\ (backslash character), escape sequences, 438 display, 305

A character, 215, 218 efficient accessing, 463

_REF EXTRA keyword, 91 multiplying, 326

|| operator, 225 number of elements, 301

~ operator, 225 of structures, 345

of structures, creating, 345
operations on, 301

Numerics print, 305
64-bit data type selbecti ng subarray, 317
about long data, 247 = d?rn{g;ons 319
about unsigned long, 247 selection, 317
subscripts
A defined, 302
examples, 304
abbreviating keywords, 81 ranges, 317
aborting IDL, 41 symmetric, 326
actual parameters, 81 transposing, 325
adding troubleshooting
help to an application, 532 out-of -range subscript, 308, 309
addition operator, 213 variable undefined, 310
AND operator, 227 using as subscripts, 312
AND-= operator, 235 ASCII characters
anonymous structures, 336 codes, 294
application distribution assignment
adding files, 614 operator, 234
applications operators (compound), 235
callable (defined), 565 pointers, 367
installation issues, 582 statement types, 234
native IDL (defined), 565 ASSOC function
runtime mode, 564 accessing large datasets, 385
Virtual Machine, 584 associated 1/0, 459
writtenin IDL, 16 automatic
arguments compilation, 30, 68, 79
supplying values for missing, 88 structure definition, 352

arithmetic errors, 155

Index Application Programming

B

backslash character

escape sequences, 438
backspace character, representing, 294
batch files

defined, 21

interpretation, 49

naming and locating, 48

overview, 46

running, 47
BEGIN statement, 114
bell character (representing), 294
big endian byte ordering

issues, 166
binary trees, 378
bitwise operators, 227
block of statements, 114
Boolean

operators

See bitwise operators
See logical operators

true/false definitions, 136
bubble sort, 377
building applicationsin IDL, 17
byte

about data type, 246

arguments and strings, 280
byte order issues, 166

C

CALDAT procedure
using, 255

calendar dates
converting from Julian dates, 255
stored as Julian, 253

callable IDL applications
creating a distribution, 603
definition, 565
embedded licensing, 601

Application Programming

runtime licensing, 600
calling

mechanism for procedures, 100
calling mechanism, 100
caret () character, 215, 218
carriage return

representing, 294
case sensitivity

IDL, 79

naming .pro files, 106
case, uppercase/lowercase, 282
characters

non-printing, 294
code

comment character, 34

creating programs, 19

debugging, 139

line continuation character, 34
column major. See array majority
command line

in runtime applications, 566
command recall

setting the buffer, 36

use, 36
comments

code comment character, 34
compiling

automatically, 28, 30

changing default rules, 33

COMPILE_OFPT, 33

manually, 32
complex

about data type, 248

constants, 262

datatype

about, 248
numbers
exponentiation, 218

compound assignment operators, 235
compound statement, 114
computation speed. See multi-threading

629

Index

630

concatenation
array, 237
string, 277
conditional expression, 238, 238
conditiona statements, 112
constants
complex, 262
decimal, 258
double-precision, 260
floating-point, 260
hexadecimal, 258
integer, 258
ivalues, 259
octal, 258
string, 262
context, 147
copyrights, 2
creating
heap variables, 361
XML data, 520
current working directory
of SAVE file with runtime license, 567

D

dangling references, 371
data
dynamically typed, 246
time/date generation, 255
types
See also data types.
datatypes
64-hit
long, 247
unsigned long, 247
about, 246
byte, 246
complex, 248
date/time data, 253
double-precision
complex, 248

Index

floating-point, 247
floating-point, 247
integer, 246
long integer, 247
string, 248
unsigned
integer, 247
long, 247
date/time data
generating, 255
precision, 254
debugging
executive commands, 38
stepping over, 145
decimal, 258
decrement operator, 214, 215
definitions
procedure, 96
delimiters, string, 262
dereference operator, pointers, 367
destroying
IDLffXMLDOM objects, 521
determining variable scope, 83
disappearing variables, 147
displaying
help files, 536
distributing IDL applications
about, 16, 563
obtaining licenses, 573
division operator, 214
DOM (Document Object Model), 508
Seealso XML
DOM object classes, 511
helper classes, 513
Node, 511
node ownership, 514
saving and restoring, 517
using, 518
DOM tree
creating, 510
navigation, 513

Application Programming

dot product, 328

double-precision
about complex data type, 248
about floating-point data type, 247

E
editing
command line, 36
efficiency
constants, correct type, 257
IDL implementation, 192
invariant expressions, 125
loops, 194
programming, 192
system functions and procedures, 197
vector and array operations, 194
efficiency improvements. See multi-threading
embedded licensing
callable IDL applications, 601
native IDL applications, 577
end of file
testing for, 396
END statement, 114
ENDCASE, 114
ENDELSE, 114
ENDFOR, 114
ENDIF, 114
ENDREP, 114
ENDSWITCH, 114
ENDWHILE, 114
entering procedure definitions, 96
environment variables
IDL_DIR, 604
LD _LIBRARY_PATH, 604
EQ operator
defined, 231
pointers, 370
EQ= operator, 235
error messages
See also errors.

Application Programming

errors
default error-handling mechanism, 141
floating-point underflow, 155
handling
error-handling options, 150
math, 155
mathematical assessment, 265
rounding, 264
truncation, 265
escape character (representing), 294
examples
batch files
sigprc09, 50
file input/output
xml_to_array_define.pro, 491
xml_to_struct__define.pro, 499
language
idl_tree.pro, 378
ptr_print.pro, 377
ptr_read.pro, 376
ptr_sort.pro, 378
tree_example.pro, 378
executing
$MAIN program, 24
batch files, 47
named programs (.pro), 28
SAVE files, 53
executive commands
about, 38
explicitly formatted 1/0
overview, 385
using, 404
exponentiation operator, 215
expressions
regular, 295
structure, 252
Extensible Markup Language see XML

F
false, definition of, 136

631

Index

632

file
end-of-file, 396
file units, see file units
input/output, 382
multiple structures, 463
file units
See also logical unit numbers
about, 389
closing, 388
flushing, 395
opening, 387
pointer position, 395
positioning pointer, 395
testing end of file, 396
files
adding to application distribution, 614
closing
file units, 388
logical unit number, 389
manipul ation operations, 465
FINITE function
using, 158
floating-point
about data type, 247
errors, 155
underflow errors, 155
formal parameters, 81
format codes
about, 409
list, 411
padding and width, 410
formatting 1/0O
about, 384
format codes, about, 409
format codes, available, 411
padding and width, 410
formfeed character (representing), 294
free format I/O
about, 385
using, 399
freeing

Index

heap variables
pointers, 375
FSTAT function
using, 392
functions

compiling user-defined, 79
how IDL resolves, 97

G

GE operators, 231

GE= operator, 235

GOTO statement
using, 135

GT operator, 231

GT= operator, 235

H
heap variables

creating, how to, 361

freeing
pointers, 375
leakage, 372
overview, 359
pointer, 363

saving and restoring, 362

help
displaying
options, 532
text files, 536

text with XDISPLAYFILE, 536

HTML files, 543
in text widget, 535

in user interface, 533

paths, 561

PDF files
displaying, 541

status lines, 533

tooltips, 533

Application Programming

using external applications, 537
XDISPLAYFILE, 536
hexadecimal, 258

identity matrix, 314
IDL
runtime licensing, 16
IDL applications
building, 17
distributing, 16
IDL Code Profiler, 203
idl startup script, renaming, 604
IDL_DIR, 604
IDL_LMGRD_LICENSE_FILE environment
variable
runtime applications, 576
IDL_TREE example routine, 378
idl_tree.pro, 378
IDLffXMLDOM object classes, 511
destroying objects, 521
helper classes, 513
IDLffXMLDOMNode, 511
node ownership, 514
orphan nodes, 523
saving and restoring, 517
tree-walking example, 524
using, 518
| EEE standard, 156
include files See batch files
increment operator, 213, 215
infinity, undefined result, 156
inheritance
keyword, 89
input/output
associated, 459
explicit format
overview, 385
using format, 404
format codes, 409

Application Programming

633

format reversion, 408
formatted
overview, 384
free format
overview, 385
using, 399
multiple file structures, 463
platform specific information, 470
portable, 454
unformatted
overview, 384
portable, 454
string variables, 447
using, 447
UNIX FORTRAN unformatted data files,
464
XDR, 454
installing
licensefile, runtime, 573
integer
about data type, 246
constants, 259
conversions, errorsin, 158
interrupt
program execution, 41
variable context, 41
invariant expressions, 125
iTool Statefile (.isv) file, 20

J

joining strings, 289
journaling, 40
Julian date/time

calendar conversion, 253

K

keyboard
interrupt, 41

Index

634

keywords
determining if set, 86
inheritance, 89
parameters
about, 81
passing, 85
setting, 81

L

language catalog
creating file, 473
definition, 472
widget example, 479
language catalog file
loading, 474
storing, 474
language catal og object
adding keys, 476
creating, 476
destroying, 478
languages
getting, 477
setting, 477
performing queries, 477
LE operator, 231
LE= operator, 235
legalities, 2
libraries
converting to prefixed, 109
naming, 108
library authoring
benefits of, 104
conversion wrappers, 109
converting to prefixed, 109
naming conventions, 105, 108
prefixing routines, 105
library of routines
authoring, 103
authoring conventions, 108
converting existing, 109

Index

prefixing, 105
licensefile
installing, 573
obtaining, 573
line continuation, 34
linefeed character (representing), 294
lines
continuation character, 34
linked lists
creating, 376
using pointersto create, 376
little endian byte ordering
about, 166
LM_LICENSE FILE environment variable
runtime applications, 576
Imhostid application, 575
Imtools.exe application, 574
loading
XML document, 518
logical operators, 224
logical unit numbers
about, 389
long integer datatype, 247
loops
avoiding, 194
CONTINUE, 134
exiting (BREAK), 133
FOR, 125
REPEAT...UNTIL, 130
statements, 112
WHILE...DO, 131
lowercase strings, 282
LT operator, 231
LT= operator, 235
LUNSs (logical unit numbers), 389

M

main-level program see SMAIN$ program
majority see array majority
manual compilation, 32

Application Programming

math errors, 155
mathematical operators, 213
mathematics
error assessment routines, 265
matrix operators, 222
maximum operator, 220
memory
See also virtual memory.
meta characters, 295
method invocation operator, 238
minimum operator, 220
MK_HTML_HELP procedure
using, 543
MOD, 215
MOD-= operator, 235
modifying XML data, 520
modul o operator, 215
multiplication
operator, 222
operator, 222
* operator, 214
arrays, 326
matrices, 326
multi-threading
about, 178
array creation routines, 188
array manipulation routines, 189
byte swapping support, 189
calculation speed, 178
controlling with CPU procedure, 182
data type conversion routines, 188
default number, 182
image processing routines, 188
math routines, 187
operators, 187
overriding default use, 186
preferences, 182
when not to use, 179

Application Programming

635

N

N_ELEMENTS function
array elements, 301
checking variable definition, 83

N_PARAMS function
use of, 83

name conflicts, 105

named
structures, 336

names
of variables, 271
reserved, 108

NaN (not-a-number), 156

navigating the DOM tree, 513

NE operator
about, 231
pointers, 370

NE= operator, 235

negation operator, 213

nesting
|F statements, 118

non-interactive mode, 47

non-printing characters, 294

NOT operator, 228

null string, 262

O

objects

heap variables, 359

references for heap variables, 359
obtaining traceback information, 149
octal, 258
online help

extending, 532
operations

on pointers, 367
operators

& &, 224

7,238

Index

636

I, 225
~, 225
addition, 213
AND, 227
array concatenation, 237
assignment, 234
bitwise, 227
Boolean
See operators, bitwise
See operators, logical
compound assignment, 235
decrement, 214, 215
division, 214
EQ, 231
exponentiation, 215
GE, 231
GT, 231
increment, 213, 215
LE, 231
logical, 224
LT, 231
mathematical, 213
matrix multiplication, 222
maximum, 220
method invocation, 238
minimum, 220
minimum and maximum, 220
modulo, 215
multiplication, 214
NE, 231
NOT, 228
OR, 229
other, 237
precedence, 240
relational, 231
string, 275
subtraction and negation, 213
XOR, 229
OR operator, 229
outer product, 328
overflow, integer, 159

Index

overriding multi-threading, 186

P

parameters

actual, 81

copying, 82

formal, 81

passing by reference, 98

passing by value, 98

passing mechanism, 98
parser, XML, 485
passing parameters, 98
performance

analyzing, 203

efficient programming, 192

multi-threading, 178
plotting

Julian date/time, 253
pointers, 364

examples, 376

freeing specified, 375

heap variables

about, 359
creating, 363

validity, 374
portable unformatted 1/0, 454
positional parameters

overview, 81
precedence

operators, 240
prefixing libraries, 109
printf-style format code, 435

PRINTNAMES example routine, 377

procedures
calling
mechanism, 100
entering definitions, 96
how IDL resolves, 97

processing speed. See multi-threading

profiling, 203

Application Programming

program files

executing, 28

interrupting execution, 41
programs

creating SAVE files, 52

restoring, 52
ptr_print.pro, 377
ptr_read.pro, 376
ptr_sort.pro, 378

Q

guestion mark

ternary operator, 238
guotation marks

string constants, 262
quoted string format codes

normal style, 423

printf style, 435

R

ranges, subscript, 317
reading
XML data, 519
READNAMES exampleroutine, 376
recall buffer
changing, 36
recursion, 100
regular expressions, 295
relational operators, 231
relaxed structure assignment
using, 354
reserved names, 108
resolving routine, 104
resources available to thread pool, 178
RESTORE procedure
using, 68
restoring
SAVE files, 52

Application Programming

637

structures, 355
Rich Text Format, 539
routines
conflicting names, 105
how IDL resolves, 97
mathematical error assessment, 265
naming, 108
row major see array majority
RTF, 539
running
$MAIN program, 24
batch files, 47
named programs (.pro), 28
SAVE files, 53
runtime
application, 564
callable IDL applications, 600
IDL, 16
Virtual Machine applications, 585
runtime distribution, 610
multi-platform, 612
runtime mode application, 564

S

SAVE files
64-bit offsets, 70
about, 52
about creating, 54
application development, 52
contents, 52
creating, 51
data, saving, 65
examples, 56, 64
executing, 67
heap variables, 362
IDL 5.4 SAVE files, 70
running, 67
SAVE/RESTORE, 54
SAVE procedure
creating .sav files, 54

Index

638

using, 52
savelrestore. See SAVE files
saving
IDL routines, 54
SAX (Simple API for XML) see XML
scalars
about, 250
scope, variable, 83
script, startup (Callable IDL application), 604
semicolon character, 34
setting
keywords, 81
sigprc09 batch file, 50
SINKSORT exampleroutine, 377
sorting
SINKSORT example, 377
spaces, removing from a string, 283
SPAWN procedure
displaying help files, 537
splitting strings, 289
startup script (callable IDL application), 604
statement labels, 133
statements
BEGIN, 114
block of statements, 114
BREAK, 133
CASE versus SWITCH, 122
compound, 114
conditional, 112
CONTINUE, 134
END, 114
FOR, 125
REPEAT...UNTIL, 130
WHILE...DO, 131
stopping program execution
overview, 41
stride subscripts, 318
string data type, 248
strings
about, 262
argument conversion to, 276

Index

byte values, 280
case folding, 282
case-insensitive comparisons, 290
comparing, 290
comparing using wildcards, 291
complex comparisons, 292
concatenation, 277
converting case, 282
extracting substrings, 288
finding substrings within
first occurrence, 286
|ast occurrence, 287
formatting data, 278
inserting, 287
leading and trailing blanks, 283
length, determining, 285
lowercase, 282
meta characters, 295
null, 262
operations, 275
regular expressions
example, 292
using, 295
splitting and joining, 289
substrings, 286
uppercase, 282
whitespace
about, 283
STRUCT_ASSIGN procedure
using, 354
structures
advanced, 350
anonymous, 336
arrays of, 345
automatic definition, 352
creating and defining, 337, 352
definition, 354
inheritance, 338
input/output, 347
introduction to, 336
named, 336

Application Programming

number of fieldsin, 350
parameter passing, 343
references, 340
relaxed definition
using, 354
restoring, 355
using help with, 342
zeroed, 337
subarray
dimensions, 319
inserting, 320
moving, 320
selection, 317
subscripts
array valued, 312
defined, 302
examples, 304
ranges, 317, 317
ranges, combined with arrays, 322
stride, 318
syntax, 307
substrings
extracting, 288
finding first occurrence, 286
finding last occurrence, 287
subtraction operator, 213
symmetric arrays
about, 326
syntax
keywords, 85
system variables
IEDIT_INPUT, 36
about, 272

T

tab character (representing), 294
tabs

removing from a string, 283
ternary operator (?:), 238
thread pool. See multi-threading

Application Programming

time
See also date/time data
TIMEGEN, 255
traceback information
obtaining, 149
trademarks, 2
transposing arrays, 325
tree_example.pro, 378
trees
binary, 378
building with pointers, 376
troubleshooting
arrays
out-of -range subscript, 308, 309
variable undefined, 310
true, definition of, 136
types, internal
See also data types.

U

undefined variables, checking for, 86
underflow errors, 155
unformatted 1/O, 384, 447
UNIX

OS-specific file I/0 information, 470
unsigned data type

about integer data, 247

about long data, 247
uppercase

strings, 282

Vv

variable

context after interruption, 41

determineif defined, 86
variable information

variables view, 147
variables

639

Index

640

attributes of, 270
determining scope, 83
disappearing, 147
names, 271
overview, 270
system, 272
undefined, checking for, 86
vectors
multiplying, 328
subscripting, 317
Virtual Machine
description, 584
limitations, 585
version compatibility, 590
virtual memory
about, 198
improving efficiency, 192
minimizing, 200

minimizing with TEMPORARY, 201

running out of, 199
system parameters, 201

w

whitespace

formatting, 410

removing from strings, 283
wildcards

in string searches, 291
wrapper routines

compatibility wrappers, 110

X

XDISPLAYFILE, 536
XDR files, 386, 454
XML
Sce also IDLFEXMLSAX.
defined, 484
DOM, 485
creating data, 520
destroying objects, 521
handling whitespace, 522
loading a document, 518
modifying data, 520
object classes, 511
orphan nodes, 523
reading data, 519
tree-walking example, 524
DTD, 489
parsers
defined, 485
DOM, 508
SAX, 485
schema, 489
validation, 489

XML document

creating data, 520
destroying objects, 521
loading, 518
modifying data, 520
orphan nodes, 523
reading data, 519
whitespace, 522

defined, 89 xml_to_array_define.pro, 491
library conversion, 109 xml_to_struct__define.pro, 499

writing, 93 XOR operator, 229
writing

binary data, 381

dat files, 383 Z

zeroed structures, 337

Index Application Programming

	Online Manuals
	IDL Documentation
	What's New in IDL 7.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Analyst Reference Guide
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Application Programming
	Contents
	Part I: Application Programming
	Overview of IDL Applications
	What is an IDL Application?
	About Building Applications in IDL

	Creating and Running Programs in IDL
	Overview of IDL Program Types
	Creating $MAIN$ Programs
	About Named Programs
	Creating a Simple Program
	Running Named Programs
	Compiling Your Program
	Making Code Readable
	Command Line Tips and Tricks
	Recalling Commands
	Special Command Line Characters

	Recording IDL Command Line Input
	Interrupting or Aborting Execution
	For More Information on Programming

	Executing Batch Jobs in IDL
	Overview of Batch Files
	Batch File Execution
	Interpretation of Batch Statements
	A Batch Example

	Creating SAVE Files of Programs and Data
	Overview of SAVE Files
	About Program and Data SAVE Files
	Creating SAVE Files of Program Files
	Saving Variables from an IDL Session
	Executing SAVE Files
	Changes to IDL 5.4 SAVE Files

	Creating Procedures and Functions
	Overview of Procedures and Functions
	Defining a Procedure
	Defining a Function
	Automatic Compilation and Execution
	Parameters
	Using Keyword Parameters
	Determining if a Keyword is Set
	Supplying Values for Missing Keywords
	Supplying Values for Missing Arguments
	Keyword Inheritance
	Entering Procedure Definitions
	How IDL Resolves Routines
	Parameter Passing Mechanism
	Calling Mechanism
	Calling Functions/Procedures Indirectly

	Library Authoring
	Overview of Library Authoring
	Recognizing Potential Naming Conflicts
	Advice for Library Authors
	Converting Existing Libraries

	Program Control
	Overview of Program Control
	Compound Statements
	IF...THEN...ELSE
	CASE
	SWITCH
	CASE Versus SWITCH
	FOR...DO
	REPEAT...UNTIL
	WHILE...DO
	Jump Statements
	Definition of True and False

	Debugging and Error-Handling
	Debugging and Error-Handling Overview
	What Happens When Execution Stops
	Working with Breakpoints
	Stepping Through a Program
	Monitoring Variable Values
	Correcting Errors During Execution
	Obtaining Traceback Information
	Controlling and Recovering from Errors
	Creating Custom Error Messages
	Notifying the User of Errors
	Math Errors

	Building Cross- Platform Applications
	Overview of Cross-Platform Issues
	Which Operating System is Running?
	File and Path Specifications
	Files and I/O
	Math Exceptions
	Responding to Screen Size and Colors
	Printing
	SAVE and RESTORE
	Widgets in Cross-Platform Programs
	Using External Code
	IDL DataMiner Issues

	Multithreading in IDL
	The IDL Thread Pool
	Controlling the IDL Thread Pool
	Routines that Use the Thread Pool

	Writing Efficient IDL Programs
	Overview of Program Efficiency
	Use Vector and Array Operations
	Use System Functions and Procedures
	Virtual Memory
	The IDL Code Profiler

	Part II: Components of the IDL Language
	Expressions and Operators
	Overview of Expressions and Operators
	Mathematical Operators
	Minimum and Maximum Operators
	Matrix Operators
	Logical Operators
	Bitwise Operators
	Relational Operators
	Assignment and Compound Assignment
	Other Operators
	Operator Precedence

	Working with Data in IDL
	Data Types
	Data Type and Structure of Expressions
	Date/Time Data
	Defining and Using Constants
	Accuracy and Floating Point Operations
	Type Conversion Functions
	Variables
	System Variables

	Strings
	Overview of Strings
	String Operations
	Non-string and Non-scalar Arguments
	String Concatenation
	Using STRING to Format Data
	Byte Arguments and Strings
	Case Folding
	Whitespace
	Finding the Length of a String
	Substrings
	Splitting and Joining Strings
	Comparing Strings
	Non-Printing Characters
	Learning About Regular Expressions

	Arrays
	Overview of Arrays
	Understanding Array Subscripts
	Assignment Operations and Arrays
	Using Scalar Values as Subscripts
	Using Arrays as Subscripts
	Conditionally Altering Array Elements
	Subscript Ranges
	Avoid Using Range Subscripts
	Combining Subscripts
	Manipulating Arrays
	Columns, Rows, and Array Majority

	Structures
	Overview of Structures
	Creating and Defining Structures
	Structure References
	Using HELP with Structures
	Parameter Passing with Structures
	Arrays of Structures
	Structure Input/Output
	Advanced Structure Usage
	Automatic Structure Definition
	Relaxed Structure Assignment

	Pointers
	Overview of Pointers
	Heap Variables
	Creating Heap Variables
	Saving and Restoring Heap Variables
	Pointer Heap Variables
	IDL Pointers
	Operations on Pointers
	Dangling References
	Heap Variable Leakage
	Pointer Validity
	Freeing Pointers
	Pointer Examples

	Files and Input/Output
	Overview of File Access
	Formatted and Unformatted Input/Output
	Opening Files
	Closing Files
	Understanding (LUNs)
	Returning Information About a File Unit
	File Unit Manipulations
	Reading and Writing Very Large Files
	Using Free Format Input/Output
	Using Explicitly Formatted Input/Output
	Format Codes
	A Format Code
	: Format Code
	$ Format Code
	F, D, E, and G Format Codes
	B, I, O, and Z Format Codes
	Q Format Code
	Quoted String and H Format Codes
	T Format Code
	TL Format Code
	TR and X Format Codes
	C() Format Code
	C printf-Style Quoted String Format Code
	Example: Reading Formatted Table Data
	Example: Reading Records With Multiple Array Elements

	Using Unformatted Input/Output
	Portable Unformatted Input/Output
	Associated Input/Output
	File Manipulation Operations
	Reading and Writing FORTRAN Data
	Platform-Specific File I/O Information

	Using Language Catalogs
	What Is a Language Catalog?
	Creating a Language Catalog File
	Using the IDLffLangCat Class
	Widget Example

	Using the XML Parser Object Class
	About XML
	Using the XML Parser
	Example: Reading Data Into an Array
	Example: Reading Data Into Structures
	Building Complex Data Structures

	Using the XML DOM Object Classes
	About the Document Object Model
	About the XML DOM Object Classes
	Using the XML DOM Classes
	Tree-Walking Example

	Part III: Creating Applications in IDL
	Providing Online Help For Your Application
	Overview of Creating Application Help
	Providing Help Within the User Interface
	Displaying Text Files
	Using an External Viewer
	About IDL’s Online Help System
	Using Other Online Help Viewers
	Using the IDL Assistant Help System

	Distributing Runtime Mode Applications
	What Is an IDL Runtime Mode Application?
	Limitations of Runtime Applications
	Steps to Distribute a Runtime Application
	Preferences for Runtime Applications
	Runtime Licensing
	Embedded Licensing
	Creating an Application Distribution
	Starting a Runtime Application
	Installing Your Application

	Distributing Virtual Machine Applications
	What Is a Virtual Machine Application?
	Limitations of Virtual Machine Applications
	Steps to Distribute Your Application
	Preferences for Virtual Machine Applications
	Creating Application SAVE Files
	Creating a Virtual Machine Distribution
	Starting a Virtual Machine Application

	Distributing Callable IDL Applications
	What Is a Callable IDL Application?
	Limitations of Runtime Mode Callable IDL Applications
	Steps to Distribute a Callable IDL Application
	Preferences for Callable IDL Applications
	Runtime Licensing
	Embedded Licensing
	Creating a Callable IDL Application Distribution
	Starting a Callable IDL Application
	Installing Your Callable IDL Application

	Creating a Runtime Distribution
	About Runtime Distributions
	Creating a Distribution Using MAKE_RT
	Working with the manifest_rt.txt File
	Runtime Application Launch Scripts
	Incorporating the IDL DataMiner
	Installing a Runtime Distribution

	Index

