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Abstract

This paper documents the development of a novel approach for representing ice

microphysics in numerical models. In this approach, the ice particle mass-dimension

and projected-area-dimension relationships vary as a function of particle size and rimed

mass fraction. All ice microphysical processes and parameters are calculated in a self-

consistent manner in terms of these mass-dimension and area-dimension relationships.

The rimed mass fraction is predicted locally by separately predicting the ice mixing ra-

tios acquired through water vapor deposition and through riming. The third predicted

variable is the number concentration of ice particles. This approach allows represent-

ing in a natural way gradual transition from small to large ice particles due to growth

by water vapor deposition and aggregation, and from unrimed crystals to graupel due

to riming. In traditional approaches, these processes are treated by separating ice

particles into predefined categories (such as cloud ice, snow, and graupel) using fairly

arbitrary conversion thresholds and conversion rates. With some modifications, the

new approach can be employed in either bin or bulk microphysical models.

In this paper, the new approach is implemented in a bulk two-moment micro-

physical scheme representing both warm-rain and ice processes, and it is applied to

an idealized 2D kinematic framework mimicking a shallow mixed-phase cumulus. The

size distributions of cloud droplets, drizzle/rain drops, and ice particles are represented

using gamma distributions. The new scheme is compared to a version of the scheme

that uses the traditional approach for ice microphysics; that is, unrimed ice/snow and

graupel are separate species, with threshold-based conversion rates between the former

and the latter. The new and traditional schemes produce similar results, although the

traditional scheme, unlike the new scheme, produces a distinct double maximum in

the surface precipitation rate, corresponding to precipitation shafts consisting of either

ice/snow or graupel. The relative magnitude of these peaks, as well as the ice water

path and optical depth of the simulated cloud, are highly sensitive to the threshold for

converting unrimed ice to graupel. In contrast, the new scheme does not require any

conversion threshold and predicts formation of ice particles with wide range of rimed

fractions.
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1. Introduction

The representation of ice microphysics in models has a significant impact on quantitative

precipitation forecasts (e.g., Rangno and Hobbs 1984; Gilmore et al. 2004; Thompson et

al. 2004), prediction of supercooled liquid water (e.g., Reisner et al. 1998; Thomspon et

al. 2004; Morrison and Pinto 2006), simulations of radiative transfer in clouds (e.g., Gu and

Liou 2000; Wu 2002) and cloud-dynamical interactions (e.g., Leary and Houze 1979; Lord et

al. 1984; Zhang and Gao 1989; McFarquharet al. 2006). Microphysics schemes are classified

broadly into two types: i) bin schemes, and ii) bulk schemes. Bin schemes predict the particle

size distribution (PSD) by discretizing it explicitly into multiple size (or mass) bins. Bulk

schemes predict one or more bulk quantities and assume some underlying form for the PSD.

Bin schemes are less restrictive because they allow the size distribution to evolve, but they

are computationally demanding. Furthermore, many of the uncertainties associated with

bulk microphysics schemes apply to bin schemes as well. The one-moment bulk approach

was first applied by Kessler (1969) to warm (ice-free) clouds based on the natural separation

between cloud droplets and drizzle/rain. This separation corresponds to the rapid growth

of drizzle drops (once they are initiated) due to accretion of cloud droplets, producing a

distinct minimum in the drop size spectrum between about 30 and 50 µm (e.g., Berry and

Reinhardt 1973). Thus, mixing ratio was separately predicted for each category (cloud

droplets and drizzle/rain drops), with parameterized conversion rates (autoconversion and

accretion) transferring the cloud water to drizzle/rain. More detailed two-moment schemes

were subsequently developed that predict both mixing ratio and number concentration of

cloud droplets and drizzle/rain (e.g., Khairoutdinov and Kogan 2000; Seifert and Beheng

2001; Saleeby and Cotton 2004; Morrison et al. 2005). These schemes are potentially more

robust since they allow the mean particle size to evolve as a free parameter. They also

provide a more realistic treatment of cloud-aerosol interactions since cloud condensation

nuclei (CCN) directly impact the droplet number concentration through nucleation processes.

The bulk approach was extended to the ice phase using a similar separation between

cloud ice and large precipitating ice (e.g., Lin et al. 1983; Rutledge and Hobbs 1984; Dudhia
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1989; Ferrier 1994; Meyers et al. 1997; Reisner et al. 1998; Milbrandt and Yau 2005).

This separation was required since the empirical particle fallspeed-size relationships used

in these schemes apply to only a limited size range (thus requiring separation of small and

large ice particles). This approach also represents a legacy of the Kessler-type warm scheme.

However, the distinction between small and large particle modes is less clear for ice than

liquid because large precipitating ice particles can be produced by both accretional and vapor

depositional growth; rain is produced by accretional growth only. Precipitation ice is often

further subdivided into different predefined categories (e.g., snow, aggregates, graupel, hail).

The parameters needed for calculating microphysical process rates are specified a priori for

each predefined ice category. A similar separation of unrimed crystals, graupel, and/or hail

is employed by some bin microphysics models (e.g., Geresdi 1998; Ovtchinnikov and Kogan

2000; Rasmussen et al. 2002).

A key point is that in nature the boundaries between different ice categories (cloud ice,

snow, graupel, hail) are difficult to define and transitions between various categories happen

gradually. For instance, as ice crystals grow by diffusion of water vapor and aggregation, their

mass and terminal velocities gradually increase, and they gradually move from the “cloud

ice” into the “snow” category. The same is true for the growth by riming, where ice particles

gradually increase their mass and rimed mass fraction, and move from the “snow” to the

“graupel” category. In traditional schemes, there are no transitional regimes between various

ice categories and conversion of ice from one category to another occurs in a single discrete

step. For example, some schemes produce graupel immediately after a minimum riming

rate or mixing ratio is reached. More detailed models prognose the particle density to more

accurately determine the threshold for conversion to graupel (e.g., Ferrier 1994). However,

none of these schemes treat the transitional regimes that represent the growth of a small ice

particle into a large ice crystal or an aggregate (i.e., the snowflake), or growth of a rimed

crystal into a graupel particle. This has the potential to produce undesirable thresholding

behavior, i.e., model solutions may diverge depending whether a particular threshold (e.g.,

the cloud ice mixing ratio or the riming rate) is reached or not. Thus, significant sensitivity of
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the simulated clouds and precipitation to these thresholds has been noted (e.g., Rangno and

Hobbs 1984; Thompson et al. 2004); these thresholds must therefore be tuned to produce

desirable results. For the conversion from cloud ice to snow, a more appropriate approach is,

for instance, to smoothly predict the evolution of crystal habit and terminal velocity during

the transition from small to large crystals. A more realistic description of the growth of rimed

crystals into graupel follows the conceptual model of Heymsfield (1982). In this framework,

single crystals and aggregates are converted to graupel through a “filling in” process in

which droplets collect in the interstices between crystal branches. This process results in

an increase of the particle mass, but not the particle dimension D. Eventually, filling-in of

the unoccupied volume results in an ice spheroid (graupel) of dimension D. At this point,

further growth of the particle increases both mass and dimension. The time required to

fill-in the crystal volume by riming to produce graupel can be significant (several minutes)

under realistic environmental conditions, especially for large crystals (see Heymsfield 1982,

Fig. 7).

Specifying the parameters needed for the microphysical calculations requires explicit or

implicit assumption of the crystal habit. Some schemes diagnose the habit based on local

conditions (e.g., temperature, relative humidity) (see Meyers et al.1997). The most detailed

schemes allow the crystal habit to evolve according to the degree of riming, rate of depo-

sitional growth along the major and minor axes, and aggregation (Chen and Lamb 1994;

Hashino and Tripoli 2007). These schemes provide a potentially more robust solution be-

cause they retain the particle history and therefore calculate relevant parameters directly

from the model variables rather than assuming fixed values for predefined ice categories.

However, there remain uncertainties since the crystal growth rates are not well characterized

across the range environmental conditions, and the habit may itself depend on the nucleating

mechanism (Bailey and Hallett 2002). Note that there are many other uncertainties in pa-

rameterizing ice microphysics including primary ice nucleation, fragmentation and secondary

crystal initiation, and sticking efficiency for ice-ice collisions.

In this paper, we propose a novel approach for parameterizing ice microphysics that shifts
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away from the traditional approach of predefined ice categories. Our approach allows the

crystal habit and associated microphysical parameters to evolve during the simulation based

on the particle history similar to Hashino and Tripoli (2007). However, for simplicity we do

not retain the history of differential axis growth due to vapor deposition or aggregation, but

do allow the habit to evolve according to the rimed mass fraction of the crystal. The history

of the rimed mass fraction is retained by predicting two ice mixing ratio variables: i) the

mixing ratio due to vapor deposition and ii) the mixing ratio due to riming. It follows that

the rimed mass fraction is derived locally from the ratio of the riming and total (riming plus

deposition) mixing ratios. This approach allows the mass-dimension (m-D) and projected

area-dimension (A-D) relationships to evolve according to the predicted rimed mass fraction

and particle dimension. All relevant microphysical parameters in the scheme are based on

these m-D and A-D relationships for self-consistency. This approach removes the need for

arbitrary thresholds for conversions of small ice to snow during vapor deposition and/or

aggregation, and conversion of crystals to graupel during riming. The goal is to provide a

physically-based treatment of the ice microphysics that accounts for the transitional regimes

and avoids thresholding behavior while retaining a relatively simple and flexible framework.

This paper documents the extension of an existing two-moment warm bulk microphysics

scheme (Morrison and Grabowski 2006) to the ice phase using this new approach. The

conversion of rimed crystals into graupel is based on Heymsfield’s conceptual model described

above that relates the particle mass and dimension to the riming growth and filling-in of

crystal interstices. Since the scheme predicts mean particle size and includes a smooth

transition in the m-D and A-D relationships between small and large crystals, the gradual

conversion of cloud ice to snow is represented in a natural way. Thus, the nonphysical

autoconversion process used in most bulk models to transfer mass and number between the

cloud ice and snow categories is not needed. The transition between small and large ice during

growth by vapor deposition and aggregation is calculated using m-D and A-D relationships

that vary smoothly across the PSD for different particle sizes. Relevant parameters (e.g.,

terminal particle fallspeeds) are calculated in a self-consistent manner over the entire PSD
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from these m-D and A-D relationships. Note that although we apply the new approach in

a bulk model, it could also be readily applied to bin models. In bin models, the rimed mass

fraction would be retained locally for each size or mass bin and used to derive the m-D and

A-D relationships in each bin.

The new scheme is tested using a kinematic framework. The kinematic framework in-

cludes a specified flow field that allows for testing of the microphysics scheme without com-

plications due to cloud-dynamical feedbacks, but it includes the critical processes of gravita-

tional and advective transport. The specified flow field corresponds to an idealized shallow

cumulus described in Morrison and Grabowski (2006) and Szumowski et al. (1998). The new

scheme is contrasted with a corresponding version of the scheme that uses the traditional

approach with predefined ice categories for ice/snow and graupel. The paper is organized

as follows. Section 2 describes the new scheme. Section 3 describes the kinematic modeling

framework and the specific case applied here. Section 4 describes results including sensitivity

tests, and Section 5 gives summary and conclusions.

2. Description of the new microphysics scheme

a. Overview of the approach

The two-moment bulk warm rain scheme of Morrison and Grabowski (2006; hereafter

MG06) has been extended to the ice phase using the novel approach outlined in the Introduc-

tion. The warm microphysics component is detailed in MG06, while the new ice component

is described in this section.

As mentioned in the Introduction, all ice microphysical processes and parameters are

calculated consistently in terms of the particle mass-dimension (m-D) and projected area-

dimension (A-D) relationships. These relationships are obtained across the whole range of

particle sizes using observationally-based relations for different types of ice particles (available

in the literature) and the rimed mass fraction predicted by the model. The history of rimed

mass fraction is retained by predicting separately the mixing ratios of ice due to the vapor
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deposition, qdep, and due to riming, qrim. The change in ice mixing ratio due to water

vapor deposition and initiation of ice by deposition/condensation freezing and freezing of

cloud droplets contributes to qdep. The change in ice mixing ratio due to collisions between

ice particles and cloud droplets/rain (in subfreezing conditions) and ice initiation due to

freezing of raindrop contributes to qrim. Sublimation and melting (including melting due to

rain-ice collisions above freezing) are applied to both qdep and qrim.

Since we also predict the ice number concentration N , there are a total of three prognostic

variables for ice in the scheme. The time evolution of these three prognostic variables is given

by
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where u is the wind velocity vector; ρa is the air density profile; VN and Vq are the number-

and mass-weighted mean particle fallspeeds, respectively; k is a unit vector in the vertical

direction; and D is the subgrid-scale turbulent mixing operator (set to zero in the current

study). The symbolic terms on the right-hand-side of (1) - (3) represent the source/sink

terms for N , qrim, and qdep. These include primary nucleation on aerosol through deposition

or condensation-freezing (subscript nuc), vapor deposition (subscript dep), sublimation (sub-

script sub), freezing of cloud droplets and rain (subscript frz), melting (subscript mlt), ice

multiplication (subscript mult; N only), aggregation of ice (subscript agg; N only), collec-

tion of cloud droplets (subscript accc; qrim only), freezing of rain due to ice-rain collisions in

subfreezing conditions (subscript accr; qrim only), and melting of ice due to ice-rain collisions

in above freezing conditions (subscript mltc). To ensure consistency between N and total ice

mixing ratio in the code, the mean ice particle size is restricted to the range of 1 and 5000

µm; N is adjusted if these bounds are exceeded. Formulations for the various microphysical

processes are detailed in section 2b. For the sink terms (sublimation and melting, including

melting due to ice-rain collisions), the tendencies of qrim and qdep are given by formulations

in section 2b multiplied by the relative contributions of qrim and qdep to the total ice mixing

ratio.

Similarly to the liquid species (cloud droplets and rain) described in MG06a, the ice PSD

follows a generalized gamma distribution:

N(D) = NoD
µe−λD, (4)

where D is the particle dimension (hereafter dimension refers to length of the major axis),

N0 is the “intercept” parameter, λ is the slope parameter, and µ = 1/η2 − 1 is the spectral

shape parameter (η is the relative radius dispersion, the ratio between the standard deviation

and the mean radius). These size distribution parameters are needed for calculation of the

various microphysical process rates in (1) - (3).

For cloud droplets and rain, µ is specified following MG06. For ice, µ is specified as a
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function of λ following Heymsfield (2003):

µ = 0.076λ0.8 − 2 (5)

where λ has units of (cm−1). This expression was obtained from gamma PSD fits to tropical

and midlatitude particle ensembles in ice clouds (see Heymsfield 2003). Because the fitted

PSDs are extrapolated for particles smaller than 50 µm, this expression is more uncertain

for larger values of λ (implying smaller mean size). In the code, µ is limited to 0 ≤ µ ≤ 6,

although Heymsfield (2003) shows negative values of µ for λ <∼ 70 cm−1. Here we constrain

µ to be positive so that N(D) is finite at D = 0.

Parameters N0 and λ can be found by relating the PSD to the predicted number con-

centration N and mixing ratio q (note that for ice, q = qdep + qrim):

N =
∫

∞

0

N(D)dD, (6)

q =
∫

∞

0

m(D)N(D)dD, (7)

where m(D) is the particle mass and N(D) is given by (4). A solution for the size distribution

parameters N0 and λ in terms of µ, N , and q using (5) - (7) requires specification of the m-D

relationship across the PSD. For cloud droplets and rain, this is given by m = π/6ρwD3,

where ρw is the bulk density of liquid water. Note that although the A-D relationship is not

used to derive the size distribution parameters using (5) - (7), it is needed, along with the

size distribution parameters and m-D relationship, for calculation of several of the process

rates in (1) - (3) (e.g., collection of cloud water and rain by ice particles). For cloud droplets

and rain, the A-D relationship is simply given by A = πD2/4.

For the ice phase, a complication arises because the m-D and A-D relationships vary

as a function of crystal habit, degree of riming, and particle size. Thus, by predicting

both qdep and qrim and retaining the history of bulk rimed mass fraction Fr [defined as

Fr ≡ qrim/(qrim + qdep)], we seek to provide a physical basis for the evolution of m-D and A-

D relations across a wide range of conditions. The m-D and A-D relationships as a function

of crystal habit, rimed mass fraction, and particle size are detailed below. First, we describe a
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relatively straightforward situation for unrimed crystals, and subsequently turn our attention

to the significantly more complicated case of rimed ice particles.

For unrimed crystals, we assume that small crystals may be approximated as solid ice

spheres with an effective density equal to that of bulk ice ρi ≈ 0.9 g cm−3 (Heymsfield and

Banssemer 2007). It follows that the m-D and A-D relationships for small ice particles are:

ms = αsD
βs =

π

6
ρiD

3 (8)

As = σsD
γs =

π

4
D2 (9)

where ms and As are the mass and projected area of the ice particle. Larger unrimed crystals,

whether grown by vapor deposition or aggregation, are generally nonspherical and have an

effective density significantly less than ρi. The m-D and A-D relationships for these crystals

are typically expressed by power laws:

mi = αiD
βi (10)

Ai = σiD
γi (11)

where mi and Ai are the mass and projected area of the larger nonspherical, unrimed ice

crystals. The m-D and A-D relationships for these larger crystals are dependent upon the

crystal habit. Here the m-D and A-D parameters (Table 1) are for plate-like crystals with

sector branches (P1b) (Mitchell et al. 1996). For conditions in the shallow cumulus simulated

here (see section 3), i.e., -10 to -15 deg C and near water saturation, plate-like crystals with

sector branches are a reasonable assumption (e.g., see Pruppacher and Klett 1997, Fig.

2-36a).

Empirical m-D and A-D relationships for nonspherical crystals apply only to a limited

size range (e.g., Mitchell 1996 and references therein). To create a smooth transition between

small spherical ice and larger nonspherical crystals and aggregates, we extrapolate—following

Heymsfield and Banssemer (2007)—the m-D relationship for larger nonspherical crystals

down to a threshold dimension Dth such that mi = ms for D = Dth. From (8) and (10) one
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gets

Dth =
(

πρi

6αi

)
1

βi−3

, (12)

For the selected set of m-D coefficients (see Table 1), Dth ≈ 30 µm.

It follows that, for the case with no riming, the m-D and A-D relationships valid across

the whole range of ice particle sizes is found by dividing the PSD into two regions based

on Dth: 1) particles with D < Dth have m-D and A-D following solid ice spheres; and 2)

particles with D > Dth have m-D and A-D following unrimed nonspherical ice crystals. This

is illustrated in Figure 1. A key point is that this approach allows for a smooth transition in

m-D between small ice and larger ice particles grown by vapor deposition and/or aggregation,

as opposed to using separate cloud ice and snow categories as in most other bulk ice schemes.

Note that since this partitioning of the PSD is applied to A-D as well as m-D, there are small

discontinuities in A-D between the regions. However, for the m-D and A-D relationships used

here (see Table 1), the relative difference in projected area between the two regions at Dth is

only 17.5%. A fairly simple interpolation could be added to remove this small discontinuity

in A-D.

Under conditions allowing riming, the situation is significantly more complicated. In

the absence of observations, we assume that the bulk rimed mass fraction predicted by the

model applies to the entire spectrum of ice particles, except for small ice crystals which are

not supposed to grow by riming (this aspect will be discussed later; see the text following

eq. 23). This assumption is justified by comparing the mass growth rate due to riming

with the scaling of mass with D for crystals grown by vapor diffusion and aggregation. The

mass growth rate due to riming, dmrim(D)/dt, is proportional to the gravitational collection

kernel, i.e., dmrim(D)/dt ∼ EV A, where E is the collection efficiency, V is the ice particle

fallspeed, and A is the ice particle projected area (sticking efficiency is assumed to be unity).

Numerical calculations suggest that the collection efficiency of cloud droplets by ice particles

increases with ice particle dimension for plate-like and broad-branch crystals smaller than

about 500 µm, but is fairly constant for crystals larger than this size (see Wang and Ji 2000,

Figs. 6 and 7 therein). Given that the fallspeed of larger crystals is nearly constant with
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size (e.g., Mitchell 1994), and A is approximately proportional to D2, this suggests that the

collision kernel for larger crystals is approximately proportional to D2. This is similar to

the approximate scaling of mass with D observed for crystals grown by vapor diffusion and

aggregation, i.e., m ∼ D2 (e.g., Mitchell 1996). Hence, assuming that the scaling of rimed

mass with D is similar to the scaling of the growth rate due to riming with D, the fraction

of crystal mass grown by riming should be mostly independent of size, at least for larger

crystals. This assumption breaks down for smaller crystals (< 500 µm), whose collection

efficiency and particle fallspeed both increase with particle dimension. This assumption is

also uncertain for large graupel particles (larger than a few mm), whose collection efficiency

actually decreases with increasing particle size (Cober and List 1993). Future work should

test the assumption of constant Fr with D more rigorously using a bin modeling approach

that explicitly predicts the change of rimed mass fraction with particle size using detailed

expressions for collection efficiency as a function of particle dimension over the range of

particle sizes. Note that the approach developed here could be modified to include a rimed

mass fraction that varies with D.

As explained below, our approach requires that the PSD is divided into four regions,

referred to as (from the smallest to the largest) small ice spheres, dense nonspherical crystals,

graupel, and partially-rimed crystals; see Figure 2. The four regions are bounded by three

critical particle dimensions: Dth, Dgr, and Dcr. The dimension Dth was described previously

for the case with no riming. The necessity of Dcr and Dgr is explained below. The key point

is that these regions are partitioned in such a way as to produce smooth transitions in the

m-D relationship, even though these relationships differ for the different ice particle types,

as shown in Figure 2a (e.g., different slopes seen in the m-D relationship for different particle

types).

The m-D relationship for rimed ice crystals as a function of the rimed mass fraction

Fr is derived from the basic conceptual model of Heymsfield (1982). Based on this model,

rime accumulation in the crystal interstices increases the particle mass but not the particle

dimension D, and such a picture is valid up to the point of a complete “filling-in” of crystal
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interstices. From this point the particle becomes a graupel and further rimimg increases

both particle size and mass. Prior to the complete “filling-in” of the interstices, the rimed

mass fraction of an individual crystal is assumed equal to the bulk rimed fraction Fr and the

particle dimension D is determined by the crystal mass grown by aggregation and diffusion

of water vapor, mi. If the total mass of rimed particle is mr, then it follows that the mass

fraction Fr is

Fr =
mr − mi

mr

. (13)

Assuming that the m-D relationship for rimed crystals follows a power law mr = αrD
βr , and

the m-D relationship for mi is given by (10), then (13) implies that

αrD
βr =

αi

(1 − Fr)
Dβi . (14)

Since we assume constant Fr with D and (14) holds true for arbitrary D, then αr = αi/(1−Fr)

and βr = βi. It follows that the m-D relationship for partially-rimed crystals is

mr =
(

1

1 − Fr

)

αiD
βi . (15)

Rogers (1974) found that the β parameter in the m-D relationship is the same for both

rimed and unrimed snowflakes, consistent with our assumptions above, while the α is about

4 times larger for rimed compared to unrimed snow. Using a rimed mass fraction of 75%

in (15) produces results consistent with these observations. A key point is that the m-D

relationship given by (15) for partially-rimed crystals follows logically from Heymsfield’s

conceptual model and the assumption of constant Fr with D. Since this conceptual model

does not provide direct information on the evolution of A during riming growth, the A-D

relationship for partially-rimed crystals is found by linear interpolation between the projected

area for the crystal grown by aggregation and vapor diffusion (given by Eq. 11), and the

projected area for graupel (given Eq. 17 below), based on Fr. Note that at values of Fr

approaching unity, partially-rimed crystals are filled in with rime and (15) is no longer valid

(this is detailed below). Thus, we avoid the singularity resulting from the factor of (1 − Fr)

in the denominator of (15).
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As the rimed mass fraction increases, complete “filling-in” of the crystal interstices occurs.

At this point the particle is considered graupel and further growth follows the m-D and A-D

relationships for graupel, expressed by power laws as

mg = αgD
βg (16)

Ag = σgD
γg (17)

where mg and Ag are the mass and projected area of the graupel particle. Rime density is not

explicitly considered here; rather, it is implicit in the specified m-D relationship for graupel

given by (16). Here, the m-D parameters in (16) are for lump graupel following Heymsfield

and Kajikawa (1987) (see Table 1). Since the A-D for graupel is not given by Heymsfield

and Kajikawa (1987), we use the formulation for hail following Matson and Huggins (1980)

(see Table 1).

Since the empirical m-D relationships for unrimed ice and graupel are such that βi < βg

(that is, the rate of increase of mass with diameter is greater for graupel than it is for unrimed

nonspherical crystals), small crystals will fill-in with rime (i.e., attain a mass equal to that of

a graupel particle of the same dimension) at smaller values of Fr than large crystals. Thus,

if the rimed fraction Fr is assumed constant across the entire range of ice particle sizes,

there has to exist a critical dimension Dcr that represents the largest particle that is filled-in

with rime for a given Fr. The dimension Dcr partitions graupel and partially-rimed crystals

as indicated in Figure 2. Dcr is found by calculating D such that at D = Dcr, mr = mg.

Equating mr and mg using (15) and (16) gives

Dcr =

(

(

1

1 − Fr

)

αi

αg

)
1

βg−βi

. (18)

For the selected set of m-D coefficients (see Table 1), Dcr ≈ 800 µm for Fr = 0.75. Note

that if Fr → 1, Dcr → ∞. In this case in the code Dcr is not calculated and the m-D and

A-D relationships for the rimed crystals follow that of graupel.

The empirical m-D relationship for graupel applies to a limited size range. Extrapolation

to smaller sizes gives a particle mass smaller than the corresponding value using the formu-

lation for unrimed nonspherical ice. Thus, extrapolation leads to a bulk density of graupel
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that is smaller than that of unrimed ice for small particles. To avoid this inconsistency, the

bulk density of graupel is assumed to always be greater than or equal to the bulk density of

unrimed ice. These considerations lead us to define a second critical dimension, Dgr, that

represents the size where the bulk densities of unrimed ice and graupel are equal. Particles

smaller than Dgr are assumed to have m-D relationship for unrimed ice, even though they

may be rimed, to avoid unrealistically low bulk particle densities using the extrapolated m-D

formulation for graupel. These particles are referred to as ’dense, nonspherical ice’. Thus,

Dgr partitions between dense nonspherical ice and graupel as indicated in Figure 2. Dgr is

derived assuming mg = mi. Using (16) and (10) gives

Dgr =

(

αi

αg

)
1.

βg−βi

. (19)

For the selected set of m-D coefficients (see Table 1), Dgr ≈ 120 µm. Note that presence

of dense nonspherical ice can also be thought as a way of representing inability of small ice

crystals to grow by riming (see eq. 23 and following discussion). Since this partitioning

between between graupel and dense, nonspherical ice is applied to both m-D and A-D, there

is a small discontinuity in projected area between the two ice types at Dgr. However, for the

m-D and A-D values used here, this difference is only 0.8%. Particles with D < Dth have

m-D and A-D relationships corresponding to solid ice spheres as in the case with no riming.

Thus, Dth partitions between solid ice spheres and dense nonspherical ice as indicated in

Figure 2, in the same way as in the case with no riming.

To summarize the case with riming (i.e., when Fr > 0), the m-D and A-D relationships

are found by dividing the PSD into four regions based on Dth, Dgr, and Dcr: 1) particles

with D < Dth follow m-D and A-D for solid ice spheres; 2) particles with Dth ≤ D < Dgr

follow m-D and A-D for nonspherical unrimed ice; 3) particles with Dgr ≤ D < Dcr follow

m-D and A-D for graupel; 4) particles with D ≥ Dcr follow m-D and A-D for partially rimed

crystals. In the case of Fr ≈ 1, all particles with D > Dgr follow m-D and A-D for graupel.

Note that using Fr = 0 in the above equations for m-D and A-D for the case with riming is

mathematically identical to the equations for the case with no riming. The key point is that
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this approach allows the m-D relationship to vary smoothly between solid ice spheres, dense

nonspherical ice, graupel, and partially-rimed crystals, for arbitrary Fr.

With the m-D relationships established for different regions of the ice PSD for either

Fr = 0 or Fr > 0, the size distribution parameters can be derived from (5) - (7). Because

the ice PSD is divided into separate regions in terms of m-D, the integral (7) involves

incomplete gamma functions; hence derivation of λ and N0 from µ, q, and N cannot be

done analytically as is the case for cloud droplets and rain. Instead, these parameters are

calculated by iteration. Because this method is computationally inefficient, we use a lookup

table approach that gives λ and N0 as a function of the predicted ice variables qdep, qrim,

and N . These parameters (along with the m-D and A-D relationships for each region of the

PSD) are used to calculate the ice microphysical process rates in (1) - (3) as detailed below.

b. Ice microphysical processes

1) PRIMARY AND SECONDARY ICE INITIATION

The number of ice nuclei acting in deposition and condensation freezing nucleation modes

on insoluble or partially-soluble aerosol (but not activated as cloud or rain drops), NIN , is

given by Meyers et al. (1992) as a function of ice supersaturation. Nucleation is allowed in

5% ice supersaturated conditions at temperatures less than 268.15 K. The initial radius of

a new crystal is 1 µm. At present we assume that ice nuclei are always available (ice nuclei

concentration is not predicted), so that

(

∂N

∂t

)

nuc

=
NIN − N

∆t
(20)

where N is the number concentration of existing ice and ∆t is the time step. Ice supersatu-

ration is calculated from the predicted temperature and water vapor mixing ratio fields.

The freezing of rain and cloud droplets occurs through immersion mode following Bigg

(1953) and contact mode following Young (1974). The number concentration of ice nuclei

acting in contact mode is given by Meyers et al. (1992) as a function of temperature. Contact

and immersion freezing rates are dependent on the droplet size and hence are integrated over
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the droplet and rain size distributions. Ice multiplication occurs by rime-splintering following

Hallett and Mossop (1974). This formulation assumes that 350 ice splinters are produced

for every 10−3 g of rime accreted at -5 deg C. Rime-splintering is allowed between -3 and

-8o C. However, for cleaner comparison with the traditional approach to ice microphysics,

rime-spilntering is turned off for the simulations shown here (this keeps particle number

concentration fairly consistent between the various runs). At temperatures below -40o C,

rain and cloud droplets freeze homogeneously within a single model time step.

2) TERMINAL FALL VELOCITY

The number- and mass-weighted terminal fallspeeds VN and Vq are given by

VN =

(

ρa

ρ0

)0.54 ∫∞
0

a1D
µ+b1e−λDdD

∫

∞

0 Dµe−λD
dD (20)

Vq =

(

ρa

ρ0

)0.54 ∫∞
0 a1D

µ+β+b1e−λDdD
∫

∞

0
Dµ+βe−λDdD

(22)

where the fallspeed-dimension relationship (V-D) is given by the power law V = a1D
b1 . Here

a1 and b1 are derived following Mitchell and Heymsfield (2005) from the Re-X relationship,

where X is the Best (Davies) number (related to mass divided by projected area of the

particle) and Re is the particle Reynolds number. This approach follows the methodology of

Khvorostyanov and Curry (2002) to produce smooth coefficients a1 and b1 as a function of D,

but modified to account for surface roughness coefficients appropriate for ice particles. The

mass and projected area needed to calculate X are found from the m-D and A-D relationships

as described in the previous subsection. The air density correction factor follows Heymsfield

and Banssemer (2007), where ρa is the local air density and ρ0 is a reference air density

used in the calculation of a1 and b1 (based on a pressure of 600 mb and temperature of

-20 deg C). An example of the Vq as a function of Fr is shown in Figure 3. This plot shows a

slow increase of Vq with Fr for Fr between 0 and 0.3, and a much more rapid increase for Fr

between 0.6 and 1. Since rimed mass fraction is assumed to be independent of D, the same

mass-weighted terminal fallspeeds are applied to both qdep and qrim.

3) COLLISIONS BETWEEN ICE AND RAIN/CLOUD DROPLETS
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The formulation for collection of cloud water assumes that the fallspeed of droplets is

negligible compared to the collecting ice particles. Thus, the collection of cloud water is

given by the continuous collection (e.g., Pruppacher and Klett 1997):

(

∂qrim

∂t

)

accc

=

(

ρa

ρ0

)0.54

qcEciρa

∫

∞

Drim

N0a1σDµ+b1+γe−λDdD (23)

where qc is the cloud water mixing ratio, Eci is the bulk collection efficiency for droplet-ice

collisions, and Drim represents the minimum crystal size for growth by accretion of cloud

droplets. Here it is assumed that Eci = 0.75 and Drim = 100 µm. Note that, for D > Drim,

collection efficiency for droplet-ice collisions depends on the droplet size and to a smaller

extent on the size of ice particle D. Thus, the bulk efficiency Eci should depend on the mean

size of cloud droplets, an effect neglected in the current study (see Borys et al. 2003 for a

discussion of how this effect impacts the growth of snow in cold orographic clouds). As far

as Drim is concerned, previous studies have suggested that it is approximately between 50

and 300 µm depending on the particle habit (Pruppacher and Klett 1997, and references

therein). The loss of droplet number is found using (23) except that qc is replaced by the

droplet number concentration Nc. For simplicity it is assumed that ice collects cloud water

at subfreezing temperatures only.

The fallspeed of drizzle/rain drops is significant and cannot be neglected for ice-rain

collisions. The mixing ratio of drizzle/rain collected by ice or collecting ice at subfreezing

temperatures is given by

(

∂qrim

∂t

)

accr

=

(

ρa

ρ0

)0.54

Eirρa

∫

∞

0

∫

∞

0

N0N0r

∣

∣

∣a1D
b1 − a1rD

b1r

r

∣

∣

∣

(

σDγ +
π

4
D2

r

)

π

6
ρwD3

rD
µe−λDe−λrDrdDdDr (24)

where a1r and b1r are the fallspeed parameters for drizzle/rain, Eir = 1 is the collection

efficiency for drizzle/rain-ice collisions, N0r and λr are the intercept and slope parameters

for the exponential rain PSD, respectively, ρw is the density of liquid water, and Dr is the

drizzle/rain drop diameter. The loss of raindrop number due to drizzle/rain collecting ice
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or ice collecting drizzle/rain is given by (24) with π/6ρwD3
r removed. Note that there is no

assumed minimum crystal size for the collection of small ice particles by drizzle/rain.

At temperatures above freezing, the collection of drizzle/rain by ice or ice by drizzle/rain

is assumed to result in instantaneous melting of the ice. The mixing ratio of ice collected by

drizzle/rain or collecting drizzle/rain is given by

(

∂qrim

∂t

)

mltc

=

(

ρa

ρ0

)0.54

Eirρa

∫

∞

0

∫

∞

0

N0N0r

∣

∣

∣a1D
b1 − a1rD

b1r

r

∣

∣

∣

(

σDγ +
π

4
D2

r

)

αDβDµe−λDe−λrDrdDdDr (25)

The loss of N due to collection of ice by drizzle/rain or drizzle/rain by ice is given by (25)

with αDβ omitted.

4) AGGREGATION OF ICE CRYSTALS

The self-aggregation of ice through ice-ice collisions impacts N but not mixing ratio. The

change in N due to self-aggregation is

(

∂N

∂t

)

agg

= −0.5

(

ρa

ρ0

)0.54

Eiiρa

∫

∞

0

∫

∞

0

N2

0

∣

∣

∣a11D
b11
1 − a12D

b12
2

∣

∣

∣

(σ1D
γ1

1 + σ2D
γ2

2 ) Dµ
1Dµ

2 e−λD1e−λD2dD1dD2 (26)

where Eii = 0.1 is the assumed collection efficiency for ice-ice collisions following Reisner

et al. (1998), D1 and D2 are the particle dimensions of the colliding pair, and σ1, γ1, a11,

and b11 and σ2, γ2, a12, and b12 are the projected area and fallspeed parameters for particles

1 and 2, respectively. Field et al. (2006) found that using the sweepout collection kernel

with aggregation efficiency of about 0.1 was able to produce reasonable agreement with the

observed evolution of the particle size distribution in anvil cirrus, although we note that

collection efficiency may differ under varying environmental conditions (e.g., Mitchell et al.

1988). Snow breakup is implicit by limiting the mean ice particle size to 5 mm (through

adjustment of N) as described previously.

5) VAPOR DEPOSITION/SUBLIMATION AND MELTING
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The vapor deposition growth of ice is given by diffusional mass and heat balance neglect-

ing surface kinetic effects but including ventilation effects:
(

∂qdep

∂t

)

dep

= (qv − qvi)
2πρaDv

Γp

∫

∞

0

N0C(D)Dµfv(D)e−λDdD, qv > qvi (27)

where qv is the water vapor mixing ratio, qvi is the vapor mixing ratio at ice saturation, Dv is

the diffusivity of water vapor and Γp is the psychrometric correction to growth to account for

release of latent heat. Naturally, sublimation occurs if qv < qvi. The ventilation coefficient

fv(D) is modeled after Hall and Pruppacher (1976) for X > 1, where X(D) = N
1/3

Sc N
1/2

Re , NSc

and NRe(D) are the Schmidt and Reynolds numbers associated with the falling particle for

the given environmental conditions, respectively. The air density correction to the fallspeed

is neglected for NRe. Ventilation effects are neglected for X(D) < 1. The capacitance of

the particles C(D) varies for the different regions of the PSD in Figure 1b. For ice spheres,

C = D. In the absence of empirical data, we also assume that C = D for graupel. For

unrimed nonspherical crystals the capacitance is given by Field et al. (2007): C = 0.48D.

For partially-rimed crystals, capacitance is found by linear interpolation between the values

for unrimed crystals and graupel based on particle mass for a given D.

The change in mixing ratio due to melting is given by (27) with (qv − qvi) replaced by

(Tf − T ) and Dv/Γp replaced with κ/Lf . Here Tf = 273.15 K is the temperature at freezing,

κ is the thermal conductivity of air, and Lf is the latent heat of freezing. The change in qdep

and qrim due to melting and sublimation is partitioned based on their relative contributions

to the total ice mixing ratio. Although N is not impacted by depositional growth, it is

potentially reduced by sublimation and melting. For simplicity, the relative loss of N during

sublimation and melting is equal to the relative loss of total ice mixing ratio following Ferrier

(1994) and Morrison et al. (2005).

3. Description of the kinematic framework and case study

The bulk model with the new ice microphysics scheme was implemented in a 2D kinematic

modeling framework similar to that presented by Szumowski et al. (1998) and subsequently

applied in Grabowski (1998; 1999) and MG06. The kinematic framework employs a spec-
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ified flow field, which allows for testing of the microphysics scheme in a framework that

includes advective transport and particle sedimentation, while at the same time avoiding

complications due to feedbacks between the dynamics and microphysics. In addition to the

equations describing conservation of the mixing ratios and number concentrations of ice,

cloud droplets, and rain, the kinematic model solves equations for the potential temperature

and water vapor mixing ratio. These equations include advective transport and sinks/sources

due to condensation/evaporation and latent heating. Transport in physical space is calcu-

lated using the 2D version of the MPDATA scheme (Smolarkiewicz 1984; Smolarkiewicz and

Margolin 1998). The vertical and horizontal grid spacing is 50 m over a domain that is 9

km wide and 3 km deep. The model time step is 0.5 sec.

The specified flow field varies in time, representing the evolution of an idealized shallow

convective plume. The flow pattern consists of low-level convergence, upper-level divergence,

and a narrow updraft at the center of the domain. Horizontal flow includes a weak vertical

shear. Equations describing the streamfunction and flow velocities are detailed in the Ap-

pendix of MG06. Here the updraft decays to zero velocity after 40 min instead of 2 m s−1

in MG06, which allows slower-falling ice and graupel (relative to rain) to fall toward the

surface. In addition, two flow configurations are tested, corresponding with a maximum

updraft speed of either 2 or 8 m s−1 (MG06 used 8 m s−1 only). This allows for testing of

the scheme in both weak updraft (and low supercooled liquid water) and moderate updraft

(high supercooled liquid water) environments. The updraft speed is held constant at 1 m s−1

for the first 15 min, intensifies to a peak value of either 2 m s−1 or 8 m s−1 at 25 min, and

decays to zero after 40 min (Figure 4). The simulated time period is from t = 0 to 90 min.

This case, detailed by Szumowski et al. (1998), was originally developed for warm con-

ditions. Here, we reduce the initial temperature profile of Szumowski et al. by 20 K to

simulate mixed-phase conditions in a cold cumulus. The cloud-top temperature is about 258

K, with temperatures above freezing in the lowest 500 m (Figure 5). The initial water vapor

mixing ratio is also reduced such that the initial relative humidity is the same as in Szu-

mowski et al. Following Szumowski et al. and MG06, entrainment and sub-grid turbulent
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mixing are neglected.

Droplet activation is calculated from the water supersaturation and specified aerosol

characteristics using Kohler theory (see MG06, section 2a for details). A single lognormal

aerosol size distribution is assumed. Here, we assume a moderately pristine regime with a

total concentration of accumulation mode aerosol of 300 cm−3. The other aerosol character-

istics (composition, mean size, standard deviation of size) are the same as MG06 (see their

section 3 for details).

To test the new approach for ice microphysics (hereafter referred to as the “new scheme”),

we have also developed a version of the scheme that uses the traditional approach for conver-

sion of ice/snow to graupel following Rutledge and Hobbs (1984; hereafter RH84); hereafter,

this version is referred to as the “traditional scheme”. In this scheme there are four prognos-

tic ice variables: ice/snow mixing ratio and number concentration, and graupel mixing ratio

and number concentration. Note that this scheme does not include separate variables for

cloud ice and snow as in most bulk schemes, and therefore does not use the autoconversion

process to convert small to large ice particles. Several processes convert ice/snow to grau-

pel following RH84. These include graupel initiation from both rain-snow and droplet-snow

collisions. All other microphysical processes are calculated in the same manner as in the

new scheme, assuming that Fr = 0 for ice/snow and Fr = 1 for graupel. The minimum

mixing ratios required to initiate graupel from rain-snow collisions are 0.1 g/kg for both rain

and ice/snow following RH84. For graupel initiation resulting from snow-droplet collisions,

a minimum snow mixing ratio of 0.1 g/kg and minimum droplet mixing ratio of 0.5 g/kg

are required following RH84. If the graupel initiation conditions are met, it is assumed that

all rain-snow and droplet-snow collisions result in conversion to graupel. The sensitivity of

the traditional scheme to these threshold mixing ratios is described in section 4b. Note that

RH84 also included graupel initiation due to collisions between cloud ice and rain; this is

neglected here because we do not include separate variables for cloud ice and snow.

4. Results
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a. Baseline simulations

We first focus on the shallow cumulus simulations with a maximum updraft speed of

8 m s−1 using either the new scheme or the traditional scheme for ice microphysics. The

time-height plots of maximum values of cloud water, rain, ice/snow, and/or graupel mixing

ratios are shown in Figures 6 and 7. These plots are created by combining, at a given time,

the horizontal maximum of a given field at each model vertical level into a single column,

and subsequently displaying the time evolution of these columns. Hence, these plots trace

vertical movement of the horizontal field maxima, but no information about their horizontal

location is available. Moreover, the time evolution of the domain-average cloud liquid water

path LWP , ice water path IWP , water optical depth τc, ice cloud optical depth τi, total

cloud optical depth τt = τc + τi, and the surface precipitation rate PREC are all shown in

Figure 8. The cloud droplet optical depth is calculated as τc =
∫H
0

3LWC/ (2ρwre)dz for

the geometric optics limit, where H is the top of the model domain, LWC is the liquid

water content, and re is the droplet effective radius, calculated as the ratio of the third and

second moments of the gamma droplet size distribution (MG06). For ice, calculation of the

optical depth is complicated by the nonspherical geometry of ice crystals. Here we employ

the parameterization of Fu (1996), which derives the effective ice diameter as

De = 2
√

3IWC/ (3ρiAc) , (28)

where Ac is the projected area of the crystals from the given A-D relationship (see section

2a) integrated over the size distribution, and IWC is the ice water content. The Fu (1996)

optical depth at ≈ 0.6 µm (wavelength of maximum solar irradiance) is

τi = IWC (0.000982244 + 2.50875/De) (29)

where IWC has units of g m−3 and De has units of µm.

As Figs. 6 and 7 show, model results are generally similar when using either scheme, but

there are significant differences. The cloud water is produced in both simulations as the up-

draft increases in strength between t = 0 and 25 min. Significant amounts of ice are produced
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by the time of the maximum updraft (t = 25 min) through deposition/condensation-freezing

nucleation as well as droplet freezing. The noisy pattern seen in the ice and graupel mixing

ratios using the traditional scheme in Fig. 6 likely reflects the thresholding behavior of grau-

pel conversion. As the updraft weakens after t = 25 min, a shaft of ice precipitation develops

and partially melts near the surface. The cloud water is rapidly glaciated throughout most

of the cloud layer, except near cloud top due to limited amounts of ice in this region. The

separation of ice/snow and graupel into different categories using the traditional approach

produces two shafts of ice precipitation and associated maxima of surface precipitation rate

consisting of either graupel or ice/snow (see Fig. 8). Since the traditional approach converts

ice/snow to graupel in a single step, rapid conversion to graupel occurs once the threshold

conditions are met, and this shaft of graupel precipitates rapidly to the surface with mean

fallspeeds greater than 1.5 m s−1. Significant surface precipitation (consisting of both grau-

pel and rain) begins at t = 30 min in this run and produces a sharp peak in the precipitation

rate at t = 40 min (see Fig. 8). A secondary peak in the surface precipitation rate occurs at

about t = 80 min associated with the weaker shaft of ice precipitation consisting of ice/snow.

Because of the much slower particle fallspeeds associated with the ice/snow category (about

0.5 - 1 m s−1) relative to graupel, much of this shaft does not reach the surface by the end

of the simulation at t = 90 min.

In contrast, the new scheme produces a single shaft of ice precipitation; its formation

is also slightly delayed relative to the main precipitation shaft produced by the traditional

scheme (see Fig. 8). Similarly to the traditional scheme, weak surface precipitation continues

up to the end of the simulation, but in contrast there is not a distinct second peak in

precipitation rate. Ice mixing ratio is primarily grown by vapor deposition initially; rimed

mass fraction exceeding 90% occurs 10-20 min after the first appearance of the ice (see

Fig. 9). Rimed mass fraction steadily decreases after about t = 45 min corresponding to the

reduction of droplet mixing ratio and hence decrease in the riming rate and accumulated rime

mass. Most of the cloud layer has a crystal concentration between 1 and 5 L−1. Allowing

Hallett-Mossop rime-splintering increases number concentration in the precipitation shaft up
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to about one order of magnitude (not shown). Since the shaft of ice precipitation consists of a

mixture of partially-rimed crystals and graupel, depending on the particle size (as described

in section 2a, see also Fig. 2), the mean particle fallspeed is slightly less than that for a

population consisting solely of graupel. Thus, this shaft of precipitation falls slower than the

graupel shaft in the simulation using the traditional scheme, and significant precipitation

does not reach the surface until about t = 35 min, a delay of about 5 min compared to

the run with the traditional scheme (see Fig. 8). The peak surface precipitation rate is

similarly delayed by about 5 min. Moreover, the new scheme produces significantly more

cloud liquid water than the traditional scheme, especially after t = 45 min. These differences

are also evident for the time- and domain-average values of LWP , optical depths, and surface

precipitation rate (Table 2). For ice optical depth, the difference is more significant, even

though the ice water path is only somewhat smaller using the new scheme. This appears

to reflect the fact that dense, heavily-rimed crystals in the new scheme have a relatively

large ratio of mass to projected area (i.e., larger effective radius) compared to the unrimed

crystals in the traditional scheme. Similar differences are apparent for the simulations with

maximum updraft velocity of 2 m s−1 (see Fig. 10 and Table 2).

b. Sensitivity tests

Simulations using the traditional scheme exhibit strong sensitivity to the assumed ice/snow

and cloud water threshold mixing ratios required for conversion to graupel. Two tests demon-

strate this sensitivity. In the first test, conversion to graupel during collection of droplets

is allowed only when both the ice/snow and droplet mixing ratios exceed 1 g/kg, compared

to thresholds of 0.1 and 0.5 g/kg for ice/snow and droplets, respectively, for the baseline

run using the traditional scheme (as well as in RH84). In the second test, conversion to

graupel during collection of droplets occurs when any ice/snow and droplet mixing ratio is

present (i.e., thresholds are set to zero). Note that results are not sensitive to the mixing

ratio thresholds for conversion to graupel during rain-snow collisions because the formation

of graupel is dominated by collisions between ice/snow and cloud droplets. A similar result
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was noted by RH84 in simulations of cold-frontal rainbands.

As expected, increasing the threshold ice/snow and droplet mixing ratios to 1 g/kg

decreases the amount of graupel. Since particles fallspeeds for ice/snow are much slower

than they are for graupel, ice mass is removed relatively slowly from the cloud. This leads

to much larger values of IWP and rapid depletion of cloud liquid water through droplet

collection and the diffusional growth of the ice field (see Figs. 8 and 10). It also leads to a

smaller initial peak in the surface precipitation rate (at about t = 41 min) and much larger

second peak (at t = 80 min) relative to the baseline run using the traditional scheme. Even

though the LWP is small with the reduced graupel thresholds, the large IWP results in a

total cloud optical depth about 3 times larger than baseline for maximum updraft velocity

of 8 m s−1 (see Table 2). Ice optical depth is further enhanced relative to the baseline

traditional simulation because most of the ice mass is contained in the unrimed ice/snow

category, representing less dense crystals with a smaller ratio of mass to projected area (i.e.,

smaller effective radius) relative to graupel. Thus, partitioning between unrimed ice/snow

and graupel can directly impact the radiative properties of the simulated cloud. Similar

results are seen for the run with updraft velocity of 2 m s−1. Not surprisingly, reducing the

threshold mixing ratios for graupel production leads to an increase in the LWP and decrease

in the IWP relative to baseline due to faster removal of cloud ice. Despite large changes

in the ice and liquid water paths, the total cloud optical depth is similar to baseline. Thus,

the traditional approach produces a larger total cloud optical depth than the new scheme

regardless of values specified for the threshold mixing ratios for graupel production.

The sensitivity to the specified m-D relationship for unrimed crystals is tested in the new

scheme using the recent formulation derived by Heysmfield et al. (2007; hereafter H07). Note

that modifying this m-D relationship also impacts m-D for partially-rimed crystals as indi-

cated by (15). The H07 formulation is based on crystal ensembles observed in convectively-

generated ice cloud layers during the 2002 Cirrus Regional Study of Tropical Anvil and

Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The relationship is

given by (cgs units) m = (0.0040157 + 0.0000606T )D1.75, where T is the air temperature in
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degrees C. Here we use T = −5 deg C; there is little change in our results over the range

−20 < T < −5 deg C. An example of the sensitivity to habit is also tested using the m-D

relationship for side planes following Mitchell et al. (1990), where m = 0.00419D2.3 (cgs

units; the baseline simulation assumes plates with sector-like branches). Side planes may be

expected in water saturated conditions as occur here, but at somewhat colder temperatures

(-20 to -25 deg C) (Pruppacher and Klett 1997, and references therein). The impact of m-D

relationship is mostly expressed through changes in the mean particle terminal fallspeed.

For a given set of ice conditions (i.e., mixing ratio and number concentration), the H07 for-

mulation tends to produce larger mean fallspeed (it should be kept in mind that the mean

fallspeed also depends on the A-D relationship which was not varied in these tests). Thus,

larger fallspeed depletes the cloud of ice, reducing the IWP (and ice optical depth) and

increasing the LWP (and droplet optical depth) (Fig. 11, Table 2). There is little impact

on the surface precipitation rate. This is because the surface precipitation (especially at

the time of the peak rate) consists of ice with a high rimed-mass fraction, which has micro-

physical characteristics closer to graupel than unrimed ice. It is anticipated that the surface

precipitation rate will be more sensitive in conditions that lead to less riming. Using the

m-D relationship for side planes produces only small changes in the results, leading to slight

reduction in ice optical depth that is compensated by a slight increase in droplet optical

depth (see Fig. 11).

To summarize the above sensitivity tests, it appears that the new scheme shows some

sensitivity to the formulation of the m-D relationship for ice particles. However, this sensi-

tivity appears to be significantly smaller than the impact of the conversion thresholds in the

traditional scheme (see Figs. 8, 11, Table 2).

5. Summary and conclusions

This paper documents a novel approach for representing the ice-phase microphysics in

numerical models. It includes only a single species of ice but retains the history of rimed

mass fraction, in contrast to the traditional approach of separating ice into several distinct
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categories (e.g., cloud ice, snow, graupel). The new approach allows for a physically-based

representation of the conversion of cloud ice into snow due to diffusional growth and aggre-

gation, and the conversion of cloud ice and snow into graupel due to riming. The conceptual

model of Heymsfield (1982) is applied for the latter. The history of rimed mass fraction

in the new scheme is retained by predicting two ice mixing ratio variables: the mixing ra-

tio acquired through water vapor deposition and the mixing ratio acquired through riming.

Concentration of ice particles is the third predicted variable. All ice microphysical processes

and parameters are calculated in a self-consistent manner using mass-dimension (m-D) and

projected-area-dimension (A-D) relationships that vary according to the rimed mass frac-

tion and the particle size. Because the new approach does not include separate categories

for small cloud ice, snow and graupel, the nonphysical “autoconversion” processes are not

needed, in contrast to traditional approaches. In the new scheme, the distinction between

small ice and larger snow crystals, and between unrimed and rimed ice particles, is made

by assuming a smooth transition in the m-D and A-D relationships for particles of different

sizes and different rimed mass fractions. Another advantage of the new approach is that

there are fewer prognostic variables, reducing the computational cost relative to traditional

approaches. The same strategy can be applied in either bulk or bin microphysical models.

A key aspect of the scheme is its flexibility: the scheme could be easily modified to

account, for example, for crystals that form under varying environmental conditions with

different habits, and subsequently mix together. This could be accomplished by adding

additional “classes” of ice with different m-D and A-D relationships for the different habits,

and predicting three variables (the two mixing ratio variables plus number concentration)

for each class. The scheme currently assumes riming growth in the dry growth regime (i.e.,

accreted drops are assumed to freeze instantaneously), but could also be modified to account

for wet growth (i.e., riming when liquid water accumulates on the ice particle surface) by

predicting the liquid water fraction accumulated on the particle and accounting for shedding.

This is especially important for initiation of hail (Heymsfield and Hjelmfelt 1984). The new

approach assumes that the rimed mass fraction is constant with particle dimension (for

29



crystals larger than the riming threshold size) based on a simple scaling argument of the

riming growth rate as a function of particle size. This assumption will be tested more

rigorously using a bin model approach that explicitly predicts the evolution of rimed mass

fraction with particle size; results will be reported in a future publication. The approach

developed in this paper could be easily modified to account for a rimed mass fraction that

varies with ice particle size.

Here the new ice scheme was combined with the the two-moment bulk microphysical

framework of Morrison and Grabowski (2006; MG06). In addition to four prognostic vari-

ables describing warm-rain processes (mixing ratios and number concentrations for cloud

droplets and drizzle/rain), three prognostic variables were applied for ice processes (i.e.,

concentration of ice particles and the mixing ratios due to vapor depostion and riming).

The scheme was applied in a 2D kinematic modeling framework mimicking a mixed-phase

shallow cumulus with a maximum updraft speed of either 2 or 8 m s−1. The new scheme

was compared against a version that included the traditional approach for graupel conver-

sion processes following RH84. Significant differences were apparent between the new and

traditional approaches. In particular, the traditional approach with threshold mixing ratios

prescribed as in RH84 produced two precipitation shafts and maxima of surface precipitation

rate (separated by about 40 min) corresponding with either the graupel or ice/snow cate-

gories (and their attendant differences in particle fallspeed). In contrast, the new scheme

produced a single precipitation shaft. In addition, the new scheme produced more liquid

water and less ice, and smaller (by about 20 - 50%) mean total (ice plus liquid) cloud optical

depth.

In the traditional approach, threshold mixing ratios must be reached before graupel

production is allowed during riming. The values specified for these thresholds are arbitrary

and have little physical basis. The traditional scheme exhibited strong sensitivity to these

thresholds. Similarly to the findings of RH84, increasing the mixing ratio thresholds limited

graupel formation, which in turn reduced the mean fallspeed and altered the characteristics

of the surface precipitation. In our study, precipitation was enhanced toward the end of
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the simulation. In addition, the slower mean fallspeed led to the larger amounts of ice in

the cloud layer which rapidly depleted the available liquid water. Conversely, decreasing

the mixing ratio thresholds for graupel formation increased graupel production and hence

mean fallspeed. This led to much smaller amounts of ice and hence larger liquid water path.

Changing graupel thresholds also directly impacted ice optical depth since unrimed crystals

have a smaller ratio of mass to projected area (i.e., smaller effective radius) compared to

graupel. A key point is that the new approach does not require these arbitrary thresholds

for graupel conversion.

The sensitivity to specified crystal mass-dimension relationship was also tested using the

recent formulation developed by Heysmfield et al. (2007; H07) from observations of crystal

ensembles during CRYSTAL-FACE. The sensitivity was also tested using the mass-dimension

relationship for side planes (the baseline simulation assumed plates with sector-like branches).

The impact of mass-dimension relationship occurred mostly through changes in the particle

fallspeed. For example, using the H07 formulation tended to increase the mean fallspeed

relative to baseline, resulting in smaller ice water path and larger liquid water path. There

was little impact on the surface precipitation, but greater sensitivity is expected for cases

that exhibit less riming. Note that using a mass-dimension relationship obtained from crystal

ensembles (as in H07), rather than a specific crystal habit, is perhaps more justified since

most clouds containing ice consist of a population of different habits including regular and

irregular crystals, aggregates, broken branches, and polycrystals (e.g., Korolev et al. 1999;

Heymsfield 2003). However, it is noted that ensemble characteristics vary widely between

different regimes, such as synoptic versus convectively-generated cirrus (H07).

In the future we will focus on testing the scheme within a 3D dynamic framework (e.g.,

deep convection), including comparison with observations, as well as looking at the impact of

ice microphysics on the cloud dynamics, which could not be investigated using the kinematic

framework employed in this study. Results of such investigations will be reported in future

publications.
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Figure 1: a) Mass (m)-dimension (D) relationships in unrimed conditions for solid spherical
ice and unrimed nonspherical ice using parameters in Table 1, and critical particle dimension
Dth. b) Schematic diagram of the gamma particle size distribution N(D) divided into two
regions based on Dth.
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Figure 2: a) Mass (m)-dimension (D) relationships in rimed conditions for solid spherical
ice, graupel, dense nonspherical ice, and partially-rimed ice using parameters in Table 1,
and critical dimensions Dth, Dgr, and Dcr. The m-D relationship shown in this example is
calculated using a rimed mass fraction of 0.75. b) Schematic diagram of the gamma particle
size distribution N(D) divided into four regions based on Dth, Dgr, and Dcr.
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Figure 3: Mass-weighted terminal fallspeed Vm as a function of crystal rimed mass fraction
Fr, assuming pressure of 600 mb, temperature of 253 K, and total ice mixing ratio and ice
number concentration of 1 g/kg and 3 L−1 (solid) or 0.1 g/kg and 3 L−1 (dotted), respectively.
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Figure 4: Maximum updraft velocity w in the X-Z plane as a function of time for peak
updraft strength of 8 m s−1 (solid) and 2 m s−1 (dotted).
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Figure 5: Initial temperature T (solid) and relative humidity RH (dotted) profiles.
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Figure 6: Time evolution of horizontal maxima of cloud water mixing ratio, rain mixing ratio,
ice/snow mixing ratio, and graupel mixing ratio at each vertical level using the traditional
scheme and maximum updraft speed of 8 m s−1.
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Figure 7: Time evolution of horizontal maxima of cloud water mixing ratio, rain mixing ratio,
and ice mixing ratio at each vertical level using the new scheme and maximum updraft speed
of 8 m s−1.
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Figure 8: Time evolution of domain-average cloud liquid water path LWP (g m−2), ice
water path IWP (g m−2), droplet optical depth τc (unitless), ice optical depth τi (unitless),
total cloud optical depth τtot (unitless), and surface precipitation rate PREC (mm/hr), for
maximum updraft speed of 8 m s−1. “NEW” and “TRAD” refer to simulations using the
new and traditional ice microphysics schemes, respectively. “TH-HIGH” and “TH-LOW”
refer to sensitivity tests using the traditional scheme but with the threshold ice/snow and
droplet mixing ratios for graupel production during droplet collection increased or decreased,
respectively.
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Figure 9: Time evolution of rimed mass fraction at the location of horizontal maximum
ice mixing ratio at each vertical level (top) and time evolution of horizontal maximum ice
number concentration at each vertical level (bottom), using the new scheme and maximum
updraft speed of 8 m s−1.
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Figure 10: As in Figure 7, except for maximum updraft speed of 2 m s−1.
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Figure 11: Time evolution of domain-average cloud liquid water path LWP (g m−2), ice
water path IWP (g m−2), droplet optical depth τc (unitless), ice optical depth τi (unitless),
total cloud optical depth τtot (unitless), and surface precipitation rate PREC (mm/hr), for
maximum updraft speed of 8 m s−1. “BASE” refers to the baseline simulation using the
new scheme. “S1”, and “H07” refer sensitivity tests using the new scheme with the crystal
mass-dimension relationship for side planes and crystal ensembles following Heymsfield et
al. (2007), respectively.
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Table 1: Coefficients used in the baseline runs for the mass-dimension relationship (m-D),
where m = αDβ, and projected area-dimension relationship (A-D), where A = σDγ , for the
different ice particle types described in the text (cgs units). ρi ≈ 0.9 g cm−3 is the bulk
density of ice.

m-D A-D
Particle Type α β σ γ

Spherical Ice πρi/6 3 π/4 2
Dense, Nonspherical/
Unrimed, Nonspherical 0.00142 2.02 0.55 1.97
Graupel 0.049 2.8 0.625 2
Partially-Rimed see text see text
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Table 2: Time- and domain-average cloud liquid water path LWP (g m−2), ice water path
IWP (g m−2), water optical depth τc (unitless), ice optical depth τi (unitless), total cloud
optical depth τtot (unitless), and surface precipitation rate PREC (mm/hr) for simulations
with maximum updraft speed w of either 2 or 8 m s−1. “NEW” and “TRADITIONAL” refer
to simulations using the new and traditional ice microphysics schemes, respectively. “TH-
HIGH” and “TH-LOW” refer to sensitivity tests using the traditional scheme but with the
threshold ice/snow and droplet mixing ratios for graupel production during droplet collection
increased or decreased, respectively (see text for details). “S1” and “H07” refer to sensitivity
tests with the new scheme using the m-D relationship for side planes or from Heymsfield et
al. (2007), respectively. The averaging period is from t = 25 to 90 min.

Run Max w LWP IWP τc τi τtot PREC

NEW 8 228.4 237.1 26.7 8.6 35.3 0.68
TRADITIONAL 8 92.9 317.9 12.1 32.6 44.7 0.76
TH-HIGH 8 52.8 719.3 7.4 111.0 118.4 0.62
TH-LOW 8 474.7 137.5 52.6 2.8 55.4 0.46
S1 8 288.8 198.0 33.3 4.6 37.9 0.64
H07 8 477.0 136.5 52.1 2.4 54.5 0.52
NEW 2 49.8 85.3 7.1 4.5 11.6 0.23
TRADITIONAL 2 16.8 140.4 2.7 20.9 23.6 0.20
TH-HIGH 2 15.4 169.4 2.5 26.4 28.9 0.20
TH-LOW 2 122.8 34.3 16.0 0.8 16.8 0.14
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