

Data Assimilation and Superparameterization

Steve Lord & EMC Staff

National Centers for Environmental Prediction Environmental Modeling Center Washington D.C. USA

> STC Planning Workshop Silver Spring 15 December 2003

Overview

- Data assimilation
 - Basics
 - Clouds and precipitation
 - NASA-NOAA-DOD Joint Center for Satellite
 Data Assimilation
 - Observing System Simulation Experiments (OSSEs)
- NCEP's global forecast system
 - Short-term drift (< 1 year)</p>
 - Current performance of coupled forecast system
- Uses of Super-parameterization

Data Assimilation (for the atmosphere)

- Data assimilation brings together all available information to make the best possible estimate of:
 - The atmospheric state
 - The initial conditions to a model which will produce the best forecast.

Data Assimilation Context

- Information sources
 - Observations
 - Background (forecast)
 - Dynamics (e.g., balances between variables)
 - Physical constraints (e.g., q > 0)
 - Statistics
 - Climatology

Overview

• Basic analysis equation

$$J = (x-x_b)^T B^{-1}(x-x_b) + (H(x)-O)^T (E+F)^{-1}(H(x)-O) + \dots$$

- J = Fit to background + Fit to observations + other constraints
- x = Analysis
- $x_b = Background$
- B = Background error covariance
- H = Forward model
- 0 = Observations
- E+F = Instrument error + Representativeness error

Sample background error structure

Overview (cont)

- Current data assimilation systems have been developed for synoptic scale weather systems
 - Mesoscale applications ported down scale
 - Clouds and precipitation are inherently mesoscale
- There is a lot of mesoscale data which we already have that we cannot use properly
 - Satellite data is thought to be mesoscale
 - "high resolution" refers to
 - Horizontal pixel size
 - Number of channels
- There is a perception that "going to high resolution" will solve our problems
 - Perhaps we don't know what problems will face us at "high resolution"

Overview (cont)

- For mesoscale data assimilation improved will be techniques necessary before we can use much of the data properly
- A 10+ year problem
- In NCEP's opinion: the bottom line is:
- At the mesoscale "you have to get it all right".

Improvements to assimilation techniques (1) Background error covariances.

- - Determine structures, smoothing, scales and inter-variable relationships within analysis.
 - Techniques for efficient computation.
 - Techniques for improved estimation.
- Dynamical/Thermodynamical balance.
 - Mass/moisture/momentum Spin up, Spin down.
 - Gravity waves important.
 - Loss of simple balance implies increased observational requirements.

Improvements to assimilation techniques (2)

- Additional analysis variables.
 - Clouds/precipitation.
 - Turbulence.
 - Aerosols.
 - Ozone, methane, CO_2 , etc.
 - Surface quantities (soil moisture, temperature, etc.).
- Improved forecast models.
 - WRF model.
 - Must include all analysis quantities.
 - Improved model forecast makes assimilation easier.

Improvements to assimilation techniques (3)

- Explicit bias correction of background field.
- Moving misplaced systems without destroying structure.

– e.g. hurricanes.

- Advanced assimilation techniques.
 - Kalman filtering, others.
 - Boundary control.
 - Applicability over timescales used not clear.
 - Cost?.

Satellite Radiance Observations

- Measure upwelling radiation at top of atmosphere
- Measure deep layers
 - IR not quite as deep as microwave
 - New IR instruments (AIRS, IASI, GIFTS) narrower, but still quite deep layers
 - Deep layers generally implies large horizontal scale

Satellite data use

- Key to using data is to have good characterization of K – forward model. If unknowns in K(x,z) – either in formulation of K or in unknown variables (z) are too large data cannot be reliably used.
 - If situations where data cannot be reliably used they must be removed by the quality control. For example, currently we cannot use radiances containing cloud signal – thus we attempt to not use these observations.
- Note that errors in formulation or unknown variables generally produce

Satellite data requirements

- Requirements for operational use of observations
 - Accurate forward model (and adjoint) available
 - Available in real time in acceptable format
 - Assurance of stable data source
 - Quality control procedures defined (conservative)
 - Observational errors defined (and bias removed if necessary)
 - Evaluation and testing to ensure

Satellite Radiance Observations

- Radiative transfer
- Quality Control
- Bias correction
- Monitoring
- Impact

Satellite Radiance Observations Radiative transfer • Need fast radiative transfer function (and tangent linear, adjoint and Jacobian) to

- use observations (LBL codes much too slow)
 - Reflected and emitted radiation from surface (emissivity, temperature, polarization, etc.)
 - Atmospheric transmittances dependent on moisture, temperature, ozone, clouds, aerosols, CO2, methane, ...
 - Cosmic background radiation (important for microwave)
 - View geometry (local zenith angle, view angle (polarization))

Joint Center for Satellite Data Assimilation

Stephen J. Lord (NCEP/EMC) Fuzhong Weng (NESDIS/ORA) L.P. Riishojgaard (NASA/DAO)

JCSDA Ocean Data Assimilation Workshop

June 16, 2003

Mission

The mission of the Joint Center for Satellite Data Assimilation is to <u>accelerate</u> <u>and improve</u> the quantitative use of <u>research and operational</u> satellite data in <u>weather and climate</u> prediction models.

Goals

- Reduce from two years to one year the average time for operational implementation of new satellite technology
- Increase use of current satellite data in Weather and Climate Forecast Systems
- Assess the impacts of satellite data on Weather and Climate predictions

5-Order Magnitude Increase in Satellite Data Over 10 Years

JCSDA Partners

24-Hr Simulation of AMSU 183 GHz T_B Hurricane Bonnie August 26, 1998 0300 UTC

- Microwave response is more representative of sub-cloud hydrometeor structure than cloud-top temperature (e.g., GOES IR).
- Strong T_B contrast associated with precipitation structure expected at 183 GHz, somewhat weaker but important at other AMSU bands.
- Significant precipitation evolution occurs on ~15-30 minute time scales – 3-hour time steps show large changes in rainband structure.

Introduction to OSSEs Basic Concepts (cont) • In OSSEs

- "Nature Run" is proxy for Real Nature
 - Free run of forecast model
 - Realistic phenomenology and variability vs. Nature
 - As independent as possible from Data Assimilation system model
 - Correlated biases introduce optimism
 - Construction of observations from Nature Run should also be independent
- Truth is known
 - Verification vs truth can reveal characteristics of data assimilation system
- New observations can be simulated

Introduction to OSSEs Basic Concepts (cont) • Simulated observations should

- Exhibit same system impact as real observations
- Contain same kinds of errors as real observations (e.g., representativeness)
 - Nature Run is truncated spectrally in space & time
 - Real Nature is not truncated
- Be produced by different instrument models than used in data assimilation system (e.g., radiances)
- For application to advanced observing systems
 - The Data Assimilation System should be leading edge but well tested
 - OSSEs should be run periodically leading up to

Super-parameterization (SP) Approach

- Assertion
 - Using Cloud System Resolving Model (CSRM) will produce a simulated model climate closer to Nature than current parameterizations
 - Some temperature drift results follow
 - Some results on NCEP's coupled climate runs follow
- The SP approach will provide data for many types of studies

– Observing System Simulation Experiments

gbl mean T Oct03op 0-16dy

Ε

Μ

Hindcast Skill in the New Coupled NCEP Ocean-Atmosphere Model Suranjana Saha, Wanqiu Wang, Hua-Lu Pan and the NCEP/EMC Climate and Weather Modeling Branch

С

Environmental Modeling Center, NCEP/NWS/NOAA

Special Acknowledgements : Sudhir Nadiga, Jiande Wang, Qin Zhang, Shrinivas Moorthi, Huug van den Dool

Introduction

A new global coupled atmosphere-ocean model has recently been developed at NCEP/EMC.

Components

a) the T62/64-layer version of the current NCEP atmospheric GFS (Global Forecast System) model and

b) the 40-level GFDL Modular Ocean Model (version3)

Note:

Direct coupling with no flux correction

This model will replace the current operational NICED

Nino34 (190:240,-5:5) SST anomalies (K)

Nino34 (190:240,-5:5) SST anomalies (K)

Composite Warm and Cold Events

- Events exceed
 ERSST variance
 by
 - 1.0 SD (warm)
 - 0.75 SD (cold)
- Heavy black line is mean

SST Climatology on Equator

2S-2N SST (K)

Red: coupled model

Hindcast Skill Assessment

- 5-member ensemble over 22 years from 1981-2002
- January and April initial conditions
 - Other months to follow
- 9 month runs
- Initial atmospheric states 0000 GMT 19, 20, 21, 22, and 23 for each month
 - Reanalysis-2 archive
- Initial ocean states NCEP GODAS (Global Ocean Data Assimilation System) 0000 GMT 21st of each month
 - Same for all runs
 - GODAS operational September 2003

Hindcast Skill Assessment (cont)

- So far 220 runs have been made
- Hindcast skill
 - Estimated after doing a bias correction for each year
 - Uses model climatology based on the other years
- Anomaly correlation skill score for Nino 3.4 region SST prediction
- Skill maps
 - Global SST
 - U.S. temperature and precipitation.

Proposal for NCEP

 Test any potential improvements to "classical" parameterizations with NCEP models

- 2. Introduce CSRM into NCEP global model
- 3. Run Parameterized model (NCEP-P) and SP model NCEP-SP for at least one year with AMIP forcing
- 4. Provide output samples appropriate for diagnosing parameterized and SP diabatics
- 5. Provide output samples appropriate for OSSE simulated observations
- 6. Coordinate data assimilation activities (if