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Outline

 Challenges of multi-scale modeling framework (MMF)

 Assimilation-prediction as a single mathematical problem

- Kolmogorov equation

- feasible for realistic applications, for the first time

 New (old) look at data assimilation: model errors, uncertainty

- we knew about it before from the theory, now we can estimate them
from observations

 Extended role of data assimilation: How data assimilation can help in
MMF development and applications?

- feasibility of a single assimilation-prediction system opens new avenue
of opportunities for data assimilation applications
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Challenges of multi-scale modeling framework
(MMF)
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• Cloud-scale interaction

• Climate scale interaction

• Interaction between scales

- Nonlinearity

- Uncertainty transfer

• Atmospheric-chemical processes

• Small-scale interaction between atmosphere and land

Question:

How to make a computationally efficient data assimilation,
without sacrificing the quality? Never before such a complex
system was used to simulate such a wide range of scales !



General Principles

Most general formulation of the assimilation-prediction problem:

Kolmogorov (Fokker-Planck) equation
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• Prediction:  Estimate of the forecast probability density

• Data Assimilation:  Estimate of the initial probability density

p – probability density

f – dynamical model

g – stochastic forcing (model error)
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Implications to weather and climate: THERE IS ONLY ONE SYSTEM !



General Principles

Two fundamental theoretical and practical sources for improvement of
the assimilation-prediction:

(1) Kalman filtering (includes Kolmogorov equation)

(2) Deterministic chaos (strange attractors)

Most (if not all) known data assimilation methodologies derived, or closely
related to the Kalman filtering theory:

- Optimal interpolation

- Variational methods (3D-var, 4D-var)

- Ensemble Kalman filters

The notion of strange attractors implies an existence of a low-dimensional
subspace (small number of degrees of freedom)

- Ensemble forecasting

- Ensemble Kalman filters
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What do we want from PDF?

(1) Commonly estimated statistical (PDF) parameters

- Mean (Monte Carlo KF - EnKF, minimum variance – standard KF)

- Mode (Maximum of PDF: variational, MLEF)

• Identical for Gaussian PDF and linear models, differ for nonlinear problems

• Differ for sample-derived mean and mode parameters

• Differ for non-Gaussian PDFs

(2) An estimate of the PDF width (uncertainty)

• Covariance, standard deviation

• Ensemble spread
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• Calculate more than one parameter, if feasible
• Use all that can improve the knowledge of PDF
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Data assimilation

What are the control variable for a prediction model?

• Initial conditions

- best known

• Model error (including bias)

- very little known, yet it may have a dominant impact on the prediction

• Empirical model parameters

- Limited knowledge, often based on a small, inadequate sample of cases

• Lateral boundary conditions (if needed)

Can it all be adjusted simultaneously?

• Yes, and it should be (augmented control variable)

• There is an overlap between the model error and empirical model
parameters, but it is unknown in practice
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Data assimilation using EnKF and related
ensemble methods

• At present, the most general, computationally feasible data assimilation
approach

- need further testing in most complex environment

• Single algorithm is used for data assimilation and (ensemble) prediction

- sample approach to Kolmogorov equation and deterministic chaos

• Can account for model error -  new development

- adjustment of model error and its covariance

• Algorithmically simple, efficient development and maintenance

• Suitable for high-performance computing (HPC)
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Analysis Error Covariance (MLEF with KdVB model)

Targeted (intelligently placed) observations improve ensemble DA performance

Targeted

In-situ

Cycle No. 1 Cycle No. 4 Cycle No. 7 Cycle No. 10

From Zupanski 2004, MWR 
[Available at  ftp://ftp/cira.colostate.edu/milija/MLEF_mwr.pdf] Milija Zupanski,  CIRA/CSU
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Possible issues with MMF applications

• How many ensembles can we realistically do with MMF?

- simultaneous integration of a climate and cloud-system resolving models
(CSRM) is quite demanding

- what is the ultimate goal for resolution of CSRM (impact on climate)

• Exploit the statistical aspect of CSRM

- each ‘grid-box’ of a climate model includes a sample of CSRM realizations

• Explore new avenues

- adjust only statistical PDF parameters for the cloud-scales

- no need for CSRM ensembles, PDF information is already given

- control forecast using most complex model, ensembles used only for the
climate component

Milija Zupanski,  CIRA/CSU
ZupanskiM@CIRA.colostate.edu



Why is model error so important in data
assimilation?

• Data assimilation system that employs a model is more sensitive to the model
performance (as it should be)

• There is an overlap between the model error and the choice of empirical
model parameters, but it is unknown in practice

- best to have both the model error and parameters as components of control
variable

• Data assimilation is the most efficient way to learn about model errors, from
the comparison with observations

- model bias

- empirical parameters
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Why not use data assimilation to learn about model biases and parameter values, 

and eventually correct the model itself?
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From Zupanski and Zupanski 2004, MWR 
[Available at  ftp://ftp/cira.colostate.edu/milija/MLEF_model_err.pdf]

Ensemble data assimilation with KdVB model
Augmented analysis error covariance matrix

Cross-covariance between
model error (bias) and
initial conditions

[most significant impact
of model error - new]

Auto-covariance for
model error (bias)

Auto-covariance for
initial conditions



How to use data assimilation ?

• Traditional role

- model evaluation and validation against observations

- first develop the model, than worry about data assimilation

Model development issues:

- initial model testing with adequately defined empirical parameters and
constants will be beneficial

- debugging: model error adjustment in data assimilation will point to
programming errors, as well as to the real biases

- facilitated testing in large sample of cases
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Additional role for data assimilation in model
development

• Data assimilation and prediction are a single system, why not test them
together?

- speed-up development of a robust model (and data assimilation)

- it will be used together later anyway

• Empirical model parameters

- from the very beginning of model development and testing, the parameters
used will be adequately estimated from observations, no need to wait

-  even if assimilated observations cannot directly relate to the scales and
processes represented by parameters, other observations will improve parameter
estimation through the implicit use of model equations

• Model error (bias)

- may point to the incorrectly specified equations, facilitate debugging

- actual model biases and errors will be known early in model development,
therefore it may be possible to correct the model equations

Milija Zupanski,  CIRA/CSU
ZupanskiM@CIRA.colostate.edu



New component to model development effort

• In order to be used during the initial model development, data assimilation
ought to be:

- easy to upgrade, accommodate for evolving model and observations

- does not require considerable changes

EnKF and related ensemble methods

• Require only minor addition to the model

-  read control variable (initial conditions, model error, parameters)

- no change required when adding new subroutines and processes to the
model

• Simultaneous testing of the assimilation-prediction system

- robustness of the system, and the model greatly enhanced

- saves considerable time

- probabilistic (PDF) evaluation of the prediction system
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ImplicationsImplications
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 The assimilation-prediction system is a unified system (e.g., Kolmogorov
equation), and it can only be beneficial if treated as such from the very
beginning in development, to obtain optimal results

 Most general way to optimally introduce observations in model development is
through data assimilation

 Learn about model errors and biases early, possibly correct them

 Find about appropriate values for empirical parameters and constants, even
before all scales and types of observations are included

 Data assimilation component of the system can be viewed as a new tool for
model development and testing

- evaluate interaction between the scales

- uncertainty transfer, especially between cloud-scales and climate

- can be used in probabilistic (e.g. ensemble prediction), or

deterministic sense (deterministic, control prediction)


