NSF STC Planning Workshop 15 Dec, 2003, Washington, DC

Challenges of Data Assimilation in MMF

Milija Zupanski and Dusanka Zupanski

Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins, CO 80523-1375 ZupanskiM@CIRA.colostate.edu

Outline

Challenges of multi-scale modeling framework (MMF)

□ Assimilation-prediction as a single mathematical problem

- Kolmogorov equation
- feasible for realistic applications, for the first time

□ New (old) look at data assimilation: model errors, uncertainty

- we knew about it before from the theory, now we can estimate them from observations

Extended role of data assimilation: How data assimilation can help in MMF development and applications?

- feasibility of a single assimilation-prediction system opens new avenue of opportunities for data assimilation applications

Challenges of multi-scale modeling framework (MMF)

- Cloud-scale interaction
- Climate scale interaction
- Interaction between scales
 - Nonlinearity
 - Uncertainty transfer
- Atmospheric-chemical processes
- Small-scale interaction between atmosphere and land

Question:

How to make a computationally efficient data assimilation, without sacrificing the quality? Never before such a complex system was used to simulate such a wide range of scales !

General Principles

Most general formulation of the assimilation-prediction problem:

Kolmogorov (Fokker-Planck) equation

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\partial [p(x,t)f(x,t)]}{\partial x} + \frac{1}{2} \frac{\partial^2 [p(x,t)g^2(x,t)]}{\partial x^2}$$

- *p* probability density
- f dynamical model
- *g* stochastic forcing (model error)
 - **Prediction:** Estimate of the *forecast* probability density
 - **Data Assimilation:** Estimate of the *initial* probability density

Implications to weather and climate: THERE IS ONLY ONE SYSTEM !

General Principles

Two fundamental theoretical and practical sources for improvement of the assimilation-prediction:

- (1) Kalman filtering (includes Kolmogorov equation)
- (2) Deterministic chaos (strange attractors)

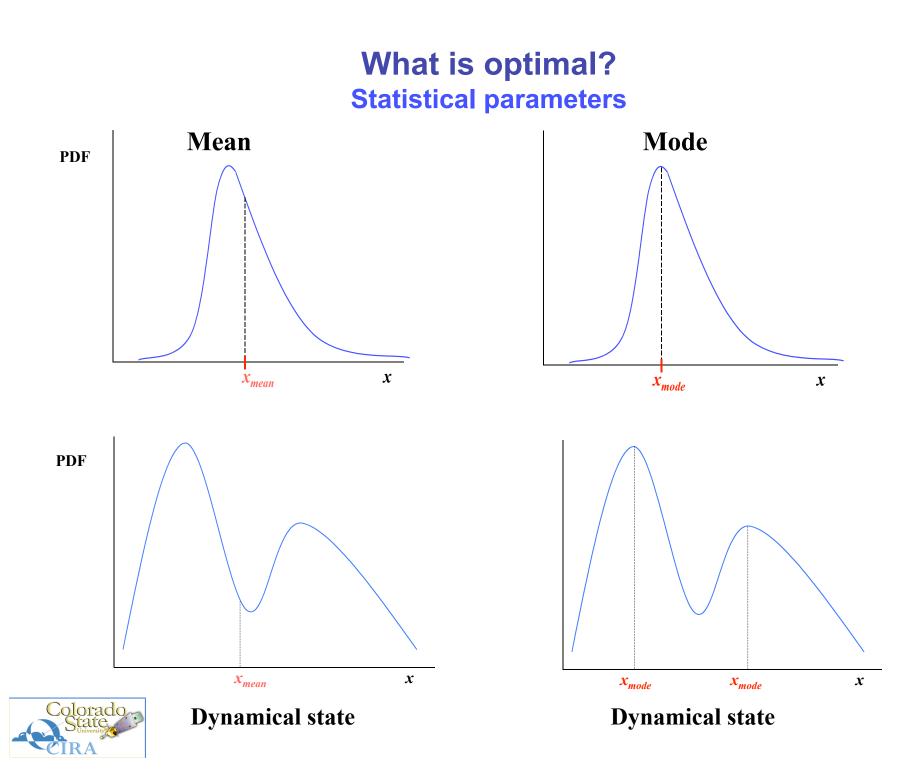
Most (if not all) known data assimilation methodologies derived, or closely related to the Kalman filtering theory:

- Optimal interpolation
- Variational methods (3D-var, 4D-var)
- Ensemble Kalman filters

The notion of strange attractors implies an existence of a low-dimensional subspace (small number of degrees of freedom)

- Ensemble forecasting
- Ensemble Kalman filters

What do we want from PDF?


(1) Commonly estimated statistical (PDF) parameters

- Mean (Monte Carlo KF - EnKF, minimum variance - standard KF)

- Mode (Maximum of PDF: variational, MLEF)

- Identical for Gaussian PDF and linear models, differ for nonlinear problems
- Differ for sample-derived mean and mode parameters
- Differ for non-Gaussian PDFs
- (2) An estimate of the PDF width (uncertainty)
- Covariance, standard deviation
- Ensemble spread
- Calculate more than one parameter, if feasible
- Use all that can improve the knowledge of PDF

Data assimilation

What are the control variable for a prediction model?

• Initial conditions

- best known

• Model error (including bias)

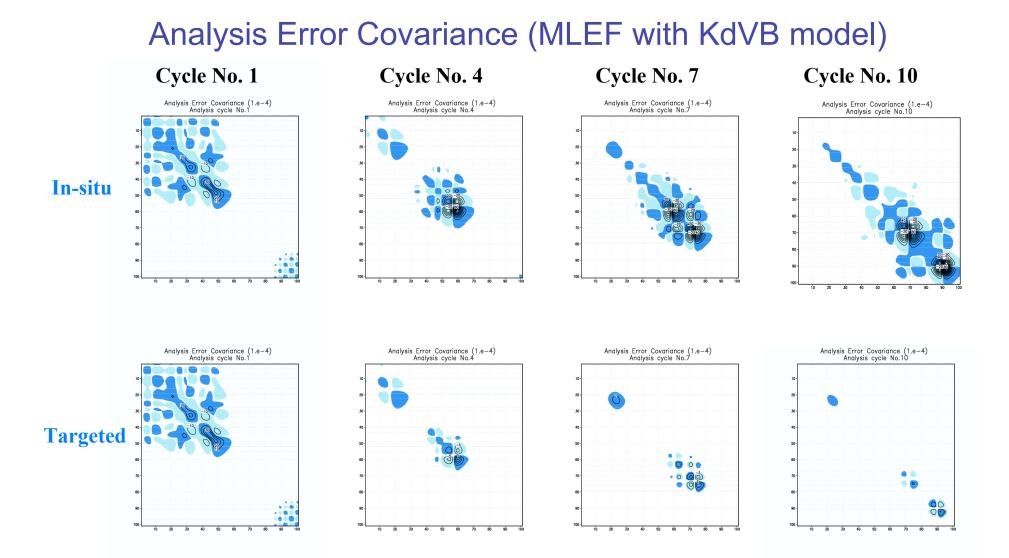
- very little known, yet it may have a dominant impact on the prediction

• Empirical model parameters

- Limited knowledge, often based on a small, inadequate sample of cases
- Lateral boundary conditions (if needed)

Can it all be adjusted simultaneously?

- Yes, and it should be (augmented control variable)
- There is an overlap between the model error and empirical model parameters, but it is unknown in practice


Data assimilation using EnKF and related ensemble methods

• At present, the most general, computationally feasible data assimilation approach

- need further testing in most complex environment

- Single algorithm is used for data assimilation and (ensemble) prediction
 sample approach to Kolmogorov equation and deterministic chaos
- Can account for model error new development
 - adjustment of model error and its covariance
- Algorithmically simple, efficient development and maintenance
- Suitable for high-performance computing (HPC)

Targeted (intelligently placed) observations improve ensemble DA performance

From Zupanski 2004, MWR [Available at ftp://ftp/cira.colostate.edu/milija/MLEF_mwr.pdf]

Possible issues with MMF applications

• How many ensembles can we realistically do with MMF?

- simultaneous integration of a climate and cloud-system resolving models (CSRM) is quite demanding

- what is the ultimate goal for resolution of CSRM (impact on climate)

• Exploit the statistical aspect of CSRM

- each 'grid-box' of a climate model includes a sample of CSRM realizations

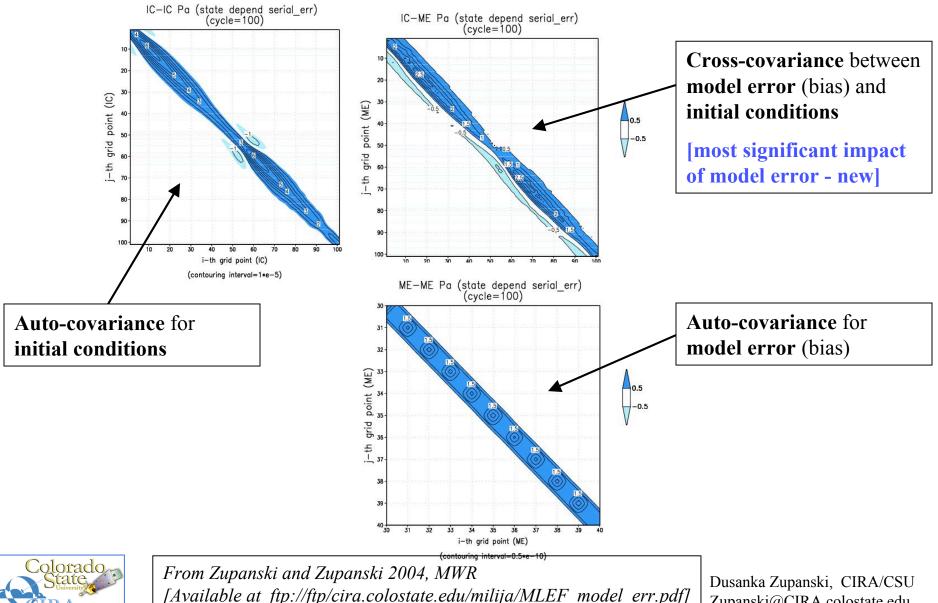
• Explore new avenues

- adjust only statistical PDF parameters for the cloud-scales
- no need for CSRM ensembles, PDF information is already given

- control forecast using most complex model, ensembles used only for the climate component

Why is model error so important in data assimilation?

- Data assimilation system that employs a model is more sensitive to the model performance (as it should be)
- There is an overlap between the model error and the choice of empirical model parameters, but it is unknown in practice


- best to have both the model error and parameters as components of control variable

- Data assimilation is the most efficient way to learn about model errors, from the comparison with observations
 - model bias
 - empirical parameters

Why not use data assimilation to learn about model biases and parameter values, and eventually correct the model itself?

Ensemble data assimilation with KdVB model Augmented analysis error covariance matrix

Zupanski@CIRA.colostate.edu

How to use data assimilation ?

• Traditional role

- model evaluation and validation against observations
- first develop the model, than worry about data assimilation

Model development issues:

- initial model testing with adequately defined empirical parameters and constants will be beneficial

- debugging: model error adjustment in data assimilation will point to programming errors, as well as to the real biases

- facilitated testing in large sample of cases

Additional role for data assimilation in model development

- Data assimilation and prediction are a single system, why not test them together?
 - speed-up development of a robust model (and data assimilation)
 - it will be used together later anyway

• Empirical model parameters

- from the very beginning of model development and testing, the parameters used will be adequately estimated from observations, no need to wait

- even if assimilated observations cannot directly relate to the scales and processes represented by parameters, other observations will improve parameter estimation through the implicit use of model equations

• Model error (bias)

- may point to the incorrectly specified equations, facilitate debugging

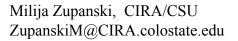
- actual model biases and errors will be known early in model development, therefore it may be possible to correct the model equations

New component to model development effort

- In order to be used during the initial model development, data assimilation ought to be:
 - easy to upgrade, accommodate for evolving model and observations
 - does not require considerable changes

EnKF and related ensemble methods

- Require only minor addition to the model
 - read control variable (initial conditions, model error, parameters)


- no change required when adding new subroutines and processes to the model

- Simultaneous testing of the assimilation-prediction system
 - robustness of the system, and the model greatly enhanced
 - saves considerable time
 - probabilistic (PDF) evaluation of the prediction system

Implications

- □ The assimilation-prediction system is a unified system (e.g., Kolmogorov equation), and it can only be beneficial if treated as such from the very beginning in development, to obtain optimal results
- Most general way to optimally introduce observations in model development is through data assimilation
- □ Learn about model errors and biases early, possibly correct them
- □ Find about appropriate values for empirical parameters and constants, even before all scales and types of observations are included
- Data assimilation component of the system can be viewed as a new tool for model development and testing
 - evaluate interaction between the scales
 - uncertainty transfer, especially between cloud-scales and climate
 - can be used in probabilistic (e.g. ensemble prediction), or
 - deterministic sense (deterministic, control prediction)

