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O Application of CRMSs over. the globe

0

Major issues of current AGCMs are
« ambiguity of cloud parameterizations
« implicit treatment of cloud scale interactions
* lack of direct interactions between “physical” processes
(clouds, radiation, turbulence, ...)

-

CRMs are beneficial for further understandings of intraseasonal variations.
CRMs should reduce uncertainties due to clouds in climate simulations.

Strategy-A Strategy-B (our choice)
Multi-scale Modeling Global cloud resolving model
Framework (MMF)

 Clouds are explicitly represented.

« Statistical forcing from a CRM is
used instead of forcing from

conventional parameterizations. @
J ‘A(
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In aqua planet simulations

eastward propagating waves spontaneously developed with a multi-
scale structure of clouds. (~convectively coupled Kelvin wave)
Model (7 km grid)

Observation (Takayabu et al. 1999)
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O However,

surface precipitation rate was overestimated in our model
compared to other conventional AGCMs (except one model).
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A result from APE intercomparison (by Dr. Williamson)
* Due to deficiencies in our model ?
* Due to unrealistic SST ?

We could not know the reason under such idealized condltlons
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O' ll&!: Motivation

f‘?C"""

| Future issue |

» Understanding and prediction of intraseasonal variations
* Diurnal variation
* Typhoon

| : Results of Khairoutdinov and Randall (2005) suggested that realistic
. time-scale for consuming water vapor is a key for simulations of MJO.
CIoud cloud interaction may be important.

Current issues |

» Understanding characteristics of (global) CRMs

» sensitivity to horizontal/vertical resolution

* sensitivity to subgrid-scale parameterizations (microphysics, turbulence, etc.)
« Validation (and improvements) of our global CRM

How should we go about this issue ?

As a first step, simulations under realistic conditions were performed.
Simulation results were compared with realistic data.

—

Next Generation Climate Model




e Experimental setup

for/Global Change.

Initial conditions:
Interpolated from NCEP tropospheric analyses (6 hourly, 1.0x1.0 degree grids)
Initial data: 2004-04-01 00:00:00 (only initialized, without nudging techniques)
Boundary conditions:
Reynolds SST, Sea ICE (weekly data)
ETOPO-5 topography, Matthews vegetation
UGAMP ozone climatology (for AMPI2)
Horizontal grid spacing:
dx~14 km (DX14), 7 km (DX7), 3.5 km (DX3.5)
Vertical domain:
0 m~ 38,000 m
40-levels (stretching grid)
Duration:
30 days for DX14
10 days for DX7
7 days for DX3.5

2004-04-05

OLR from a simulation with a 3.5 km grid
N -
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Model configuration

* Dynamics (grid-scale)

Governing equations

Full compressible non-hydrostatic system
(with acoustic wave)

Spatial discretization
Horizontal grid configuration
Vertical grid configuration
Topography

Finite Volume Method M N
Icosahedral grid ;
Lorenz grid an L
Terrain-following coordinate -_d

Conservation

mass, total energy (Satoh 2002, 2003)

Temporal scheme

Slow mode — explicit scheme (RK2, RK3)
Fast mode — Horizontal Explicit Vertical Implicit scheme

* Physics (subgrid-scale)

Turbulence / surface flux

Modified Mellor & Yamada 2, 2.5, /Louis(1979), Uno
et al.(1995)

Radiation

MSTRNX (Sekiguchi and Nakajima, 2006) (with ISCCP)

Cloud physics

Kessler; Grabowsky(1998,1999); Lin et al.(1983);

Cloud parameterization

Arakawa & Schubert large-scale cond.

Shallow clouds

Land process

Mixed layer/bucket;
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An animation of OLR (DX3.5, 7 days)

2004-04-01
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FRCGG ! !
‘ T Time evolution
TBB (GOES-9)

04/02/2004 00UTC Simulated OLR

Kochi University Meteorological Web
(http://weather.is.kochi-u.ac.jp/)
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04/04/2004 00UTC  Mid-latitude cyclones were successfully simulated.
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04/06/2004 0oUTC Generation and time evolution of a typhoon could be

simulated, though its path was biased to the north.
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e Time evolution of OLR (DX14, 30 days)

2004/04/C1

Many cyclones were generated in this simulation.
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O' ',_',.i_,; Exaggerated concentration oficlouds

Self-aggregation of clouds in CRM simulations was reported.
(Tompkins and Craig 1998, Bretherton et al. 2005)

Radiative-convective equilibrium simulation with SST of 308 K generated a
cyclone-like system. (Emanuel and Nolan 2004)

» Does moisture flux controls organization of convective clouds ?

Precipitable water at 2004-04-06 00Z
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In the simulations, a modification to the Mellow-Yamada scheme
caused (unrealistic) overestimation of upward transport of moisture.

Additional run without the problematic modification .
(with the same physics as those used in aqua-planet runs)’ @
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Time evolution of OLR (DX14 additional, 10 days)

2004/04/C1

Organization of convective clouds became weak.
But it was also weaker than realistic one.
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ERCGC
Researchiomias:
’ > Global Change.
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Radiative-convective equilibrium simulations (100 x 100 grid points domain)

 Without large-scale forcing

» With interactive radiation and fixed SST

<

dx=4 km, 400 km x 400 km dx=8 km, 800 km x 800 km

i ‘A ?
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'Fm Time variation of number of cloud cells

Research Conter
for Global Change.
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Last 30 days of 60 days simulation

« Number of clouds was
almost constant for DX2
and DX4-WR.

 Number of clouds
decreased for DX8-WR.

» Self-aggregation of convection
was slower compared to results
of Bretherton et al. (2005).

 Clouds did not merge into a
single convection in the period.

What are reasons for
such differences ?
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* To validate a global CRM, simulations under realistic
conditions were performed.

« Simulated results were compared with observations and
reanalysis data.

o After the first trial ...

* We become to know problems in our model.
* Quantitative comparisons are difficult at the present.

*Model should be improved further.

* A scientific issue

* It was suggested that organizations of convective clouds are
sensitive to upward transport of moisture.

* It is possible that turbulence schemes not only affect individual
convection but also change developments of mesoscale and large-
scale circulations.

- Self-aggregation of convection is an attractive research subject. The
approach of Bretherton et al. (2005) may be helpful. ;gg
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