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Why is it so hard to simulate the Earth climate system?
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Because some of the key processes are even not on this diagram....




Why does the cloud microphysics matter?




Why does the cloud microphysics matter?

-impact on radiative fluxes

-development of precipitation (hydrologic cycle)
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Why does the cloud microphysics matter?

-impact on radiative fluxes

-development of precipitation (hydrologic cycle)

Changes in atmospheric aerosols affect both:
the indirect effect of aerosols on climate




Indirect aerosol effects

15t Indirect
Sjjclen Py

O
24 Tndirect 66 6

Effect é

updraft

maritime (“clean™) continental (“polluted”)




What should he CMMAP goal for the cloud microphysics?




What should he CMMAP goal for the cloud microphysics?

Develop capabilities to predict cloud microphysical parameters that
affect development of precipitation and cloud radiative properties

(concentration, phase, shape, etc. of cloud and precipitation
particles)




What should he CMMAP goal for the cloud microphysics?

Develop capabilities to predict cloud microphysical parameters that
affect development of precipitation and cloud radiative properties

(concentration, phase, shape, etc. of cloud and precipitation
particles)

| would argue that this requires:
-cloud-scale dynamics (hence need for SP and CR-AGCM)
-coupling to the aerosol physics (to predict CCN and IN)




What should he CMMAP goal for the cloud microphysics?

Develop capabilities to predict cloud microphysical parameters that
affect development of precipitation and cloud radiative properties

(concentration, phase, shape, etc. of cloud and precipitation
particles)

| would argue that this requires:
-cloud-scale dynamics (hence need for SP and CR-AGCM)
-coupling to the aerosol physics (to predict CCN and IN)

Note: Cloud microphysical parameters are typically used as primar
tuning variables inpto%lay’s RGCMS. AL P y
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COMPARISON OF BULK AND BIN WARM RAIN
MICROPHYSICS MODELS USING A KINEMATIC
FRAMEWORK
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May 1, 2006
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Kinematic (prescribed-flow) model of microphysical
processes In Stratocumulus (2D: x-z)

Vertical velocity Horizontal velocity

Run up to quasi-steady-state is obtained (typically couple hours)...




Cloud water (after 3hrs)

Maritime (clean) Continental (polluted)

Piotr Rasinski (Warsaw University)




Cloud droplet (r < 20 microns) number concentration

Maritime (clean) Continental (polluted)

Piotr Rasinski (Warsaw University)
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Table 1. Equilibrium domain-averaged cloud depth. cloud optical depth .. cloud water path
(CWP), droplet number concentration (V). and ‘effective’ 7, for the ztratocumuluz regime.
Far V.. only in-cloud regions with cloud water mixing ratio larger than0.1 g kg~? areincluded
in the averaging. Cloud depth iz calculated by defining cloud boundariec uzing a droplet
number concentration of 1 em™. N, = indicatec the one-moment scheme (uzing KIK2000)
with the rain intercept parameter .V, cpecified at the given value. SB2001% indicatec the
senzitivity tect with the formulation for relative dizperzion 7 given by Grabowsla (1098).
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vertical velocity at 25 min

{contour inlerval 1 m/s)

Reprinted from

ATMOSPHERIC
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Atmospheric Research 45 (1998) 299-326
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Simple two-dimensional kinematic framework
designed to test warm rain microphysical models

Marcin J. Szumowski **", Wojciech W. Grabowski ©,
Harry T. Ochs IIT **

* Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA

® lllinois State Water Survey, Champaign, IL, USA
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Table 2: Time- and domain-averaged surface precipitation rate PREC. cloud optical depth
7.. doud water path (CTI"P). droplet number concentration (V. ). and ‘effective’ 7, for the
cumuluz regime. For V.. only in<loud regionz with cloud water mixing ratio larger than
0.1 g kg™* areincluded in the averaging. Time-averaging iz between the time of the maximum
updraft velocity and the end of the simulation [t = 25 to 60 min). N, = indicatec the one-
moment scheme (uzing SB2001) with the rain intercept parameter .V, cpecified at the given
value. SB20017 indicatec the zenzitivity tect with the formulation for relative dizperzion n
given by Grabowszla (1968).

Scheme Aerocal PREC T. CWP N, 7.
(mm hr™*) (gm™) (em™) (um)
Bin POLLUTED 2.17 1034 245 256.7 111
KIk2000 POLLUTED 2.50 976 8855 2306 15.7
SB2001 POLLUTED 2.70 6.1 77153 416 127
B1094 POLLUTED 2.56 100.7 9115 2467 131
N, = 10° POLLUTED 0.50 1652 143038 TT 136
N, = 10° POLLUTED 0.96 1032 8305 2657 125
SB200in POLLUTED 1.54 176.0 13403 3348 122
Bin PRICTINE 202 3237 414 175
KK2000 PRISTINE 347 4369 353 221
SB2001  PRISTINE 376 4283 376 187
B1094 PRICTINE 382 4439 359 190
N, = 100 PRICIINE 606 7621 4235 200
N, = 10° PRISTINE 430 4034 410 189
SB2001n PRISTINE & 3390 3013 379 104

Morrison and Grabowski, JAS, 2006 (in review)
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Radiative-convective quasi-equilibrium
mimicking planetary energy budget
using a cloud-resolving model

Grabowski, J. Climate (in press)




Conclusions:

* Assumptions about microphysical transformations during entrainment
and mixing for shallow Cu are critical for the 1% indirect effect:
- the same TOA albedo and surface net solar flux in PRISTINE with
homogeneous mixing as in POLLUTED with extremely inhomogeneous
mixing.







NOTES AND CORRESPONDENCE

A Climatological Parameterization for Cumulus Clouds

A. M. BLYTH* AND J. LATHAM**

JOURNAL OF THE ATM
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FIG. 2. The observed variations of 10z (~ 10 m) values of effective
radius r.q (um) and liquid water content L (g m>) for a penetration
of a cumulus cloud on 23 June 1981.

L/Lad

FIG. 1. The observed variations of 10 Hz (~10 m) values of nor-
malized liquid water content L/ L, during penetrations of a cumulus

cloud at six altitudes Z(km) on 23 June 1981. The vertical bars are
averages.

Totr (HmM)

FIG. 3. The observed variations of 10 Hz (~10 m) values of ef-
fective radius 7.4 (um) and liquid water content L (g m™) for a
penetration of a cumulus cloud on 27 July 1981.




ENTRAINMENT, MIXING, AND MICROPHYSICS IN RICO CUMULUS

H. Gerber
Gerber Scientifc Inc., Reson, VA, U.S.A.
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AMS Cloud Physics Conference, Madison, July 2006




RICO; RF12

2y = cloud top
z, = cloud base
z_ = aircraft (-)

z, = aircaft (-)
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Figure 2 - Histogram of cumulus clouds (red) on flight RF12 chosen by conditional sampling
according to the certain conditions (see text); and cumuli (blue) meeting only partial
conditions.

Table 1 - General characteristics of the conditionally-sampled 35 Cu on flight RF12, with average values
of 7 Cu at each level z, -z, flown by the aircraft above cloud base. z, is the aircraft level z, is the cloud
top height, z, is cloud base (LCL estimated at 570 m), W is cloud width, LWC is liquid water content, r,, is
mean volume radius, LWCa is the expected adiabatic liquid water content, rva is the expected adiabatic
mean volume radius, N is the droplet concentration, w is the vertical velocity, W, is the maximum vertical
velocity, ¢ is the fractional entrainment rate (total q calculation), and § is the TKE dissipation rate incloud.

2,2y 2y z-z, W LWC r, LWCa r, N w W, €
(m)  (m) (m) (m) (gm™) (um) (gm) (um) (Nolcc) (ms™) (msT) (mT) (cm?/sd)

252 1009 187 544 269 9.19 605 114 95 1.18 2.98 00229 14.0
439 1205 196 484 387 10.60 1.00 135 97 125 499 .00126 41.3
615 1398 213 453 485 1020 1.42 152 121 1.92 6.11 .00073 63.2
918 1722 234 612 510 10.65 211 173 116 1.90 7.08 .00091 74.6
10747, 1920 276 631 .326 "11:87» 2.46 182 54 -283 3.11 .00612 29.0

AMS Cloud Physics Conference, Madison, July 2006







NorA Slopt
E Alaska Regicn

Southztn Great
Flains Hagion

The Atmaospheric Radiation Measurement (ARM)
Program establishes and operates fiekd research sites,
called cloud and radiation testbeds, to study the effects
of clbuds on global climate change. Three primary
bcatibns—Southern Great Plains, Tropical Western
Pacific, and North Skpe of Alaska—wele identified as
representing the range of climate conditions that should
be studied. Each site has been heavily instrumented to
gathel massive amounts of climate data. Using these
ata, scientsts are studying the effects and interactions
of sunlight, radiant energy, and clouds to understand
their impact on temperatures, weather, and climate.

In addition to our geographical sites, the ARM Maobile
Facility will provide the Program with the capability of
performing atmaspheric measurements similar to those
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Bayesian Retrievals - Nauru 6/05/99
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Figure 12. Examples of Bayesian retrievak at Nauru on 5 June 1999, Time - height cross sections of (a)
retrieved liquid water content and (b) effective radius. (¢) Time series of retrieved liquid water path and
optical depth at Nauru. The black line is the ARM rerieved statistical liquid water path during this time.
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Remotely sensed data
from ARM Tropical
Western Pacific Nauru

site (1 month of data; S.

McFarlane, PNL)
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2.3 23
18min  (a) 20 min  (b)

26 min

y (km) y tkm) : y (km]

FIG. 3. Cloud water mixing ratio in the inner domain for / = 18 min (a) through ¢ = 34 min (i). Contour interval of 0.4 g kg ~'.
Dashed line is for mixing ratio of 0.01 g kg ™'. Position of the domain shown in Fig. 9 is indicated in (c).
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Fresh nucleation during entrainment and
mixing is a significant source of new
droplets

This is the only way one can explain the
much slower increase with height of the
mean volume radius (and thus the
effective radius) of cloud droplets
compared to the adiabatic one in
cumulus clouds

This has important implications for the
representation of the effective radius in
traditional parameterizations...




Detailed microphysics is out of the question (it is just to expensive).

Detailed micro,ohysics should be used as a benchmark for less
computationally-intensive approaches.

The two-moment bulk microphysics schemes (i.e., schemes that predict
mass and number of various cloud and precipitation particles) is a
reasonable compromise.

Warm-rain microphysics:
- validation of a two-moment scheme with detailed microphysics;
- formulation of the effective radius in warm convective clouds.

Ice microphysics:
- major overhaul needed!




11-12 August 1999 KWAJEX
Mesoscale Convective System (MCS)

11-aug-1999,20:24:00 Zebra projection: kwaj_lowprf maxdz
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The KWAJEX

(Kwajalein Experiment)
took place over the
central tropical

Pacific Ocean

during 23 July-15 Sept. 1999

Large system with good
radar observations

2024 Z. 11 Aug. - 0624 Z 12 Aug.
Evolved from a highly

convective state (2030UCT) to
stratiform state (0230 UTC)

Li, Zipser, Krueger, and Zulauf; AMS Cloud Physics Conference, Madison, 2006
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CCFAD of simulated and observed
radar reflectivity

Contoured cumulative frequency

by altitude diagram (CCFAD)
of model simulated reflecitivity
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Li, Zipser, Krueger, and Zulauf; AMS Cloud Physics Conference, Madison, 2006
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Differences between simulated and
observed radar reflectivity

What causes
such a big
difference?
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Li, Zipser, Krueger, and Zulauf; AMS Cloud Physics Conference, Madison, 2006



Time-height maximum simulated
graupel mixing ratio

Graupel mixing ratio (g/kg)

Maximum value > 8 g/kg

4
Tf

15\ 4 -
£ M3 =
=
F 05T |
S [ ]
=  — e 7
<C N E

o
N
AN
0}
0o
-
o
-
N

Time (hour)

The extreme graupel mixing ratio is quite possibly the reason
for the extremely high simulated radar reflectivity

Li, Zipser, Krueger, and Zulauf; AMS Cloud Physics Conference, Madison, 2006

NB: Similar conclusion in Blossey et al. (JAS, submitted)



Rutledge and Hobbs, JAS 1984
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FI1G. 1. Schematic depicting the cloud and precipitation processes included
in the model for the study of narrow cold-frontal rainbands.




Most schemes used toda¥_include the logic of “cloud ice-snow-
graupel-hail” to represent ice processes.

Such a logic follows approaches proposed 20+ years ago
(Rutledge and Hobbs, Lin et al.) that transplanted ideas from
warm-rain microphysics into ice physics. Does it make sense?




Most schemes used toda¥_include the logic of “cloud ice-snow-
graupel-hail” to represent ice processes.

Such a logic follows approaches proposed 20+ years ago
(Rutledge and Hobbs, Lin et al.) that transplanted ideas from
warm-rain microphysics into ice physics. Does it make sense?

Not really!

-For warm rain, clear separation does exist between cloud water
and drizzle/rain, for ice, the boundaries are not obvious and
ulsually gradual transitions from one category to another take
place.

-For warm rain, cloud water glrpv_vs by diffusion of water vapor,
drizzle/rain forms through collision/coalescence;, for ice, both
diffusional and accretional growth contribute to the growth;
partitioning between the two mechanisms sets up key
microphysical parameters (particle density, sedimentation
velocity, etc).

-The ice scheme should produce various types of ice (cloud ice,
snow, graupel) just by the physics of particle growth;
partitioning ice particles a priori into separate categories
Introduces unphysical “conversion rates” and involves
“threshold behavior” for various parameters (e.g.,
sedimentation velocity).



Two-momonet warm rain scheme:
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Two-momonet warm rain scheme combined with two-and-a-half moment ice scheme:
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Key features:

The scheme tracks the two growth mechanisms: by diffusion and by
accretion (riming) which change q for a given N. Partitioning ice

article mass between that acquired by diffusion and by accretion is
he key feature, absent from all schemes available today.

Growth by aggregation is directly included (changes of N, but not q).

Sedimentation velocity varies graduall depending on particle mass
[(q;+qd)/NtLand partitioning between ditfusional (¢°) and accretional
q*) growtn.

Physics is the same for ice A and ice B (i. e., equations of growth,
formulation of the sedimentation velocity, efc).

Various ice classes (“cloud ice”, “snow”, “graupel”, “hail”’) can be
defined from the model output. For instance, “c oud ice”- small ice
crystals grown by diffusion; “snow” - large ice crystals with limited
riming; “graupel” - large ice crystals with a lot of riming.




Important practical advantages:

The scheme highlights ice nucleation mechanisms, a
very uncertain aspect of ice physics, as an essential
feature of the model;

Optical properties of various forms of ice (e.qg.,
effective radius; the asymmetry factor) can be better
represented for the radiative transfer.




MORE NUCLEATION MechAwIsSHS ?
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Conclusions:

Two-moment cloud microphysics scheme (i.e., the scheme
ﬁl‘&dlctln? mass and concentration of various cloud and

ydrometeor particles) is a promising approach for CRMs, SP-
AGCMs, and CR-AGCMs.

Warm-rain ftwo-moment scheme seems to mimic a detailed
microphysics when applied to Sc and shallow Cu.

Formulation of the effective radius for warm convective clouds is
still uncertain. Robust parameterizations are needed.

Current Parameterizations of ice microphysics are iuestionable,

especially when applied to assess indirect effects. A concept of a
new physically-based two-moment three-variable approach (“a two-
and-a half moment scheme”) is proposed.




Why is it so hard to simulate the Earth climate system?
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Because some of the key processes are even not on this diagram....




