Overview of Research Objectives

Clouds Are Central to the Earth Sciences

- Climate change
- Weather prediction
- The water cycle
- Global chemical cycles
- The biosphere

We are being held back in all of these areas by an inability to simulate the global distribution of clouds and their effects on the Earth system.

The Cloud Parameterization Deadlock

"...The modeling of clouds is one of the weakest links in the general circulation modeling efforts."

--Charney et al., National Academy Report, 1979

Deficiencies in the representation of cloud processes in climate models drive much of the uncertainty surrounding predictions of climate change.

This was true 30 years ago, it's true now, and at the rate we are going it will still be true 30 years from now.

What can we do about it?

Super-Parameterization

Limitations (and Strengths) of CRMs

- Microphysics must still be parameterized.
- Radiative transfer must still be parameterized.
- Turbulence and shallow convection must still be parameterized.

minary of our adventures to date

The prototype MMF produces substantially improved simulations of tropical variability on a range of time scales.

- The prototype MMF produces substantially improved simulations of both low and high cloudiness.
 - The periodic boundary conditions and twodimensionality of the prototype MMF cause some problems.
 - The prototype MMF uses about 250 times more computer power than a conventional global model.
 - Analysis of results obtained with the prototype MMF is already teaching us new things about the Earth system, and about conventional parameterizations.

A door has swung open.

We have demonstrated the potential of the prototype MMF. This is a revolutionary, transformative new approach to understanding cloud processes.

Now we need to use this new approach to better-understand the Earth System.

We need to establish MMF development and applications as a major new research activity, complementing but not replacing the older activities.

In order to do this, we need to engage the cloud parameterization enterprise, world-wide, through a *multiinstitutional* collaborative effort with a centrally defined focus and an extended lifetime.

This is CMMAP.

Objective	Actions Required	Time- frame	Team Leader
I. Extensions, evaluations and applications of the prototype MMF	Perform and analyze AMIP (Atmospheric Model Intercomparison Project) simulations with the prototype MMF	Year I	
	Perform and analyze coupled ocean-atmosphere simulations with the prototype MMF	Year 2	Khairoutdinov
	Create and test a geodesic version of the prototype MMF	Year 2	

Objective	Actions Required	Time- frame	Team Leader	
2. Development of a second- generation MMF	Develop and test improved numerical representation of cloud-scale dynamics	Year 2	Arakawa/	
	Develop and test a global cloud-resolving model	Year 2	Randall	
	Develop and test Quasi-3D MMF	Year 3		

The design, testing, and application of an improved MMF will be the central, organizing component of CMMAP's research.

Objective	Actions Required	Time- frame	Team Leader
3. Develop and test improved	Develop new microphysics parameterization and test in CSRM	Year 3	
microphysics parameterizations for MMFs and GCRMs	Test new parameterization in MMF and GCRM	Year 4	Krueger/ Kreidenweis

Objective	Actions Required	Time- frame	Team Leader	
4. Develop improved	Develop new boundary-layer cloud and turbulence parameterization and test in CSRM	Year 3		
parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs	Test new parameterization in MMF and GCRM	Year 4	Bretherton/ Moeng	

Objective	Actions Required	Time- frame	Team Leader
5. Test sensitivity of CSRMs to more detailed radiation calculations	Develop new radiation parameterization and test in CSRM	Year 3	Barker
	Test new parameterization in MMF and GCRM	Year 4	

Objective	Actions Required	Time- frame	Team Leader
6. Innovative analysis, evaluation and interpretation of MMF results using emerging datasets	Acquire and adapt in situ and ground-based remotely sensed datasets for use in evaluating the MMF	Ongoing	Rossow
	Acquire and adapt satellite datasets for use in evaluating the MMF		
	Develop and apply advanced, non-linear, multi-variate diagnostic analysis methods to elucidate multi-scale atmospheric processes.		

Objective	Actions Required	Time- frame	Team Leader
7. Accelerating improvement of conventional parameterizations	Develop and test improved parameterizations of cumulus convection	Ongoing	Stevens
	Develop and test improved parameterizations of stratiform clouds		
	Develop and test improved parameterizations of the boundary layer		

Objective	Actions Required	Time- frame	Team Leader
8. Optimal use of computational and	Port the MMF and GCRM to a variety of computing platforms including those associated with NSF's petascale initiative	Ongoing	Helly
data storage resources	Efficiently distribute model output and observational datasets to users		

NCAR SDSC NERSC ORNL NAS

Comparison with Observations

TRMM/GPM

ARM

CloudSat

Chill

How to make progress

Scientists

Funding

Big Idea

Extended Duration

Minimal Public Service Obligations

Centralized Direction

CMMAP

Reach for the sky.