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PARTIALLY PROGNOSTIC TESTS:

CALCULATION OF WIND COMPONENTS FROM PRESCRIBED VORTICITY FIELDS

ADVECTION WITH PRESCRIBED WINDS

OUTLINE

TECHNICAL DESIGN:

FORMULATION OF NORMAL FLUX IN THE QUASI-3D NETWORK

SOLVING AN ELLIPTIC EQUATION IN THE QUASI-3D NETWORK

The model we use is based on the 3D vorticity equation with an anelstic 
approximation and solves an elliptic equation for w. 



We apply the same 3D algorithm for dynamics, advection and physics
to all grid points. 

Then, except at the intersection points, we have to “estimate” advection
in the direction normal to the grid-point arrays. 

We thus introduce “ghost points”  along the grid-point arrays. 

CRM scalar point

Quasi-3D MMF



Algorithms for estimating q’ at ghost points and fluxes from/to these points
are guided by considerations of stability, conservation property,

and suppression of spurious trend.

ghost point

Decomposition of Fields

 q q q

To estimate the values of a prognostic variable,      ,  q
at ghost points and fluxes from/to theses points, 
we decompose the      field as q

where

:q Background field obtained by interpolation of
GCM  grid-point values,  typically representing 
synoptic-scale fields

:q ‘ Deviation of  q  from q,  typically representing the 
fields associated with clouds and their mesoscale 
organizations 
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When a 3rd-order advection scheme is used, the array sum of         
is bounded if
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All parameters are cloud-regime dependent and slowly vary in time.



When         is positively (negatively) perturbed, the divergence of the 3D flux
of         must not decrease (increase).  
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Local Stability : Three-dimensionally variable current 

i

j

k

Estimated flux does not produce positive feedback on a perturbation if
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Determination of the Parameters

Hypothesis:

Cloud regimes have longer spatial and temporal scales than individual clouds.

The parameters can be statistically estimated from the history of the intersection
and neighboring points.
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Determination of the Parameters (continued.)

Parameters are statistically determined by analyzing the history data
at all intersection points.
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Parameter a

Linear regression:  Y = bX
where

X: first/third-order finite differences of q’ in x-direction
Y: first/third-order finite differences of q’ in y-direction

Parameter b 
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Estimation of Values at Ghost Points

Parameters and the differences in tangential direction are known.

The differences in normal direction are estimated.



Intrsection point

Data points with zero correction

Ghost points to be corrected using

Data points with non-zero correction
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: the correction at the data point (i,j) on the net

: the correction at the ghost point (i’,j’)

Correction of the Ghost-point Values near Intersection
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Conservation of the Vertically-integrated Network Mean 
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(Approximate) conservation is achieved by requiring 
the mean divergence of the flux from/to ghost points is equal to 

the mean divergence of the flux at the intersection points 
averaged in time over the analysis period.  
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Use a partially backward-implicit scheme for the horizontal derivative term
and a fully backward-implicit scheme for the vertical derivative term.

Discretization

where X and Y are the second-order finite differences in x- and y-directions. 

A Relaxation Method for Solving the Elliptic Equation

where       defines the time scale for adjustment toward anelastic balance. 
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The elliptic equation is converted to a parabolic equation whose
equilibrium solution is the solution of the elliptic equation.



# of iteration=8

Relaxaion Method vs. Direct Method
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Relaxaion Method vs. Direct Method (Continued.)

Domain Averages
Relaxed
Control Standard Deviations



Solving the Elliptic Equation in the Quasi-3D Network

The second-order !nite di"erence in the normal direction is estimated
as in the advection problem. 
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where a and b are parameters, the subscript I denotes the nearest intersection point, and 
C(r) is a prescribed function of the distance from the intersection point satisfying C(0)=1.  



Partially Prognostic Tests

Calculation of wind components from prescribed vorticity !elds.

Advection with prescribed winds and potential temperature.

Using the prescribed statistics of the history at the intersection
and neighboring points.

Tracer and different phases of water with physics

CONTROL (3D CRM)

Q3D

analysis period=12h

application period=3h

t

t

restart
t=24h t=36h t=48h



Model
A three-dimensional anelastic model based on the vector vorticity equation

by Joon-Hee Jung and Akio Arakawa (2006), Submitted to JAS

Control Run

Domain size: 126 km x 126 km x 18 km (height)

Horizontal resolution: 3 km

Vertical resolution: 34 layers with a stretched vertical grid

Lower-boundary: ocean surface with a fixed temperature

Idealized tropical condition: based on the GATE Phase-III mean sounding
         and wind profile during TOGA COARE

Large-scale forcing: prescribed advective tendency

Perturbation: small, random temperature perturbations into the lowest model layer

Q3D Run

Share the same configurations with those of Control 

Net size: 63 km
Rayleigh type damping on deviation fields
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The 3D elliptic equation can be solved with the quasi-3D network,
using a statistical method to estimate the 2nd-order derivatives

in the direction normal to the grid point arrays.
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The results from the quasi-3D run show no apparent signs of violating
the requirements of stability and conservation property.



Q3D CONTROL (3D)

TIME (hr)

H
EI

G
H

T 
(k

m
)

Q3D (null estimate)

TIME (hr) TIME (hr)

(x-array average)

qc
2

Q3D CONTROL (3D)

TIME (hr)

H
EI

G
H

T 
(k

m
)

Q3D (null estimate)

TIME (hr) TIME (hr)

(y-array average)



Q3D CONTROL (3D)

TIME (hr)

H
EI

G
H

T 
(k

m
)

Q3D (null estimate)

TIME (hr) TIME (hr)

(x-array average)

qi
2

Q3D CONTROL (3D)

TIME (hr)

H
EI

G
H

T 
(k

m
)

Q3D (null estimate)

TIME (hr) TIME (hr)

(y-array average)



Q3D CONTROL (3D)

TIME (hr)

H
EI

G
H

T 
(k

m
)

Q3D (null estimate)

TIME (hr) TIME (hr)

(x-array average)
qt
2

Q3D CONTROL (3D)

TIME (hr)

H
EI

G
H

T 
(k

m
)

Q3D (null estimate)

TIME (hr) TIME (hr)

(y-array average)



(x-array average)

(y-array average)

Q3D

CONTROL
Q3D (null estimate)

Surface Evaporation Rate Surface Precipitation Rate
(m

m
/h

r)
(m

m
/h

r)

TIME (hr) TIME (hr)

(m
m

/h
r)

(m
m

/h
r)

TIME (hr) TIME (hr)

Q3D

CONTROL
Q3D (null estimate)



The results of the partially prognostic tests are encouraging
and we are ready to challenge fully prognostic tests.

Conclusions

The 3D elliptic equation can be solved with the quasi-3D network, using
a statistical method to estimate the second-order derivatives in the
direction normal to the grid point arrays.

The results from the quasi-3D run show no apparent signs of violating
the requirements of stability and conservation property.

The 2D and quasi-3D algorithms do not make much difference for tracer.
The same is true for water substance where convection is active. In such
a case, the horizontal advection can be negligible compared to vertical
advection, and vertical velocity is prescribed from the control in this test.




