PROGRESS TOWARDS A QUASI-3D MMF: Partially Prognostic Tests

Joon-Hee Jung

Department of Atmospheric Science, Colorado State University, Colorado, USA

Akio Arakawa

Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, California, USA

CMMAP Team Meeting Fort Collins, August 15-17, 2006

TECHNICAL DESIGN:

FORMULATION OF NORMAL FLUX IN THE QUASI-3D NETWORK

O SOLVING AN ELLIPTIC EQUATION IN THE QUASI-3D NETWORK

CUTLINE
 EXERCISE THE SOLVING AN ELLIPTIC EQUATION IN THE

SOLVING AN ELLIPTIC EQUATION IN THE

The model we use is based on the 3D vor
 PROGNOSTIC TESTS:

CALCULATION OF WIND COMPONENTS F

ADVECTION WITH PRESCRIBED The model we use is based on the 3D vorticity equation with an anelstic approximation and solves an elliptic equation for w.

PARTIALLY PROGNOSTIC TESTS:

O CALCULATION OF WIND COMPONENTS FROM PRESCRIBED VORTICITY FIELDS

- We apply the same 3D algorithm for dynamics, advection and physics to all grid points.
- Then, except at the intersection points, we have to "estimate" advection in the direction normal to the grid-point arrays.
-

o ghost point

Decomposition of Fields

To estimate the values of a prognostic variable, q , at ghost points and fluxes from/to theses points, we decompose the q field as

 $q = \overline{q} + q'$

where

- ^q : Background field obtained by interpolation of GCM grid-point values, typically representing synoptic-scale fields
- q' : Deviation of q from \overline{q} , typically representing the fields associated with clouds and their mesoscale organizations

Algorithms for estimating q' at ghost points and fluxes from/to these points are guided by considerations of stability, conservation property, and suppression of spurious trend.

Global Stability : Uniform current with q! i $= 0$

When a 3rd-order advection scheme is used, the array sum of q'^2 is bounded if

All parameters are cloud-regime dependent and slowly vary in time.

Local Stability : Three-dimensionally variable current

When q' is positively (negatively) perturbed, the divergence of the 3D flux of q' must not decrease (increase).

Estimated flux does not produce positive feedback on a perturbation if

$$
\delta_j^2 \hat{q}' = a_2 + b_2 \delta_i^2 \hat{q}'
$$

\n
$$
\delta_j^4 \hat{q}' = a_4 + b_4 \delta_i^4 \hat{q}'
$$

\nwith $b_2 \ge 1$ and $b_4 \ge 1$

Determination of the Parameters

Hypothesis:

Cloud regimes have longer spatial and temporal scales than individual clouds.

The parameters can be statistically estimated from the history of the intersection and neighboring points.

Determination of the Parameters (continued.)

Parameters are statistically determined by analyzing the history data at all intersection points.

Parameter b

Linear regression: $Y = bX$

where

X: first/third-order finite differences of q' in x-direction Y: first/third-order finite differences of q' in y-direction

Estimation of Values at Ghost Points

Parameters and the differences in tangential direction are known. The differences in normal direction are estimated.

$$
\hat{q}'_{j=1} = q' + \frac{1}{2} \left(\Delta_j \hat{q}' + \delta_j^2 \hat{q}' \right) \quad \hat{q}'_{j=-1} = q' + \frac{1}{2} \left(-\Delta_j \hat{q}' + \delta_j^2 \hat{q}' \right)
$$
\n
$$
\hat{q}'_{j=2} = q' + \Delta_j \hat{q}' + 2\delta_j^2 \hat{q}' + \frac{1}{2} \Delta_j \left(\delta_j^2 \hat{q}' \right) + \frac{1}{2} \delta_j^2 \left(\delta_j^2 \hat{q}' \right)
$$
\n
$$
\hat{q}'_{j=-2} = q' - \Delta_j \hat{q}' + 2\delta_j^2 \hat{q}' - \frac{1}{2} \Delta_j \left(\delta_j^2 \hat{q}' \right) + \frac{1}{2} \delta_j^2 \left(\delta_j^2 \hat{q}' \right)
$$

Correction of the Ghost-point Values near Intersection

 $C_{i,j}$: the correction at the data point (i,j) on the net

 $c_{i',j'}$: the correction at the ghost point (i',j')

$$
c_{i',j'} = \sum_{i,j} C_{i,j} e^{-\left(r_{i,j;i',j'}/r_o\right)^2} \left/ \sum_{i,j} e^{-\left(r_{i,j;i',j'}/r_o\right)^2} \right.
$$

where $r_{i,j;i',j'}$ is the distance between the points and r_o is prescribed.

Conservation of the Vertically-integrated Network Mean

(Approximate) conservation is achieved by requiring the mean divergence of the flux from/to ghost points is equal to the mean divergence of the flux at the intersection points averaged in time over the analysis period.

The elliptic equation is converted to a parabolic equation whose equilibrium solution is the solution of the elliptic equation.

$$
\mu \frac{\partial w}{\partial t} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \! w + \frac{\partial}{\partial z} \! \left[\frac{1}{\rho_o} \frac{\partial}{\partial z} \! \left(\rho_o w \right) \right] \! + \rho_o \, \frac{\partial \eta}{\partial x} \! - \! \rho_o \, \frac{\partial \xi}{\partial y}
$$

Discretization

Use a partially backward-implicit scheme for the horizontal derivative term and a fully backward-implicit scheme for the vertical derivative term.

A Relaxation Method for Solving the Elliptic Equation
\nThe elliptic equation is converted to a parabolic equation whose
\nequilibrium solution is the solution of the elliptic equation.
\n
$$
\mu \frac{\partial w}{\partial t} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) w + \frac{\partial}{\partial z} \left[\frac{1}{\rho_0} \frac{\partial}{\partial z}(\rho_0 w)\right] + \rho_0 \frac{\partial \eta}{\partial x} - \rho_0 \frac{\partial \xi}{\partial y}
$$
\nwhere μ defines the time scale for adjustment toward anelastic balance.
\n**Discretization**
\nUse a partially backward-implicit scheme for the horizontal derivative term
\nand a fully backward-implicit scheme for the vertical derivative term.
\n
$$
\left[\frac{1}{\rho_{k-1/2}}\left(\frac{\mu}{\Delta t} + \frac{2}{\Delta x^2} + \frac{2}{\Delta y^2}\right) + \frac{1}{\Delta z} \left(\frac{1}{\rho_k \Delta z} + \frac{1}{\rho_{k-1} \Delta z}\right) \left[(\rho w)_{i,j,k-1/2}^{n+1} - \frac{1}{\Delta z} \left[\frac{(\rho w)_{i,j,k-1/2}^{n+1}}{\rho_k \Delta z} + \frac{(\rho w)_{i,j,k-1/2}^{n+1}}{\rho_{k-1} \Delta z}\right]\right]
$$
\n
$$
= \left[\frac{\mu}{\Delta t} + \frac{2}{(\Delta x)^2} + \frac{2}{(\Delta y)^2}\right] w_{i,j,k-1/2}^n + \frac{X_{i,j,k-1/2}^n}{(\Delta x)^2} + \frac{Y_{i,j,k-1/2}^n}{(\Delta y)^2} + F_{i,j,k-1/2}^{n+1}
$$
\nwhere X and Y are the second-order finite differences in x- and y-directions.

Relaxaion Method vs. Direct Method

Domain and Time Averaged Variables

(last 12 hour-average)

Relaxaion Method vs. Direct Method (Continued.)

Solving the Elliptic Equation in the Quasi-3D Network

The second-order finite difference in the normal direction is estimated as in the advection problem.

$$
\left[\frac{1}{\rho_{k-l/2}}\left(\frac{\mu}{\Delta t}+\frac{2}{\Delta x^2}+\frac{2}{\Delta y^2}\right)+\frac{1}{\Delta z}\left(\frac{1}{\rho_k\Delta z}+\frac{1}{\rho_{k-1}\Delta z}\right)\right](\rho w)_{i,j,k-l/2}^{n+1}-\frac{1}{\Delta z}\left[\frac{(\rho w)_{i,j,k+l/2}^{n+1}}{\rho_k\Delta z}+\frac{(\rho w)_{i,j,k-3/2}^{n+1}}{\rho_{k-1}\Delta z}\right]\\=\left[\frac{\mu}{\Delta t}+\frac{2}{\left(\Delta x\right)^2}+\frac{2}{\left(\Delta y\right)^2}\right]w_{i,j,k-l/2}^n+\frac{X_{i,j,k-l/2}^n}{\left(\Delta x\right)^2}+\frac{\left[\bar{Y}_{i,j,k-l/2}^n+\left(Y_{i,j,k-l/2}'^n\right)_{\text{est}}\right]}{\left(\Delta y\right)^2}+F_{i,j,k-l/2}^{n+1}
$$

$$
\left(Y_{i,j,k-1/2}^{n}\right)_{\text{est}} \equiv a + bX_{i,j,k-1/2}^{n} + C(r)\left(Y_{I,j,k-1/2}^{n} - a - bX_{I,j,k-1/2}^{n}\right)
$$

where a and b are parameters, the subscript I denotes the nearest intersection point, and $C(r)$ is a prescribed function of the distance from the intersection point satisfying $C(0)=1$.

Partially Prognostic Tests

Calculation of wind components from prescribed vorticity fields.

Using the prescribed statistics of the history at the intersection and neighboring points.

Advection with prescribed winds and potential temperature.

Model

A three-dimensional anelastic model based on the vector vorticity equation

by Joon-Hee Jung and Akio Arakawa (2006), Submitted to JAS

Control Run

- **Domain size:** 126 km x 126 km x 18 km (height)
- **Horizontal resolution:** 3 km
- **Vertical resolution:** 34 layers with a stretched vertical grid
- **Lower-boundary:** ocean surface with a fixed temperature
- **Idealized tropical condition:** based on the GATE Phase-III mean sounding and wind profile during TOGA COARE
- **Large-scale forcing:** prescribed advective tendency
- **Perturbation:**small, random temperature perturbations into the lowest model layer

Q3D Run

Share the same configurations with those of Control

Net size: 63 km

Rayleigh type damping on deviation fields

CONTROL Cloud Top Temperature

$W^{\prime 2}$: Network Average

The 3D elliptic equation can be solved with the quasi-3D network, using a statistical method to estimate the 2nd-order derivatives in the direction normal to the grid point arrays.

 ${q'_{c}}^2$: **Network Average** (10⁻¹) 2

q'^2_i **: Network Average** (10⁻¹) 2

${q_t'}^2$ **: Network Average**

Network Average

The results from the quasi-3D run show no apparent signs of violating the requirements of stability and conservation property.

Surface Evaporation Rate Surface Precipitation Rate

(x-array average)

Conclusions

- The 3D elliptic equation can be solved with the quasi-3D network, using a statistical method to estimate the second-order derivatives in the direction normal to the grid point arrays.
- The results from the quasi-3D run show no apparent signs of violating the requirements of stability and conservation property.
- The 2D and quasi-3D algorithms do not make much difference for tracer. The same is true for water substance where convection is active. In such a case, the horizontal advection can be negligible compared to vertical advection, and vertical velocity is prescribed from the control in this test.

The results of the partially prognostic tests are encouraging and we are ready to challenge fully prognostic tests.