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ABSTRACT

l. Introduction

Multiscale Modeling Framework is an attempt to link GCM and CRM.

Il. Unification of the system of dynamics equations

e Forsuch alink, the system of equations must be unified to cover a broad
spetrum from turbulence to planetary waves.

® With this objective, a unified system of equations is developed.

lll. The quasi-3D multi-scale modeling framework

e |f we wish to include the dynamical interactions between CRM and GCM,
the CRM must be at least quasi-3D.

® Progress has been made in our understanding of the problems involved.

(Some of them are related to the basic question of diagnostic parametrizability
and the use of “Double-Scale Modeling Framework”)
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e Even when a resolution-dependent parameterization

exists for ensemble-means, the variance would become
Y too large with high resolutions.
GCM

e Ensemble-mean cloud effects are not the effect of

ensemble-mean clouds (ﬁ # AB)
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® Dynamics needs to be unified between GCM and CRM

e “Double-Scale Modeling Framework”and the 3D CRM need to be linked.

® 2D and 3D grids need to be linked.
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Unification of the System of Dynamics Equations
between GCM and CRM

This is necessary for the convergence of Quasi-3D MMF to a 3D CRM..

Possibilities :

I. Use of the fully-compressible nonhydrostatic system of equations

Modification of 3D dynamics to Q3D dynamics will be extremely difficult.

ll. Use of a system of equations that filters vertically-propagating sound waves

e |n the quasi-hydrostatic system of equations (primitive equations),

the vertical component of the momentum equation is diagnostic.

® |n the anelastic system of equations, the continuity equation is diagnostic.

Our approach unifies these two ways of filtering.



Continuity Equation
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With no major modification of the momentum
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component of the momentum equation

With no modification of the momentum and
thermodynamic equations



Problems with the Anelastic System of Equations

V-(p,V)=0

I. Too restrictive reference state

e The common way of maintaining energetic consistency is through an assumption
that the reference state is neutral (Ogura & Phillips 1962) or approximately neutral
(Lipps & Hemler 1982).

e This assumption introduces a serious error in the vertical structure of the disturbances
in a stable atmosphere.

The anelastic system is NOT for a model that includes the stratosphere.



Problems with the Anelastic System of Equations (Continued)

Il. Spuriously-fast westward retrogression of barotropic ultra-long waves

d
Vi (pOVH )+£(pow) =0

Barotropic ( "=0 ) motion With this continuity equation, the motion
in a stratified atmosphere must be horizontally nondivergent

(1) /(2)

The motion must be horizontal (w=0)

to satisfy the thermodynamic eq.

Then we are back to the old problem with ultra-long waves
recognized during the early years of NWP .

Wolff, P.M., 1958: The error in numerical forecasts due to retrogression of ultra-long waves. MWR.

Cressman, G.P, 1958: Barotropic divergence and very long atmospheric waves. MWR.

Wiin-Nielsen, A., 1959: On barotropic and baroclinic models, with special emphasis on ultra-long waves. MWR.

These papers attempted to bypass the path (1) although the real problem is in (2).



Conserved Dynamics Variable and Retrogression Speed of the Rossby Wave

Nondivergent motion

Shallow-water motion

Barotropic motion
in the atmosphere
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What makes the atmospheric barotropic motion analogous to the shallow-water motion is compressibility.

The anelastic system is NOT for a global model .

e Yet,itis a very good approximation for small-scale convection in the troposphere.

® Also, the quasi-hydrostatic approximation is an excellent approximation for large-scale motions.



The Continuity Equation in the Unified System

— Quasi-Hydrostatic Continuity Equation —

ap...
Pas +V.- (quV) =0 This is NOT a prognostic equation
a”t because p,, is predicted by
the surface-pressure tendency and
P %, (p) A
w) 5 0 i 5 thermodynamic equations.

e This is exact when the motion is quasi-hydrostatic . The entire system then becomes
equivalent to the primitive equations.

® This becomes Durran’s pseudo-incompressible equation when

o the dp,/dt termis neglected,

o the 90 /dt termis linearized with respect to the deviations from a reference state.

® This becomes the anelastic continuity equation when the 00 /dt term is further neglected.



The Continuity Equation in the Unified System (Continued)
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The last term is evaluated using the surface-pressure tendency and thermodynamic equations.

In contrast to the Richardson (1922) equation, the unified system treats this term as a generally
small correction term.

When the momentum equation is used,

o the non-hydrostatic pressure is determined for the predicted 3D velocity
to satisfy this continuity equation (parallel to the anelastic system);

When the horizontal component of vorticity equation is predicted,

© The unified system solves
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O the vertical component of the momentum equation can then be used to diagnose
the non-hydrostatic pressure.




SUMMARY AND CONCLUDING REMARKS

The anelastic model introduces a serious error in the vetical structure

The anelastic and pseudo-incompressible approximations introduce a serious error
for barotropic ultra-long waves .

These problems do not exist in the unified system.

We plan to use (a geodesic-grid version of) the unified model for a global cloud-
resolving model.
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- ® “Double-Scale Modeling Framework”and the 3D CRM need to be linked.

-

uoleziid)awelsed jo aa1bag

® 2D and 3D grids need to be linked.

10°km 10°km 10 km 1km 102%m

MODEL RESOLUTION



Problems with the “Double-Scale Framework”

CRM / CRM / CRM

CRM/CRM/CRM
CRM/CRM / CRM
t+—>

GCM grid size

This structure is inherited from the conventional GCMs, which assume “parameterizability”
The interactive nature of the MMF is an advantage in principle.

However, if the GCM dynamics is very rigid due to over-dominating large-scale processes,
there is not much room for the feedback to operate.

GCM dynamics without mesoscale dynamics may be too rigid from the point of view of
interactions with the cloud scale.



Sensitivity of the Equilibration of Shear Instability to the Rigidity of Mean Flow

Shear Instability Simulation _Rigid Mean Flow
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Sensitivity of the Equilibration of Shear Instability to the Rigidity of Mean Flow

Shear Instability Simulation _Relaxed Mean Flow with the Time Scale of 2 hrs
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MULTI-SCALE REPRESENTATION OF VARIABLES

q st a + q’ + qu
BACKGROUND CLOUD-SYSTEM CLOUD
SCALE SCALE
e I ”
q q q
Raynolds averagin &
Determined by interpolation tr,l]\long g ¥ & Skl q-9-q
of GCM grid-point values eartay s
(Currently, this field is prescribed.) Normal to Statistical identification Parameterization
the array of cloud regime based on isotropy




Problems in Quasi-3D Advection of Scalar Variables

1. Global stability with 2-dimensional uniform current

2. Local stability with 3-dimensional non-uniform current
3. Control of singularity at intersections

4. Control of spurious trend

5. ldentifying the orientation of cloud organization by regression analysis
of past data at the intersections

The major remaining problem:

Advection of cloud water causes “computational detrainment”
due to computational dispersion/dissipation
and incompatibility with the movement of updraft.



Solving a 3D Elliptic Equation using the Quasi-3D Network
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In our model, i
ox’ oy’

In an anelastic model, a 3D elliptic equation must be solved.

(The same is true in the unified system.)
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Estimation of the y-derivatives in the w-equation

(32+32)W+3[i3(p0w)]=—(@—%)
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For Cloud Scale:

—» Horizontal component of velocity

A~ —
’/ \ —» Horizontal component of vorticity
; - We assume that cloud-scale w axi-symmetric and
\ W /‘ horizontal flow is radial. This means that the horizontal

g P component of vorticity is circular (deformation-free).

For Cloud-System Scale :

Statistical estimation as in the advection equation.

Semi-prognostic tests using prescribed vorticity on the network points

are highly successful.



Problems in Vorticity Prediction

In spite of the purely 3D nature, the effects of twisting followed by stretching are handled
reasonably well.

The local sinaularitv at the intersections is relativelv well controlled (no noise)

Due to the inhomogeneous structure of the grid, however,

there is a tendency toward development of large-scale 7 /’, P

3 3 . /' “_.'
circulations that have scales comparable to the net size. / /
- - s s
Not only this influences the overall partition between f,— ‘/x' ,—"/
vertical and horizontal wind components, it suppresses e
. . <+—>
smaller-scale convection by subsidence. net size

Since the net size is the GCM grid size in MMF, the net-size z‘ ; ; ; ;

circulation should be controlled also by the GCM dynamics. i ,f i

We need to couple with a GCM
for real evaluation of the Q3D MMF --»-/MJ-/ ...... "

GCM gris size



EXPERIMENTAL STRATEGY FOLLOWED SO FAR

e Break up the algorithm to pieces, and test one piece at a time.

e Always quantitatively compare with the results of 3D control run.

e Comparison is mainly through the time sequences of spatial variances
(and covariances) rather than through spatial/temporal means.

We should start to test coupling the Q3D CRM with a toy GCM soon.



CONCLUDING REMARKS

e The semi-prognostic test with prescribed vorticity at the net points are
o very successful in predicting velocity components,

o but not in predicting the individual phases of water,
very likely due to “computational detrainment”.

e Fully-prognostic tests produces a“red” spectrum of vorticity, very likely due to
the lack of interactions with the GCM.

® |t seems that we are approaching the limit of the“peace by peace” test strategy.

® We also seem to have mixed up Q3D MMF
the problems (2) and (3). A

(1) Dynamics needs to be unified
between GCM and CRM

GCM point

(2) “Double-Scale Modeling Framework”
and the 3D CRM need to be linked.

(3) 2D and 3D grids need to be linked.

We need to test a “3D MMF” as a benchmatrk.



