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Q3D CRM

Based on the same model dynamics and physics with the 3D CRM,
only difference being the use of Q3D grid
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CLOUD-RESOLVING MODEL BASED ON 3D VORTICITY EQUATION

Prediction of scalar variables
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Determination of wind components
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To determine the gradient normal to the grid-point arrays

We first introduce the following multi-scale expression for all variables:

q = q + q’ i q"
synoptic-scale cloud-system scale
(background field) | q* |

DETERMINATION OF 3D STRUCTURES
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q q q
Determined by interpolation Along grid-point array: Along grid-point array: g* -’
of GCM grid-point values 1D Raynolds averaging of q *

(Currently, this field is prescribed.) Normal to grid-point array: Normal to grid-point array:
By statistical Identification of With a parameterization based
cloud regime on isotropy or inferred anisotropy




Advection of Filtered Variable, '
GLOBAL STABILITY : Uniform current with @i =0

The array sum of q'? is conserved if
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Estimated Predicted
first-order difference first-order difference
in the normal direction in the tangential direction

The parameter b, represents the dominant orientation of cloud organization.
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Advection of Filtered Variable, '
LOCAL STABILITY : Three-dimensionally variable current

Estimated flux divergence must not produce positive feedback
on the perturbation.
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Estimated Predicted
second-order difference second-order difference
in the normal direction in the tangential direction

with b, =1




DETERMINATION OF THE PARAMETERS
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Aq" =a +bAq
61q" =a, +b,d/q
Ad:q' =a,+b;Adq
64" =a,+b,0/q
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HYPOTHESES:

O These parameters are cloud-regime dependent.

O Cloud regimes have longer spatial and
temporal scales than individual clouds.

O These parameters can be statistically
estimated through regression analysis
of past data at the intersection and
neighboring points.




CONTROL OF SINGULARITY AT INTERSECTIONS

Correction of the estimation error near the intersection

:the correction at the data point (i,j) on the net
:the correction at the ghost point (i}j’)
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where T ;. is the distance between the points and T is prescribed.

CONTROL OF SPURIOUS TREND
Rayleigh-type damping




Advection of Non-Filtered Variable, q”: Need for Parameterization

Currently,
For scalar variables: "= 0 at ghost points (ad hoc).




A Relaxation Method for Solving the Elliptic Equation

The elliptic equation is converted to a parabolic equation whose
equilibrium solution is the solution of the elliptic equation.
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where W defines the time scale for adjustment toward anelastic balance.

Discretization
Use a partially backward-implicit scheme for the horizontal derivative term
and a fully backward-implicit scheme for the vertical derivative term.
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A Relaxation Method for Solving the Elliptic Equation
in the Q3D Model
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VORTICITY AT GHOST POINTS

Obtained with a similar method used for scalar variables.

HORIZONTAL VELOCITY COMPONENTS

Determined such a way that the continuity equation is satisfied and

they are consistent with the predicted vorticity at the network.




EXPERIMENTAL STRATEGY

/
O Break up the algorithm to pieces, and test one piece at a time.

o Always quantitatively compare with the results of 3D control run.

o Comparison is mainly through the time sequences of spatial variances
(and covariances) rather than through spatial/temporal means only.
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TESTING PERFORMED

for an idealized, very small domain first

/ analysis period=12h \

CONTROL (3D CRM)
> > {

application period=3h
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3D CRM

A three-dimensional anelastic model based on the vector vorticity equation
by Joon-Hee Jung and Akio Arakawa (2007), MWR

Control Run

Domain size: 126 km x 126 km x 18 km (height)

Horizontal resolution: 3 km
Vertical resolution: 34 layers with a stretched vertical grid

Lower-boundary: ocean surface with a fixed temperature

Idealized tropical condition: based on the GATE Phase-lll mean sounding
and wind profile during TOGA COARE

Large-scale forcing: prescribed advective tendency

Perturbation: small, random temperature perturbations into the lowest model layer




SEMI-PROGNOSTIC EXPERIMENT

/6 and vorticity components at the network are prescribed. \

Scalar variables at the network are predicted and those at the ghost
points are obtained with the Q3D algorithm.

The vorticity gradient in the right hand side of the w-equation is
obtained from the Q3D algorithm.

All velocity components and vorticity components at ghost points
\are obtained from the Q3D algorithm. /




SEMI-PROGNOSTICTEST
X-array variance of w
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SEMI-PROGNOSTIC TEST
Y-array variance of w
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SEMI-PROGNOSTIC TEST
Y-array variance of u
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SEMI-PROGNOSTIC TEST
X-array variance of v

Time Average (2 day)
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SEMI-PROGNOSTICTEST
X-array covariance of uv
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SEMI-PROGNOSTICTEST
Y-array covariance of uv
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Time Average (2 day)
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SEMI-PROGNOSTICTEST
X-array covariance of vw
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SEMI-PROGNOSTIC TEST
X-array variance of tracer mixing ratio
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SEMI-PROGNOSTIC TEST
X-array variance of total water mixing ratio
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q=q,

X-array Variance of q
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FULL-PROGNOSTIC EXPERIMENT

\

/6 and vorticity components at the network are predicted.

Scalar variables at the network are predicted and those at the ghost
points are obtained with the Q3D algorithm.

The vorticity gradient in the right hand side of the w-equation is
obtained from the Q3D algorithm.

All velocity components and vorticity components at ghost points
\are obtained from the Q3D algorithm. /




FULL PRONOSTICTEST
X-array variance of & (10‘6)
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FULL PRONOSTICTEST
Y-array variance of § (10‘6)
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FULL PRONOSTICTEST
X-array variance of 1 (10‘6)
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FULL PRONOSTICTEST
Y-array variance of 1 (10‘6)
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FULL PRONOSTICTEST
Y-array variance of u
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FULL PRONOSTIC TEST
X-array variance of v
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FULL PRONOSTICTEST
X-array variance of w

Time Average (16 hr)
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Sensitivity to the Horizontal Spectrum of Forcing

O Solution of the elliptic equation has the important role of determining the partition
between the vertical and horizontal components of velocity.

O The partition crucially depends on the horizontal spectrum of the forcing (see below).
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The 2D Boussinesq version of the w-equation: l\ " —8—2) (1)

where M = du/dz - Iw/x is the y-component of vorticity.

For a fixed vertical wavenumber m, let

F =fF(k,x)dk, where k is the horizontal wavenumber.

From (1) and du/dx + dw/ 9z = 0, we can show

2

F(k,x)dk m) - L IR (k.x)dk

+m’ 0x

W _ L 9
fk2+m2 Ox






