## Examining the GCSS Boundary-Layer Cloud Cases in Context of CMMAP Modeling Strategy

Anning Cheng<sup>1</sup>, Kuan-Man Xu<sup>2</sup>, Bjorn Stevens<sup>3</sup>

AS&M, Inc.
Science Directorate, NASA Langley Research Center
UCLA

#### Goal

- Study the effects of horizontal and vertical resolutions, domain size, dimensionality, subgrid-scale parameterization, microphysical processes, and numerical methods on the simulation of boundary-layer processes
- Understand how the MMF represents the boundary-layer processes
- Develop an improved parameterization of the boundary-layer processes for CRMs and MMFs

### Strategy

- Simulate all major GCSS boundary-layer cloud cases by changing several aspects (resolution, domain size and dimensionality) of model configurations
- Utilize a variety of models: fine-LES, LES, CRM and SCM
- Test the lower-order and higher-order turbulence closure schemes
- Test one- and two-moment microphysical schemes

#### Strategy for testing resolution sensitivity



## Preliminary results for the RICO precipitating cumulus case

#### Sensitivity to horizontal resolution



#### Sensitivity to vertical resolution



#### Power spectra of w at 900 m at last hour



#### Sensitivity of cloud statistics to both horizontal and vertical resolutions



# Sensitivity of Z<sub>i</sub>, TKE, W<sub>max</sub> and LHF to horizontal and vertical resolutions



#### Summary and discussion

#### Summary for RICO precipitating cumulus

- Sensitivity of the mean profiles and other cloud statistics to the horizontal grid spacing is much greater than to the vertical grid spacing
- ✓ At coarse resolutions, the simulated mean profiles and cloud statistics are very different from the benchmark LES simulation
- Dependencies of the 2-D results on both horizontal and vertical resolutions are similar to those of the 3-D results (not shown)
- Next step
- ✓ Simulations and analyses of other GCSS cases
- Analysis of updraft and downdraft properties, entrainment rate, buoyancy and circulations
- Improving subgrid-scale parameterizations in CRMs

## **Thank You!**