Progress of NICAM researches & GCRM exp. of MJO

Masaki SATOH Hiroaki MIURA

Center for Climate System Research, Univ. of Tokyo Frontier Research Center for Global Change, JAMSTEC

NICAM team: Hirofumi TOMITA, Tomoe NASUNO, Shin-ichi IGA, Akira Noda, Kazuyoshi Oouchi, & Wataru Yanase

2007

CMMAP meeting 2007, CSU, Fort Collins, USA, 7-9 Aug.

Overview

for Global Change

CCSR

Outline of NICAM

FRCGC

Global Cloud Resolving Model NICAM (Nonhydrostatic ICosahedral Atmospheric Model)

- Overview of NICAM experiments
- ■MJO: H.Miiura's talk and poster
- Low clouds: breakout session #3
- Ongoing Tropical cyclones studies
- Climatology
- Current works and prospects

- NICAM GCRM exp. with explicit cloud processes dx=3.5, 7, 14km
 - Short term exp.

FRAGO

CCSR

- Exp. Apr. 2004: Typhoon, boundary layer effects on deep conv.
- Exp. Dec. 2006: MJO : H.Miura
- Exp. Sep. 2005: Tropical cyclogenesis: T0514(Nabi), Katrina
 - One-week dx=3.5km, one-month dx=7km, more dx=14km

Long term exp.

- Perpetual July exp. & Cess-type climate sensitivity
- Intra-seasonal exp. : June-Aug 2004
 - Summer/winter/ElNino/LaNina cases
 - TC genesis, seasonal change, low clouds, climatology & sensitivity
 - ~200days dx=14km, 7km

NICAM-SPRINTARS: Aerosols

• Exp. Jul. 2006, Apr. 2001 : K.Suzuki (poster)

MJO Exp. Dec 2006

Miura et al.(2007)

An intense MJO MISMO field obs.(Nov 2006) Malaysian heavy rainfall

MJO event Dec. 2006

2006年12月26日21JST Miura et al.(2007) Initial 00UTC, 25 Dec.

MTSAT-1R TBB http://weather.is.kochi-u.ac.jp/

NICAM dx=3.5km

Hovmoller along equator

MTSAT-1R TBB by T.Nakazawa

NICAM dx=7km Miura et al. (2007) OLR

Rainband structures are captured in NICAM

To be compared with Tbb/MTSAT image (courtesy of T.Nakazawa)

Possible key roles on MJO: Suppression & triggering *NICAM low res. exp. dx=240km(gl-5) with PAS*

OLR Hovmoller 10S-10N 15 Dec-15 Jan

CCSR

FRCGC

Suppression of PAS by Cloud-mean relative humidity Suzuki et al.(2006, Dyn. Atom. Ocean.)

$$\overline{RH} = \frac{\int_{Z_M}^{Z_T} q dz}{\int_{Z_M}^{Z_T} q^* dz} > 80\%$$

Intra-seasonal Exp. Jun-Aug 2004 & Apr 2004

Noda et al. Miura et al.(2007)

Seasonal change of monsoon Tropical cyclones: 10 typhoons came to Japan Boundary layer clouds GPCI(GCSS Pacific Cross Section Intercomparison)-type exp.

Low-level clouds in Globe

We need observations of cloud and boundary layer (PBL) parameters: PBL height, liquid water,.. Slide by Joao @ GISS meeting

Perpetual Jul Exp. & Cess-type climate sensitivity

Iga et al.(2007) Tsushima et al.(2007)

Climatology Parameter dependency on microphysics and boundary layer Climate sensitivity

Precipitation (1month, dx~14km)

ISCCP Cloud fraction

NICAM:

lower

upper clouds

OLR sensitivity

•Control: CS4, L100, dx~14km

- •Slower Snow sedimentation speed: CS3
- •Enhanced boundary mixing: L200
- •Higher resolution: dx~7km

Sensitivity of cloud forcing

SW cloud forcing change LW cloud forcing change

	Thin	Medium	Thick
Hgh	CIRRUS	CIRRO STRATUS	DEEP CONVECTIO N
Middle	ALTO CUMULUS	ALTOSTRAT US	NIMB STRATUS
Low	CUMULUS	STRATO CUMULUS	STRATUS
-2 -18-12-08-04 0 04 68 12 18 2			

NICAM

MIROC

Climate sensitivity: SST+2K OLR response

Slightly larger for +2K at 15km<z<18km in tropics Smaller for +2K at z<15km

FRSG mmary of current works and prospects

NICAM GCRM exp.

CCSR

- Validation and improvements of NICAM
- Common behaviors both for NICAM and MMF
 - A nice MJO; amplitude is a little over-emphasized
 - Good low level clouds
 - Climate sensitivity
- Tropical cyclogenesis
- Satellite observations
 - Analysis of size distribution of anvils (T.Inoue, B.Mapes)
 - Tbb/split window(T.Inoue)
 - CloudSat/Calipso camparison (K.Suzuki)
 - TRMM PR/TMI (H.Masunaga)
- Physics
 - Cloud microphysics: Grabowski(1998), NSW6 (H.Tomita 2007), Lin et al.(1983)
 - Boundary layer: MY2, 2.5, 3 with moist effects (Nakanishi & Niino 2004)
 - Radiation: partial clouds of low clouds
 - Subgrid convection (K.Oouchi, M.Yamasaki)

