Using a super-parameterized version of WRF to study the ITCZ and convection parameterization

Stefan Tulich

CIRES, University of Colorado, and

NOAA ESRL, Boulder CO, USA

Motivation: WRF 36-km regional climate simulations exhibit significant tropical biases

Similar biases are apparent in 2.8 deg. SP-CAM and GFDL's 50-km HiRAM

Biases in the time-mean are associated with biases in synoptic transients

TRMM

HIRAM

Ratio of westward- to eastwardmoving variance (k =1-25)

Large biases in TC genesis frequency also seen

WRF TC analysis by Asuka Suzuki (Georgia Tech) HIRAM analysis by Ming Zhao (GFDL)

How are we to interpret these results?

On the one hand:

Too much time-mean off-equatorial rain

Overly active Rossy-type wave disturbances

But its also plausible that:

Overly active Rossby-type waves

Enhance time-mean off-equatorial rain

Standard (steady-state, axisymmetric) picture:

Revised picture with transient eddies*:

*Bellon and Sobel 2010

Revised picture with transient eddies*:

*Bellon and Sobel 2010

Revised picture with transient eddies + deficiences in convection parameterization:

*Bellon and Sobel 2010

To study this issue further:

- Use the WRF model to conduct idealized simulations of the ITCZ in a tropical channel
- Why WRF?
 - Non-hydrostatic full-physics so cloud-resolving is possible
 - Can be run regionally, affording computational savings
 - Variety of convective parameterization options are available, including now: super-parameterization (for me, at least)

Development of SP-WRF

• WRF already has nesting capabilities:

Coarse ("Parent") Domain Nest ("Child") Domain

Development of SP-WRF (cont.)

• So to make an SP-WRF just change labels:

Experiment Setup

Experiment Setup (cont.)

- "Observed" distribution of Neale and Hoskins (2001)
- 51 vertical levels with stretched grid up to 28 km (16 mb)
- Solar insolation is diurnally varying, perpetual equinox

Results for conventional WRF first

Kain-Fritsch

Betts-Miller-Janic

Results for SP-WRF

- 2D CRMs: 36-km wide; dx = 3 km
- Radiation applied on coarse-grained cloud fields
- No upscale momentum feedback
- Initialized on day 55 from a run with explicit convection on the 54-km grid
- Roughly 60 times more expensive than conventional WRF runs

Results for SP-WRF

SP vs. Betts-Miller-Janic

4000

Comparison of time-mean rain and wavenumber-frequency spectra

KF

SP

BMJ

Reducing the zonal extent of the domain causes narrowing of the ITCZ under the KF scheme

Moral of the story

- It appears that deficiencies in the simulation of convection-wave coupling → deficiencies in the mean climate
- This is taking the SP-WRF as "truth", but really cloud-resolving model simulations are needed as benchmarks (beyond my computational budget)

Proposal for convection parameterization development and testing

- A dynamics-based test case for assessing the strength of coupling between parameterized convection and rotational vs. divergent circulation anomalies
- Basic idea: perform short-term (regional) weather forecasts of obs. tropical wave disturbances
 - Does the model tend to "spin up" the easterly wave relative to observations?
 - If so, what aspect of the parameterization causes this spinup?
 - Does increasing resolution help or make the problem worse? If so, why?