...almost ready for primetime VVM

Don Dazlich

Mingxuan Chen, Tom Cram, Grant Firl, Ross Heikes, Joon-Hee Jung, Todd Jones, Celal Konor, Dave Randall

Colorado State University

CMMAP Team Meeting, Dynamical Framework August 4, 2010

VVM review

- The predicted dynamical field is the threedimensional vorticity vector. From this the winds can be diagnosed.
- Physics to permit prediction of thermodynamic and moisture variables: RRTMG radiation; microphysics.

VVM transition

COMMON/CONST2LD/C(80),IC(60),LC(40) LOGICAL LC

LOGICAL START EQUIVALENCE (ITTMAX, IC(1)),(ITINIT, IC(16)), \$ (START, LC(8)), (NXS, IC(15)), \$ (ITTADD, IC(19)),(NRESTART, IC(7)) EQUIVALENCE (A, C(1)),(B, C(2)),(DT, C(3))

Prior to this work the code was Fortran 77 without any kind of parallelization.

 Obsolescent features such as common blocks, EQUIVALENCE, binary I/O

First step - a more modern code

MODULE constld

! This file contains profiles that do not vary across the domain and ! model parameters.

! HISTORY: ! 2010.02.09 -DD- Converted to an f90 module from constld.com

USE kinds USE parmsld

IMPLICIT NONE PRIVATE

;****

! formerly common/pointsld/

- The dynamical core was rewritten to use Fortran 90 features such as modules, CASE construct.
- Fortran 90 provides superior error-checking during compilation - this step uncovered several latent bugs.
- Impose some additional programming standards -IMPLICIT NONE

Step two - a new build system

```
# Identify the operating system
OS := $(shell uname)
# Linux Cluster, optimized for saddleback
ifeq ($(OS),Linux)
  CPP
          = /usr/bin/cpp
   CPPFLAGS = -P -traditional -I$(BINDIR)
           = f
   SUE
   ifdef PGI COMP # pgi compiler / linux clusters
     ifdef UNICOS # NERSC franklin Cray xt4
      FC
               = ftn
      FIXED = -Mextend -r8
               = -Mfreeform
      FREE
      INC = -I/usr/common/usg/netcdf/3.6.2/include -I$(CDECKS)
      ifdef DEBUG
```

advec_3d_module.o: kinds.o PARMSLD.o CONSTLD.o CONST3D.o PROFOUTLD.o

bound.o: kinds.o PARMSLD.o CONST3D.o domain_decomposition.o

buoyf_module.o: kinds.o PARMSLD.o CONST3D.o CONSTLD.o

damping.o: kinds.o PARMSLD.o CONST3D.o CONSTLD.o PROFOUTLD.o

 More advanced elements of Gnu Makefile incorporated - variables to choose compiler, debug option. More platform versatility.

- Dependencies added to the makefile.
- Able to chose specific case studies.

Step three - create a repository

- Subversion used to create a code and data repository.
- History of code development is preserved.
- Provide a means for users to get baseline version of code.

Step four - create a test suite

- Along with code we provide a suite of test cases.
- Figures from a baseline version of the model.
- Diagnostic codes to generate corresponding figures from user's run.

Test case I - Idealized Bubble

- Domain initialized with a buoyant bubble. No moist physics, adiabatic.
- Test of dynamical core.
- Cheapest case to run (30 minute simulation)

Test case II - Idealized Gate Phase III

Constant forcing of moisture and temperature. Radiative heating prescribed.

Intended to test model microphysics in addition to dynamical core.

Additional level of computational expense
I day simulation.

Test case III - TWP-ICE

- Full physics including interactive radiation; time-varying forcing of temperature and moisture.
- Test of full model.
- Deep tropical convection case.
- Expensive!

Step five - parallelize

- Domain size and length of simulation limited when code run serially.
- Introduce message-passing parallelism (MPI)
- The global horizontal domain is divided into rectangular subdomains of equal size.
 Subdomains are distributed among computer processors.
- Subdomains currently required to be of identical size.

Subdomains - the halo

Example: depth 1 halo

• A key part of each subdomain is the halo those points that overlap with the neighboring domain.

- Baseline model fixed to have halo of depth one.
- Used this opportunity to generalize depth of halo. This will ease introduction of operators of higher orders of accuracy.

Step five - parallelize

176x176 TWP-ICE

processors	wall clock (s)
	1221.0
2	473.0
4	311.3
16	102.0
64	53.2

- Two basic operations that require message passing:
- Sending data at subdomain boundaries to neighboring subdomains. These are on different processors.
- Global reductions, such as sum.

Parallelization exceptions - I/O

- I/O still gathered to one process into global size array.
- Have replaced binary I/O (except restart) with netcdf format. This will make sharing model data more community friendly.
- Next step is to add PIO (Parallel I/O) library calls to produce the netcdf output.

Parallelization exceptions - elliptic solvers

1024x1024

processors	speedup over I processor
2	x1.4
4	x1.8
8	x3.7
16	x9.7
32	x18.9
64	x29.0

- Model features 2D and 3D elliptic equations solved using FFTs.
- A multigrid relaxation is coded for the 2D solver and has been tested offline. Serial case timing is of same order as FFT solver, but we scale and distribute memory.
- Multigrid 3D solver still being debugged.

Near future work

Result is Performance!

- Parallel netcdf I/O
- Get 3D multigrid solver working.
- Add more cases to test suite:
 - BOMEX stratocumulus case
 - ARM SGP