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Introduction

Operational forecast centers are starting to rely
heavily upon data assimilation in order to produce more
accurate forecasts that are based on current
observations. As of present, the transform scheme is
used most widely. It minimizes the cost function with
respect to In(x), as opposed to x, and then changes it
back to the x space to complete the new forward run. It
also takes the observations and considers them to be in
the In(x) space.

Fletcher and Zupanski (2006,2007) have developed
the mixed DA system in which the minimzation as well as
the observations are kept in the x space. With this, there
is no need to convert into a different space, thus
retaining more information which is used to produce a,
in theory, more accurate forecast.

We will compare the two schemes at varying lengths
of forecasts to determine if one produces more correct
forecasts than the other and if so, by what magnitude.

Results
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Objective and Methodology

This study was conducted to evaluate which data
assimilation scheme is more accurate when producing
short-, medium- and long-term forecasts.

=Run Fletcher’s 4DVAR data assimilation code for
MatLab, on Apple desktop during summer 2010 internship
at CMMAP
=Uses Lorenz ‘63 model - represents convection
=Uses second-order Runge-Kutta scheme to solve
ODEs
=Z variable is lognormally distributed forecast while
X,y are Gaussian distributed
=Creates ‘true’ solution, the desired output
*Randomly generates observations to use during
assimilation of each window
=Creates mixed and transform forecasts
» Minimizes cost function, J(x)
*Updates background error covariance matrix for
next forecast
sCompare X,z variable differences
»Y variable is not discussed — similar results to x
"Each cycle of forecast has a short, medium and long
forecast
sRepeat with different observational error

Lorenz ‘63 model equations:

Run Fwd Model

dx ( )
— =—-0X+Yy),
dt
dy
— =—XZ+ pPpX-—-Yy,
dt
DA over window

dZ to find new initial Create new
— =Xy — /32, conditions for forecast
dt next window
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Chosen variables:
Forecast length: 1500 timesteps
Number of windows: 5
Window length: 300 timesteps
Number of observations per window: 20
Observational errors (o,): 0.25, 1.5

Short-term forecast: from 0-400 timesteps
Medium-term forecast: from 400-900 timesteps
Long-term forecast: from 900-1500 timesteps
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Full assimilation forecast plots: cycle 1-blue, cycle 2-red, cycle 3-green, cycle 4-magenta, cycle 5-cyan, true-black dashed;

Difference plots (X,.,. = Xfrecast): Mixed scheme-blue, transform scheme-red
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Full assimilation forecast plots: cycle 1-blue, cycle 2-red, cycle 3-green, cycle 4-magenta, cycle 5-cyan, true-black dashed;

Difference plots (X,.,e = Xorecast): Mixed scheme-blue, transform scheme-red

Full assimilation forecast plots: cycle 1-blue, cycle 2-red, cycle 3-green, cycle 4-magenta, cycle 5-cyan, true-black dashed;
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Full assimilation forecast plots: cycle 1-blue, cycle 2-red, cycle 3-green, cycle 4-magenta, cycle 5-cyan, true-black dashed;

Difference plots (X,,,. = Xfrecast): Mixed scheme-blue, transform scheme-red

Full assimilation forecast plots: cycle 1-blue, cycle 2-red, cycle 3-green, cycle 4-magenta, cycle 5-cyan, true-black dashed;

Difference plots (X,.,. = Xforecast): Mixed scheme-blue, transform scheme-red

Conclusions

Short
sEither scheme shows similar results
mBetter initial conditions with mixed with small error obs
*Amplitude not as large with mixed with large error obs

Medium
*Either scheme shows similar results
= Mostly, mixed shows smaller peak amplitude of ~1-3
"As cycles progress, errors decrease by ~60% during
peaks in general

Long
sEither scheme is very chaotic
" Mixed does better in X, transform does better in Z with
small obs
*Mixed does better in Z with large obs

=For less accurate observations, trends show mixed
scheme is a better

*"As more cycles progress, mixed becomes more accurate
*Changing attractors in X prove hard to get back to
forecast in medium- and long-term

Future Work

Plans for further work include rerunning this model
with each assimilation scheme but with different
parameters. We would like to see if fewer, but more
accurate, observations can produce more correct forecasts
rather than incorporating more, but less accurate,
observations. Also, we would like to extend as well as
shorten the window lengths and see how changing the
window lengths affect the projected forecast.
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