Paleoclimate Simulations with CAM, SPCAM and CESM

Mark Branson, Eli Tziperman, Dave Randall, Dorian Abbot and Matt Huber CMMAP Summer 2011 Team Meeting

- Study Arctic cloud convective feedback mechanism with SPCAM
 - I. Identify the minimum CO2 concentration which leads to the melting of winter sea ice and to the activation of the convective cloud feedback
 - 2. Identify the transient vs equilibrated response of the feedback during a transient simulation of increased CO2 concentration.

Goals (cont.)

 Study the response of the SPCAM over the arctic and continental interiors to increased CO2 concentration under Eocene boundary conditions (Purdue simulations)

Completed Work

Standard CAM + slab ocean model followed by SPCAM + slab ocean model for:

- I6xPI CO2 concentration (~4480ppm)
- 4xPI CO2 concentration (start from prior CCSM experiment)

Slab Ocean Model (SOM)

- I. Run model with fixed SSTs for a reasonable amount of time and compute Q-fluxes.
- Also compute mixed-layer depth (in these simulations a constant mixed-layer depth of 50m was used for the entire globe)
- 3. Use the Q-fluxes to drive the SOM.

must do this separately for CAM and SPCAM!

Compute monthly mean net flux into the ocean from the control simulation:

F = FS - FL - LH - SH

where FS = net shortwave flux

- FL = net longwave flux
- LH = latent heat flux
- SH = sensible heat flux

I6xPICO2

4xPI CO2

Ongoing Work

Fully-coupled CESM simulation: B_1850_2000_CN

- 1850 to 2000 transient
- "CN" = active carbon-nitrogen model in CLM
- using CAM4 physics
- "fl9_gl6" grid setup: finite volume 2deg grid for atmos, I deg displaced-pole ocean grid

Ongoing Work

step I: spinup: 25 years starting from 1850 but holding all trace gases constant.

step 2: 1% per year increase CO2 ==> 3xPI

step 3: run two SPCAM simulations initialized from this run at:

- when Arctic sea ice has decreased by 50%
- at end of this fully-coupled simulation

CESM is a whole different animal than CCSM3.

- Good: canned cases, optimized for many popular supercomputers (bluefire, franklin, etc.)
- More steps, tougher to tweak the details

Eocene Land Fraction

Fraction of sfc area covered by land [LANDFRAC]

fraction

Previous CCSM Simulation: The World Without Sun

- How long after you turn the sun off before the oceans freeze over (at the surface)
- <u>www.nickdavisproductions.com</u>