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Fast waves require small timesteps, unless you ...

choose governing equations that prohibit fast waves (anelasitc,
unified framework, etc.)
split fast waves from rest of physics, so that they alone are
integrated on small timesteps. (As in WRF)
treat them implicitly. (ECMWF, Met Office, ...)

First and third options require the solution of a global (usually linear)
system at each timestep.

In this talk, we are focused on the third option.

Fast waves: sound (and sometimes gravity) waves.
Slow waves: advection (and sometimes gravity) waves.
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Splitting Up the PDE

∂u
∂t

= f(u) + Lu,

where
u is the state variable,
L is the matrix associated with a linear operator modeling
processes with short timescales (sound and possibly gravity
waves)
f(u) is everything else
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IMEX Multistep Approximation

1∑
k=−M

αkqn+k = ∆t

[
0∑

k=−M

βk f(qn+k ) +
1∑

k=−M

νkLqn+k

]
.

qn approximates u(n∆t)
(αk , βk ) define the explicit method
(αk , νk ) define the implicit scheme
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Common in Atmospheric Models

Implicit: Trapezoidal over 2∆t , backward weighted if θ > 0.5

qn+1 − qn−1

2∆t
= θLqn+1 + (1− θ)Lqn−1

Explicit: Asselin-filtered leapfrog

qn+1 − q̃n−1

2∆t
= f(qn)

q̃n = qn + γ
(

q̃n−1 − 2qn + qn+1
)

,

where typically 0.05 ≤ γ ≤ 0.2
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Weaknesses

Asselin-filtered leapfrog-trapezoidal is
first-order
off-centering the trapezoidal method is not very scale selective
leapfrog limits choice of spatial differences
physical parameterizations treated with forward Euler over 2∆t
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Desired Properties of Alternate Schemes

Implicit schemes:
A-stability ( numerical approximations to

du
dt

= ηu

satisfy |A| ≡ |qn+1/qn| ≤ 1 if <{η} ≤ 0)
(But A-stable scheme can be no better than 2nd-order.)
Damps high frequencies (|A| becomes small as ={η}∆t → ±∞).
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Desired Properties of Alternate Schemes

Explicit schemes:
Good stability for purely oscillatory phenomena (i.e. larger CFL
limit).
Able to handle both oscillatory and damping phenomena.
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A family of implicit-explicit Adams methods

Building on Frank et al. 1997, consider a family of implicit Adams
schemes (A-stable for c ≥ 0):

qn+1 − qn

∆t
=

1
2

[
Lqn+1 + Lqn

]
+

c
2

[
Lqn+1 − 2Lqn + Lqn−1

]
Trapezoidal is c = 0.

Similarly, consider a family of three-step explicit Adams schemes:

qn+1 − qn

∆t
=

3
2

f(qn)− 1
2

f
(

qn−1
)

+
b
2

[
f (qn)− 2f

(
qn−1

)
+ f

(
qn−2

)]
b = 0 gives 2nd order Adams-Bashforth, b = 5/6 gives AB3.

We seek combinations of b and c which yield good stability for fast
wave-slow wave problems.
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Model Problem 1: Oscillations Forced at
Two-Frequencies

∂q
∂t

= iωLq + iωHq

ωH is the high-frequency forcing.
ωL is the low-frequency forcing.
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Leapfrog-trapezoidal amplification factor
No Asselin, no off-centering
|A| ≤ 1 throughout white region
ω
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Influence of Asselin filtering and off-centering
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Off-centering the trapezoidal spoils stability in limit ωH∆t → 0.
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Amplification factors for other schemes
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AI22/AB3 stability region
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Here, b = 5/6 and c = 3/2.
A whole family of implicit-explicit Adams methods with good
stability properties exists for c = 3b − 1.
A similar family of BDF schemes also exists.
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Model Problem 2: Compressible Boussinesq System

(
∂

∂t
+ U

∂

∂x

)
u +

∂P
∂x︸︷︷︸

s

= 0, (1)

(
∂

∂t
+ U

∂

∂x

)
w +

∂P
∂z︸︷︷︸

s

= b︸︷︷︸
b

, (2)

(
∂

∂t
+ U

∂

∂x

)
b + N2w︸ ︷︷ ︸

b

= 0, (3)

(
∂

∂t
+ U

∂

∂x

)
P + c2

s

(
∂u
∂x

+
∂w
∂z

)
︸ ︷︷ ︸

s

= 0. (4)

More stability analysis of implicit-explicit schemes for linearized form of
this system in paper.
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Numerical simulations

Fixed spatial discretization, explore convergence in time to
compressible solution computed with very small ∆t .

Compressible Boussinesq system, cs = 350 m s−1

Mean shear flow, 5 ≤ U(z) ≤ 15
Constant mean static stability, N = .01 s−1

Periodic lateral BC, rigid top and bottom
Buoyancy waves generated by compact nondivergent forcing
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Time-converged solution

u contours at 3000 s; shading shows streamlines of forcing field
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Empirical convergence rates
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Buoyancy Implicit
0.60: AI22/AB3
0.30: BDF2/BX22
0.69: T2θ/LF, θ=0.5, γ=0.1
0.62: T2θ/LF, θ=0.6, γ=0.1
Buoyancy Explicit
0.57: AI22/AB3
0.26: BDF2/BX22
0.66: T2θ/LF, θ=0.5, γ=0.1
0.66: T2θ/LF, θ=0.6, γ=0.1

max CFL: Method
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Explicit buoyancy can improve accuracy

forward biased T2θ/LF (θ = 0.6)

AI22/AB3
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Improvement at almost no CPU cost
14% reduction in maximum ∆t for AI22/AB3 relative to Asselin-filtered leapfrog scheme
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