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Fast waves require small timesteps, unless you ...

@ choose governing equations that prohibit fast waves (anelasitc,
unified framework, etc.)

@ split fast waves from rest of physics, so that they alone are
integrated on small timesteps. (As in WRF)

@ treat them implicitly. (ECMWEF, Met Office, ...)

First and third options require the solution of a global (usually linear)
system at each timestep.

In this talk, we are focused on the third option.

Fast waves: sound (and sometimes gravity) waves.
Slow waves: advection (and sometimes gravity) waves.
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Splitting Up the PDE

ou
— =f L
where

@ u is the state variable,

@ L is the matrix associated with a linear operator modeling
processes with short timescales (sound and possibly gravity
waves)

@ f(u) is everything else
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IMEX Multistep Approximation

1
Z Oékqn+k At Z ﬂkf(qn+k Z VquIH—k )
k=—M

@ " approximates u(nAt)
@ (ay, Bk) define the explicit method
@ (ag, vk) define the implicit scheme
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Common in Atmospheric Models

Implicit: Trapezoidal over 2At, backward weighted if § > 0.5

qn-~-1 _ qn—1

_ n+1 _ n—1
5AT =6Lq""" + (1 -6)Lq

Explicit: Asselin-filtered leapfrog

qn+1_qn—1 - "
Toar @)

6" = "+ (6" 29" +q™")

where typically 0.05 <~ < 0.2
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Weaknesses

Asselin-filtered leapfrog-trapezoidal is
@ first-order
@ off-centering the trapezoidal method is not very scale selective
@ leapfrog limits choice of spatial differences
@ physical parameterizations treated with forward Euler over 2At
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Desired Properties of Alternate Schemes

Implicit schemes:
@ A-stability ( numerical approximations to

@,
at

satisfy |A| = [¢"""/q"| < 1if R{n} < 0)
(But A-stable scheme can be no better than 2nd-order.)

@ Damps high frequencies (|A| becomes small as S{n} At — +0).
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Desired Properties of Alternate Schemes

Explicit schemes:
@ Good stability for purely oscillatory phenomena (i.e. larger CFL
limit).
@ Able to handle both oscillatory and damping phenomena.
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A family of implicit-explicit Adams methods

Building on Frank et al. 1997, consider a family of implicit Adams
schemes (A-stable for ¢ > 0):

qn+1 _ qn _

n+1 n E n+1 n n—1
Al Lg +Lq}+2{Lq 2Lq" + Lq

N —

Trapezoidal is ¢ = 0.

Similarly, consider a family of three-step explicit Adams schemes:

I

b = 0 gives 2nd order Adams-Bashforth, b = 5/6 gives AB3.

We seek combinations of b and ¢ which yield good stability for fast
wave-slow wave problems.
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Model Problem 1: Oscillations Forced at
Two-Frequencies

% _ g
o wr g+ lwyq

@ wy is the high-frequency forcing.
@ wy is the low-frequency forcing.
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Leapfrog-trapezoidal amplification factor

No Asselin, no off-centering
|A| < 1 throughout white region
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Influence of Asselin filtering and off-centering

Off-centering the trapezoidal spoils stability in limit wgAt — 0.
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Amplification factors for other schemes

f) BI22/BX32
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Al22/AB3 stability region
4

@ Here,b=5/6 and c = 3/2.

@ A whole family of implicit-explicit Adams methods with good
stability properties exists for c = 3b — 1.

@ A similar family of BDF schemes also exists.
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Model Problem 2: Compressible Boussinesq System

0 1o} oP
<E+U&>”+ax ~ 0, (1)
0 0 oP
(a‘i‘ua)w-i-az = \b//, (2)
~~~ b
o 0 .
<E+U8_>b+NbW = 0, (3)
0 0 o (OUu  Ow\

More stability analysis of implicit-explicit schemes for linearized form of
this system in paper.
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Numerical simulations

Fixed spatial discretization, explore convergence in time to
compressible solution computed with very small At.

@ Compressible Boussinesq system, ¢s = 350 m s~

@ Mean shear flow, 5 < U(z) < 15

@ Constant mean static stability, N = .01 s~

@ Periodic lateral BC, rigid top and bottom

@ Buoyancy waves generated by compact nondivergent forcing
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Time-converged solution

u contours at 3000 s; shading shows streamlines of forcing field
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Empirical convergence rates
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Explicit buoyancy can improve accuracy

@ forward biased T26/LF (6 = 0.6)

@ Al22/AB3
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Improvement at almost no CPU cost

14% reduction in maximum At for Al22/AB3 relative to Asselin-filtered leapfrog scheme
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