Implicit-Explicit Multistep Methods for Fast-Wave Slow-Wave Problems

Peter Blossey & Dale Durran

10 August 2011

Fast waves require small timesteps, unless you ...

- **•** choose governing equations that prohibit fast waves (anelasitc, unified framework, etc.)
- split fast waves from rest of physics, so that they alone are integrated on small timesteps. (As in WRF)
- treat them implicitly. (ECMWF, Met Office, ...)

First and third options require the solution of a global (usually linear) system at each timestep.

In this talk, we are focused on the third option.

Fast waves: sound (and sometimes gravity) waves. **Slow waves:** advection (and sometimes gravity) waves.

Splitting Up the PDE

$$
\frac{\partial \mathbf{u}}{\partial t} = \mathbf{f}(\mathbf{u}) + \mathbf{L}\mathbf{u},
$$

where

- **u** is the state variable,
- **L** is the matrix associated with a linear operator modeling processes with short timescales (sound and possibly gravity waves)
- **• f**(**u**) is everything else

IMEX Multistep Approximation

$$
\sum_{k=-M}^{1} \alpha_k \mathbf{q}^{n+k} = \Delta t \left[\sum_{k=-M}^{0} \beta_k \mathbf{f}(\mathbf{q}^{n+k}) + \sum_{k=-M}^{1} \nu_k \mathbf{L} \mathbf{q}^{n+k} \right]
$$

- **q** *ⁿ* approximates **u**(*n*∆*t*)
- \bullet (α_k, β_k) define the explicit method
- \bullet (α_k, ν_k) define the implicit scheme

.

Common in Atmospheric Models

Implicit: Trapezoidal over 2∆*t*, backward weighted if $θ > 0.5$

$$
\frac{\mathbf{q}^{n+1}-\mathbf{q}^{n-1}}{2\Delta t}=\theta \mathbf{L}\mathbf{q}^{n+1}+(1-\theta)\mathbf{L}\mathbf{q}^{n-1}
$$

Explicit: Asselin-filtered leapfrog

$$
\frac{\mathbf{q}^{n+1}-\tilde{\mathbf{q}}^{n-1}}{2\Delta t} = \mathbf{f}(\mathbf{q}^n) \n\tilde{\mathbf{q}}^n = \mathbf{q}^n + \gamma \left(\tilde{\mathbf{q}}^{n-1} - 2\mathbf{q}^n + \mathbf{q}^{n+1} \right),
$$

where typically $0.05 \leq \gamma \leq 0.2$

Asselin-filtered leapfrog-trapezoidal is

- **•** first-order
- off-centering the trapezoidal method is not very scale selective
- leapfrog limits choice of spatial differences
- physical parameterizations treated with forward Euler over 2∆t

Desired Properties of Alternate Schemes

Implicit schemes:

A-stability (numerical approximations to

$$
\frac{du}{dt} = \eta u
$$

satisfy $|{\cal A}| \equiv |q^{n+1}/q^n| \leq 1$ if $\Re\{\eta\} \leq 0)$

(But *A*-stable scheme can be no better than 2nd-order.)

• Damps high frequencies (|A| becomes small as $\Im{\eta} \Delta t \rightarrow \pm \infty$).

Desired Properties of Alternate Schemes

Explicit schemes:

- Good stability for purely oscillatory phenomena (i.e. larger CFL limit).
- Able to handle both oscillatory and damping phenomena.

A family of implicit-explicit Adams methods

Building on Frank et al. 1997, consider a family of implicit Adams schemes (A-stable for $c > 0$):

$$
\frac{\mathbf{q}^{n+1}-\mathbf{q}^n}{\Delta t} = \frac{1}{2} \left[\mathbf{L}\mathbf{q}^{n+1} + \mathbf{L}\mathbf{q}^n \right] + \frac{c}{2} \left[\mathbf{L}\mathbf{q}^{n+1} - 2\mathbf{L}\mathbf{q}^n + \mathbf{L}\mathbf{q}^{n-1} \right]
$$

Trapezoidal is $c = 0$.

Similarly, consider a family of three-step explicit Adams schemes:

$$
\frac{\boldsymbol{q}^{n+1}-\boldsymbol{q}^n}{\Delta t}=\frac{3}{2}\boldsymbol{f}(\boldsymbol{q}^n)-\frac{1}{2}\boldsymbol{f}\left(\boldsymbol{q}^{n-1}\right)+\frac{b}{2}\left[\boldsymbol{f}\left(\boldsymbol{q}^n\right)-2\boldsymbol{f}\left(\boldsymbol{q}^{n-1}\right)+\boldsymbol{f}\left(\boldsymbol{q}^{n-2}\right)\right]
$$

 $b = 0$ gives 2nd order Adams-Bashforth, $b = 5/6$ gives AB3.

We seek combinations of *b* and *c* which yield good stability for fast wave-slow wave problems.

Model Problem 1: Oscillations Forced at Two-Frequencies

$$
\frac{\partial q}{\partial t} = i\omega_L q + i\omega_H q
$$

- \bullet ω_H is the high-frequency forcing.
- \bullet ω_l is the low-frequency forcing.

Leapfrog-trapezoidal amplification factor

No Asselin, no off-centering $|A| \leq 1$ throughout white region

Influence of Asselin filtering and off-centering

Off-centering the trapezoidal spoils stability in limit $\omega_H\Delta t\to 0$.

Amplification factors for other schemes

AI22/AB3 stability region

- Here, $b = 5/6$ and $c = 3/2$.
- A whole family of implicit-explicit Adams methods with good stability properties exists for $c = 3b - 1$.
- A similar family of BDF schemes also exists.

Model Problem 2: Compressible Boussinesq System

$$
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) u + \frac{\partial P}{\partial x} = 0, \qquad (1)
$$
\n
$$
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) w + \frac{\partial P}{\partial z} = \underbrace{\phi}_{\text{b}}, \qquad (2)
$$
\n
$$
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) b + \underbrace{N^2 w}_{\text{b}} = 0, \qquad (3)
$$
\n
$$
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) P + \underbrace{c_{\text{s}}^2 \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right)}_{\text{s}} = 0. \qquad (4)
$$

More stability analysis of implicit-explicit schemes for linearized form of this system in paper.

Peter Blossey (Univ. of Washington) [CMMAP Dynamical Frameworks Breakout](#page-0-0) 10 August 2011 15/20

Numerical simulations

Fixed spatial discretization, explore convergence in time to compressible solution computed with very small ∆*t*.

- Compressible Boussinesq system, *c^s* = 350 m s−¹
- Mean shear flow, $5 < U(z) < 15$
- Constant mean static stability, $N = .01$ s⁻¹
- Periodic lateral BC, rigid top and bottom
- Buoyancy waves generated by compact nondivergent forcing

Time-converged solution

u contours at 3000 s; shading shows streamlines of forcing field

Empirical convergence rates

Explicit buoyancy can improve accuracy

- forward biased T2 θ /LF ($\theta = 0.6$)
- **•** AI22/AB3

Improvement at almost no CPU cost

14% reduction in maximum ∆*t* for AI22/AB3 relative to Asselin-filtered leapfrog scheme

