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Progress

= A dynamical core based on the unified system has been developed

= A paper describing the dynamical core and presenting the results has
beed submitted for publication to JAMES.

= Development of a global dynamical core based on the unified system
is nearly completed




Unified System
Arakawa and Konor (2009, MWR)

A nonhydrostatic system applicable to wide range of atmospheric scales of motion

= Filters vertically propagating acoustic waves while allowing elasticity
due to thermal expansion

= Does not require a basic or mean state

= Does not introduce any approximation to the momentum and
thermodynamic equations

= [ntroduces a minor approximation to the continuity equation

= Conserves energy




Unified System (Cont.)

A normal mode analysis confirms the followings:

» The unified system does not show the errors that appear with the
anelastic and pseudo-incompressible systems while filtering vertically
propagating acoustic waves

= Ultra-long Rossby waves are compressible and their retrogression
speed is realistic




Comparison of the Equations of the Unified System
to Those of Some Other Systems
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Comparison of Equations
Horizontal Momentum
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Comparison of Equations
Vertical Momentum
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Comparison of Equations
Hydrostatic Equation
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Comparison of Equations
Thermodynamic Equation
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Comparison of Equations

Continuity Equation
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Comparison of Equations
Elliptic Equation
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The Integration Procedure used in the Dynamical Core
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Some results from Konor (2011)

= Warm bubble tests
= Cold bubble tests

= |dealized extratropical cyclogenesis simulations




Warm bubble tests
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Cold bubble tests [Suggested by Straka et al., 1993]
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Idealized extratropical cyclogenesis simulations

= Domain is a 5000 km long
channel on an extratropical b-
plane

= Start from random
perturbations of potential
temperature

= 45 layers (400 m)

» Four different horizontal grid
distances: 100 km, 50 km, 25 km
and 2.5 km




Idealized extratropical

cyclogenesis simulations °|

Surface fields at Day 13
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Surface pressure (p=pqs+8p, mb) and surface potential temperature (K) at day 15

Idealized extratropical
cyclogenesis simulations

Surface fields at Day I5
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Surface pressure (p=pqs+8p, mb) and surface potential temperature (K) at day 17
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Idealized extratropical
cyclogenesis simulations
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Surface vorticity (104 1/s)
and surface potential temperature (K)
at day 17 from high-res run (d=12.5 km)
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Idealized extratropical cyclogenesis simulations

Middle troposphere fields from 12.5-km run at Days 13, 15 and 17

Pressure (p=pqs+8p, mb) and potential temperature (K) for 5200 m height from high-resolution run (d=12.5 km)
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Idealized extratropical cyclogenesis simulations

y-z cross-sections of zonal velocity (m/s) and potential temperature (K) from high-resolution run (d=12.5 km)
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Summary

= The dynamical core based on the unified system performs well in the
warm and cold bubble tests and in simulating idealized exratropical
cyclogenesis

= A paper describing the dynamical core and presenting the results has
beed submitted for publication to JAMES.

Remaining tasks

= Completion of a global dynamical core based on the unified system
= Inclusion of physics into the global dynamical core

= Construction of a new global MMF




