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Progress

A dynamical core based on the unified system has been developed

A paper describing the dynamical core and presenting the results has 
beed submitted for publication to JAMES.

Development of a global dynamical core based on the unified system 
is nearly completed 



Unified System

Filters vertically propagating acoustic waves while allowing elasticity 
due to thermal expansion

Does not require a basic or mean state

Does not introduce any approximation to the momentum and 
thermodynamic equations

Introduces a minor approximation to the continuity equation

Conserves energy  

A nonhydrostatic system applicable to wide range of atmospheric scales of motion 

Arakawa and Konor (2009, MWR)



The unified system does not show the errors that appear with the 
anelastic and pseudo-incompressible systems while filtering vertically 
propagating acoustic waves

Ultra-long Rossby waves are compressible and their retrogression 
speed is realistic  

A normal mode analysis confirms the followings:

Unified System (Cont.)
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Quasi-Hydrostatic Anelastic Unified

Fully Compressible

Comparison of the Equations of the Unified System 
to Those of Some Other Systems 
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Quasi-Hydrostatic Anelastic Unified
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Fully Compressible

Comparison of Equations
Horizontal Momentum

Bar: Basic/Mean state   prime: Deviation qs: Quasi-hydrostatic   d: Non-hydrostaticqs: Quasi-hydrostatic

π = π z( ) + ʹ′π θ = θ z( ) + ʹ′θ



π = π z( ) + ʹ′π π = π qs +δπθ = θ z( ) + ʹ′θ

Quasi-Hydrostatic Anelastic Unified

π = π qs +δπ

Fully Compressible

Comparison of Equations
Vertical Momentum
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Quasi-Hydrostatic Anelastic Unified

Fully Compressible

Comparison of Equations
Hydrostatic Equation 
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Quasi-Hydrostatic Anelastic Unified

Fully Compressible

Comparison of Equations
Thermodynamic Equation 
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Quasi-Hydrostatic Anelastic Unified

Fully Compressible

Comparison of Equations
Continuity Equation 
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 ʹ′ρ  ρ ∂ ʹ′ρ ∂t ≈ 0

Bar: Basic/Mean state   prime: Deviation

 δρ  ρqs ∂δρ ∂t ≈ 0

Not used to predict quasi-hydrostatic 
density, but used to determine w



Quasi-Hydrostatic Anelastic Unified

Fully Compressible

Comparison of Equations
Elliptic Equation 
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Generally requires more iterations than the 
unified counterpart since p´ also includes a 
quasi-hydrostatic component. 
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1-Predict q
2-Determine quasi-hydrostatic
 quantities

3-Determine nonhydrostatic quantities

4-Predict horizontal momentum

5-Determine vertical momentum

The Integration Procedure used in the Dynamical Core



Some results from Konor (2011)

Warm bubble tests

Cold bubble tests

Idealized extratropical cyclogenesis simulations



Warm bubble tests [Suggested by Mendez-Nunez and Carroll, 1993]



Cold bubble tests [Suggested by Straka et al., 1993]



Idealized extratropical cyclogenesis simulations 

Domain is a 5000 km long 
channel on an extratropical b-
plane

Start from random 
perturbations of potential 
temperature

45 layers (400 m)

Four different horizontal grid 
distances: 100 km, 50 km, 25 km 
and 12.5 km



Idealized extratropical 
cyclogenesis simulations 

Surface fields at Day 13



Idealized extratropical 
cyclogenesis simulations 

Surface fields at Day 15



Idealized extratropical 
cyclogenesis simulations 

Surface fields at Day 17





Idealized extratropical cyclogenesis simulations 

Middle troposphere fields from 12.5-km run at Days 13, 15 and 17



Idealized extratropical cyclogenesis simulations 



Summary

The dynamical core based on the unified system performs well in the 
warm and cold bubble tests and in simulating idealized exratropical 
cyclogenesis 

A paper describing the dynamical core and presenting the results has 
beed submitted for publication to JAMES.

Remaining tasks

Completion of a global dynamical core based on the unified system

Inclusion of physics into the global dynamical core

Construction of a new global MMF


