A Progress Report and More on the Unified System

Celal Konor

Department of Atmospheric Science Colorado State University

Eleventh CMMAP Team Meeting, 9-11 August 2011, Fort Collins, CO Dynamical Framework Working Group

Progress

- A dynamical core based on the unified system has been developed
- A paper describing the dynamical core and presenting the results has beed submitted for publication to JAMES.
- Development of a global dynamical core based on the unified system is nearly completed

Unified System

Arakawa and Konor (2009, MWR)

A nonhydrostatic system applicable to wide range of atmospheric scales of motion

- Filters vertically propagating acoustic waves while allowing elasticity due to thermal expansion
- Does not require a basic or mean state
- Does not introduce any approximation to the momentum and thermodynamic equations
- Introduces a minor approximation to the continuity equation
- Conserves energy

Unified System (Cont.)

A normal mode analysis confirms the followings:

- The unified system does not show the errors that appear with the anelastic and pseudo-incompressible systems while filtering vertically propagating acoustic waves
- Ultra-long Rossby waves are compressible and their retrogression speed is realistic

Comparison of Equations				
	Horizontal Momentum			
	$ \frac{Fully \ Compressible}{D\mathbf{v}} + f\mathbf{k} \times \mathbf{v} + c_p \theta \nabla_H \pi_{qs} + c_p \theta \nabla_H \delta \pi = \mathbf{F}_H $			
[$\pi = \pi_{qs} + \delta\pi$			
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>		
$\frac{D\mathbf{v}}{Dt} + f\mathbf{k} \times \mathbf{v}$	$\frac{D\mathbf{v}}{Dt} + f\mathbf{k} \times \mathbf{v}$	$\frac{D\mathbf{v}}{Dt} + f\mathbf{k} \times \mathbf{v}$		
$+c_{p}\boldsymbol{\sigma}\mathbf{v}_{H}\boldsymbol{\pi}_{qs}=\mathbf{F}_{H}$	$+c_{p}\theta\mathbf{V}_{H}\pi' = \mathbf{F}_{H}$ $\pi = \overline{\pi}(z) + \pi' \theta = \overline{\theta}(z) + \theta'$	$+c_{p}\partial\mathbf{v}_{H}\pi_{qs} + c_{p}\partial\mathbf{v}_{H}\partial\pi = \mathbf{F}_{H}$ $\pi = \pi_{qs} + \delta\pi$		
$\pi = \pi_{qs}$ qs: Quasi-hydrostatic	$\pi' \ll \overline{\pi}$ $ heta' \ll heta$ Bar: Basic/Mean state prime: Deviation	qs: Quasi-hydrostatic d: Non-hydrostatic		

Co	mparison of Equations Vertical Momentum	
	$\frac{Dw}{Dt} + c_p \theta \frac{\partial}{\partial z} \delta \pi = F_w$ $\pi = \pi_{qs} + \delta \pi$	
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>
	$\frac{Dw}{Dt} + c_p \overline{\theta} \frac{\partial}{\partial z} \pi' - g \frac{\theta - \overline{\theta}}{\overline{\theta}} = F_w$	$\frac{Dw}{Dt} + c_p \theta \frac{\partial}{\partial z} \delta \pi = F_w$
	$\pi' \ll \overline{\pi}$ $\theta' \ll \overline{\theta}$ $\pi = \overline{\pi}(z) + \pi'$ $\theta = \overline{\theta}(z) + \theta'$ Bar: Basic/Mean state prime: Deviation	$\pi = \pi_{qs} + \delta \pi$ qs: Quasi-hydrostatic d: Non-hydrostatic
		Not used to predict w

Comparison of Equations Thermodynamic Equation		
	$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi}$	
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>
$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi_{qs}}$	$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi}$	$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi}$

C	omparison of Equatio Continuity Equation	ns
	$\frac{\partial \rho}{\partial t} = -\nabla_H \cdot (\rho \mathbf{v}) - \frac{\partial (\rho w)}{\partial z}$	
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>
$\frac{\partial \left(\rho_{qs} w \right)}{\partial z} = - \nabla_H \cdot \left(\rho_{qs} \mathbf{v} \right) - \frac{\partial \rho_{qs}}{\partial t}$	$\frac{\partial \left(\overline{\rho}w\right)}{\partial z} = -\nabla_H \cdot \left(\overline{\rho}\mathbf{v}\right)$	$\frac{\partial \left(\rho_{qs} w \right)}{\partial z} = - \nabla_{H} \cdot \left(\rho_{qs} \mathbf{v} \right) - \frac{\partial \rho_{qs}}{\partial t}$
	$ ho' \ll \overline{ ho} \qquad \partial ho' / \partial t pprox 0$	$\delta ho \ll ho_{qs} \qquad \partial \delta ho / \partial t pprox 0$
	$\rho = \overline{\rho}(z) + \rho'$	$\rho = \rho_{qs} + \delta \rho$
	Bar: Basic/Mean state prime: Deviation	qs: Quasi-hydrostatic d: Non-hydrostatic
		Not used to predict quasi-hydrostatic density, but used to determine w

Comparison of Equations Elliptic Equation			
	<u>Fully Compressible</u>		
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>	
	$\overline{\rho} \nabla_H \cdot \left(c_p \overline{\theta} \nabla_H \pi' \right) + \frac{\partial}{\partial z} \left(\overline{\rho} c_p \overline{\theta} \frac{\partial}{\partial z} \pi' \right) \\= G_{AN}$	$\rho_{qs} \nabla_{H} \cdot \left(c_{p} \theta \nabla_{H} \delta \pi \right) + \frac{\partial}{\partial z} \left(\rho_{qs} c_{p} \theta \frac{\partial}{\partial z} \delta \pi \right)$ $= -\rho_{qs} \nabla_{H} \cdot \left(c_{p} \theta \nabla_{H} \pi_{qs} \right) + G + \frac{\partial^{2} \rho_{qs}}{\partial t^{2}}$	
	Generally requires more iterations than the unified counterpart since p' also includes a quasi-hydrostatic component.		

Some results from Konor (2011)

- Warm bubble tests
- Cold bubble tests
- Idealized extratropical cyclogenesis simulations

Cold bubble tests [Suggested by Straka et al., 1993]

Idealized extratropical cyclogenesis simulations

- Domain is a 5000 km long channel on an extratropical bplane
- Start from random perturbations of potential temperature
- 45 layers (400 m)
- Four different horizontal grid distances: 100 km, 50 km, 25 km and 12.5 km

Idealized extratropical cyclogenesis simulations Middle troposphere fields from 12.5-km run at Days 13, 15 and 17 Pressure ($p=p_{qs}+\delta p$, mb) and potential temperature (K) for 5200 m height from high-resolution run (d=12.5 km) (b) (a) (c) day 13 day 15 day 17 8 49 E:298.1 y (1000 km) -326 x (1000 km) x (1000 km) x (1000 km)

Idealized extratropical cyclogenesis simulations

y-z cross-sections of zonal velocity (m/s) and potential temperature (K) from high-resolution run (d=12.5 km)

Summary

- The dynamical core based on the unified system performs well in the warm and cold bubble tests and in simulating idealized exratropical cyclogenesis
- A paper describing the dynamical core and presenting the results has beed submitted for publication to JAMES.

Remaining tasks

- Completion of a global dynamical core based on the unified system
- Inclusion of physics into the global dynamical core
- Construction of a new global MMF