Comparing and Analyzing Total Precipitable Water from Ground-Based GPS and SSM/I Satellite Remote Sensing

Brittany Fields¹, Janice Bytheway², John Forsythe², Thomas Vonder Haar²

Department of Atmospheric Science, Colorado State University, Fort Collins, CO

Modeling Total Precipitable Water

NASA Water Vapor Project (NVAP)

- Create daily global water vapor dataset spanning 1988 2001
- Being reanalyzed and extended under the NASA- MEaSUREs program (NVAP-M)
- NVAP-M
- Span 1987 2010
- Collected from satellite and earth-based devices
- Global Positioning System (GPS)
- Special Sensor Microwave/Imager (SSM/I)
- TIROS Operational Vertical Sounder (TOVS

Total precipitable water (TPW)

- Total atmospheric water vapor within in an imaginary vertical column of unit cross section from the surface of the earth to the top of the atmosphere
- Measured as height of the vertical column if all of the water vapor in the column was condensed

- GPS data matched to SSM/I F13, F14 &
- F15 data based on time and position
- Each TPW value associated with time of day, latitude and longitude
- Matched within 1/2 hour time frame, 0.5° latitude/longitude
- Each matched TPW point plotted on scatter diagram
- 'Island' points were separated with landmask & plotted as well

2 sets of matched data: TPW from stations & TPW from island stations (seen below)

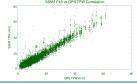
Further Analysis on F15

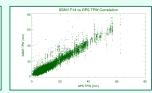
- SSM/I F15 had more scatter than the other two satellites
- TPW rematched to be within 0.1° degrees latitude/longitude - Decrease footprint size Decrease # of matches - Vertical lines go away
- Latitude/Longitude of TPW points in 'arrow' plotted on world map to the right

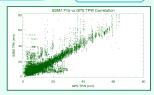
Problem stations from SSM/I F15

Conclusions

- High correlation between SSM/I and GPS TPW values
- Greatest error from SSM/I F15
- Vertical lines in TPW scatterplots appear from multiple SSM/I matches to one GPS station
- Many more SSM/I data points than GPS - Most problem stations from SSM/I F15 located in Japan


Results


TPW plots with all GPS stations **Objective**


TPW

Data from January 2003 - GPS

Use of more accurate GPS to interpret more globally available SSM/I satellites - 3 SSM/I Satellites

0.962 0.961 0.850

1.054 1.029 0.960

1.045 1.030 0.96

3.388 3.648 6.825

1.301 1.821 2.199

Janan has an abundance of GPS

Future work

- Better understanding of why SSM/I F15 has more scatter than other
- Look into why Japanese stations are creating erroneous data

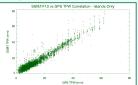
Why Important?

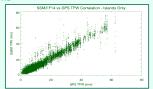
Water vapor feedback effect

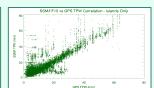
- Water vapor a dominating greenhouse gas
- Global warming

Retter models - Weather

- Hydrologic
- Climate
- Testing of SSM/I - Oceanic TPW major source of
- Earth's water vapor GPS accurate validation tool


Problem


SSM/I most accurately used over OCEAN


- Land & sea ice contamination
- Must use landmask - Removes coastal regions
- Leaves the 'island' GPS stations Island stations
- Small area relative to the

SSM/I footprint size (50 km) - Water-dominated fields of view

TPW plots with 'island' GPS stations

Network of satellites that send information to land receivers

Need at least 3 satellites to triangulate x, v, z position

TPW Measurement

- Delay in how long satellite signals reach land receivers found - Based on elevation and how much water in atmosphere More delay = more water vapor in air

- Flown aboard Defense Meteorological Satellite Program (DMSP)
- 7-Channel, 4-Frequency, linearly-polarized Advantages:
- Very globally-available

Disadvantages:

- TPW error over:
- Land
- Sea Ice

- Precipitating clouds

- TPW Measurement - Measures microwave emission from the surface
- TPW retrieved from brightness temperature using Elsaesser and Kummerow (2008)

Global Map of GPS Stations Used

into-Product. South of histograms and Security recordings; 22. (2004). 1896-1949.

Seer, Gregory S., and Christian D. Kummerow. "Toward a Fully Parametric Retrieval of the Nonrainii Parametres over the Global Oceans." Journal of Applied Meteorology and Christology, 47. (2008).

Acknowledgments

This work has been supported by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement No. ATM-0425247.

For further information

Please contact Brittany Fields at brittlou@rams.colostate.edu. More information on this and related projects can be obtained at nyan stenet com-

