Diurnal Cycle Characteristics During TIMREX:

Disturbed vs. Undisturbed Periods
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INTRODUCTION:

It has been well documented that diurnal land-sea breezes have a strong influence on
the precipitation pattern in Taiwan, especially during summer monsoon seasons (Johnson
and Bresch 1991). The interaction between land-sea breezes and low-level southwesterly
monsoon flows has created a noticeable precipitation pattern in Taiwan, with precipitation
maxima over land during the daytime and a shift offshore during the nighttime. However,
this diurnal characteristic 1s sometimes marred by the presence of fronts, convection, and
cloud cover (Johnson and Bresch, 1991). Local topography also affects diurnal cycles and
surface flows (Wallace, 1975). This research project investigates the influence of cloud
cover on the degree of surface heating and strength of land-sea breezes. Since land-sea
breezes and topography affect the intensity, timing, and location of rainfall, it 1s important
to understand the complex relations between the surface flows and mountainous terrains

of Taiwan (Yeh and Chen, 2000).

RESULTS (CONTINUED):

I1. Surface Divergence (10 x 10°¢ s'! / contour):
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METHODS:

The percent cloud cover over the 1sland was estimated by examining color-enhanced
MTSAT infrared satellite images hourly from 00-06 UTC (08-14 LST) during the
intensive observation period of the 2008 Terrain-influenced Monsoon Rainfall

EXperiment (TIMREX) (Ciesielski et al. 2010). Clouds with apparent temperatures below
2’73 K were 1dentified as cloud cover.

A list of field experiment days was divided into disturbed and undisturbed categories.
Days (mornings) with >50 percent average cloud cover were classified as disturbed days
and vice versa for the undisturbed days.

Instrument bias and data errors associated with the gridded upper air sounding data
collected during the 2008 TIMREX field experiment were removed by using quality
control methods developed by Ciesielski et al. (2010).

Sounding data from the TIMREX enhanced sonde network was objectively analyzed
onto a 0.25 degree grid at 6 hr, 25-hPa vertical resolution, using multiquadratic
interpolation (Nuss and Titley, 1994). QuickScat winds over the ocean and data from 168
surface sites over Taiwan were combined to create a 0.25 gridded product at the surface.
(See Appendix I)

Diurnal potential temperature changes, surface winds and divergence, vertical motion
near the surface, and six-hourly smoothed TRMM 3B42 rainfall rates for the undisturbed
and disturbed periods were analyzed and plotted by using NCARGraphics visualization
tool.N!

The fields were averaged for an area focused over Taiwan®? at 00, 06, 12, and 18 UTC
to 1llustrate the differences between the undisturbed and disturbed periods.

Wind vectors normal to the coastline were computed for fourteen grid points along the
western coast of Taiwan at 06 and 18 UTC for both periods to demonstrate land-sea
breeze intensity differences.

I11. Vertical Motion (2 mb hr!/ contour)
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Fig. 3 and Fig. 4 show the diurnal surface divergence during the disturbed and undisturbed periods. Note that the magnitude of
daytime surface convergence was greater and the timing lasted well into the night during the undisturbed period.
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Fig. 5

IV. TRMM Rainfall and Surface Winds

RESULTS:

<
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Fig. 2 courtesy of James Ruppert*

V. Result Summary (Average Diurnal Differences)
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Fig. 6

Fig. 5 and Fig 6. show the diurnal vertical motion near the surface during the two periods. Note the earlier initiation of upward
motion in the morning and delayed downslope flows at night for the undisturbed period.
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The diurnal surface wind pattern and TRMM rainfall analysis from Fig. 7 and Fig. 8 show that land-sea breezes existed during both the
disturbed and undisturbed periods. However, afternoon winds normal to the western coastline during the undisturbed period were 109%
stronger than the disturbed period’s. The disturbed period exhibited greater rainfall rates but concentrated mainly offshore.

Disturbed | Undisturbed Disturbed | Undisturbed
18-00Z 1.32 1.92 00Z 2.94 0.74
00-06Z 1.27 2.12 06Z -9.31 -14.94
06-12Z -1.90 -2.90 1272 0.41 -4.97
12-18Z -0.68 -1.13 18Z 2.90 -2.03

6hr Potential Temperature Change (K)

Surface Divergence (10 s-1)

Disturbed | Undisturbed
00Z 0.55 -0.06
06Z -1.43 -3.42
12Z 0.79 0.00
18Z 0.91 0.89

Near-Surface Vertical Motion (mb/hr)
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DISCUSSION:

The 18 UTC winds normal to the western coastline during the undisturbed
period were 24% weaker than the disturbed period’s. This 1s somewhat
unexpected because one would anticipate stronger land breezes on clear nights.
However, since this project only considered the cloud cover from 00-06 UTC
to 1dentify the days with greater surface heating, the nighttime cloud cover was
overlooked. If we had also considered the nighttime cloud cover, the results
might have turned out differently at 18 UTC. In addition, there is probably not
a large enough sample size (40 days) to obtain statistically meaningful
results.P!

The differences between the two periods cannot be entirely attributed to the
amount of cloud cover and surfacing heating. A major portion of the disturbed
period was significantly influenced by synoptic features, such as the Mei-yu
front over Taiwan from June 1st to June 8th. Future studies would have to take
the effects of these features on surface flows, vertical motion, and rainfall rates
into account.P?

The average diurnal vertical motion, divergence, and potential temperature
changes were calculated using data retrieved from a smaller domain from
22.00N to 25.25N and from 120.25E to 122.00E to limit the effects of
interpolated data over the ocean on the calculations. Thus, the calculated
values were not completely representative of those just over land.P’

CONCLUSION:

While diurnal variations were present during both undisturbed and disturbed
periods, their strength was enhanced during the undisturbed period, particularly
daytime sea breezes, vertical motion and surface convergence. Data from
SouthWest Monsoon EXperiment (SOWMEX) 09 and 10 will be used to
validate the relationships observed 1n this research project. Future studies could
also incorporate detailed cloud, surface heating, and land canopy data for
quantitative modeling of diurnal surface flows and convection.
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