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STATISTICAL ANALYSIS OF CLOUD-RESOLVING SIMULATED DATASET
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( Earlier, this dependency was introduced as a choice to satisfy the convergence.)
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BETWEEN DIFFERENT RESOLUTIONS
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The -dependence of the eddy transport
is similar between different resolutions.       

wThe value of               is also similar. 
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But the ability also depends on the e!ciency of eddy transports.
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Among many other factors (e.g., triggering, entrainment, microphysics, . . . ),
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INTERIM SUMMARY AND FUTURE PROBLEMS

Parameterization must represent only the eddy e!ect as far as the transport
is concerned.

The uni"ed parameterization determines  in terms of the grid-scale
destabilization normalized by the eddy transport e#ciency. 

The uni"ed parameterization formulates uncertainty of eddy transport in
terms of the uncertainty of cloud properties relative to the grid-point values.

Multiple cloud types do not seem to be important for high resolutions.  But
in-cloud eddy transport can be important for the “uni"ed parameterization”
to be truly uni"ed including stratiform clouds. 
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