A Vorticity-Divergence Dynamical Core based on the Nonhydrostatic Unified System of Equations on the Icosahedral Geodesic Grid

Ross Heikes, C.S. Konor and D. Randall

Dept. of Atmospheric Science Colorado State University







# Since last time...

- Celal and Dr. Arakawa revised the form of the elliptic equation for the nonhydostatic Exner pressure ( $\partial \pi$ )
- Revised elliptic solver to avoid the implicit vertical solve. This involved considerable (and ongoing) numerical experimentation.
- The new system works much better
- Show results from the modified non-hydrostatic system.
- Also show
  - improved tracer transport
  - inclusion of simple physics

# New elliptic equation

$$\nabla_{H} \cdot \left(\rho_{qs} c_{p} \theta \nabla_{H} \delta \pi\right) + \frac{\partial}{\partial z} \left(\rho_{qs} c_{p} \theta \frac{\partial \delta \pi}{\partial z}\right) = -\nabla_{H} \cdot \left(\rho_{qs} c_{p} \theta \nabla_{H} \pi_{qs}\right) + \mathcal{A}_{D}^{*} + \frac{\partial}{\partial z} \mathcal{A}_{w} + \nabla_{H} \cdot \left(\mathbf{v} \frac{\partial \rho_{qs}}{\partial t}\right) + \frac{\partial^{2} \rho_{qs}}{\partial t^{2}}$$

#### where

$$\begin{aligned} \mathcal{A}_{D}^{*} &= J\left(\rho_{qs}\eta,\chi\right) + \nabla_{H}\cdot\left(\rho_{qs}\eta\nabla_{H}\psi\right) - \nabla_{H}\cdot\left(\rho_{qs}w\frac{\partial\mathbf{v}}{\partial z}\right) - \nabla_{H}\cdot\left(\rho_{qs}\nabla_{H}K\right) + \nabla_{H}\cdot\left(\rho_{qs}F_{\mathbf{v}}\right) \\ \mathcal{A}_{w} &= -\nabla_{H}\cdot\left(\rho_{qs}w\mathbf{v}\right) - \frac{\partial\left(\rho_{qs}ww\right)}{\partial z} + \rho_{qs}F_{z} \end{aligned}$$

## Warm Bubble Test

- Initial condition is the 3D version of Mendez-Nunez and Carroll (1994)
- The initial bubble is 6.6K warmer than the environment.
- The globe is 6.37km in radius (1000×smaller)
- The model resolution is
  - 163842 cells resulting in 63 m horizontally
  - 96 levels





#### Warm Bubble Test

• Times are 120, 240, 360 and 480 seconds.



#### Held Suarez test case with grid 5 (250 km). 200 Days. 50 Samples

- Held-Suarez 1994. Newtonian relaxation toward prescribed temperature.
- Top row is non-hydrostatic. Bottom row is hydrostatic.
- Columns show temperature, zonal and meridional winds



- Jablonowski and Williamson (2006) Quart. J. Roy. Meteor. Soc., **I 32**, 2943-2975
- 40962 cells (125 km). 32 layers.





- Plots show total surface pressure and non-hydrostatic pressure ( $\partial p$ ) on day 8
- The non-hydrostatic  $\partial p$  works against the deepening low



- Plots show total surface pressure and non-hydrostatic pressure ( $\partial p$ ) on day 9
- The non-hydrostatic  $\partial p$  works against the deepening low



- Plots show total surface pressure and non-hydrostatic pressure ( $\partial p$ ) on day 10
- The non-hydrostatic  $\partial p$  works against the deepening low



#### Improvements to tracer transport

- Horizontal advection of tracers
  - 3rd-order upstream biased interpolation to cell walls
  - positive-definite flux correction to avoid under-shooting
- Vertical advection of tracers
  - Lagrange polynomial, upstream biased interpolation to interfaces
  - positive-definite flux correction to avoid under-shooting
- The 3D deformational flow test is based on the 2D approach by Nair and Lauritzen JCP (2010)

#### Improvements to tracer transport

- The 3D deformational flow test is based on the 2D approach by Nair and Lauritzen JCP (2010)
- Time reversal ensures that the original profile is returned to its original position, so an analytic solution is known.  $01 \text{ trc1} \tau = 000000\text{ h}$
- Two cosine bells. ٠ (min,max)=( 0.000000e+00(0, 90, 1), 0.999750e+00(150, 0, 25)) contours=( 0.200000e+00, 0.400000e+00, 0.600000e+00, 0.800000e+00) Grid 7. 60 level. 12 days ٠ SP -60S Minimum under-shoot is -0.4E-03 ٠ -30S 0 30N 60N NP 12000 8000 4000 0 -180W -120W -60W 0 60E 120E 180E

## Inclusion of simple moist physics

- Idealized tropical cyclone simulation
- Reed and Jablonowski. JAMES (2012)
- Physical processes included in the *simple-physics* package:
  - Large-scale condensation defined to occur when the atmosphere becomes saturated.
  - Surface fluxes of horizontal momentum, evaporation (specific humidity) and sensible heat (temperature) from the ocean surface to the lower atmosphere.
  - Boundary layer turbulence of horizontal momentum, temperature and specific humidity.

# Inclusion of simple moist physics

- Grid 6. 125 km resolution.
- This animation shows the winds at 2500 m
- Each frame is 4 hours
- 11 days
- Maximum wind 41 m/s

