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CRM SIMULATIONS USED

Horizontal domain size : 512 km Horizontal grid size : 2km
Steady forcing based on - Q1/Q2 typically observed during GATE Phase llI

With and without background vertical shear

A snapshot of w with an example of subdomains

with shear z=3 km
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DIAGNOSED VERTICAL TRANSPORT OF MOIST STATIC ENERGY

h : Deviation of moist static energy
NOT to be from a reference state

parameterized —

( ) : Average over all CRM grid points

eddy transport <"V'\h’ in the sub-domain
AN

< >: Ensemble average over all cloud-
containing (¢ > 0) sub-domains

parameterized throughout the analysis period
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Fractional area covered by updrafts

— a measure of cloud population in the grid cell —

Parameterization must not overdo its job

so that explicitly-simulated transport is not over-stabilized .
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The O-DEPENDENCE OF VERTICAL TRANSPORT OF
MOIST STATIC ENERGY

VERTICAL STRUCTURE

Eddy transport of moist static energy is only a fraction of total
transport as O increases. Similar 0 dependencies apply vertically.

SHEAR CASE .. SHEAR CASE
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The O-DEPENDENCE OF SOURCES OF MOIST STATIC

ENERGY AND TOTAL WATER
All sources increase approximately linearly with the increase of O.
The o-dependence is important for simulating microphysical
Sources of h due to total transport ef-feCt%ources of total water due to total transport
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FIRST STEP TOWARD UNIFIED PARAMETERIZATION

Most conventional parameterizations assume that

clouds and the environment are horizontally homogeneous

— “top-hat profile” —
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[ Continue to use this assumption to start. ]
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* Diagnosed from a dataset

modified to fit a top-hat profile

Transport due to
the internal structure
of clouds
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VERTICAL STRUCTURE OF TOP-HAT EDDY TRANSPORT

Vertical structure also show strong o dependence.

Top-hat eddy transport
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Height (km)

VERTICAL STRUCTURE OF TOP-HAT EDDY TRANSPORT

Recall: wvy = c(l-0)AwAy

If AwAVY is in fact independent of o,

the eddy transport depends on ¢ through (1 —0).
\ J

(AwAh is calculated from d=8km cloudy sub-domain average)

Top-hat eddy transport Eddy transport based on AwAh
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Height (km)

VERTICAL STRUCTURE OF TOP-HAT EDDY TRANSPORT

Sources of top-hat eddy transport depends
on O through o(1-0) at all levels.

(AwAh is calculated from d=8km cloudy sub-domain average)

Sources due to top-hat eddy transport Sources based on AwAh
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VERTICAL STRUCTURE OF TOP-HAT EDDY TRANSPORT

Similar structure for shear and non-shear case but the latter
tends to have stronger eddy transport.

Sources due to top-hat eddy transport

d=8km
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ENSEMBLE-AVERAGE VERTICAL EDDY TRANSPORT

— THE EFFECT OF MULTIPLE STRUCTURE OF CLOUDS —
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THE EFFECT OF MULTIPLE CLOUD STRUCURE/CLOUD TYPE
SOURCES OF MOIST STATIC ENERGY DUE TO EDDY TRANSPORT

Multiple cloud structure/type better capture the complicated
vertical structure when o is large.
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Current work on topography in parallel VVM

Chien-Ming Wu
National Taiwan University



CURRENT WORK ON TOPOGRAPHY IN PARALLEL VVM

High-resolution simulation of flow over complex topography is
necessary in understanding atmospheric processes in Taiwan.

Daily precipitation during typhoon SAOLA
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HIGH RESOLUTION SIMULATION IN PARALLEL VVM

Stratocumulus(DYCOMS case)

Ax=Ay=2Az=20m, 6 hr simulation

Liquid water content (shaded), vertical velocity (m/s) ’Enstrophy (shaded), Liquid water content (contour)
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pVVM is capable of simulating fine structure of stratocumulus.




Determining the vorticity at the corners of the topography

*The strength of the vorticity at the corners is determined through vorticity definition.
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Solving the relaxed w-equation in VVM

*Solving the relaxed w-equation with the addition of vorticies at the corners
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Solving the elliptic w-equation in Parallel VVM

*Solving the relaxed w-equation with the addition of vorticies at the corners
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STRATOCUMULUS OVER SMOOTH TOPOGRAPHY IN PARALLEL VVM

Stratocumulus with elliptic shaped mountain, no surface fluxes

Liquid water content, vertical velocity (m/s) Liquid wat tent at

Ax=Ay=2Az=50m, 6 hr simulation

50m,200m height contour
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m: an index for the roughness of the
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STRATOCUMULUS OVER RUGGED TOPOGRAPHY IN PARALLEL VVM

Stratocumulus with elliptic shaped mountain, no surface fluxes

Ax=Ay=2Az=50m, 6 hr simulation
Liquid water content, vertical velocity (m/s)

wl M=0.125

m: an index for the roughness of the
topography

Topography is implemented in the pVVM successfully under high-
resolution stratocumulus simulation.




FUTURE WORK

The topography is implemented in pVVM with only barrier effects.
Future work will focus on implementation of turbulence, radiation,
and land-surface processes near the bottom topography.

Cloud Forest




