

CMMAP 13th Team Meeting

Meteorological determinants of growing season onset in grassland

Biljana Orescanin

August 8, 2012

Simple Biosphere model (SiB3) with Prognostic Phenology to improve our understanding in grasslands (savannas)

- The prognostic phenology model predicts FPAR and LAI and is driven by meteorological predictor data.
- The GSI (Growing Season Index) serves as the foundation for the prognostic phenology model.
- Simulations of the global water and carbon cycle are sensitive to the model representation of vegetation phenology.
- More realistic representation of vegetation phenology in climate models helps predicting the global carbon and water cycle

FPAR (Fraction of Photosynthetically Active Radiation absorbed by vegetation) **LAI** (Leaf Area Index) LAI is determined directly by taking a statistically significant sample of foliage from a plant canopy, measuring the leaf area per sample plot and dividing it by the plot land surface area. 0- bare ground and 10- dense conifer forest.

Grasslands

Site: rain green grassland, Skukuza, Kruger Nation Park , South Africa

4 years of flux tower data (Thanks to prof. Niall Hanna)

Observations from Skukuza:

Hflx ...sensible heat flux [W m-2] Leflx ...latent heat flux [W m-2] Fcflx ...turbulent CO2 flux [mg CO2 m-2 s-1]

GSI equation (Reto) :

$$GSI = f(\overline{T_m}) \cdot f(\overline{R_g}) \cdot f(\overline{vpd})$$

Temperature factor:
$$f(\overline{T_m}) = \frac{T_m - T_{m_{min}}}{T_{m_{max}} - T_{m_{min}}}$$

Radiation factor:
$$f(\overline{R_g}) = \frac{R_g - R_{g_{min}}}{R_{g_{max}} - R_{g_{min}}}$$

Moist factor:
$$f(\overline{vpd}) = 1 - \frac{\overline{vpd} - vpd_{min}}{vpd_{max} - vpd_{min}}$$

vpd_{max} and **vpd**_{min}: max and min empirical climate parameters ranges

vpd : multi-day running mean average

Same equation is used with rainfall instead of vpd

Why rainfall instead of vpd ?

GSI equation (new) :

$$GSI = f(\overline{T_m}) \cdot f(\overline{R_g}) \cdot f(\overline{vpd})$$

• If **rainfall** less than *rain_{min}* drying will occur:

 $f(rain) = f(rain) - D_c$

 D_c is drying coefficient

 $D_c = f(T, W, RH)$

Currently for my 30min time step case Dc is set that no rain scenario will dry the soil form saturated to dry within approximately 4 days

• If **rainfall** grater than **rain_{min}** moist factor increase:

 $f(rain) = f(rain) + [rain - rain_{min}]/[rain_{max} - rain_{min}]$

Results

Kruger tower driver temp for 2002 1 day running mean temp [K] Days (since 1/1/2000)

Kruger tower driver radlw for 2002 1 day running mean radiw [[W/m^2] Days (since 1/1/2000)

GSI equation:

$$GSI = f(\overline{T_m}) \cdot f(\overline{R_g}) \cdot f(\overline{vpd})$$

Temperature factor:
$$f(\overline{T_m}) = \frac{T_m - T_{m_{min}}}{T_{m_{max}} - T_{m_{min}}}$$

Radiation factor:
$$f(\overline{R_g}) = \frac{R_g - R_{g_{min}}}{R_{g_{max}} - R_{g_{min}}}$$

Moist factor:
$$f(\overline{vpd}) = 1 - \frac{\overline{vpd} - vpd_{min}}{vpd_{max} - vpd_{min}}$$

 vpd_{max} and vpd_{min} : max and min empirical climate parameters ranges \overline{vpd} : multi-day running mean average $\overline{vpd}^{t+1} = \xi(vpd)\overline{vpd}^t + (1 - \xi(vpd))vpd^{t+1}$; $\xi(vpd) = e^{-1/t_{ave}(vpd)}$

Results

