Improvement of Downdrafts in Convective Parameterizations:
Examining Assumptions With High Resolution CRM Data Colo
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TNt I"'Od LUCT '| ON Cloud parameterizations that include simple downdrafts have been around for
many years [Johnson (1976), Tiedke (1989), Sud and Walker (1993), Cheng and Arakawa (1997), and others], but |
many parameterizations in use today either neglect downdrafts entirely, or base their representations on a sev-
eral dangerous assumptions. The worst is assuming that we are able to neglect the influence of downdrafts all :
together (Section 1), but others include neglecting downdraft and surface flux interactions (Section 2), neglect- =
ing the impact of the boundary layer variability on convection (Section 3) and simplifying precipitation evapora- ¥ oo,
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Using System for Atmospheric Modeling (SAM):
1. Simple Radiative-Convective balance (RC)

- No large scale forcing

- Tkm horz res with 64 vert levs up to 5hPa

- 128x128 km domain and 10 second time step
2. TOGA-COARE run (TC)
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tion unrealistically (Section 4). In the past, the accuracy of these assumptions has been difficult to test with ob- Fig.1 Total vertical mass flux by clouds in the TOGA-COARE SAM simulation (left) and - Large-scale forcing from TOGA-COARE data
servations. This study uses two high resolution Cloud-Resolving Model (CRM) runs to examine them in detail.

the single-column version of CAM 3.5 (right). The cloud parameterization in CAM has

simple downdrafts that are constrained to evaporation of less than 20% of precip. - Same resol ution, domain and time step

Assumption 1. bpowndrafts do not move as much mass as Assumption 2. powndrafts only increase surface fluxes.
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Fig.2 We categorized 3D data points Fig.4 Updraft mass lifting is
by the vertical velocity in each cell. . balanced first by downdrafts
W>1.0 = updraft, W< 1.0 = downdraft VO and second by the environment.
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