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Tropical Convection

¢ |t rains too often

e |t rains too lightly

e Deep convection does not
“feel” the humidity of the
mid troposphere
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Three Ways to Decrease the Frequency and Power
of Deep Convection

1. Relative Humidity Cut-Off Criteria (Tokioka et al, 1988)
® Do not allow deep convection to occur until shallow and stratiform

convection (and SGS fluxes) have sufficiently moistened the boundary
layer or column.

2. Increased Updraft Entrainment

® [ncreased entrainment will decrease the buoyancy of updraft parcels when

they encounter dry air and deep convection will not occur until the column
is sufficiently moiste

5. Better Downdrafts

® As precipitation falls through dry air in the mid-troposphere, it evaporates

more, increasing boundary layer cooling by downdrafts (and increasing the
mid-troposphere moisture). Future convective energy is reduced.




SAM

e Method: Use high resolution Cloud Resolving Model (CRM) runs to examine
the effects of downdrafts.

e System for Atmospheric Modeling (SAM) version 6.8.2

¢ Anelastic equations

¢ Prognostic liquid water/ice static energy, total non-precipitating water,
and total precipitating water.

¢ Single moment microphysics and sub-grid-scale turbulence/dissipation
parameterized, CAM radiation

e Toga-Coare Run (TOGA)
e 128x128 km? domain with 1 km horizontal resolution
e 64 vertical levels up to 5 hPa (BL is about 100m per level)

¢ 10 second timestep - 21 Day Simulation
¢ | arge-Scale forcing from TOGA-COARE IOP




Surface Precipitation during TOGA
— —

“ | (AcCtive | Syuppressed

(mm/day)

Precipitation

10 15 20

U Wind Cojnponent during TOGA

0 5 10 15 20

ime (Days)

A Quick Look At The
TOGA RUﬂ Passage of an MJO Event




Total Vertical Mass Flux (kg/m’/s)

Mass Fluxes during TOGA
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Do Downdrafts Even
Matter in the Tropics?




Cooling by Downdrafts (W/m’)
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Downdraft Cooling (W/m?)
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Downdraft Cooling (W/m?)

Surface Precipitation and Low Level Cooling (TOGA)
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What is correlated with the
amount of Downdraft Cooling”?
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Precipitable Water and Low Level Cooling (TOGA)
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Downdraft Cooling (W/m?°)
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What is correlated with the
amount of Downdraft Cooling”?

Mid-level Precip Evaporation Rate and Low Level Cooling (TOGA)
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Downdraft Cooling (W/m®)
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Precipitation Evaporation Rate (TOGA)
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Why doesn’t RH directly
affect evaporation”
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Downdraft Cooling (W/m®)
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Downdrafts, Low Level Cooling,
and Relative Humidity

(1)

Lifting, Heavy Precip,
entrainment, downdrafts,
building moisture cooling

(2)

e Downdrafts could be more re-active than interactive.

e A two step process would result in a lagging relationship between downdrafts
and mid-tropospheric relative humidity




Downdrafts, Low Level Cooling,
and Relative Humidity

e Downdrafts are an important part of the vertical mass budget and should be
included if only for this.

¢ Downdrafts produce significant cooling in the boundary layer during
convective events.

e Boundary layer cooling by downdrafts is well correlated to the amount of
precipitation at the surface and the amount of evaporation below 1600m.

e |t is not well correlated to relative humidity or moisture deficits in the column.

e The amount of precipitation in and outside of clouds (convective vs stratiform)
look promising, but the numbers aren’t there.

¢ Probably, entrainment keeps convection light until the column is moistened.
Then heavy precipitation drags down cooler air, reducing CAPE and shutting
off deep convection.




