An updraft-downdraft scheme for SGS transport in cloud-resolving models

(Moeng and Arawaka, 2012, MWR, current issue)

NCAR & CMMAP are sponsored by the National Science Foundation

SGS latent heat flux retrieved from the Giga-LES with a cutoff width of 4 km

SGS fluxes vary greatly in space!

The PBL transport varies in various part of the cloud system.

We select & study six PBL regimes.

near-surface temperature

Grid locations of the 6 PBL regimes

Sample sizes: 140,000 - 220,000

The composite SGS-flux profiles show: PBL-updf, PBL-cldy, PBL-rain carry most of the moisture.

A parameterization scheme for SGS q-flux in CRMs

The updraft-downdraft scheme:

$$\tau_{wq}^{UD} = A_1(w^{up} - w^{dn})(q^{up} - q^{dn})$$

The updraft-downdraft scheme with A1=0.4 for various PBL regimes

The updraft-downdraft scheme with A1=0.4 for various PBL regimes

Updraft-downdraft scheme with A1=0.4 for the entire convection layer

Why the updraft-downdraft scheme works so well? Why A1=0.4?

If w & q fluctuations are jointly Gaussian, A1 = $\pi/8 \sim 0.4$ (Wyngaard and Moeng 1992).

Are the CRM-SGS w-q processes nearly jointly Gaussian?

Joint PDF of SGS w & q fluctuations: averaged over all 4 km x 4 km sub-domains of the PBL-updf regime

Joint PDF of SGS w & q fluctuations: averaged over all 4 km x 4 km sub-domains of the PBL-cldy regime

Summary and future work

- 1. PBL-updf, PBL-cldy, PBL-rain dominate the moisture transport to the cloud layer.
- 2. The updraft-downdraft scheme works well in representing SGS fluxes ($q_t \& \theta_l$) in CRMs.
- 3. Next: Relate the SGS updraft-downdraft mean properties to the CRM-resolved flow fields.