The West African Monsoon - Insights from the MMF

Rachel R. McCrary David A. Randall Cristina Stan CMMAP Team Meeting August 7, 2012

Mean Annual Cycle of Rainfall

Populations in West Africa are vulnerable to climate variability and change.

- West Africa is home to ~317 million people.
- The communities in Sub-Saharan Africa depend strongly on rainfall where 65% of the labor force and 95% of the land use is devoted to agriculture.
- Large-scale irrigation infrastructures do not exist in this region i.e. no safeguards against drought.

Credit: Phillippe Rekacewicz, UNEP/GRID-Arndal

There is no consensus about how precipitation will change over West Africa in a warming climate.

- Less than 66% of the global models agree on the sign of the change in precipitation over West Africa.
- More than 1/3 of these models do not represent the monsoon. The models that that do typically misrepresent the spatial patterns and intensity of monsoon precipitation (Cook and Vizy 2006).

Why the Super-parameterization?

Traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid box.

Grabowski, 2001 Khairoutdinov and Randall, 2011

Like a public opinion poll, the superparemterization represents a sampling of the cloud scale processes that can be expected in each gridbox.

- The superparameterization or "SP" improves the representation of:
 - The MJO (Benedict and Randall, 2009)
 - The Asian Monsoon (DeMott et al., 2011)
 - The Diurnal Cycle (Pritchard and Somerville, 2009)

Key Questions

- How does the Superparameterization influence rainfall over West Africa?
- Does the SP-CCSM represent African easterly waves?
- How does the horizontal and vertical structure of the simulated waves compare with observations?

Models & Data sets

- <u>CCSM3.0</u> "control"
- **SP-CCSM3.0** Christina Stan at COLA/George Mason Univ.
 - 25 years of daily output
 - 5 months of 3hrly output (summer)
 - T42 resolution (~2.8°lat/lon), 26/30 levels

• TRMM - 3B42 (precipitation)

- 1997-2010, daily mean precipitation 0.25°x0.25° resolution
- NOAA Interpolated OLR
 - 1979-2010, daily mean, 2.5°x2.5°
- ERA-I (dynamical fields)
 - 1979-2010, daily mean, 1.5°x1.5°

Observed Monsoon Rains

TRMM -3B42 precipitation (1997-2010) ERA-I 925 hPa winds (1997-2010)

Observed Monsoon Rains

TRMM -3B43 precipitation (1997-2010) Averaged between 10°W - 5°E TRMM -3B43 precipitation (1997-2010) ERA-I 925 hPa winds (1997-2010)

Monsoon Jump

Seasonal Cycle of Rain

Precip. Avg. between 10°W-5°E

The Atlantic Cold Tongue

JAS Precipitation & Winds

JAS SSTs

Zonal and Meridional Wind Biases

JAS Precipitation & Winds

JAS Zonal Wind Model - Observations

JAS Meridional Wind Model - Observations

African Easterly Jet

600hPa Zonal Wind **ERA-Interim** 30N 20N 10N 0 10S 20S 30W 20W 10W 0 10E 30E 20E 40E 50E SP-CCSM 30N 20N 10N 0 10S 20S 30W 20W 10W 0 10E 20E 30E 40E 50E **CCSM** 30N 20N 10N 0 10S 20S

Zonal wind across 0°E

Zonal wind across 15°N

30W

20W

10W

0

10E

20E

30E

40E

50E

African Easterly Waves (AEWs)

- Barotropic-Baroclinic westward propagating disturbances with a period of 3-6 days and wavelengths of 2000-5000 km.
- Major source of atmospheric variability over West Africa.
- Organize precipitation on synoptic timescales.
- Coupling between convection and AEWs is not well understood.
- Often act to initiate hurricanes in the Atlantic.

Hurricane Ivan

Composite JAS variance of V-wind

African Easterly Waves

- 2-6 day band-pass filtered variance of V-wind.
- SP-CCSM overestimates AEW variability
- CCSM no apparently AEW activity

Tropical convection is organized on similar time and spatial scales to observations.

JJAS OLR symmetric signal-to-noise space time power spectra.

Calculated between 15°N and 15°S

JJAS Variance of TD Filtered OLR

SP-CCSM overestimates easterly wave activity over West Africa.

Variance of TD filtered OLR/ Total variance

SP-CCSM overestimates easterly wave activity over West Africa.

TD filtered OLR describes: 20-30% of total variance in observed OLR.

50-60% of total variance in SP-CCSM.

Less than 10% of the total variance in CCSM.

Horizontal Structure of AEWs Lag 0 days

OLR anomalies regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 0 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag -4 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag -3 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag -2 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag -1 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 0 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 1 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 2 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 3 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 4 days

OLR and 850hPa circulation regressed against the TD filtered OLR time series (scaled by 1 sigma) at 10°N, 10°W for JJAS.

Horizontal Structure of AEWs Lag 0 days

** Change in scale for each figure**

Only the statistically significant relationships (95% confidence) for OLR and vector winds are shown.

No statistically significant circulation patterns found in CCSM

Horizontal Structure of AEWs Lag -4 days

Horizontal Structure of AEWs Lag -3 days

Horizontal Structure of AEWs Lag -2 days

Horizontal Structure of AEWs Lag-1 days

Horizontal Structure of AEWs Lag 0 days

Horizontal Structure of AEWs Lag 1 days

Horizontal Structure of AEWs Lag 2 days

Horizontal Structure of AEWs Lag 3 days

Horizontal Structure of AEWs Lag 4 days

Vertical Structure of AEWs: Meridional Wind Lag 0 days

Meridional wind anomalies along 10°N regressed onto the TD filtered time series of OLR from the basepoint 10°N, 10°W.

Vertical Structure of AEWs: Omega Lag 0 days

Omega anomalies along 10°N regressed onto the TD filtered time series of OLR from the basepoint 10°N, 10°W.

Vertical Structure of AEWs: Temperature Lag 0 days

Temperature anomalies along 10°N regressed onto the TD filtered time series of OLR from the basepoint 10°N, 10°W.

Vertical Structure of AEWs: Specific Humidity Lag 0 days

Specific humidity anomalies along 10°N regressed onto the TD filtered time series of OLR from the basepoint 10°N, 10°W.

Barotropic and Baroclinic conversions to Eddy Kinetic Energy

- Baroclinic term conversion of eddy available potential energy to eddy kinetic energy due to rising motion in warm anomalies and sinking motion in cold anomalies.
- Barotropic term conversion of mean energy to eddy kinetic energy.
 Waves extract energy from the wind shears associated

The implementation of the superparameterization into the CCSM:

- Improves the representation of monsoon precipitation over West Africa.
- Enhances AEW variability over the region .
- The horizontal and vertical structure of simulated waves are comparable to observations

Currently working on...

Using the methods to identify systematic errors first used by ECMWF

Why do the models misrepresent monsoon rains over West Africa?

Atlantic Cold Tongue

Convective Parameterizations

