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A blast from the past...

January 2009 Team Meeting Presentations

Tuesday January 6
David Randall, Jay Fein, Cindy . -
Carrick ning re ‘Agend ,(3MB)
David Randall Updates (see file, above)
Charlotte DeMott Implied Ocean Heat Transports in the MMF, (9MB)
James Kinter Testing the MMF in a coupled climate simulation, (9MB)
Chris Bretherton
Howard Drossman Undergraduate Earth System Science Education, (2MB)
Michele Betsill Climate Change Policy and Politics: A Status Report, (IMB)
e MJO - Maloney, Waliser
o MJO Theme, Mitch Moncrieff & Marat Khairoutdinov (7MB)
o US CLIVAR MJO Working Group: Efforts to Establish and Improve Subseasonal Predictions, Duane

Waliser (4MB)

Mm_anJ.o_mdshng.mnms_uh_CAM:uRAS Enc Maloney (3MB)
Breakout Session I :

(3MB)

e KT to NWP and Climate Centers - Collins
Connie Uliasz Inf ion its Relationship to Power, (< IMB)
Wednesday January 7

Andy Majda

mesoscalcs (6MB)




Variance of rainfall on intraseasonal timescales shows

structure on both global and regional scales

Intraseasonal rain variance

30-90 Day TRMM Variance (May-October)
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Sobel, Maloney, Bellon, and Frierson 2008: Nature Geosci., 1, 653-657.



Over land, there can be no significant net flux variations
on intraseasonal time scales - so if net flux were important
to ISO, the observed variance maps should look as they do!
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Wet land is like a mixed layer of zero depth (swamp).
Thus if MJO is dependent on surface energy fluxes
(turbulent, radiative, or both) it should weaken over
land... as observed.

Intraseasonal OLR variance (may-oct)
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The GCM-simulated dependence on surface turbulent
flux feedback is very dependent on convective scheme.

850 hPa U Lag Regression
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illustration: effects of coupling in two different models
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illustration: effects of coupling in two different models
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what is the consensus from the literature?



The search
for common
findings in the
literature...




Coupled vs. AMIP or OBS

referenced in paper

Author
Kemball-Cook, Wang, Fu
Fu, Wang, Li

Sperber, Gualdi, Legutke

Zhang, Dong, Gualdi,
Hendon, Maloney,
Marshall, Sperber, Wang

Watterson and Syktus

Wu, Kirtman, Pegion

Bollasina and Nigam

Duncan and Han

Wang and Seo

Lloyd and Vecchi

Klingaman, Woolnough,
Weller

Roxy, Tanimoto, Preethi,
Terray, Krhishnan

Journal
2002
2002 MWR

2005 Climate Dyn

2006 Climate Dyn

2007 Climate Dyn

2008 GRL

2009 Climate Dyn

2009 JGR-Oceans

2009 Terr. Atm. and
Ocn Sci

2010 J. Climate

2011 J. Climate

2012 Climate Dyn

MJO (boreal winter)
both

BSISO
Title

Impacts of air-sea copuling
on the simulation of mean
Asian summer monsoon in
the ECHAM4 model

The Madden-Julian
oscillation in ECHAM4
coupled and uncoupled
general circulation models
Simulations of the Madden-
Julian oscillation in four
pairs of coupled and
uncoupled global models

The influence of air-sea
interaction on the Madden-
Julian Oscillation: the role
of the seasonal mean state
Local rainfall-SST
relationship on subseasonal
time scales in satellite
observations and CFS

Indian Ocean SST,
evaporation, and
precipitation during the
South Asian summer
monsoon in IPCC-AR4
coupled simulations
Indian Ocean intraseasonal
sea surface temperature
variability during boreal
summer: Madeen-Julian
Oscillation versus
submonthly forcing and
processes

The Mdden-Julian
Oscillation in NCEP
coupled model simulation

Submonthly Indian Ocean
cooling events and their
interaction wiht large-scale
conditions

The impact of finer-
resolution air-sea coupling
on the intraseasonal
oscillation of the Indian
monsoon

Intraseasonl SST-
precipitation relationship
and its spatial variability
over the tropical summer
monsoon region

Conclusions

written up in next section

ECHAM4: Coupling results in better JJAS rainfall climatology in
10 & WPac. Both local and remote effects are important.

ECHAM4: AMIP and coupled w/ 3 different ocean models (2 flux-
adjusted, 1 not). Eprop is sensitive to choice of ocean model w/
better Eprop in the FA models. Also points to the importance of
the mean state.

Selected 4 models that produce a reasonable eastward-
propagating intraseasonal signal (ECHAM4, CAM2R, BAM3,
GFS03). Only CAM2R (NCAR/OSU) uses A-S closure, the others
are mass flux schemes. Air-sea coupling sterngthens simulated
Eprop, but improvement in the precip-low-level wind relation varies
with model. MJO biases appear to be related to mean state
biases.

CSIRO Mark 3: Coupling improves propagation across the MC
into the WPac. Modifying ocean model to have a thinner mixed
layer improves the propagation speed even more. No propagation
in the AMIP run.

No AMIP simulation included, but a good analysis of coupling
strength and air-sea lead-lag relationship in OBS and model.
Suggests that coupling strength in CFS if too strong.

At monthly timescales (they did not use daily obs), rain-SST
anomalies should be uncorrelated, but models correlate them.

Drives the HYCOM ocean model with observed ocean forcing.
Boreal summer: MJO forcing dominates SST variability, with wind
playing a stronger role than upwelling and advection in BoB.
Maximum SST variability is seen in AS and BoB. In BoB winter,
sfc heat fluxes and upwelling/advection effects are comparable.
The seasonal difference is attributed to thin mixed layer in BoB.
Wind speed and stress are equally important in the equatorial
region.

NCEP GFS and CFS: Too fast Eward prop from 10 to WPac is
slowed down in CFS. Also improves the structure of the MJO.
However, CFS does produce mean low-level westerlies over MC
in boreal winter.

Obervational and modeling study using GFDLCM2.1 and
GFDLCM2.4. Strongest cooling events cannot be explained by
air-sea enthalpy fluxes alone (they represent about 50% of
observed cooling), they also involve mixing associated with
unusually shallow thermocline in the eastern 10. These strong
cooling events are more likely associated with La Nina than El
Nino.

Uses HadKPP (KPP is a limited-depth ocean model). Modest
improvements to NP achieved when either veritcal resolution OR
coupling frequency increased, but tended to yield a standing
oscillation. Realistic NP only achieved when both increased. Did
NOT improve the eastward propagation. These results are
probably very highly model dependent.

CFS-2 study vs obs. Gets good mean and variability distributions,
reasonable NP. SST response is fastest in W. Arabian Sea (~5
days) and slow over BoB and SCS (~12 days). Theta-E v. rainfall
lag-correlations suggest the destabilization mechanism is at work.
Faster response in Arabian sea is attributed to strong SST
gradient forcing enhanced sfc convergence and upward motion.
Model overestimates SST anomalies and SST-precip relationship.
Excessive SST variability is attributed to too-shallow ocean
mixed layer.

Improves
cautionary note

The search
for common
findings in the
literature...

Take Home

4 MODELS:
coupling improves
E-prop. Mean state
difference dominate

coupling strength in
CFS too strong

modeled rain-SST
relationship too
strong

atm effect ocean
differently
depending on
season, location

ocean mixed layer
depth is important
for strongest
cooling events

ISO is sensitive to
ocean vertical
resolution, coupling
frequency.

LTS is important,
BUT model
overstimates SST
variability due to
shallow MLD
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Air-Sea Interaction and the ISO

(previous findings from modeling studies)

* Many studies have demonstrated improved ISV when
coupling is introduced.

* Several modeling studies suggest that coupling is more
important in the Indian Ocean than the West Pacific
Ocean.

* In the absence of coupling, high frequency SSTs can
improve ISV.
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What kinds of improvements!?
it depends on the study...

Compared to an AGCM simulation, coupling can:

* speed up or slow down the oscillation.
* increase or decrease the intraseasonal variability.

* produce an eastward-propagating ISO when the AGCM
could not.

* extend eastward propagation beyond the Maritime
Continent.



Questions

® In what manner do SST anomalies affect
the simulated ISO?

® |atent heat fluxes--moistening

® sensible heat fluxes--lower tropospheric stability

® How does the choice of model physics
influence coupled and uncoupled behavior?

These questions are addressed with
a suite of model simulations
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are analyzed in terms of their ISO simulation



latitude

latitude

Caveat to the Typical Experimental Setup

a) SP-CCSM JJAS SST bias

rmse=2.48
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20fif ] A
40 60 80 100 120 140 160 180
longitude
b) CCSM JJAS SST bias

rmse=2.24

— .
LA
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longitude

Coupled models
often result in cold
SST biases, leading to
different mean
climate states
than their uncoupled
counterparts.

Does improved ISV
arise from coupling,
or from mean state
changes!?
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Another Experimental Setup
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Our Experimental Setup
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Our Experimental Setup
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Models Variance
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MJO Life-Cycle
Nov-Apr:4-23
SP-CCSM SP-CAM5d

COLA MJO Workshop
10-11 June 2013, Fairfax VA



compared to SPCCSM3, SPCAM3_5d has:

® same mean state
® different variability

® weaker MJO amplitude

mean states in CAM3_ x, CAM4_ x
also resemble SPCAM3_5d



Rainfall and SST anomaly lag-correlation (all seasons)
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Rainfall and SST anomaly lag-correlation (all seasons)
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how sensitive are the surface fluxes to SST anomalies?



typical SST anomaly range @ ISO timescales (K)

greater variability in Indian Ocean



linearized latent heat flux terms

LH' = pLC(AqlVI' + Aq'IV])

which term dominates LH’?



sensitivity of anomaly terms to SST perturbations
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What controls LHFLX?
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ERAI DJF

normalized LHFLX'-AqQ' regression [o/0]

) yi 0.9
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What controls LHFLX?

ERAI DJF

normalized LHFLX'-AqQ' regression [o/0] normalized LHFLX"-|V|' regression [o/0]
— v,

e Equatorial LH fluxes are small

Do

e Equatorial LH fluxes are mostly
determined by wind speed

e Subtropical LH fluxes are large

e Subtropical LH fluxes are
sensitive to both wind speed
and vertical moisture gradient




linearized latent heat flux terms

LH' = pLC(AqlVI' + Aq'IV])



linearized latent heat flux terms

LH' = pLC(AqlV1) + AgIV])

how sensitive are anomalies to SST?



linearized latent heat flux terms

to model physics?\\
LH' = pLCy(AqIV]) + Ag)I V1)

how sensitive are anomalies to SST?



linearized latent heat flux terms

how sensitive are mean quantities to model physics?

to model physms’

LH' pLCH‘V\ + Aq@

how sensitive are anomalies to SST?




linearized latent heat flux terms

how sensitive are mean quantities to model physics?

to model physics? &

LH' = pLCy(Aq)V1) + Ag]

YOW sensitive are anomalies to SST?

how sensitive are mean quantities to ocean treatment?




How sensitive are LHFLX terms to SST treatment!?

LHFLXbar
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How sensitive are LHFLX terms to SST treatment!?

LHFLXbar
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e vertical differences arise from model physics



How sensitive are LHFLX terms to SST, model physics!?
IO DJF

LHFLXbar LHFLXvar R(LHFLX' @ 1.50 T) as % of mean AQ'|V| variance
SP - - a— = - g wf Ce—a
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CAM4 * % §200 1 2 \SI § w0l ]
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Ocean-only data points.
Variance and regressions
are based on 20-70 day
filtered data.



How sensitive are LHFLX terms to SST, model physics!?
IO DJF

LHFLXbar LHFLXvar R(LHFLX' @ 1.50 T) as % of mean AQ'|V| variance
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Seasonal means are sensitive to model physics, but not to ocean treatment.

Variance about the mean is sensitive to both model physics and ocean treatment.
Local effect: vertical moisture gradient variability is highly sensitive to SST anomalies.
Remote effect: sensitivity of wind speed variability to ocean treatment.
LHFLX terms that are most sensitive SST anomalies account for only 10~15% of total LHFLX variability.

AQ'|V| variance

120 =
100 b
N
N
I sof B~
N O ~
H 60 [
£
2 40f
20F
0
C 5d mon
Aq|V|' variance
600
500 ~—
£ 400 AN
& O S
i 300
£
2 200
100
0
C 5d mon
variance ratio: Aq'|V]/Aq|V]'
0.25 H - -
020 E—H
& -
o 0.15¢ ~ E\E
8
010}
0.05 |
0.00
C 5d mon

Ocean-only data points.
Variance and regressions
are based on 20-70 day
filtered data.



How sensitive are LHFLX terms to local, remote SST effects!?
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* Vertical moisture gradient is sensitive to the local SST anomaly.
* Processes that control wind speed variance are probably complex and non-local.



local vs remote SST effects is sensitive to model physics
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Does SST sensitivity vary with region and season!?
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o SST effects are larger in the Indian Ocean than the West Pacific Ocean.
* Indian Ocean SST effects are greater during boreal summer than in boreal winter.



Conclusions |

® Model physics (cumulus parameterization)
appears to be more important than
coupling or realistic SST variability for
simulating the ISO.

® |atent heat fluxes vary with model physics
and ocean treatment, and are dominated by
wind speed variability.

® Sensitivity of wind speed variability to
ocean treatment is probably complex and
non-local.



Conclusions I

® Many question remain in trying to
understand the role of air-sea interaction in
models and the real world.
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¢ Could diminished ISV in SP models simply be a result of decreased LHFLX and moisture convergence?
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Rainfall and SST anomaly lag-regression (all seasons)
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® |n OBS and coupled
runs, warm SSTs prior
to precipitation are
the result of reduced
cloudiness and surface
fluxes (atm driving

SSTs).



Rainfall and SST anomaly lag-regression (all seasons)
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® How can we assess
the role of SST
anomalies on the
atmosphere!?



Rainfall and SST anomaly lag-regression (all seasons)
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Rainfall and SST anomaly lag-correlation (all seasons)
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Rainfall and SST anomaly lag-correlation (all seasons)
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Rainfall vs other anomalies
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How might the
atmosphere
respond to the
phasing of flux
anomalies!?



Fig. 3. Annual mean SST bias compared to HadISST (top row) and 20-100 day
SST variance bias compared to HadISST (bottom row)



Air-Sea Interactions as a Function of Rainfall Rate
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Air-Sea Interactions as a Function of Rainfall Rate
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Air-Sea Interactions as a Function of Rainfall Rate
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