How does ocean coupling improve simulations of the Intraseasonal Oscillation?

Charlotte DeMott Cristiana Stan Mark Branson David Randall

ANNUAL MEAN GLOBAL SEA SURFACE TEMPERATURES

A blast from the past...

January 2009 Team Meeting Presentations

Tuesday January 6

David Randall, Jay Fein, Cindy Carrick	Opening remarks/Agenda/Logistics, (3MB)
David Randall	Updates (see file, above)
Charlotte DeMott	Implied Ocean Heat Transports in the MMF, (9MB)
James Kinter	Testing the MMF in a coupled climate simulation, (9MB)
Chris Bretherton	Boundary-Layer Cloud Feedbacks on Climate - An MMF Perspective, (9MB)
Howard Drossman	Undergraduate Earth System Science Education, (2MB)
Michele Betsill	Climate Change Policy and Politics: A Status Report, (1MB)
Breakout Session I	 MJO - Maloney, Waliser MJO Theme, Mitch Moncrieff & Marat Khairoutdinov (7MB) US CLIVAR MJO Working Group: Efforts to Establish and Improve Subseasonal Predictions, Duane Waliser (4MB) Update on MJO modeling activities with CAM3/RAS, Eric Maloney (3MB) Variation of Energy Transfer to the Atmosphere associated with the MJO, Eric Tromeur (6MB) Dynamics of tropical intraseasonal variability: the role of fluxes, Adam Sobel (3MB) Progress in the development of a zonal channel version of the vector vorticity model, Hiroaki Miura (3MB) KT to NWP and Climate Centers - Collins
Connie Uliasz	Information and its Relationship to Power, (< 1MB)

Wednesday January 7

Andy Majda

Non-linear models for convective momentum transport in the MJO and new algorithms for superparameterization models on mesoscales, (6MB)

Variance of rainfall on intraseasonal timescales shows structure on both global and regional scales

Sobel, Maloney, Bellon, and Frierson 2008: *Nature Geosci.*, **1**, 653-657.

Over land, there can be no significant net flux variations on intraseasonal time scales - so if net flux were important to ISO, the observed variance maps should look as they do!

Shinoda et al. 1998

Wet land is like a mixed layer of zero depth (swamp). Thus if MJO is dependent on surface energy fluxes (turbulent, radiative, or both) it should weaken over land... as observed.

Climatological mean OLR (may-oct)

The GCM-simulated dependence on surface turbulent flux feedback is very dependent on convective scheme.

illustration: effects of coupling in two different models

illustration: effects of coupling in two different models

what is the consensus from the literature?

The search for common findings in the literature...

Coupled vs. AMIP or OBS						
			MJO (boreal winter)			
6 L			both		Improves	
referenced in paper			BSISO		cautionary note	
Author	Year	Journal	Title	Conclusions	Take Home	
Kemball-Cook, Wang, Fu	2002			written up in next section		
Fu, Wang, Li	2002	MWR	Impacts of air-sea copuling on the simulation of mean Asian summer monsoon in the ECHAM4 model	ECHAM4: Coupling results in better JJAS rainfall climatology in IO & WPac. Both local and remote effects are important.		
Sperber, Gualdi, Legutke	2005	Climate Dyn	The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models	ECHAM4: AMIP and coupled w/ 3 different ocean models (2 flux- adjusted, 1 not). Eprop is sensitive to choice of ocean model w/ better Eprop in the FA models. Also points to the importance of the mean state.		
Zhang, Dong, Gualdi, Hendon, Maloney, Marshall, Sperber, Wang	2006	Climate Dyn	Simulations of the Madden- Julian oscillation in four pairs of coupled and uncoupled global models	Selected 4 models that produce a reasonable eastward- propagating intraseasonal signal (ECHAM4, CAM2R, BAM3, GFS03). Only CAM2R (NCAR/OSU) uses A-S closure, the others are mass flux schemes. Air-sea coupling sterngthens simulated Eprop, but improvement in the precip-low-level wind relation varies with model. MJO biases appear to be related to mean state biases.	4 MODELS: coupling improves E-prop. Mean state difference dominate	
Watterson and Syktus	2007	Climate Dyn	The influence of air-sea interaction on the Madden- Julian Oscillation: the role of the seasonal mean state	CSIRO Mark 3: Coupling improves propagation across the MC into the WPac. Modifying ocean model to have a thinner mixed layer improves the propagation speed even more. No propagation in the AMIP run.		
Wu, Kirtman, Pegion	2008	GRL	Local rainfall-SST relationship on subseasonal time scales in satellite observations and CFS	No AMIP simulation included, but a good analysis of coupling strength and air-sea lead-lag relationship in OBS and model. Suggests that coupling strength in CFS if too strong.	coupling strength in CFS too strong	
Bollasina and Nigam	2009	Climate Dyn	Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations	At monthly timescales (they did not use daily obs), rain-SST anomalies should be uncorrelated, but models correlate them.	modeled rain-SST relationship too strong	
Duncan and Han	2009	JGR-Oceans	Indian Ocean intraseasonal sea surface temperature variability during boreal summer: Madeen-Julian Oscillation versus submonthly forcing and processes	Drives the HYCOM ocean model with observed ocean forcing. Boreal summer: MJO forcing dominates SST variability, with wind playing a stronger role than upwelling and advection in BoB. Maximum SST variability is seen in AS and BoB. In BoB winter, sfc heat fluxes and upwelling/advection effects are comparable. The seasonal difference is attributed to thin mixed layer in BoB. Wind speed and stress are equally important in the equatorial region.	atm effect ocean differently depending on season, location	
Wang and Seo	2009	Terr. Atm. and Ocn Sci	The Mdden-Julian Oscillation in NCEP coupled model simulation	NCEP GFS and CFS: Too fast Eward prop from IO to WPac is slowed down in CFS. Also improves the structure of the MJO. However, CFS does produce mean low-level westerlies over MC in boreal winter.		
Lloyd and Vecchi	2010	J. Climate	Submonthly Indian Ocean cooling events and their interaction wiht large-scale conditions	Obervational and modeling study using GFDLCM2.1 and GFDLCM2.4. Strongest cooling events cannot be explained by air-sea enthalpy fluxes alone (they represent about 50% of observed cooling), they also involve mixing associated with unusually shallow thermocline in the eastern IO. These strong cooling events are more likely associated with La Nina than El Nino.	ocean mixed layer depth is important for strongest cooling events	
Klingaman, Woolnough, Weller	2011	J. Climate	The impact of finer- resolution air-sea coupling on the intraseasonal oscillation of the Indian mosoon	Uses HadKPP (KPP is a limited-depth ocean model). Modest improvements to NP achieved when either veritcal resolution OR coupling frequency increased, but tended to yield a standing oscillation. Realistic NP only achieved when both increased. Did NOT improve the eastward propagation. These results are probably very highly model dependent.	ISO is sensitive to ocean vertical resolution, coupling frequency.	
Roxy, Tanimoto, Preethi, Terray, Krhishnan	2012	Climate Dyn	IntraseasonI SST- precipitation relationship and its spatial variability over the tropical summer monsoon region	CFS-2 study vs obs. Gets good mean and variability distributions, reasonable NP. SST response is fastest in W. Arabian Sea (~5 days) and slow over BoB and SCS (~12 days). Theta-E v. rainfall lag-correlations suggest the destabilization mechanism is at work. Faster response in Arabian sea is attributed to strong SST gradient forcing enhanced sfc convergence and upward motion. Model overestimates SST anomalies and SST-precip relationship. Excessive SST variability is attributed to too-shallow ocean mixed layer.	LTS is important, BUT model overstimates SST variability due to shallow MLD	

The search for common findings in the literature...

Coupled vs. AMIP or OBS					
			MJO (boreal winter)		
referenced in paper			both		Improves
rererenced in paper			83130		cautionary note
Author	Year	Journal	Title	Conclusions	Take Home
Kemball-Cook, Wang, Fu	2002			written up in next section	
Fu, Wang, Li	2002	MWR	Impacts of air-sea copuling on the simulation of mean Asian summer monsoon in the ECHAM4 model	ECHAM4: Coupling results in better JJAS rainfall climatology in IO & WPac. Both local and remote effects are important.	
Sperber, Gualdi, Legutke	2005	Climate Dyn	The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models	ECHAM4: AMIP and coupled w/ 3 different ocean models (2 flux- adjusted, 1 not). Eprop is sensitive to choice of ocean model w/ better Eprop in the FA models. Also points to the importance of the mean state.	
Zhang, Dong, Gualdi, Hendon, Maloney, Marshall, Sperber, Wang	2006	Climate Dyn	Simulations of the Madden- Julian oscillation in four pairs of coupled and uncoupled global models	Selected 4 models that produce a reasonable eastward- propagating intraseasonal signal (ECHAM4, CAM2R, BAM3, GFS03). Only CAM2R (NCAR/OSU) uses A-S closure, the others are mass flux schemes. Air-sea coupling sterngthens simulated Eprop, but improvement in the precip-low-level wind relation varies with model. MJO biases appear to be related to mean state biases.	4 MODELS: coupling improves E-prop. Mean state difference dominate
Watterson and Syktus	2007	Climate Dyn	The influence of air-sea interaction on the Madden- Julian Oscillation: the role of the seasonal mean state	CSIRO Mark 3: Coupling improves propagation across the MC into the WPac. Modifying ocean model to have a thinner mixed layer improves the propagation speed even more. No propagation in the AMIP run.	
Wu, Kirtman, Pegion	2008	GRL	Local rainfall-SST relationship on subseasonal time scales in satellite observations and CFS	No AMIP simulation included, but a good analysis of coupling strength and air-sea lead-lag relationship in OBS and model. Suggests that coupling strength in CFS if too strong.	coupling strength in CFS too strong
Bollasina and Nigam	2009	Climate Dyn	Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations	At monthly timescales (they did not use daily obs), rain-SST anomalies should be uncorrelated, but models correlate them.	modeled rain-SST relationship too strong
Duncan and Han	2009	JGR-Oceans	Indian Ocean intraseasonal sea surface temperature variability during boreal summer: Madeen-Julian Oscillation versus submonthly forcing and processes	Drives the HYCOM ocean model with observed ocean forcing. Boreal summer: MJO forcing dominates SST variability, with wind playing a stronger role than upwelling and advection in BoB. Maximum SST variability is seen in AS and BoB. In BoB winter, sfc heat fluxes and upwelling/advection effects are comparable. The seasonal difference is attributed to thin mixed layer in BoB. Wind speed and stress are equally important in the equatorial region.	atm effect ocean differently depending on season, location
Wang and Seo	2009	Terr. Atm. and Ocn Sci	The Mdden-Julian Oscillation in NCEP coupled model simulation	NČEP GFS and CFS: Too fast Eward prop from IO to WPac is slowed down in CFS. Also improves the structure of the MJO. However, CFS does produce mean low-level westerlies over MC in boreal winter.	
Lloyd and Vecchi	2010	J. Climate	Submonthly Indian Ocean cooling events and their interaction wiht large-scale conditions	Obervational and modeling study using GFDLCM2.1 and GFDLCM2.4. Strongest cooling events cannot be explained by air-sea enthalpy fluxes alone (they represent about 50% of observed cooling), they also involve mixing associated with unusually shallow thermocline in the eastern IO. These strong cooling events are more likely associated with La Nina than El Nino.	ocean mixed layer depth is important for strongest cooling events
Klingaman, Woolnough, Weller	2011	J. Climate	The impact of finer- resolution air-sea coupling on the intraseasonal oscillation of the Indian monsoon	Uses HadKPP (KPP is a limited-depth ocean model). Modest improvements to NP achieved when either veritcal resolution OR coupling frequency increased, but tended to yield a standing oscillation. Realistic NP only achieved when both increased. Did NOT improve the eastward propagation. These results are probably very highly model dependent.	ISO is sensitive to ocean vertical resolution, coupling frequency.
Roxy, Tanimoto, Preethi, Terray, Krhishnan	2012	Climate Dyn	IntraseasonI SST- precipitation relationship and its spatial variability over the tropical summer monsoon region	CFS-2 study vs obs. Gets good mean and variability distributions, reasonable NP. SST response is fastest in W. Arabian Sea (~5 days) and slow over BoB and SCS (~12 days). Theta-E v. rainfall lag-correlations suggest the destabilization mechanism is at work. Faster response in Arabian sea is attributed to strong SST gradient forcing enhanced sfc convergence and upward motion. Model overestimates SST anomalies and SST-precip relationship. Excessive SST variability is attributed to too-shallow ocean mixed layer.	LTS is important, BUT model overstimates SST variability due to shallow MLD

The search for common findings in the literature...

Air-Sea Interaction and the ISO

(previous findings from modeling studies)

Air-Sea Interaction and the ISO (previous findings from modeling studies)

• Many studies have demonstrated improved ISV when coupling is introduced.

Air-Sea Interaction and the ISO (previous findings from modeling studies)

- Many studies have demonstrated improved ISV when coupling is introduced.
- Several modeling studies suggest that coupling is more important in the Indian Ocean than the West Pacific Ocean.

Air-Sea Interaction and the ISO (previous findings from modeling studies)

- Many studies have demonstrated improved ISV when coupling is introduced.
- Several modeling studies suggest that coupling is more important in the Indian Ocean than the West Pacific Ocean.
- In the absence of coupling, high frequency SSTs can improve ISV.

<u>Compared to an AGCM simulation, coupling can:</u>

• speed up or slow down the oscillation.

- speed up or slow down the oscillation.
- increase or decrease the intraseasonal variability.

- speed up or slow down the oscillation.
- increase or decrease the intraseasonal variability.
- produce an eastward-propagating ISO when the AGCM could not.

- speed up or slow down the oscillation.
- increase or decrease the intraseasonal variability.
- produce an eastward-propagating ISO when the AGCM could not.
- extend eastward propagation beyond the Maritime Continent.

Questions

- In what manner do SST anomalies affect the simulated ISO?
 - latent heat fluxes--moistening
 - sensible heat fluxes--lower tropospheric stability
- How does the choice of model physics influence coupled and uncoupled behavior?

These questions are addressed with a suite of model simulations

coupled vs. uncoupled simulations with the same model are analyzed in terms of their ISO simulation

Caveat to the Typical Experimental Setup

Coupled models often result in cold SST biases, leading to **different mean climate states** than their uncoupled counterparts.

Does improved ISV arise from coupling, or from mean state changes?

The MJO with SP with a slab ocean model

Benedict and Randall 2011

Another Experimental Setup

Our Experimental Setup

Our Experimental Setup

Models Mean State Nov-Apr:4-23

SP-CCSM

SP-CAM5d

COLA MJO Workshop 10-11 June 2013, Fairfax VA

Models Variance

Nov-Apr:4-23

SP-CCSM

COLA MJO Workshop 10-11 June 2013, Fairfax VA

COLA MJO Workshop 10-11 June 2013, Fairfax VA compared to SPCCSM3, SPCAM3_5d has:

- same mean state
- different variability
- weaker MJO amplitude

mean states in CAM3_x, CAM4_x also resemble SPCAM3_5d

Rainfall and SST anomaly lag-correlation (all seasons)

360 0 360 0 longitude longitude longitude

Rainfall and SST anomaly lag-correlation (all seasons)

how sensitive are the surface fluxes to SST anomalies?

typical SST anomaly range @ ISO timescales (K)

greater variability in Indian Ocean

$LH' = \rho L C_H(\overline{\Delta q} |V|' + \Delta q' \overline{|V|})$

which term dominates LH'?

sensitivity of anomaly terms to SST perturbations

ERAI DJF

ERAI DJF

ERAI DJF

 $(\Delta q)'$ -predicted LHFLX variance $[(W/m^2)^2]$

variance ratio: (Δq) '-predicted / total

variance ratio: |V|'-predicted / total

ERAI DJF

 $(\Delta q)'$ -predicted LHFLX variance $[(W/m^2)^2]$

variance ratio: (Aq)'-predicted / total

variance ratio: |V|'-predicted / total

ratio difference: |V|' - (∆q')

2000

1600

1.0

ERAI DJF

 $(\Delta q)'$ -predicted LHFLX variance $[(W/m^2)^2]$

variance ratio: (Δq) '-predicted / total


```
variance ratio: |V|'-predicted / total
```


ratio difference: $|V|' - (\Delta q')$

- Equatorial LH fluxes are small
- Equatorial LH fluxes are mostly determined by wind speed
- Subtropical LH fluxes are large
- Subtropical LH fluxes are sensitive to both wind speed and vertical moisture gradient

$LH' = \rho L C_H(\overline{\Delta q}|V|' + \Delta q' \overline{|V|})$

 $LH' = \rho LC_H(\overline{\Delta q}|V|') + \Delta q'|\overline{V}|)$ how sensitive are anomalies to SST?

How sensitive are LHFLX terms to SST treatment?

How sensitive are LHFLX terms to SST treatment?

• vertical differences arise from model physics

• solid line slopes indicate sensitivity to ocean treatment (coupling or no coupling; presence or absence of high-frequency variability)

How sensitive are LHFLX terms to SST, model physics?

Ocean-only data points. Variance and regressions are based on 20-70 day filtered data.

How sensitive are LHFLX terms to SST, model physics?

Ocean-only data points. Variance and regressions are based on 20-70 day filtered data.

How sensitive are LHFLX terms to SST, model physics? **IO DJF**

SP CAM3 CAM4 ERAI

m/s

0.008

0.006

0.002

0.000

С

С

5d

DELTAQbar

5d

mon

mon

LHFLXbar

2.0×10

1.5×10

5.0×10

С

0, 1.5×10° **(0, 1.0×10° 1.0×10°

DELTAQvar

5d

F

mon

 $R([\Delta q] @ 1.5\sigma_{sst})$ as % of mean

5d

mon

400

300

100

0

8 200

Ď

С

∆q'|V| variance

120

Ocean-only data points. Variance and regressions are based on 20-70 day filtered data.

How sensitive are LHFLX terms to SST, model physics?

SP CAM3 CAM4 ERAI

LHFLXbar

150

0.002

0.000

0.020

0.015

0.005

0.000

D 0.010 С

С

5d

mon

LHFLXvar

600

0.0

С

R(|V|'@ 1.50___) as % of mean

Г

5d

 $R([\Delta q] @ 1.5\sigma_{sst})$ as % of mean

mon

G

С

Ď

3

2 7

n

400

300

* 200

%

%

120

100

∆q'|V| variance

Ocean-only data points. Variance and regressions are based on 20-70 day filtered data.

5d

QAIRbar

5d

mon

How sensitive are LHFLX terms to SST, model physics? **IO DJF** LHFLXbar LHFLXvar R(LHFLX' @ 1.50) as % of mean ∆q' V variance 60 SP Z**(Z**m/W) 200 [W/m**2]**2 Z 100 Z*∗Ⅲ/M 50 80 CAM3 % 3 60 CAM4 50 40 20 \mathbf{r} ERAI С 5d mon С 5d mon С 5d mon С 5d mor SPDbar R(|V|'@ 1.50__) as % of mean SPDvar ∆q|V|' variance 2.0 600 500 F 1.5 [W/m**2]**2 2 m**2/s**2 400 **F** m/s 1.0 % 300 17 200 0.5 100 0.0 С 5d mon С 5d mon С 5d mon С 5d mon DELTAQbar DELTAQvar R([Δq] @ 1.5σ___) as % of mean variance ratio: $\Delta q' |V| / \Delta q |V|'$ 0.008 2.0×10 400 0.25 0.20 0.006 300 1.5×10 0, 1.5×10° 0.15 ₿ |6 0.004 ratio * 200 0.10 0.002 5.0×10 100 0.05 0.000 0.00 С 5d 5d С С 5d С 5d mon mon mon mon QAIRbar QAIRvar R(q')@1.5) as % of mean Ocean-only data points. 0.020 3×10 0.0005 h 0.0004 0.015 ^Z 2×10⁻⁷ (63/63/ 1×10⁻⁷

0.0003

0.0002

0.0001

0.0000

17

С

5d

mon

%

Variance and regressions are based on 20-70 day filtered data.

• Seasonal means are sensitive to model physics, but not to ocean treatment.

С

₿ |6 0.010

0.005

0.000

С

5d

mon

- Variance about the mean is sensitive to both model physics and ocean treatment. ٠
- Local effect: vertical moisture gradient variability is highly sensitive to SST anomalies. •

5d

mon

- Remote effect: sensitivity of wind speed variability to ocean treatment. •
- LHFLX terms that are most sensitive SST anomalies account for only 10~15% of total LHFLX variability.

How sensitive are LHFLX terms to local, remote SST effects?

- Vertical moisture gradient is sensitive to the local SST anomaly.
- Processes that control wind speed variance are probably complex and non-local.

local vs remote SST effects is sensitive to model physics

Does SST sensitivity vary with region and season?

Ο

WPac

- SST effects are larger in the Indian Ocean than the West Pacific Ocean.
- Indian Ocean SST effects are greater during boreal summer than in boreal winter.

Conclusions I

- Model physics (cumulus parameterization) appears to be more important than coupling or realistic SST variability for simulating the ISO.
- Latent heat fluxes vary with model physics and ocean treatment, and are dominated by wind speed variability.
- Sensitivity of wind speed variability to ocean treatment is probably complex and non-local.

Conclusions II

 Many question remain in trying to understand the role of air-sea interaction in models and the real world.

Conclusions II

 Many question remain in trying to understand the role of air-sea interaction in models and the real world.

Extra Slides

Can we understand ISV in terms of SST sensitivity?

- Does CAM3 struggle because delta-q effects are small? It has the smallest delta-q of all models.
- CAM4-SP differences cannot be explained by SST effects. Possibly:
 - tropical-subtropical interactions? we have not examined this here.
 - Inherent atmospheric control of ISV?
- Could diminished ISV in SP models simply be a result of decreased LHFLX and moisture convergence?

Latent Heat Flux Terms (poleward, JJA)

Rainfall and SST anomaly lag-regression (all seasons)

Rainfall and SST anomaly lag-regression (all seasons)

In OBS and coupled runs, warm SSTs prior to precipitation are the result of reduced cloudiness and surface fluxes (atm driving SSTs).
Rainfall and SST anomaly lag-regression (all seasons)

- In OBS and coupled runs, warm SSTs prior to precipitation are the result of reduced cloudiness and surface fluxes (atm driving SSTs).
- How can we assess the role of SST anomalies on the atmosphere?

Rainfall and SST anomaly lag-regression (all seasons)

- In OBS and coupled runs, warm SSTs prior to precipitation are the result of reduced cloudiness and surface fluxes (atm driving SSTs).
- How can we assess the role of SST anomalies on the atmosphere?

Rainfall and SST anomaly lag-correlation (all seasons)

-30 30-30 30-30 15 30 -15 0 15 -15 0 15 -15 0 latitude latitude latitude

Rainfall and SST anomaly lag-correlation (all seasons)

Rainfall vs other anomalies

Rainfall vs other anomalies

In OBS and coupled runs, warm SSTs prior to precipitation are the result of reduced cloudiness and surface fluxes (atm driving SSTs).

Rainfall vs other anomalies

In OBS and coupled runs, warm SSTs prior to precipitation are the result of reduced cloudiness and surface fluxes (atm driving SSTs).

How might the atmosphere respond to the phasing of flux anomalies?

Fig. 3. Annual mean SST bias compared to HadISST (top row) and 20-100 day SST variance bias compared to HadISST (bottom row)

Air-Sea Interactions as a Function of Rainfall Rate

Air-Sea Interactions as a Function of Rainfall Rate

 Surface anomalies tend to change sign with increasing rainrate.

Air-Sea Interactions as a Function of Rainfall Rate

- Surface anomalies tend to change sign with increasing rainrate.
- How do these distributions change with time?