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Cloud droplets grow by the diffusion of
water vapor (i.e., by condensation) and by
collision/coalescence.

For both cloud turbulence is thought to play
a significant role.

Turbulent entrainment---mixing of cloudy air
with dry environmental air---significantly
affects the spectrum of cloud droplets.



Clouds are turbulent, but what does it mean?

Lewis F. Richardson’s poem:

“Big whirls have little whirls
Which feed on their velocity,
And little whirls have lesser whirls,
And so on to viscosity.”

Turbulent jet in the laboratory
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FI1G. 3. Penetration at 600 mb, 6 June: (a) two-second averaged droplet spectra (sizes for diameter bins
are those given by the manufacturer); (b) wind velocity, the lines represent wind vectors formed from the
vertical wind and the wind along the flight path; (c) liquid water density measured by the Johnson-

Williams device. All H-2 measurements.

(Austin et al. JAS 1985)



Elementary facts about cloud droplets:

Radius r : 5-30 microns (r << Kolmogorov length; ~1 mm)

Concentration: 50-2,000 cm3 ( mean separation distance >> r)

Mass loading: 0.5-5 g kg' ( << 1; no effects on turbulence)

Fall terminal velocity v;: v,~r?; v,=1cm/s for r=10 pm



Growth by the diffusion of water vapor
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Growth by the diffusion of water vapor

rdr/dt =A S

A~1010 m?s°1

supersaturated
environment;
S=e/e,-1>0
temperature water vapor
flux away from flux towards

the droplet the droplet



Direct Numerical Simulation (DNS) of a turbulent flow with cloud droplets
growing by the diffusion of water vapor in conditions relevant to cloud physics

(eddy dissipation rate e=160 cm2s-3)
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Main conclusion: small-scale turbulence has a
negligible effect on the width of the cloud droplet

spectrum.

Explanation: droplets rearrange their positions
rapidly, growth histories average out...

Vaillancourt et al. JAS 2002



What about those DNS limitations?

Argument: if the Reynolds number increases
(.e., the range of scales involved increases),

can small-scale supersaturation fluctuations
increase as well?
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Can we extrapolate
supersaturation fluctuations
into scales relevant to clouds?
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Can we extrapolate
supersaturation fluctuations
into scales relevant to clouds?



The brake on supersaturation fluctuations:

TABLE 1. Time constant characterizing supersaturation.

dS S (Values of 7 = 1/(axl) s for p = 771 mb, T = 4.3°C)
— — ‘ Droplet concentration (cm™>)
d l— T Radius _
qge (pm) 100 300 500 1000
2 14.1 4.7 2.8 1.4
3 8.7 - 29 1.7 - 0.87
5 4.9 1.6 0.98 0.49
1 10 2.3 0.77 0.46 0.23
N .
T ge SCC

Politovich and Cooper, JAS 1988

dS

dt 1 " For eddies with time-scale

larger than 7, tluctuations

ot S are limited by S, !!!



So within a uniform cloud (e.q., the adiabatic
core), fluctuations of the supersaturation have a
small effect.



So within a uniform cloud (e.q., the adiabatic
core), fluctuations of the supersaturation have a
small effect.

But what about the impact of mixing with the dry
air from cloud environment (entrainment)?
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Fig. 7. Ratio of observed liquid water content to adiabatic value versus height above base. LWC (g m'3)

Warner Tellus 1955 Gerber JMSJ 2008



Entrainment/mixing and cloud droplet spectra:

- Entrainment/mixing leads to partial evaporation of
cloud water.

- Entrainment/mixing may lead to activation of cloud
droplets above the cloud base.

- Entrainment/mixing allows for different growth
histories of cloud droplets arriving at a given location
within a cloud.



“Large-eddy hopping” (Grabowski and Wang, ARFM 2013)

(Al Cooper, NCAR; Sonia Lasher-Trapp, Purdue; Alan Blyth, Leeds):

Droplets observed in a single location within a cloud
arrive along a variety of fluid trajectories:

- large scale eddies are needed to provide
different droplet activation/growth histories;

- Small scale edies needed to allow hopping from
one large eddy to another.

[see also Sidin et al. (Phys. Fluids 2009) for idealized
2D synthetic turbulence simulations]



courtesy of Al Cooper, NCAR




Trajectories th h the cloud
Model of Rain Formation

Q@ Dynamical cloud model

© Generate trajectories

courtesy of Al Cooper, NCAR



ADIABATIC ASCENT

Test Case For Comparison
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ENSEMBLE CONTRIBUTIONS

Result of Variability Along Trajectories
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Small impact of small-scale turbulence: because
condensational growth is reversible, droplets grow more
In higher S, and then less in lower S, and the two
situations change rapidly.

Entrainment/mixing and “large-eddy hopping ~ provide
additional effects contributing to the spectral broadening.



Growth by collision/coalescence

larger droplets
fall and collide
with smaller
| ones,
coalescing into
even larger
Y droplets

Textbook explanation of
rain formation 1n ice-free
clouds: gravitational
collision-coalescence...



Growth by collision/coalescence: nonuniform distribution of
droplets in space (because of inertial clustering) affects

droplet collisions...

.28

.82

.02

4
{m)

06

.08

Number of collisions: N; N; K;
N;, N; - concentrations

K; - collision kernel
( ~probability of a collision
between two droplets)



2 1,0 _ 19
gravitational kernel: K jj=Tm (ai +4 J ) ‘V/ Vj ‘E/ J



gravitational kernel: K/’ j = T (3,' + a J )2 ‘V/? o V; ‘ Igj

a/+a;
4)

>

collisional cylinder —
“geometric collision”



gravitational kernel: K/ j = ﬂ (3 j+a J )2 ‘V/? - V;

collision efficiency

v
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gravitational kernel: Kij =T (3,' + 3/)2 ‘V; — Vjt‘Elgj

generalized kernel (gravity plus K.=K t g E?’. |
, /] i ij "LE
turbulence):

Saffman and Turner

JFM 1956 tg 2

%Vang et al.) KI/ =21R (lWr(l’ = R)D gij(r = R)
(JAS 2005)

Grabowski and Wang R = aj +aj

(ARFM 2013)

w,=r-(V;-V;)/r  radial relative velocity

gij radial distribution function



The hybrid DNS|approach: including disturbance flows due to droplets
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Features: Background turbulent flow can affect the disturbance flows:
No-slip condition on the surface of each droplet is satisfied on average:
Both near-field and far-field interactions are considered.

Wang, Ayala, and Grabowski, J. Atmos. Sci. 62: 1255-1266 (2005).
Ayala, Wang, and Grabowski1, J. Comp. Phys. 225: 51-73 (2007).
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Enhancement factor for the collision kernel (the ratio between turbulent and
gravitation collision kernel in still air) including turbulent collision efficiency; € =
100 and 400 cm? s—3.



dg/dt, g/m’

1. Autoconversion; 2. Accretion; 3. Hydrometeor self-collection
(Berry and Reinhardt, 1974)
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A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection

A PIER SIEBESMA ?* CHRISTOPHER S. BRETHERTON.® ANDREW BROWN.® ANDREAS CHLOND.? JOAN CUXART.®
PETER G. DUYNKERKE. ™ HONGLI JIANG.® MARAT KHAIROUTDINOV,® DAVID LEWELLEN,! CHIN-HOH MOENG ]
ENRIQUE SANCHEZ.* BJORN STEVENS,! AND DAVID E. STEVENS™
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Fic. 1. Initial profiles of the total water specific humidity g,, the
liquid water potential temperature f,, and the horizontal wind com-
ponents # and v. The shaded area denotes the conditionally unstable
cloud layer.
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Fig. 4. Snapshots of cloud water mixing ratio (fransparent gray)
and rain water mixing ratio (solid blue) at the 6th hour of the
simulation. The isosurfaces show values g. = 0.05 gkg~! and

g =0.02gke~".



8 simulations: 4 CCN concentrations (extra clean to weakly polluted),
contrasting gravitational and turbulent collision kernels
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Domain-averaged drizzle/rain water mixing ratio (r > 25 um)
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Domain-averaged cloud water path (CWP, solid line) and precip water path (PWP, dashed line)
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Domain-averaged cloud water path (CWP, solid line) and precip water path (PWP, dashed line)
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Surface rain accumulation from the cloud field:
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Summary:

Small-scale turbulence seems to have an insignificant effect on
diffusional growth of cloud droplets.

Turbulence seems to plays a significant role when entrainment and
mixing is considered through the “large-eddy hopping” mechanism,
local heterogeneity of mixing, and in-cloud activation.

Small-scale turbulence appears to have a significant effect on

collisional growth. Rain tends to form earlier in a single cloud, and

turbulent clouds rain more. This appears to be a combinations of two

effects:

1) the microphysical enhancement: more cloud water available to be
converted to rain when rain forms earlier in the cloud lifecycle;

ii) the dynamical enhancement: off-loading cloud condensate
Increases cloud buoyance allowing clouds to reach higher levels.



