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Review: A Lagrangian View of Cloud Evolution and Feedbacks

GASS stratocumulus to trade cumulus transition: a
composite case from the Northeast Pacific (Sandu,
Stevens & Pincus, 2010; Sandu & Stevens, 2011);
summertime conditions (JJA2006-7).
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Simulation follows composite Lagrangian trajectoFy 20N

over warmer SSTs with fixed subsidence.
Finish after 3 days (before breakup of capping Sc).
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Fi6. 3. An image of the cloud field simulated in the REF case, at
(top) the beginning and {bottom) the end of the simulation.




Lagrangian cloud response to climate perturbations

® Modified GASS Lagrangian transition case.
® Four climate perturbations (no changes to wind speed, FT RH):
= P4 (warming): SST+4K, moist adiabatic warming aloft,
= dEIS (stabilityt): SST+2K locally, SST+4K in deep tropics.
= 4xCO2,
= P4 4x (combined warming and 4xCO2).

Adapt (weak) subsidence profile so free tropospheric energy budget
is in approximate balance (P4 subsidence ~ 0.9 CTL subsidence).
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Cloud response P4

CTL cloud fraction = = = 4xCO2
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® Cloud thins in P4 simulation relative to CTL. Yet more thinning in P4 4x.
® 4xC0O2 also thins, but not as much as P4

® dEIS very similar to CTL.



Cloud Response — Diurnal-Mean Insolation
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® Cloud thins in P4 simulation relative to CTL. Yet more thinning in P4 4x.
® P4, 4xCO2 runs more decoupled on first night than CTL, dEIS.



Radiation and Entrainment
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In the first half of the simulation, 4CO2U and P4U have approximately the same:

* Boundary-layer radiative cooling AR

* Entrainment rate (and inversion height evolution and cloud-top turbulence levels)

* Inversion strength As)/c,

How does P4U maintain the same entrainment rate across the same inversion strength
with the same radiative driving, but with less cloud than in 4CO2U?



Liquid flux and buoyancy production of turbulence
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* |Inthe cloud layer, turbulent buoyancy production and its P4 response are tightly
controlled by the upward liquid flux, because of latent heat release by condensation of g,

710 217 7 7
wb' =w'b +cw'q,

* In a fully saturated layer, C-C implies the liquid flux increases 2.5%/K in warmer climate




Cloud thinning by entrainment liquid flux (ELF) adjustment

* Instantaneously warm T, of a turbulent CTBL and the overlying free troposphere
by 8T, keeping RH = q,/q.(z, T,) and radiative flux divergence AR constant.

* The initial CTBL response is to increase horizontal g,and T perturbations,
increasing turbulent buoyancy production & entrainment rate w,, (like Rieck et al)

* Entrainment drying thins Sc cloud until w, readjusts to the pre-existing AR, AB,.
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PDFs of ‘potential LWC’

9-15 hr mean PDF
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In the warmer P4 climate, the PDF of g, broadens as expected, forcing the Sc
layer to dry to keep the upward liquid water flux, the buoyancy production of
turbulence, and entrainment warming in balance with radiative cooling.



Fast spinup of ELF cloud
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Rieck et al. (2012) Cu-entrainment-desiccation mechanism

shallower, moister deeper, drier and
and cloudier less cloudy
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Fi1Gc. 11. Schematic diagram showing the main response of the cloud-topped boundary layer
to a change in temperature, assuming large-scale processes act to keep the humidity constant.

Rieck: In a ‘constant RH’ atmosphere, stronger LHF =» More entrainment
Entrainment drying = higher Cu base
Lower Cu-layer RH =¥ less cloud cover even though in-cloud LWC higher
(positive cloud feedback)

Lagr P4: Stronger LHF
vs. 4CO2 Entrainment and Cu base hardly change due to cloud-radiative control
Still get less cloud, even though Rieck mechanism doesn’t apply here.
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Shallow Cu example (vertically uniform RH in cloud layer)

Same liquid water variance (and flux) and turbulence production
can be maintained with a lower R and less cloud fraction in
warmer climate, due to the broader humidity variance.
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Conclusions

As in CGILS, Lagrangian framework corroborates cloud
thinning in a warmer climate, moderated by EIS increases.

Cloud thinning is due to

1. reduced radiative destabilization

2. thermodynamically-driven increase in cloud heterogeneity
A simple model isolates thermodynamic feedback on cloud.

In a warmer climate, more moisture variance generates clouds
with more heterogeneous liquid water. These generate the
same levels of turbulence and entrainment with less cloud
fraction and liquid water path.



