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Warming in the 
Arctic is roughly 
double that for the 
whole Earth.

Note different scales.



Screen & Simmonds, 2010

of the seasonal temperature trends that are linearly congruent with
changes in sea ice (Fig. 2) show remarkable resemblance to the ver-
tical profiles of the total temperature trends (Fig. 1). North of 70uN, a
large portion of each total trend is linked to reduced Arctic sea ice
cover (Fig. 2). The majority of the winter warming is associated with
changes in sea ice cover (Fig. 2a) even though the sea ice declines are
relatively small and the albedo feedback is weak during this season.
Strong winter warming is consistent with the atmospheric response
to reduced sea ice cover22,27 and reflects the seasonal cycle of ocean–
atmosphere heat fluxes22: during summer, the atmosphere loses heat
to the ocean whereas during winter the flux of heat is reversed. Thus,
reduced summer sea ice cover allows for greater warming of the
upper ocean but atmospheric warming is modest (Fig. 2c). The inter-
action is undoubtedly two-way because warmer upper-ocean tem-
peratures will further enhance sea ice loss. The excess heat stored in
the upper ocean is subsequently released to the atmosphere during
winter20,22. Reduced winter sea ice cover, in part a response to a
warmer upper ocean and delayed refreezing6,7, facilitates a greater
transfer of heat to the atmosphere. The observed thinning of Arctic
sea ice28,29, albeit not explicitly represented in ERA-Interim, is also
likely to have enhanced the surface heat fluxes.

Another potential contributor to the surface amplified warming
could be changes in cloud cover. Clouds decrease the incoming
short-wave (solar) radiation. However, this shading effect is partly
offset, or exceeded, by a compensating increase in incoming long-wave

radiation. In the Arctic, this greenhouse effect dominates during
autumn, winter and spring (Fig. 3), in agreement with in situ observa-
tions30. In summer, the shading effect dominates in the lower-latitude
regions of the Arctic basin whereas north of 80uN the two competing
effects approximately cancel out (Fig. 3c). Spring is the only season that
exhibits significant trends inArctic average cloudiness inERA-Interim,
and these are negative (the ERA-Interim cloud-cover trends are con-
sistent with satellite estimates; see Supplementary Information).

400

600

800

1,000

400

600

800

1,000

400

600

800

1,000

400

600

800

1,000

Le
ve

l (
hP

a)

90º 80º 60º 50º 40º70º 90º 80º 60º 50º 40º70º

90º 80º 60º 50º 40º70º 90º 80º 60º 50º 40º70º

ba

dc

Latitude north

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5
Temperature trend (ºC per decade)

2
1
0

2
1
0

2
1
0

2
1
0

Figure 1 | Surface amplification of temperature trends, 1989–2008.
Temperature trends averaged around circles of latitude for winter
(December–February; a), spring (March–May; b), summer (June–August;
c) and autumn (September–November; d). The black contours indicate
where trends differ significantly from zero at the 99% (solid lines) and 95%
(dotted lines) confidence levels. The line graphs show trends (same units as
in colour plots) averaged over the lower part of the atmosphere
(950–1,000 hPa; solid lines) and over the entire atmospheric column
(300–1,000 hPa; dotted lines). Red shading indicates that the lower
atmosphere has warmed faster than the atmospheric column as whole. Blue
shading indicates that the lower atmosphere has warmed slower than the
atmospheric column as a whole.
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Figure 2 | Temperature trends linked to changes in sea ice. Temperature
trends over the 1989–2008 period averaged around circles of latitude for
winter (a), spring (b), summer (c) and autumn (d). The trends are derived
from projections of the temperature field on the sea ice time series (Methods
Summary). The black contours indicate where the ice–temperature
regressions differ significantly from zero at the 99% (solid lines) and 95%
(dotted lines) uncertainty levels.
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Figure 3 | Impacts of cloud-cover changes on the net surface radiation.
Mean net surface radiation (short-wave plus long-wave) over the 1989–2008
period under cloudy-sky (solid lines) and clear-sky (dotted lines) conditions.
Means are averaged around circles of latitude for winter (a), spring
(b), summer (c) and autumn (d). The fluxes are defined as positive in the
downward direction. Red shading indicates that the presence of cloud has a
net warming effect at the surface. Blue shading indicates that the presence of
cloud has a net cooling effect at the surface. The dashed lines show the
approximate edge of the Arctic basin. Symbols show latitudes where
increases (triangles) and decreases (crosses) in total cloud cover significant
at the 99% uncertainty level are found.
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Predicted warming over the 21st century
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Sea ice

• Reflects sunlight

• Blocks heat exchange between 
the ocean below and the air 
above



The Ice & Snow Albedo Feedback

This feedback is at work during the summer months,
until the summer ice melts.



There is another feedback that works
where the sun don’t shine.



• Fully-coupled Community Earth System Model 1.0.2, CAM4 Physics, 
Finite Volume dynamical core

• 1.9ox2.5o grid for atmos and land components , 30 vertical levels

• gx1v6 displaced pole grid for ocean and ice components

•Ocean model has reached equilibrium (500 year spinup from previous 
simulation)

Experimental Design



Experimental Design

• 25-year spinup simulation holding all 
trace gases constant at PI

• Followed by 1% per year CO2 

increase

• CO2 held constant at 1139 ppmv for 
200 years

• SP-CESM 10-year sim started from 
end of CESM 4xPI

4xPI CO2 = 1139 ppmv

Experiment was designed in collaboration with Eli Tziperman (Harvard) and Dorian Abbot (U. Chicago).



The Arctic warms up.
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Sea ice melts.
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Sea ice volume decreases.
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Water vapor increases.
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The Arctic gets cloudier.
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Absorbed SW increases in summer.
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Net LW at surface does not change much.
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Downwelling LW at surface gets stronger.
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What drives this DLR change?

• Increased CO2

• Increased temperature

• More water vapor in the atmosphere

• Changes in the cloud amount.

• Changes in the cloud base height.
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Wintertime longwave feedback

Large scale dynamical and surface processes play a role in this feedback.

Downwelling infrared
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Cold ColdWarm

Cloud formation
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Downwelling infrared

Ice thickness at the 
end of winter
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summer melting
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CESM-CAM5 Arctic Mean Sfc Downwelling Longwave Flux
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Happens with CESM5.



Happens in lots of models.

CCSM4 RCP 8.5 Arctic Downwelling Longwave Radiation (70-90N)
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MIROC5 RCP 8.5 Arctic Downwelling Longwave Radiation (70-90N)
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HADGEM2 CC RCP 8.5 Arctic Downwelling Longwave Radiation (70-90N)
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A bit stronger with SP-CESM.







Conclusions

• The surface albedo feedback is only 
part of reason for polar amplification.

• An important longwave feedback 
works all year round.

• Fall and winter are key to Arctic 
climate change. 


