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1. Grid generation on the cubed sphere grid

2. A new way to calculate wind in the icosahedral grid model

3. Experiences on the NSF Blue Waters computer

a.  Parallel scaling of the MPI portion of the model

b. Experiences (so far) with the accelerators

4. Conjugate gradient method to solve 3D elliptic equation on the icosahedral 

grid

5. Comparison of the Tweaked Grid to Spring Grid and Centroidal  Voronoi 

Tessellations (CVT) Grid

• Several unrelated little parts:



• A Cubed sphere grid is formed by projecting a cube onto a sphere.
• A logically quadrilateral grid remain logically quadrilateral.

The cubed sphere grid



• Nice properties include orthogonality 
and enhanced isotropy.

• A Voronoi grid for the icosahedral 
grid is easy.

• A Voronoi grid generated on the 
cubed sphere does not consist of 
cells with only 4 wall.

The cubed sphere grid with Voronoi cells

• A Voronoi grid on the sphere is defined like this:

Given an arbitrary set of points on the sphere, the Voronoi cell associated 
with a particular grid point, say p0, consists of the points on the sphere 
closer to p0 than to any other grid point.



An algorithm to generate a voronoi grid on the cubed sphere

• Consider 9 grid points p0, p1, ..., p9 on the unit sphere.
• We can consider p0 to be home base.
• Define a function  ν(pn1, pn2, pn3) that given 3 points returns the point 

on the sphere equidistant from the 3 points.   This is the Voronoi 
corner.

• Define a cell (red lines and corners) using p0:

• Define a cell (blue lines and corners) using surrounding grid points:

 b1 = ν p1, p2, p3( ), b2 = ν p3, p4 , p5( ), b3 = ν p5, p6, p7( ) and b4 = ν p7, p8, p1( )

 a1 = ν p0, p1, p3( ), a2 = ν p0, p3, p5( ), a3 = ν p0, p5, p7( ) and a4 = ν p0, p7, p1( )

We want to move p0 so that the red cell becomes more 
coincident with the blue cell.

• Define a cost function

where δ(an,bn) is the distance from an to bn.

f p0( ) = δ an ,bn( )4
n
∑

• We minimize the cost for each cell and loop over all the cells.



A possible algorithm to generate a voronoi grid on the cubed sphere

• Level 3.  384 cells.
• 24 iterations of the algorithm



A possible algorithm to generate a voronoi grid on the cubed sphere

• Level 4.  1536 cells.
• 24 iterations of the algorithm
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• Predict the absolute vorticity

where

• Construct a zonal velocity that rapidly transitions between two profiles 
of solid body rotation.

zonal velocity normalized relative vorticity

• Rotate the field so that it is no longer rotationally symmetric with 
respect to the poles.

Barotropic vorticity experiment.  Initial condition.



• the simulation with  
655842 cells (32 km)
for 27 days

• View point is the north 
pole

• Absolute vorticity

Barotropic vorticity experiment.  Initial condition.



Barotropic vorticity experiment.  Day 15.

• the simulation with  
655842 cells (32 km)
for 27 days

• View point is the north 
pole

• Absolute vorticity



v = k × ∇ψ +∇χ = vψ + vχ

ψ 0 ,χ0

ψ i−1,χi−1

ψ i ,χi

ψ i+1,χi+1

vψ( )i =
ψ i+1/2 −ψ i−1/2

l
n + ψ i −ψ 0

L
τ

n
τ

Wind at cell edges as a function of stream function

• Helmholtz decomposition

• Vector wind (rotational) at edges 
as a function of stream function:

where l is the length of a cell wall and 
L is the distance between cell centers.

ψ i−1/2 ,χi−1/2

ψ i+1/2 ,χi+1/2
• Here we ignore the divergent part

• Interpolate ψi+1/2 to cell corners from 
surrounding cell centers 
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• For We can construct the values at corners 
in several ways.  For example,

• A very simple interpolation:

• Or we can construct a quadratic 
interpolation using data from six cell 
centers. 
For example, for corner {ψ00, ψ01, ψ02}  we 
can use  {ψ00, ψ01, ψ02, ψ06, ψ07, ψ03}. 

ψ 3/2 =
1
3
ψ 00 +ψ 01 +ψ 02( )

Construct interpolated values at corners



Simple interpolation.  Absolute vorticity.



Quadratic interpolation.  Absolute vorticity.



Simple interpolation.  Wind vectors (normal and tangent component) at cell walls.



Simple interpolation.  Wind vectors (normal and tangent component) at cell walls.



Quadratic interpolation.  Wind vectors (normal and tangent component) at cell walls.



Quadratic interpolation.  Wind vectors (normal and tangent component) at cell walls.



NSF Blue Waters supercomputer at the NCSA

• The Blue Waters system is a Cray XE/XK hybrid machine composed of AMD 
6276 "Interlagos" processors (nominal clock speed of at least 2.3 GHz) and 
NVIDIA GK110 "Kepler" accelerators all connected by the Cray Gemini torus 
interconnect. 
1) 237 Cray XE6 cabinets. 362,240 cores
2) 32 Cray XK7 cabinets.  24,576 cores.  3072 GPUs.

• The Kepler GK110 implementation includes 
15 Streaming Multiprocessor (SMX) units and 
six 64‐bit memory controllers. Each of the 
SMX units feature 192 single‐precision 
CUDA cores.



resolution
(r)

number
of cells

global
grid point

spacing (km)

9 2,621,442 14.99

10 10,485,762 7.495

11 41,943,042 3.747

12 167,772,162 1.874

Counting the cells.

• Our target resolutions are:

• The vertical resolution depends on the horizontal resolution.  The vertical 
resolution is typically 32 to 256 layers.



Icosahedral grid.  Parallel domain decomposition.  Distribution to MPI tasks.

• Pieces of the grid are assigned to MPI tasks.  Parallel domain decomposition.

• MPI non-blocking sends/receives are used to update ghost regions (halo 
regions) with data from neighboring processes.



• Each grid block requires information 
from neighboring subdomains to fill 
ghost cells.

• We can define  parallel efficiency 
to be:

• Larger parallel efficiency is better.  

More useful work is done per ghost 
cells.

Yellow cells belong to the local process

Blue cells are ghost cells filled from neighboring process

parallel efficiency ≈ number of local cells
number of ghost cells

Define parallel efficiency



Parallel domain decomposition and parallel efficiency

block size
(parallel efficiency)

block size
(parallel efficiency)

number of MPI tasksnumber of MPI tasksnumber of MPI tasksnumber of MPI tasks
block size

(parallel efficiency)
block size

(parallel efficiency)
640 2560 10240 40960

resolution
(grid spacing)

9
(14.99 km)

64×64
(15.7)

32×32
(7.76)

16×16
(3.76)

resolution
(grid spacing)

10
(7.495 km)

128×128
(31.7)

64×64
(15.7)

32×32
(7.76)

16×16
(3.76)resolution

(grid spacing) 11
(3.747 km)

256×256
(63.7)

128×128
(31.7)

64×64
(15.7)

32×32
(7.76)

resolution
(grid spacing)

12
(1.874 km)

256×256
(63.7)

128×128
(31.7)

64×64
(15.7)

• We would like each MPI task to have a 32×32 cell block or a 64×64 cell block:

- Smaller block.   The parallel efficiency is bad.
- Bigger block.   Too much work per task.

• For a given resolution increasing the number of tasks reduces parallel efficiency.



• The mathematical formulation of our prognostic equations requires solving 
Poisson’s equation every time step in each model layer.

• The recursive structure of the grid facilitates the use of multigrid methods.

• This is most communication intensive portion of the model and challenging 
to parallelize.  The lessons learned can be apply to other parts of the model.

• There are two main parts to the multigrid algorithm:

(1)  Relaxation sweep.   Requires global communication. Similar to a 
standard Jacobi iteration.  Most expensive.

(2)  Information transfer between grid resolutions.   Less expensive.

2D multigrid



Parallel scaling with MPI on Blue Waters.  XE nodes.

• Plot show the time to do 10 multigrid v-cycles
• X-axis is number of MPI tasks.  Y-axis is time.  Both are log scale.
• Each blue line indicates a particular grid resolution. Grids 09, 10, 11 and 12.

• The red line is the idealized speed-up.  
• For each resolution the red line and the blue line should be coincident.
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Parallel scaling with MPI.   Comparisons.

BlueWaters (CRAY compiler)

Hopper (PGI compiler) Edison (INTEL compiler)
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16.0• All the same code with 
no heroic optimization.

• We can see:

- CRAY 2X faster than PGI on 
BW.

- PGI scales better than CRAY 
on BW.

- BW (PGI) and Hopper (PGI) 
have similar time

- Hopper scales well.
- Edison scales well (but with 

a relatively low number of 
cores).

- Edison is pretty fast.



Multigrid on the accelerators.

   SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

   DO iter = 1,itermax ! number of sweeps

   ENDDO ! iter

   END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• We are very interested in modifying the code to use the accelerators.

• We focus on the relaxation sweep portion of the multigrid algorithm. 
Experiments show this is the most expensive part of the code.

• The lessons learned can be apply to other parts of the model since the form of 
the code mimics other finite-difference operators in the model.

• Schematically the pure MPI code looks like this:

MPI communication



Multigrid on the accelerators.  The ideal best case with no MPI communication.

   SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

!$acc data copyin (om1,om2,area,wght,beta) create (tmpry,work) copy (alph)

   DO iter = 1,itermax ! number of sweeps

!$acc kernels

 

!$acc end kernels

   ENDDO ! iter

!$acc end data

   END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• Initially we can suppose no MPI communication was necessary.  (Note that this 
gives the wrong answer.)  Add a few OpenACC directives.

• What speed-up can we expect running code on host vs. accelerator?
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Multigrid on the accelerators.  The ideal case with no MPI communication.

• Loading (unloading) the appropriate modules on the xk nodes, we can toggle 
to run on host or accelerator.

• We can see the latency associated with transfer of data from the host to the 
accelerator through the PCI express.

• But, when data is on the accelerator, it is very fast.  Blue line very flat.

128×128×32
● run on host
● run on device



Multigrid on the accelerators.  With MPI communication.

      SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

!$acc data copyin (om1,om2,area,wght,beta) create (tmpry,work) copy (alph)

   DO iter = 1,itermax ! number of sweeps

     

!$acc update device (alph(1:im0-1, 1     ,:,:))
!$acc update device (alph(  im0  ,1:jm0-1,:,:))
!$acc update device (alph(2:im0  ,  jm0  ,:,:))
!$acc update device (alph(   1   ,2:jm0  ,:,:))

!$acc kernels

!$acc end kernels

!$acc update host (alph(2:im0-2, 2     ,:,:))
!$acc update host (alph(  im0-1,2:jm0-2,:,:))
!$acc update host (alph(3:im0-1,  jm0-1,:,:))
!$acc update host (alph(   2   ,3:jm0-1,:,:))

   ENDDO ! iter

!$acc end data

   END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• Now we include the MPI and use the !$acc update directive:

MPI communication



Multigrid on the accelerators.  With MPI communication.
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● run on host
● run on device

64×64×32
● run on host
● run on device

32×32×32
● run on host
● run on device

• The speed-up depends on the block size.  
Less speed-up on smaller blocks.

• This will become an issue on coarser grid 
resolution within the multigrid v-cycle.

• Coarser grids may run exclusively on the 
host



Alternative ways to generate an icosahedral grid.

SPRING GRID CENTROIDAL VORONOI
 TESSELLATION (CVT)

Tomita, H., M. Tsugawa, M. Satoh, and K. Goto, 
2001: Shallow water model on a modified 
icosahedral geodesic grid by using spring 
dynamics. J. Comput. Phys., 174, 579–613.

Du, Q., V. Faber, and M. Gunzburger, 1999: 
Centroidal Voronoi tessellations: Application and 
algorithms. SIAM Rev., 41, 637–676.

590 TOMITA ET AL.

FIG. 5. Schematic figure of connection of spring in the modification using spring dynamics.

where β is the tuning parameter. The numerator and denominator on right-hand side
of Eq. (23) represent the length of the equator and the number of grid points on the
equator. In this study, we set β = 0.4. By using the STD-grid as the initial condition,
Eqs. (20) and (21) are numerically solved until the balance equation (22) is satisfied.
After that, control volumes are defined and grid points are moved to the gravitational
centers of the control volumes in the same way as STD-GC-grid (Fig. 3). We call this
grid the SPR-GC-grid. Figure 6 shows the SPR-GC-grid with glevel 3. Comparing the
SPR-GC-grid (Fig. 6) with the STD-grid (Fig. 1), grid lines of the SPR-GC-grid are more
smoothly curved than those of STD-grid, especially, near the 12 singular points. Instead,
the grid intervals of the SPR-GC-grid near the singular points are a little smaller than
those of STD-grid. In Appendix C, we discuss this problem and propose a countermeasure
to it.

FIG. 6. The grid structure of the SPR-GC-grid with glevel 3.

• The basic idea is to imagine that the grid 
points are connected with springs and 
move with damped motion to a position 
of equilibria.

• The basic idea is to position the grid 
points so that they are the centroid 
(center of mass) of each cell.

• Llody’s algorithm:

Start with a random distribution 
of grid points on the sphere

Compute the Voronoi cells 
associated with current grid 

Move the grid points to the 
centroid of each cell 



Maximum errors of finite-difference Laplacian

• With a very smooth 
analytic test function 
show the convergence 
properties of the 
various grids

• The red line shows 
idealized 1st-order 
convergence 

• The inf-norm error 
measures the worst 
case of the grid
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RMS errors of finite-difference Laplacian

• The RMS error 
measures the overall 
goodness of the grid 

• The red line shows 
idealized 1st-order 
convergence 

• The blue line shows 
idealized 2st-order 
convergence 
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• With a very smooth 
analytic test function 
show the convergence 
properties of the 
various grids



The Conjugate Gradient  Method.  A possible strategy to improvement the 3D elliptic solver

• The non-hydrostatic model requires the solution to a 3D poisson equation.

• We currently use standard multigrid methods in the horizontal direction
coupled with a line relaxation in the vertical direction.  

• We explored the use of algebraic multigrid methods with little improvement.

• The conjugate gradient method has been shown to work well in highly 
anisotropic problems.



grd05
∆x�239.8�km� grd06

∆x�119.9�km� grd07
∆x�59.96�km� grd08

∆x�29.98�km� grd09
∆x�14.99�km� grd10

∆x�7.495�km� grd11
∆x�3.747�km� grd12

∆x�1.874�km�
km� 32, ∆z�1000�m� 239.812 119.915 59.9584 29.9793 14.9897 7.49485 3.74742 1.87371

km� 64, ∆z� 500�m� 479.623 239.829 119.917 59.9587 29.9794 14.9897 7.49485 3.74742

km�128, ∆z� 250�m� 959.247 479.659 239.834 119.917 59.9588 29.9794 14.9897 7.49485

km�256, ∆z� 125�m� 1918.49 959.317 479.667 239.835 119.918 59.9588 29.9794 14.9897

The cells range from very flat to not so flat

Let δx be the average distance between cell centers and δz be the layer thickness.

Define aspect ratio ≡ δx
δz

There is a considerable range of aspect ratios depending on the simulation:
~100 to 200 for large scale simulations. (Jablonowski, HS)
~1 to 10 for small scale simulations. (bubble tests)

The aspect ratio for various configurations
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The Poisson equation with constant coefficients

Continuous form:
∇H
2 α +

∂2α
∂z2

= β
Discrete form:

When the area of the cells is large, the coefficients linking grid points in the 
horizontal direction become very small.



The Conjugate Gradient and Jacobi Method.  Convergence as a function of aspect ratio.



The Conjugate Gradient Method. 

• We can gain some insight into the problem with the 3D multigrid by looking at 
the error in the solution.

• Consider a very smooth analytic test case:  (Note the 4 by 3 blob structure) 



The Conjugate Gradient Method. 

• The movie shows the error (TRUE-APPX) as a function of  iteration for the Jacobi 
iteration.

• There is an additive constant for each column that the algorithm cannot remove.



The Conjugate Gradient Method. 

• The movie shows the error (TRUE-APPX) as a function of  iteration for the CG iteration.

• Not locked into column additive constant.



Summary

1. We have shown a new algorithm to generate grids for the cubed sphere.

2. The normal component of wind on the icosahedral grid shows some unusual 
structure which still needs to be explained.

3. Experiences on the NSF Blue Waters computer.  Potential to improve the 
speed of the model.

4. Conjugate gradient method.  Preconditioner for the multigrid.  Could be used 
as a smoother within the multigrid.

5. Comparison of the Tweaked Grid to Spring Grid and Centroidal  Voronoi 
Tessellations (CVT) Grid



Grid Optimization Algorithm

• The Voronoi Corner (purple dot) is defined as the point equidistant 
from surrounding grid points (blue dots).

• There is a flaw with the  Voronoi 
grid -- a line connecting grid points 
does not bisect the cell wall. 

• The algorithm positions all grid 
points so that red points
are coincident with green points
(or at least it does the best it 
can) 



• The goodness of  particular configuration of points can be expressed as a 
cost function:

• Solved using quasi-Newton methods:

F = goodness of wall( )n,i
2

i=1

cell walls

∑
n=1

all cells

∑

• Other grid properties can be optimized using different cost functions

minimize
x

F x1, x2 ,..., xm( )

Grid Optimization Algorithm



• Number of independent variables:

• The number of independent 
variables (and computer memory) 
is reduced by using symmetries 
intrinsic to the grid.  Great circles 
can partition the sphere into 120 
triangular subdomains. 

• Parallelization of the algorithm

• Many weird problems pop up at 
higher resolutions  

grid resolution
number of 

independent 
variables

(8) 655,362 (31.27km) 8,192

(9) 2,621,442 (15.64km) 32,768

(10) 10,485,762 (7.819km) 131,072

(11) 41,943,042 (3.909km) 524,288

(12) 167,772,162 (1.955km) 2,097,152

Grid Optimization Algorithm


