Dynamically motivating the definition of sudden stratospheric warmings

Aaron Match¹ and Thomas Birner²

¹Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

²Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

1. Introduction

The polar stratospheric vortex impacts the stratospheric ozone and couples with surface weather and climate. Its most profound dynamics – sudden stratospheric warmings (SSWs) – are not fully understood. Many authors alter the subjective thresholds of the World Meteorological Organization (WMO) definition while presuming to discuss a similar set of events.

Research Questions

1. Does altering the definition of SSWs impact the number and type of events identified?

2. Can the dynamical evolution of the polar vortex motivate the WMO thresholds?

4. Transition to surf zone

8. Conclusions

• Major SSWs occur when vortex center(s) are displaced equatorward of the latitude threshold.

• Latitude variants alter the number of major SSWs identified by 27% and identify warmings of varying degrees of displacement and intensities.

• 60N is a sensible part of the SSW definition because:

(1) 60N marks the edge of the polar vortex.

(2) 60N is maximally affected by vortex dynamics.

2. WMO definition and variants

Major SSWs must exhibit both (McInturff 1978): • Circulation reversal at 60N, 10 hPa • Reversed temperature gradient from 60N to pole

Common variants: Latitude: 60N, 65N Pressure level: 10 hPa, 10 hPa or below, at or near 10 hPa Temperature: Positive gradient, increases at pole, +25K in one week, no temperature-related condition Persistence: 5 day duration, no persistence condition Coherence: poleward reversal required, no coherence condition

Number of SSWs varies with poleward reversal criterion.

Blue line:	Magenta line:
 Local circulation reversal at 	 Circulation reversal at 10 hPa at given
10hPa at given latitude	latitude, and
	 Circulation reversal everywhere poleward

- Coherent warmings comprehensively reverse Arctic circulation. • Surf zone (McIntyre and Palmer, 1984) "SSWs" only reverse local circulation. • 60N demarcates the vortex and surf zone regimes. • At 60N, poleward reversal condition excludes 9/22 (40%) of events.
- 65N threshold counts six (27%) more reversals than at 60N.

(3) 60N marks the transition from the coherent vortex zone to the surf zone.

• Coherence variants alter the number of major SSWs identified by 40% and identify warmings of varying coherence and intensity.

• Circulation reversal is a sensible part of the SSW definition because:

(1) it marks the inflection point of the wind distribution.

3. Polar vortex

• The polar vortex forms during polar winter. • SSWs = split or displacement of the polar vortex.

5. A tale of two hemispheres

Polar stereographic plot of 10 hPa geopotential heights.

Major warming: Vortices displaced equatorward of 60N Minor warming: Vortices remain poleward of 60N

But: If the 65N latitude threshold variant was used, both splits (above) would be identified as major SSWs.

• The strongest winds of the vortex are located near 60 degrees in both hemispheres.

• SSWs fuel the difference between the northern and southern hemispheres, which is maximized near 60 degrees.

6. Circulation reversal as inflection point

Idealized geometric vortex model with easterlies and westerlies (on a planar disc)

• Winds poleward of the vortex center are easterly.

References

McInturff, Raymond M. Stratospheric Warmings: Synoptic, Dynamic and General-Circulation Aspects. Washington, D.C.: National Meteorological Center, 1978. McIntyre, M.E., Palmer, T.N., 1982: The 'surf zone' in the stratosphere. J. Atmospheric and Terrestrial Physics, 46, 825-849.

Acknowledgements

Deepest gratitude to Melissa Burt for organizing this research opportunity and Jeremiah Sjoberg for advice on identifying SSWs.

7. Open questions

• What are sensible pressure level, persistence, and temperature thresholds?

• How do the geometry and dynamics of the anticyclone affect SSW identification?

• Do the count and duration of SSWs motivate a sensible circulation threshold?

• Blue line: Number of SSWs at different circulation thresholds

• Magenta line: Mean duration of warming events at each circulation threshold

Contact Aaron

alm334@cornell.edu

(717) 315-9553

1 Country Club Rd RM B58, Ithaca, NY 14850

This work has been supported by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement No. ATM-0425247.

