
Shock-like structures in the ITCZ boundary layer
ALEX O. GONZALEZ ANDWAYNE H. SCHUBERT

Department of Atmospheric Science, Colorado State University, Fort Collins, CO

ABSTRACT

This research focuses on understanding why the Intertropical Conver-
gence Zone (ITCZ) is often thin and zonally elongated over many parts
of the globe. We focus on theoretical aspects of the equations used in at-
mospheric models supported by observations in the central and eastern
Pacific ocean. Since the ITCZ boundary layer is a region of significant
meridional convergence, v(∂v/∂y) should not be neglected. With the in-
clusion of v(∂v/∂y) in the equations of the ITCZ boundary layer, there
is an embedded Burgers’ equation. Burgers’ equation can lead to shocks
in the mathematical sense [1], and an embedded Burgers’ equation in at-
mospheric models have been shown to produce shock-like structures in
the tropical cyclone boundary layer [3]. Therefore, we believe that shock-
like features help organize the ITCZ into a thin, zonally elongated strip of
convection. The overarching goal of this research is to improve modeling
of the ITCZ, since it is vital in forecasting many atmospheric phenomena,
including tropical cyclones, El Niño, and tropical rainfall.

1 Introduction

1.1 What are shocks?

A special form of the 1-D advection equation is able to produce shocks,
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and it is often referred to as Burgers’ equation (Burgers 1948). An initial
state of convergence of v(y, t) is followed by advection by v that sharpens
the convergence. If the v(∂v/∂y) is initially large, a discontinuity forms
in v and a singularity forms in ∂v/∂y. An example of the time evolution
of the 1-D Burgers’ equation, where q is the unknown field rather than
v, is shown in the figure below. The initial profile of q is on the left, and
q after the shock is on the right. The actual solution is the red line, while
the approximation computed using Clawpack software [2] is blue.

1.2 Slab boundary layer equations in the ITCZ

The relevance of (1) is that the meridional advection of the meridional ve-
locity is often very large in the boundary layer of the ITCZ, and therefore
cannot be neglected in the equations used to study and forecast weather
in the tropical atmosphere. An idealized example of boundary layer
equations in the tropics are given by
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where (2) is the boundary layer averaged zonal momentum equation, (3)
is the boundary layer averaged meridional momentum equation, and (4)
is the continuity equation where w is the vertical velocity at the top of
the boundary layer. These equations assume zonal symmetry and a slab
boundary layer. Notice that the first two terms of (3) make up the 1-D
Burgers’ equation! The initial condition is a prescribed geostrophic zonal
velocity ug(y, 0) above the boundary layer, and the boundary conditions
are ∂(u cosφ)/∂φ = ∂(v cosφ)/∂φ = 0 at φ = ±π/6.

2 Observations

2.1 Satellites: GOES and QuikSCAT

Visible GOES satellite imagery over the central and eastern Pacific ocean
show that the ITCZ often has thin cloud structures that correspond with
large meridional wind convergence retrieved by QuikSCAT (below).

The 120-140W average of the QuikSCAT zonal (u) and meridional (v)
velocities, as well as derived relative vorticity (ζ) and divergence (δ),
demonstrate the validity to use a zonally symmetric model (figure be-
low). Note the spike in both ζ and δ near 9N.

2.2 Dropsondes: EPIC (2001)

During the East Pacific Investigations of Climate (EPIC) field experiment,
dropsondes were released from both C-130 and P-3 aircraft. In the figure
below, dropsonde data from the P-3 illustrate shock-like structures in the
boundary layer zonal and meridional velocity fields near 8N.

The 0–700 m vertical average of the zonal and meridional velocities, as
well as the relative vorticity and divergence demonstrate the validity of
using a slab boundary layer model, shown below. Once again, there is a
thin region of significant ζ (6×f ) and δ.

Now that we have some observations of zonally elongated, shock-like
features in the boundary layer of the central and eastern Pacific ocean, we
simplify the equations introduced in section 2 to produce some analytical
solutions to slab boundary layer equations appropriate in the tropics.

3 Analytical slab boundary layer model

3.1 Model equations

Consider the zonally symmetric slab boundary layer equations on the
equatorial β-plane
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where τ = 40 hours is a constant surface drag e-folding time scale and
the boundary layer depth h = 1 km. Note that there is an embedded
Burgers’ equation in (6)! This set of equations is a simplified version of
(2)–(4), in that vertical exchange between the boundary layer and the air
above it terms involving w−, the u − ug term in the meridional momen-
tum equation, and horizontal diffusion are all neglected. Also, surface
drag is linearized. After integration along v, (5)–(6) simplify to

u(y, t) = u0(ŷ)e−t/τ + βv0(ŷ)
{
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e−t/τ , (8)

v(y, t) = v0(ŷ)e−t/τ , (9)

where t̂ = τ(1 − e−t/τ ), and the characteristic lines ŷ(y, t) are given im-
plicitly via integration of dy/dt = v by

y = ŷ + t̂v0(y). (10)

The initial condition is prescribed via the meridional velocity field as a
broad region of convergence
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centered at y0 = 1000 km, vmax = 4 m/s is the maximum initial merid-
ional velocity, and b = 400 km is the meridional half-width of the conver-
gence region. All other fields are zero initially.

3.2 Model results

The contoured u(y, t) and v(y, t) fields are displayed below along with
selected characteristic lines (ŷ = −200, 0, 200, ..., 2200 km). Each charac-
teristic line represents a line of constant ŷ, but variable u(y, t) and v(y, t).
When two characteristic lines intersect, two different values of u and v
are at the same location in time, denoting a shock in those fields.

The time of shock formation is calculated as the time when ∂v/∂t → ∞
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≈ 17 hours. (12)

Once the shock has occurred, the model becomes multivalued and os-
cillates wildly, therefore is it no longer valid. In the figure on the next
column to the right, we illustrate the boundary layer zonal (a) andmerid-
ional velocity (b), as well as the vertical velocity at the top of the bound-
ary layer (c), and the boundary layer relative vorticity (d) at t = 0 in blue
and at the time step before t = ts in red. Black lines indicate the change
in horizontal velocity in time at selected meridional locations. Notice the
symmetry of v and w and the asymmetry of u and ζ about y0. This is
due to the βy term in (5). The initial field of broad convergence thins out
over time due to v(∂v/∂y), until the horizontal velocities are discontinu-
ous and the derived fields→ ∞. If the initial meridional velocity field
is large enough and the initial meridional convergence is thin enough,
surface drag cannot overcome the shock.

3.2 Model results

4 Conclusions and Future Work

• Observations illustrate that the ITCZ in regions such as the central
and eastern Pacific are often zonal elongated and thin with shock-
like features.

• An idealized zonally symmetric slab boundary layer model on
the equatorial β-plane with an embedded Burgers’ equation in (6)
shocks in the zonal and meridional velocity fields after 17 hours,
and derived fields→ ∞. The model is invalid when t ≥ ts.

• The next step is to solve a more complete set of slab boundary layer
equations [(2)–(4)], which also has an embedded Burgers’ equation
in (3), and use both horizontal diffusion and shock capturing meth-
ods so that the solution is valid after the shock forms.
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