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Introduction Simulations Computational Aspects

. . . The GigalLES-2 configuration is a 2048x2048 gridcell domain in the
Marine Simulation - TWP-ICE horizontal with a grid spacing of 100m, and 256 layers in the
TWP-ICE domain-avg Time Mean of Cloud water and cloud ice vertical with grid spacing varying from 50m near the surface, to
100m, 256L TWP-ICE Hour 12 through 24 100m near the tropopause, to 300m at the model top of 27km. The
| | fine grid spacing requires that the predicted variables be updated
with a timestep of 2 seconds. The computation and memory
required by this configuration requires that the domain be
distributed across 1024 processors of a supercomputer. MPI
message-passing is used to share data between processors.

Cloud processes remain a substantial uncertainty in our knowledge of
the climate system. Large-eddy simulation (LES) provides the most
detailed treatment of clouds available by resolving enough of the Emnip\
large eddies that those unresolved are satisfactorily treated with Firta gy e
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simple theory. By performing LES over a large enough domain not ;3‘ T
only are individual clouds simulated in detail, but we can simulate vV |
dynamically-organized cloud systems over an area comparable to a I." A '. Gunn Poinis lp_m_stm. o
single grid-cell of a climate model. In our simulations, we use a - il == Lo
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cloud-resolving model (CRM) to represent a 205km x 205km domain L numx{l,.m‘;ﬂe[%_%@m _ .M.dd.e,,?,n.

, , Numerical methods that perform adequately on a small nhumber of
with a horizontal grid spacing of 100m (2048x2048 grid-cells in the .~. Redosondes
horizontal plane), and discretized into 256 vertical layers resulting in & o L dcrireat roire [ S
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computational processors may become bottlenecks on the very large
. Ad_glaiae River

. : S . Sosei —_— number of processors needed to perform a GigalLES simulation.
model variables predicted at one billion locations - hence the name Fuxstes |, /4 o N o0 om0 gm0 e om0 Message passing and 1/O are particularly susceptible to poor scaling.

. = . . { /./ Surfa-ce Precipitation mm/day Latent Heat Flux W/mA2 g/kg . .
GigalES. No field campaign could observe these systems in such i s Soambi Hot P Wi e g — omas —  zoom. 250 Two parts of SAM that scaled poorly were the elliptic solver and the
dEtaIL bUt GlgaLES S|mUIat|0n can serve as 4a Complementary source .F’Juﬁn_gﬁreek : SR ’ 3D array erte_ In the former a domaln decompOSItlon transpose that

of data from which we can develop our understanding of cloud T _ _ — cost O(n) messages per process, where n is the number of

Systems. i processes, was replaced with a scheme that cost O(nl/%), and the
Fourier transform package was replaced with FFTW, faster and
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The first GigaLES simulation was performed in 2009 (Khairoutdinov et Tropical Warm Pool - International ™ . SV . )
al 2009). It used an idealized representation of the large-scale Cloud  Experiment  (TWP-ICE) - B eliminating redundent computations. In the latter, the serial (one

. . ! | . P A rocess) write of the global 3D array was replaced with a distributed
: ironm e - - - simulations in progress. L e . it | | . AT pre¢ : : L
?.tlnos_pher.lc eth|rc()jn enltc., lrladlatlve heating ra’gcesk\]/\_/ere presbcrl!oed in 4 Locati 1p3099E 12 45 s, ot , T ‘» write using parallel NetCDF-4. This also eliminated the need for a
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moment microphysics treatment was used, and the model was run for Period — 18 Jan 2006 - 4 Feb 2006: " 1
one simulated day. They found a convergence of the statistical first few days for 100m grid spacing. AL
properties between 100m and 200m grid spacing. Now we wish to |
simulate deep-convective cases over both ocean and land, with more
sophisticated model parameterizations including computed radiation,
and forced with a time-varying atmospheric environment as
measured by field campaigns and over multiple diurnal cycles and
test the robustness of the previous results.

T v TR I P L SCALING - grid cells per process constant

Features enhanced and suppressed ‘%‘ TR MR e ol : 3 WRITE_FIELDS3D - Time per call PRESSURE_BIG - time
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CRM intercomparison specifications
in Fridland et al, 2010.
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Cloud-condensate field at hour 24 25m water vapor mixing ratio at hour 18.5, 100m
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Land SimUIation - MC3E O control - fft O optimized - fft

Model The addition of SiB3 to the model permits a simulation

SAM6.10.4 : This CRM predicts momentum using the anelastic where a number of land variables are predicted and Acknowledgements
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