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AT ® 3 hourly MJJA longwave cloud forcing (LWCF) band-pass
: 555’ L filtered for 12 to 48 hours from observations and six model
versions is used to develop a new EOF index in the central US.

® Observations are from 23 years (1984-2006) of the NASA
e s GEWEX Surface Radiation Budget (SRB) flux data.
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Figure 7. Composite event phase average of precipitation (colors, mm/d),
longwave cloud forcing (green, increments of 25 W/m?), and vertical
standard deviation of model heating tendency (orange, increments of 2.5 K/

d) in observations and models; right/45 (left/45) slashes indicate that
precipitation (longwave cloud forcing) is significant at 95% confidence.
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Model configurations:

Figure 2. IPCC AR4 multi-model mean
change in summer surface temperature | Y ¥ B
(top) and precipitation (bottom) for the |* . e — CAM3.0 T42, 26 levels N.A. 1 moment N.A.

A1B scenario. Stippling denotes where ; SP-CAM3.0 | T42, 26 levels 1x32, 4 km, NS |1 moment N.A.
models agree on the sign of the change. _J [TT] LI_ (mm day™) CAM3.5 1.9x2.5° 30 levels | N.A.
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1 moment N.A.

® Mesoscale convective systems (MCSs) form on the leeward || |SP-CAM3.5 |1.9x2.5%, 30 levels | 1x64, 1 km, EW |1 moment | N.A.
side of mountains worldwide in regions with low-level jets. CAM5.0  |1.9x2.5°, 30 levels | N.A. 2 moment |3 mode, 2 mom
SP-CAM5.0 | 1.9x2.5°%, 30 levels | 1x32, 4 km, NS |2 moment 3 mode, 2 mom
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® Most global climate models (GCMs) are unable to simulate
MCSs and disagree on the sign of future precipitation trends.

A regional LWCF leading EOF pair represents

eastward propagating nocturnal convection 6

® Nocturnal variance of LWCF (a) Standard deviation filtered nocturnal LWCF18
shows the MCS activity zone.

Propagating central US summer convection is| ® EOF analysis of meridionally
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® In the central US these storms can bring 60% of summer rain.

® Improving the simulation of MCSs in GCMs is critical for
projections of future climate change and rainfall patterns.

® Strong convective heating and rainfall anomalies overlapping
LWCF are seen in all versions of SP-CAM, but not in CAM.

® Magnitude, timing, and extent of LWCF /rainfall improve in 5.0.
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® Host GCM: NCAR Community Longiude I |
Atmosphere Model (CAM). 20 30 40

(c) Phase diagram tracing MCS events

° _ CAM3.0
200x more expensive than

CAM, but better scalability.

® Developed by CMMAP, an 137, Xe : :
NSF STC, _ org. ST 1 °  EwmBegn ¢ EvemEnc Conclusions: SP is a useful analog to nature 10
WWW.CMMap.oTs. Multiscale Modeling Framework FigureEO6F. (a) Phase diagram of PC time series colored by percent index value 5

occurrence. (b) Longwave cloud forcing (colors, W/m?) and precipitation | ® A new EOF based index compactly evaluates the mid-latitude
(contours, mm/d) diurnal cycles for index values greater than 0.25. (c) Phase MCS signal in conventional and super-parameterized GCMs.

® SSTs and sea-ice BCs are ~80% adjusted to the 4x CO, forcing.

SP-CAM3.0 ® SP-CAM5.0 composite MCS events become more intense with

higher CO,: a 25 W/m? increase in LWCF magnitude, greater
areal extent, increased precipitation, and persist for longer.

Why a Wheeler and Hendon [2004] type EOF

index for central US mesoscale convection? 1 :ﬁagram of EOF PC time sePies tracing M(.IS events based on selection criteria. | o US MCS physics is a robust effect of super-parameterization.
SP-CAM3.5 has the highest amplitudes, CAM3.5 has the lowest.

® The eastward slant in Figure 6b shows nocturnal propagating . | | |
convection in SRB and SP-CAM. SP-CAMS5.0 agrees the best MCS events may become more intense with climate change.
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® The signal is most realistic in 5.0 with two-mom microphysics.
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® The MJO index isolates eastward |/ s '-I- - — 1. At least three (9 h) consecutive index amplitudes greater
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