Entrainment rates for deep convective cores found by exploiting the linear relationship of vertical velocity to buoyancy Ian B. Glenn and Steven K. Krueger

Introduction

Motivations

- What determines the distribution of cloud top heights (Arakawa 2004)?
- The Giga-LES is especially well suited to studying entrainment in deep convection because of its large domain and turbulence resolving 100 m horizontal resolution.

The Giga-LES

Figure 1. SHDOM visualization of light scattering in liquid and ice water mixing ratio fields from the Giga-LES. The horizontal domain visualized above is 20 km x 20 km, about 1/100th of the total domain area.

Identify 3D cloudy updrafts

- Contiguous volumes definition similar to that used in Lemone and Zipser (1980) cloud water/ice mixing ratio $(q_n) > 0.1$
- We use a cloudy updraft core Vertical velocity (w) > 1 m/s and g/kg
- Largest volume is equivalent to a cube 10 km on each side

Figure 2. Log-log frequency distribution of 3D cloudy updraft volumes. We ignore the group of volumes to the left of the dashed black line as they are composed of only a few model grid points. The cut-off volume is that of a cube 450 m on each side.

Partition cloudy updrafts into two groups

•Life-cycle stage of the convection?

•Low cloud bases: growing and mature convective updrafts • Elevated cloud bases: dissipating stage of updraft •Define "active" as 3D cloudy updrafts with cloud base < 1 km

Figure 3. Log frequency of 3D cloudy updrafts vertical extent vs. cloud base height. The clouds outlined in the lower black rectangle are representative of active cumulus convection, with bases below 1 km.

(SAM) 2009)

- System for Atmospheric Modeling
- Horizontal domain of 204.8 km x 204.8 km
- $\Delta x = \Delta y = 100 \text{m}$
- $\Delta z = 50 \text{m to } 100 \text{m}$
- 10^9 grid cells
- A "virtual field
- campaign"
- (Khairoutdinov et al.
- Validated against observations (Lemone and Zipser 1980)

Best fit entrainment rate given B and W

Parcel Model for Vertical Velocity

- Consider the buoyancy and vertical velocity profiles for each active 3D cloudy updraft
- cloudy updraft profile of vertical velocity?

Using level average density buoyancy from cloudy updraft core

Cloudy Updraft Vertical Velocity Parcel Model Vertical Velocity

Figure 4. Profiles of 3D cloudy updraft average loaded buoyancy (black), unloaded buoyancy (dashed black), and vertical velocity (red). Best fit parcel model vertical velocity is plotted in blue.

Entrainment rate λ from best-fit parcel model of cloudy updraft W

Figure 5. On the left, frequency vs cloud top height of parcel model entrainment rate that produces the best fit to the cloud W profile. On the right, the average precipitating condensate for the clouds in each λ and cloud top height bin.

- Maximum cloud top height at a particular λ decreases with increasing λ
- What explains the range of cloud top heights for the same λ ? Life-cycle stage? Are those clouds still growing?

University of Utah, Salt Lake City, Utah

- Four example cloudy updrafts are shown, note different cloud top heights
- Cloud average W profile in red
- Many possible W profiles are calculated for a range of λ , best fit plotted in blue
- "Unloaded" thermal buoyancy black dashed
- "Loaded" density buoyancy B solid black

• Average precipitating condensate is a strong function of cloud top height, but not of λ

Summary

profile in the active clouds for λ , given an estimate of drag

• Using the known drag as a "best case" gives encouraging results

References

Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Clim., 17, 2493-2525. Heus, Thijs, Gertjan van Dijk, Harm J. J. Jonker, Harry E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by lagrangian particle tracking. J. Atmos. Sci., 65, 2581–2597. Khairoutdinov, M., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1. LeMone, Margaret A., Edward J. Zipser, 1980: Cumulonimbus Vertical Velocity Events in GATE. Part I: Diameter, Intensity and Mass Flux. J. Atmos. Sci., **37**, 2444–2457. Lin, C., and A. Arakawa, 1997: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 1027-1043.

ACKNOWLEDGEMENT. This material is based upon work supported by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement No. ATM-0425247.

• 3D cloudy updrafts are defined in a large domain LES of deep convection. We select those with cloud base < 1 km as "active clouds" • We show that a simple entraining parcel model for each active cloud can partially explain the distribution of cloud top heights

• After Alison Stirling of the Met office and others, we note average vertical velocity profile is proportional to average unloaded buoyancy

• Using this estimate for unloaded buoyancy, dual doppler radar

retrievals of vertical velocity could theoretically then be used to solve