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Motivation 4.5 Results: Ozone Seasonality 4.5*

Surface ozone pollution will be a concern
in the coming decades. We analyze
modeled surface ozone’s seasonal cycle
variability, long-term variability, and its
correlation to atmospheric circulation.
We will show which effects are due to
changing emissions of ozone precursors
and which are due to meteorological
changes. oom
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Conclusions I:i

*With and without changes in emissions,
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mean ozone d ecreases over the Pa CIfIC Figure 2: 4.5 seasona/_ cy.cle changes mc./ud/ng.s_hort and long-term phas.e shifts (Ap) and changes in amplitude. Negative values in A denote shift of the Figure 3: 4.5* seasonal cycle changes including short and long-term phase shifts (A@) and changes in amplitude.
seasonal cycle to earlier in the year, while positive values represent a shift to later.

with climate change. 4.5* Phase Change 2006—2100

* RCP 4.5: Phase shift changes drastically over the continents, peaking over two months earlier in e
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surface ozone over the Pacific. nc?t.s ifting, but rather is decreasing in amplitude such that the old maxima become the new L | -
minima. By 7
* Circulation could have a large role in affecting the i o

*With and without changes in emissions,  RCP 4.5*: Seasonal cycle shifts due to climate change. The small positive changes in amplitude seasonal cycle of ozone, but more research would ey
ozone seasonality changes. in 4.5* confirm that this is a true shift rather than a case of amplitude changing the maxima of be required to know to what degree.

th | Figure 4: 4.5* long-term seasonal cycle. Wind
€ CycCie. contour in red. Colorbar adjusted to show detail.

Amplitude of the seasonal cycle
depends on emission changes.

Background Results: Ozone and the Jet Stream
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Sl eln Changes and Cllmate Change' Nas a connection to ozone In the PaCIﬁC' Figure 7: Ensemble 1 of 4.5* and 4.5 zonally averaged mean ozone
* Jet speed is correlated with the maximum amount of mean ozone, with a percentage of variance vs. ozone latitude. Dotted lines are the jet latitude for each decade.

Three-member ensembles averaged together.

explained equal to 58% (Fig. 6). Relationship holds up for both 4.5 and 4.5*.

_ . In both 4.5 and 4.5* RCPs, mean ozone
 Both jet speed and amount of ozone are decreasing between 2006 and 2100.

decreases by decade over the Pacific.




