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Progress	  report:
Development	  of	  the	  Global	  Cloud	  Resolving	  Model

UZIM (Unified Z-grid Icosahedral Model)	  development:

The	  hybrid	  isentropic-‐sigma	  ver9cal	  coordinate	  (gvc)	  version	  of	  
the	  quasi-‐hydrosta9c	  UZIM	  (UZIM-‐gvc)	  has	  been	  completed.	  

The	  hybrid	  sigma-‐pressure	  ver9cal	  coordinate	  version	  of	  the	  
quasi-‐hydrosta9c	  UZIM	  (UZIM-‐sigma)	  has	  been	  completed.	  

SUZI (Superparameterized Unified 
Z-grid Icosahedral Model)	  has	  been	  
constructed	  and	  tested	  in	  an	  
aquaplanet	  simula9on	  by	  Don	  
Dazlich.
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UZIM	  with	  the	  hybrid	  sigma-‐pressure	  
and	  hybrid	  isentropic-‐sigma	  verBcal	  

coordinates
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Hydrid sigma-pressure vertical coordinate

Ordinary sigma Hybrid sigma-pressure

σ ≡ p − pT
pS − pT

PGF	  errors
VA	  errors

σ ≡ G p, pS( )

No	  PGF	  errors
No	  VA	  errorsflow

flow

flow

flow
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Hydrid isentropic-sigma vertical coordinate

less isentropic more isentropic

ζ ≡ F θ ,σ( ) σ ≡ G p, pS( )
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ζ ≡ F θ ,ς( ) = θmin + θ −θmin( )g ς( )− ∂θ ∂ς( )min ς −ςT( )g0 − 1α g ς( )−1⎡⎣ ⎤⎦
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(see next page)

and

and

∂G
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⎝⎜

⎞
⎠⎟ pS

[see next page for            ]

Derivatives

Generalized coordinate definition

Generalized                        vertical coordinateζ = F θ , p, pS( )

1
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ς ≡ G p, pS( ) = pS − p
pS − pT

∂G
∂pS

⎛
⎝⎜

⎞
⎠⎟ p

= p − pT
pS − pT( )2

∂G
∂p

⎛
⎝⎜

⎞
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= − 1
pS − pT

Derivatives

1–Traditional sigma                  vertical coordinateς ≡ G p, pS( )

Definition

and

2
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ς ≡ G p, pS( ) = 1
2
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Derivatives

2–Generalized sigma                    vertical coordinateς ≡ G p, pS( )
Definition of hybrid p–sigma coordinate

and

3
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p ∗( ) = p n( )

+δ t ×∇⋅ mv( ) n+1 2( )
ζ =ζT

ζ

∫ dζ

m !ζ( ) = Ftarget −F θ̂ , p̂, pS
n+1( )( )
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m !ζ( ) p̂ = p̂ +δ t × m !ζ( )

θ̂ = θ ∗( ) p̂ = p *( )

θ n+1( ) = θ̂ p n+1( ) = p̂

From thermodynamic equation From continuity equation

θ ∗( ) :Pot. temp. after hor. adv. p ∗( ) :Pres. after hor. adv. pS
n+1( ) : Surf. pres. for next time step

m n+1( ) = − ∂p
∂ζ

⎛
⎝⎜

⎞
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n+1( )

and

Set before iteration: and

Values for next time step: m !ζ( ) n+1( )
= m !ζ( ) and,,

Diagnosis of vertical mass flux and completion of predictions of pot. temp, pressure and mass

Diagnosis of vertical mass flux and predictions of potential temperature, pressure and 
mass in the generalized                        vertical coordinateζ = F θ , p, pS( )

Iteration:

pS
n+1( ) = pS

n( )

+δ t ×∇⋅ mv( ) n+1 2( )
ζ =ζT

ζ S∫ dζ
θ ∗( ) = θ n( ) −δ t × v ⋅∇ζθ( ) n+1 2( )

+δ t × Q cpπ( ) n( )

4

Tuesday, August 5, 14



p ∗( ) = p n( )

+δ t ×∇⋅ mv( ) n+1 2( )
ς=ςT

ς

∫ dς

m !ς( ) =
Gtarget −G p ∗( ) , pS

n+1( )( )
δ t × ∂G

∂p
⎛
⎝⎜

⎞
⎠⎟ pS

n+1( )

∗( )

From continuity equation

p ∗( ) :Pres. after hor. adv. pS
n+1( ) : Surf. pres. for next time step

Values for next time step: m !ς( ) n+1( ) = m !ς( )

Diagnosis of vertical mass flux

Diagnosis of vertical mass flux in the generalized sigma                    vertical coordinateς = G p, pS( )

pS
n+1( ) = pS

n( )

+δ t ×∇⋅ mv( ) n+1 2( )
ς=ςT

ςS∫ dς

5

(Coordinate is defined by target sigma) 
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p ∗( ) = p n( )

+δ t ×∇⋅ mv( ) n+1 2( )
ς=ςT

ς

∫ dς

From continuity equation

p ∗( ) :Pres. after hor. adv. pS
n+1( ) : Surf. pres. for next time step

Diagnosis of target pressure (pressure required by coordinate definition)

Diagnosis of vertical mass flux in the generalized sigma                    vertical coordinateς = G p, pS( )

pS
n+1( ) = pS

n( )

+δ t ×∇⋅ mv( ) n+1 2( )
ς=ςT

ςS∫ dς

6

ptarget = Ap00 + B pS
n+1( ) − pT( )

Diagnosis of vertical mass flux

m !ς( ) = ptarget − p
∗( )

δ t

Values for next time step: m !ς( ) n+1( ) = m !ς( )

(Coordinate is defined by target pressure) 

Tuesday, August 5, 14



G p, pS( )−C = ∂G
∂p

⎛
⎝⎜

⎞
⎠⎟ pS

p + ∂G
∂pS

⎛
⎝⎜

⎞
⎠⎟ p

pS − pT( )

C ≡ G p 0( ), pS
0( )( )− ∂G

∂p
⎛
⎝⎜

⎞
⎠⎟ pS

p + ∂G
∂pS

⎛
⎝⎜

⎞
⎠⎟ p

pS − pT( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0( )

G p, pS( )−C
∂G ∂p( )pS

= p +
∂G ∂pS( )p
∂G ∂p( )pS

pS − pT( )

p = 1
p00

G p, pS( )−C
∂G ∂p( )pS

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A
! "### $###

0( )

p00 + −
∂G ∂pS( )p
∂G ∂p( )pS

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B
! "## $##

0( )

pS − pT( )

p = Ap00 + B pS − pT( )

Definitions

p = Ap00 + B pS − pT( )How to obtain                                    :

The superscript (0) denotes a reference state, such as initial

p = Ap00 + B pS − pT( )Derivation of
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Sigma GVC (alpha=1) GVC (alpha=8)

less isentropic more isentropic

Sigma and hybrid isentropic-sigma model results

Surface potential temperature at Day 10
Evolution of extratropical disturbances in a broad baroclinic zone
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SUZI aquaplanet simulation
Lagged correlations of precipitation (color) 

and zonal wind (contour) along Equator

Dispersion of EQ waves

GCM and CRMs in SUZI
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G5

G6

G7

G8

Shallow-water test case Galewsky et al.

a numerical integration, in which the grid points on the
raw grid are connected to each other with springs. Non-
uniform horizontal resolution can be achieved by allow-
ing the ‘‘spring constant’’ to vary in space, and this is
a major motivation for the approach. Here we consider
only spatially uniform spring constants.
We repeated the calculations described by Tomita

et al. (2001) and Tomita et al. (2002) with the two values
of the tuning parameter, k5 0:8 and k 5 1.1, which cor-
respond to the tuning parameter b in the original pa-
pers. The notation is changed to avoid confusion with b
used in section 3c. Larger values of k give more ho-
mogeneous distributions of grid points. It appears that
there is a practical upper limit for k; our algorithm was
stable only up to k 5 1.1, while the highest value of k
used by Tomita et al. (2001, 2002) was 1.2. We stopped
the integrations when the maximum displacement of
grid points between the time steps becomes less than or
equal to 0:33 1024 m. After the spring grid points were

located, Tomita and colleagues selected the centroids
of the triangular regions as the cell corners. In our
implementation, on the other hand, the cell corners
were obtained by using the Voronoi principle, as for the
tweaked grid.
Table 2 shows some basic properties of the spring grid,

obtained using k5 1.1 and raw grids up toG12. Through
the spring dynamics, the ratio of the smallest to the
largest grid sizes (fifth column) and the ratio of the
shortest to the longest grid distances (fourth column) do
not change significantly. Although not shown here, the
cell sizes are distributed much more smoothly on the
spring grid than on the unoptimized and tweaked grids,
which are shown in Table 1. There is an improvement in
the maximum of l/d (last column) compared to the raw
grid although the improvement is not as great as that
obtained by tweaking.
Figure 10 shows L2- and L‘-norm errors for each

operator on the spring grid, obtained with k 5 1.1 and
k 5 0.8. We apply the spring dynamics optimization up
to G10, which is sufficient for a comparison of the results
with those from the raw and tweaked grids. Truncation
errors are reduced overall, compared to the raw grid,
with both k 5 1.1 and k 5 0.8. The L2-error (or mean
error) convergence rate of the divergence operator is
almost second order, and is between the first and second
orders for the Laplacian and Jacobian operators. There
is a small improvement in the mean error for k 5 1.1,
relative to k 5 0.8. The L‘-error (or maximum error)
convergence rate of the three operators is less than first
order, but it is still quite a bit better than the conver-
gence rate on the raw grid. Compared to k5 0.8, the use
of k5 1.1 appearsmore effectively reduce themaximum
errors and the convergence rates, although it has little
effect on the mean error. The convergence rates are

FIG. 7. An illustration of the tweaking algorithm on a couple of
neighboring cells. The cell centers (solid black circles) are moved
to their new positions (gray circles) to satisfy l 5 0. The cell wall
already bisects the line connecting the cell centers at a right angle
because of the use of Voronoi corners.

TABLE 1. Some properties of the tweaked and raw grids. The raw grid properties are shown in the parentheses. Averaged grid distance is
the arithmetic average of the maximum and minimum of grid distances.

Grid
No. of grid
points N

Avg grid
distance ‘ (km)

Ratio of shortest to
longest grid distance (%)

Ratio of smallest to
largest grid size (%) Max of l/d (%) Avg l/d (%)

G0 12 6699.1 100 (100) 100 (100) 0.0 (0.0) 0.0 (0.0)
G1 42 3709.8 88.1 (88.1) 88.5 (88.5) 9.9714 (9.9714) 5.0061 (5.0061)
G2 162 1908.8 82.0 (84.8) 91.6 (84.2) 5.8020 (9.9718) 3.6172 (3.6700)
G3 642 961.4 79.8 (83.9) 94.2 (76.3) 3.0933 (9.6888) 2.0437 (2.1255)
G4 2562 481.6 79.0 (83.7) 94.8 (74.1) 1.6020 (9.6758) 1.0699 (1.1363)
G5 10 242 240.9 78.7 (83.6) 95.0 (73.6) 0.8168 (9.6726) 0.5447 (0.5867)
G6 40 962 120.4 78.6 (83.6) 95.2 (73.4) 0.4128 (9.6718) 0.2743 (0.2980)
G7 163 842 60.2 78.6 (83.6) 95.2 (73.4) 0.2075 (9.6714) 0.1375 (0.1501)
G8 655 362 30.1 78.6 (83.6) 95.3 (73.4) 0.1041 (9.6715) 0.0688 (0.0753)
G9 2 621 442 15.0 78.6 (83.6) 95.3 (73.4) 0.0522 (9.6715) 0.0344 (0.0377)
G10 10 485 762 7.53 78.6 (83.6) 95.3 (73.4) 0.0260 (9.6715) 0.0172 (0.0189)
G11 41 943 042 3.76 78.6 (83.6) 95.3 (73.4) 0.0131 (9.6715) 0.0086 (0.0094)
G12 167 772 162 1.88 78.6 (83.6) 95.3 (73.4) 0.0065 (9.6715) 0.0043 (0.0047)
G13 671 088 642 0.94 78.6 (83.6) 95.3 (73.4) 0.0056 (9.6715) 0.0021 (0.0023)
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Grid            Number of grid points      Grid distance (km) 

(Wavenumber-6 perturbation)
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From the pole problem to the wavenumber-5 problem 
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Grids
Longitude-Latitude grid Icosahedral hexagon-pentagon grid

North Pole 
(singularity) Pentagon Pentagon

Pentagon

The grid of UZIM, NICAM, etc.The grid of CAM-FV, etc.
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∂η
∂t

= −∇H ⋅ ηvψ( )−∇H ⋅ ηv χ( ) + ⋅⋅⋅
= J η,ψ( )−∇H ⋅ ηv χ( ) + ⋅⋅⋅

∂D
∂t

= −∇H ⋅ k ×ηvψ( )−∇H ⋅ k ×ηv χ( ) + ⋅⋅⋅
= ∇H ⋅ η∇Hψ( ) + J η,χ( ) + ⋅⋅⋅

vψ ≡ k ×∇Hψ v χ ≡ ∇H χ

∇H
2ψ = ζ ∇H

2 χ = D

η ≡ζ + f ζ ≡ k ⋅∇H × vψ

∂v
∂t

= −k ×ηv + ⋅⋅⋅
∂η
∂t

= −∇H ⋅ ηvψ( ) = J η,ψ( )

vψ ≡ k ×∇Hψ

∇H
2ψ = ζ

η ≡ζ + fη ≡ζ + f

ζ ≡ k ⋅∇H × v

Arakawa C-grid Randall Z-grid Grid of Arakawa Jacobian

Vorticity and Divergence equations Barotropic vorticity 
equation

Momentum
 equation
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C- and Z-grids in linearized systems

True 
dispersion

Thin layer solutionThick layer solution

C-grid 
dispersion

Z-grid 
dispersion

Good

Good Good

Bad

Overall good results 

Mixed results

Linearized system tests the surface wave propagation, and thus only the divergent 
component of velocity plays a role.

Taken from Randall 1994
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C-grid Z-grid

Vorticity is unverifiable Divergence is verifiable

Vorticity is unverifiable Divergence is verifiable

Vorticity is a product

Vorticity is a product Small chance for computational mode 

Small chance for computational mode 
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C-grid Z-grid

Vorticity is unverifiable Divergence is verifiableVorticity is a product High chance for computational mode 

Vorticity is unverifiable Divergence is verifiableVorticity is a product
Small chance for computational mode 
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Rotational wind error

Enstrophy and kinetic energy 
conserving interpolation Quadratic interpolation

Max error is 28% 
of true wind

Max error is 2.1% 
of true wind

Interpolation of streamfunction to the corners from centers

(Arithmetic average) (Fitting a curvy surface)
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Mitigation

Improved interpolation of the 
streamfunction to the corners

First compute the tangential 
component of rotational velocity. 
Then interpolate to obtain normal 
component

Improve the accuracy of the normal component of rotational velocity
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schemes to verify their robustness and to confirm that the
computation of Am is not a major source of scheme error.

2. Transport scheme

a. Numerical approach

To integrate the discrete version of (2) we must de-
termine the transport velocity V, the fluid density r, and
the scalar mixing ratio c. In models solving the hydrostatic
primitive equations or the Navier–Stokes equations, the
time-dependent velocity and density fields would be
computed by solving their own transport equations. We
will assume that the mass fluxes through the cell edges are
given along with the velocities; thus, our finite-volume
solution to (2), following L02 and M07, reduces to de-
termining the area-averaged value of the mixing ratio c in
the parallelogram with area Am (the shaded area) given
in the left-hand panel of Fig. 1. The time-integrated mass
flux in the summation in (2) is given by dei

(rV ! nei
)c Dt,

where c is the area-averaged mixing ratio. Our procedure
does not directly integrate the scalar mass dei

(V ! nei
)rc Dt

over this area. We choose to evaluate the area-average
mixing ratio c so that we can maintain consistency be-
tween the scalar mass conservation equation and the mass
conservation equation. If the mass conservation equation
is written in the form in (2) (with c [ 1) and integrated
with the same time step, the scalar mass could be directly
integrated but a higher-order quadrature scheme would
be needed for the quadratic quantity (rc; see LR05).

In L02, M07, LR05, Yeh (2007), and herein, the area-
averaged value is computed by integrating polynomials
representing the spatial distribution of c over the mass
flux area (Am in Fig. 1). For a first-order polynomial

c 5 c0 1 cxx 1 cyy. (3)

M07 uses a least squares method to determine the co-
efficients of the polynomial following Stuhne and Peltier
(1996). A least squares fit to a quadratic polynomial is
used to obtain the coefficients for the linear polynomial
in (3) by M07 and for the results presented herein. Other
approaches are possible, including using the Stokes
method (Tomita et al. 2001) or by fitting planes to the
cell-averaged values lying at the vertices of the dual grid
(triangles) whose centers are the vertices of the hexagons,
and producing cell-averaged values of cx and cy by aver-
aging these vertex values (LR05; Yeh 2007). These ap-
proaches produce identical results for perfect hexagons on
a plane, but may produce different results on the imper-
fect hexagonal grid on the sphere. We have found very
little difference in the absolute errors or error convergence
rates in our tests using the different approaches, and we
have chosen to use a least squares fit to determine the
coefficients because it is easily extended to higher-order
polynomials.

For finite-volume transport schemes that compute mass
fluxes by integrating over cell-based reconstructions of the
scalar mass, it is important that the integral of the scalar
mass over the cell equal the mass in the cell, in this case the
(predicted) cell-averaged mass times the cell area, as is the
case, for example, in the piecewise parabolic method
(Woodward and Colella 1984) and the flux-form Crowley
schemes (Tremback et al. 1987). For the first-order re-
construction schemes using (3), if the cell center is the cell
center of mass, and if c0 is set equal to the cell-averaged
value, this constraint is automatically satisfied. For higher-
order polynomials this constraint will not be satisfied unless
it is part of the polynomial construction because integrals
of the higher-order terms over the cell area will not equal
zero. In our approach we compute the polynomial co-
efficients using a least squares fit after which we adjust the
constant term c0 such that the constraint is satisfied. L02
also constructs the polynomial using the least squares fit
but there the constraint is satisfied by including it directly,
as a constraint, in the least squares procedure. We conclude
that both approaches to satisfying the constraint are valid
because our results are very similar to those of Lashley.

In L02’s weighted least squares procedure for fitting
the polynomial, he weights the fit to the center point
(point 0 in Figs. 1 and 2) by a factor of 1000 relative to
the surrounding points. We have experimented with this
weighting for the second-, third-, and fourth-order poly-
nomial fits and verified that the weighting is necessary;

FIG. 2. Schematic showing a grid centered about cell 0. The
dark-shaded cells (1–6) are used in the reconstruction of polynomials
less than or equal to order 2. The lighter-shaded cells (7–17) are used
in the reconstruction of polynomials on the order of 3 and 4.
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if all points are weighted equally the solution accuracy
is dramatically degraded. We have also verified that no
obvious weighting of the nearest neighbors for the third-
and fourth-order polynomials (i.e., points 1–6 in Fig. 2)
produces better solutions compared to only weighting the
center point, again verifying the results of L02. Guided by
these results, we have chosen to require that c0 be the cell-
averaged values for the least squares fit polynomial so-
lution, and we accomplish this by writing the polynomial
in terms of the difference from the cell-centered value
(Majewski et al. 2002). For example, in the case of the
second-order polynomial

c 5 c0 1 cxx 1 cyy 1 cxxx2 1 cxyxy! cyyy2, (4)

we set c0 5 c0 and construct the least squares problem
using the following polynomial:

c!c0 5 cxx 1 cyy 1 cxxx2 1 cxyxy 1 cyyy2. (5)

In (5) there are 5 unknowns and 6 neighbor points to fit
(or 5 in the case of a pentagon), hence the least squares
problem is well posed for cells possessing $5 edges. In
practice we observe no discernible difference using (5)
or a weighted least squares approach using (4) and a
weight of 1000 for the center point as in L02. We will also
examine results using the fourth-order polynomial:

c!c0 5 cxx 1 cyy 1 cxxx2 1 cxyxy 1 cyyy2 1 cxxxx3

1 cxxyx2y 1 cxyyxy2 1 cyyyy3 1 cxxxxx4

1 cxxxyx3y 1 cxxyyx2y2 1 cxyyyxy3 1 cyyyyy4, (6)

which has 14 unknowns. For a mesh constructed of
hexagons there are 18 points to fit and for a pentagon
surrounded by hexagons there are 15 points to fit, so the
least squares problem is well posed for the hexagonal–
icosahedral grid.

We note here that we are treating the cell-averaged
scalar values as point values in our polynomial fit, which
is second-order accurate. We could choose to constrain
the cell-integrated polynomial to reproduce the cell-average
value for each cell used in the polynomial reconstruction
rather than the cell-center point values (H. Weller 2010,
personal communication). We would still need to strongly
weight the central-cell constraint in the least squares fit

given its importance as indicated by L02 and in our in-
vestigations. Given the error associated with other aspects
of this scheme, such as the area determination and in the
projection from sphere to tangent plane (see section 2b),
we would not expect to observe increased accuracy using
this approach in general applications.

The integration of the polynomial over the parallelo-
gram (the shaded area in the left-hand panel of Fig. 1)
requires numerical quadrature. For the first-order poly-
nomial this requires evaluating the polynomial value at
the center of mass of the parallelogram. We use a 2D ten-
sor product of 1D Gauss quadrature points and weights
for integrating the higher-order polynomials. This re-
quires evaluating the polynomial at n2 points for a
polynomial of order n. The 1D weights and quadrature
points are given in Table 1 (also see Stroud 1971).

b. Integration sequence

To integrate (2) on the sphere, we begin by defining a
2D tangent plane that intersects the sphere at the center
of the cell for which we are producing a reconstruction.
The neighboring points used in the reconstruction are
projected onto the tangent plane using (preserving) the
great-circle distances between the cell-center point and
the neighbor points, and using (preserving) the angles at
the cell-center point defined by the great-circle arcs be-
tween these points and the cell-center point. L02 ex-
perimented with a number of approaches for projecting
the grid onto a tangent plane and found that the results
were relatively insensitive to the options he investigated.

For each cell reconstruction, our least squares fit poly-
nomial is defined by

Pf 5~s,

where

s 5 [c0, . . . , cm]T : Cell-averaged scalar mixing ratios, dimension m.

~s 5 [c0, . . . , cm]T : Least-squares-fit cell-averaged scalar mixing ratios, dimension m.

f 5 [f 0, . . . , f n]T : Coefficients for the polynomial fit ( f 0 5 c0, f 1 5 cx, . . . ,), dimension n.

P : Polynomial matrix, P is (m 3 n).

TABLE 1. Gauss quadrature points and weights for integrating
a function over the interval 21 # x # 1.

Order xi wi

First 0 2
Second 6

ffiffiffiffiffiffiffi
1/3
p

1
Fourth 6(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3! 2

ffiffiffiffiffiffiffi
6/5
pp

)/7
6(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1 2

ffiffiffiffiffiffiffi
6/5
pp

)/7
(18 1

ffiffiffiffiffi
30
p

)/36
(18!

ffiffiffiffiffi
30
p

)/36
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ABSTRACT

The finite-volume transport scheme of Miura, for icosahedral–hexagonal meshes on the sphere, is extended
by using higher-order reconstructions of the transported scalar within the formulation. The use of second- and
fourth-order reconstructions, in contrast to the first-order reconstruction used in the original scheme, results
in significantly more accurate solutions at a given mesh density, and better phase and amplitude error
characteristics in standard transport tests. The schemes using the higher-order reconstructions also exhibit
much less dependence of the solution error on the time step compared to the original formulation.

The original scheme of Miura was only tested using a nondeformational time-independent flow. The de-
formational time-dependent flow test used to examine 2D planar transport in Blossey and Durran is adapted
to the sphere, and the schemes are subjected to this test. The results largely confirm those generated using the
simpler tests. The results also indicate that the scheme using the second-order reconstruction is most efficient
and its use is recommended over the scheme using the first-order reconstruction. The second-order recon-
struction uses the same computational stencil as the first-order reconstruction and thus does not create any
additional parallelization issues.

1. Introduction

Equations describing the transport of fluid constituents
on the sphere arise in many applications. The spherical
geometry introduces a number of complications into the
discrete solution of transport equations or, more gener-
ally, into fluid-flow solvers. These discretizations require
some grid or mesh decomposition of the spherical sur-
face, and a number of options have been explored
(Williamson 2007). In this paper we present an extension
of the finite-volume transport scheme of Miura (2007,
hereafter M07) for use on icosahedral (hexagonal) meshes,
and we subject the original and extended schemes to a
broader range of tests. Grids based on hexagons allow a

more uniform discretization of the sphere compared to
the latitude–longitude grids, but the spherical icosahedral
grids are nonuniform. Finite-volume methods can be di-
rectly applied on nonuniform grids, but extensions of these
approaches to greater than second-order accuracy is dif-
ficult, and it is these higher-order accurate extensions that
we pursue here.

Within the finite-volume approach, we begin with the
flux (conservative) form of the transport equation:

›(rc)

›t
5!$ "Vrc,

where r is the fluid density, c is the mixing ratio of some
constituent in the fluid, and V is the fluid velocity. In-
tegration in space over the control volume (i.e., the finite
volume) and in time over the time step, along with the
use of Stokes theorum, yields

Ai(
crc

t1Dt!crc
t
)i 5!

ðt1Dt

t

ð

Gi

(V " ni)rc dG dt, (1)
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where ^ indicates a volume-averaged quantity, G is the
cell boundary, ni is the unit vector normal to the cell
boundary, and Ai is the cell area. Applied to a discrete
mesh, (1) can be written as

d(rc)
t1Dt

i 5 d(rc)
t

i !
1

Ai

!
nei

dei
(V " nei

)rc Dt, (2)

where nei
refers to the edges of the control volume i (in

our case the edges of the icosahedral mesh cell i) and dei

is the length of edge e for cell i. No approximations have
been made developing (2) because we have not yet spec-
ified how we evaluate the term in the summation.

The second term on the right-hand side of (2) is the
sum of the fluxes through the control volume edge. M07
approximates the scalar mass flux dei

(V " nei
)rc Dt as

schematically described in the left-hand panel of Fig. 1.
The mass flux is approximated by the mass contained
within the shaded area Am. The area Am is the area
swept out by the edge moving at a constant velocity 2V
over a time period Dt. Evaluation of the mass integral
over the area is accomplished by first fitting a first-order
polynomial to represent the mass distribution in each
cell, using the cell-averaged values of a given cell and its
neighbors, as depicted in Fig. 2. The integral of the first-
order polynomial over Am equals the shaded area times
the polynomial evaluated at the center of mass of Am.
M07 uses the polynomial even when the shaded area
extends to regions outside the upstream cell.

The overall accuracy of this scheme is limited by the
reconstruction of the scalar mass in a given cell and by
the computation of Am, and M07 approximations are
nominally second-order accurate. To increase the for-
mal order of accuracy, both the reconstruction and the
computation of Am would have to be improved. In
applications, however, error from one component of the

scheme may dominate that from another; hence, possi-
ble improvements can follow one of two paths. One can
relax the assumption of a constant velocity V on a given
cell edge. Lipscomb and Ringler (2005, hereafter LR05)
and (Yeh 2007) both assume a linear velocity distribu-
tion along a cell edge, but use a linear polynomial fit
to the mass as in M07. Contrary to M07, both integrate
these polynomials only within the cells for which they
are constructed. This approach is schematically depicted
in the right-hand panel in Fig. 1. As might be expected,
the LR05 integration is significantly more complex and
costly. Comparison of the results from the two approaches
(M07, and LR05 and Yeh 2007) in simple tests indicates
that they produce results of similar accuracy. Indeed, M07
presented his scheme as a less-expensive simplification of
LR05 and Yeh (2007). Alternatively, one can increase the
order of the polynomial used to represent the scalar mass
distribution in a given cell to improve the approximation.
In his Ph.D. dissertation, Lashley (2002, hereafter L02)
pursued this approach using second- and fourth-order
reconstructions of the scalar mass field and using the same
scalar mass flux area determination as M07. In Lashley’s
work, which predated M07, LR05, and Yeh (2007), first-
order reconstructions were not considered, but his test
results showed that the scheme using the fourth-order
reconstruction produced significantly more accurate re-
sults compared to the scheme using the second-order re-
construction, and that the fourth-order-based scheme
appeared to be more efficient.

In this paper we present results from a scheme using
second- and fourth-order reconstructions of the scalar
mass field that are very similar to those used in L02, and
we compare these results to those generated using the
first-order reconstruction of M07. We verify the main
results of M07 and L02 and present results from more-
demanding tests to further discriminate between the

FIG. 1. Schematic showing the 2D scalar mass flux regions for (left) the M07 scheme and (right) the LR05 scheme.
The shaded areas show the mass fluxed through the cell edge e12 over a time step Dt.
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schemes to verify their robustness and to confirm that the
computation of Am is not a major source of scheme error.

2. Transport scheme

a. Numerical approach

To integrate the discrete version of (2) we must de-
termine the transport velocity V, the fluid density r, and
the scalar mixing ratio c. In models solving the hydrostatic
primitive equations or the Navier–Stokes equations, the
time-dependent velocity and density fields would be
computed by solving their own transport equations. We
will assume that the mass fluxes through the cell edges are
given along with the velocities; thus, our finite-volume
solution to (2), following L02 and M07, reduces to de-
termining the area-averaged value of the mixing ratio c in
the parallelogram with area Am (the shaded area) given
in the left-hand panel of Fig. 1. The time-integrated mass
flux in the summation in (2) is given by dei

(rV ! nei
)c Dt,

where c is the area-averaged mixing ratio. Our procedure
does not directly integrate the scalar mass dei

(V ! nei
)rc Dt

over this area. We choose to evaluate the area-average
mixing ratio c so that we can maintain consistency be-
tween the scalar mass conservation equation and the mass
conservation equation. If the mass conservation equation
is written in the form in (2) (with c [ 1) and integrated
with the same time step, the scalar mass could be directly
integrated but a higher-order quadrature scheme would
be needed for the quadratic quantity (rc; see LR05).

In L02, M07, LR05, Yeh (2007), and herein, the area-
averaged value is computed by integrating polynomials
representing the spatial distribution of c over the mass
flux area (Am in Fig. 1). For a first-order polynomial

c 5 c0 1 cxx 1 cyy. (3)

M07 uses a least squares method to determine the co-
efficients of the polynomial following Stuhne and Peltier
(1996). A least squares fit to a quadratic polynomial is
used to obtain the coefficients for the linear polynomial
in (3) by M07 and for the results presented herein. Other
approaches are possible, including using the Stokes
method (Tomita et al. 2001) or by fitting planes to the
cell-averaged values lying at the vertices of the dual grid
(triangles) whose centers are the vertices of the hexagons,
and producing cell-averaged values of cx and cy by aver-
aging these vertex values (LR05; Yeh 2007). These ap-
proaches produce identical results for perfect hexagons on
a plane, but may produce different results on the imper-
fect hexagonal grid on the sphere. We have found very
little difference in the absolute errors or error convergence
rates in our tests using the different approaches, and we
have chosen to use a least squares fit to determine the
coefficients because it is easily extended to higher-order
polynomials.

For finite-volume transport schemes that compute mass
fluxes by integrating over cell-based reconstructions of the
scalar mass, it is important that the integral of the scalar
mass over the cell equal the mass in the cell, in this case the
(predicted) cell-averaged mass times the cell area, as is the
case, for example, in the piecewise parabolic method
(Woodward and Colella 1984) and the flux-form Crowley
schemes (Tremback et al. 1987). For the first-order re-
construction schemes using (3), if the cell center is the cell
center of mass, and if c0 is set equal to the cell-averaged
value, this constraint is automatically satisfied. For higher-
order polynomials this constraint will not be satisfied unless
it is part of the polynomial construction because integrals
of the higher-order terms over the cell area will not equal
zero. In our approach we compute the polynomial co-
efficients using a least squares fit after which we adjust the
constant term c0 such that the constraint is satisfied. L02
also constructs the polynomial using the least squares fit
but there the constraint is satisfied by including it directly,
as a constraint, in the least squares procedure. We conclude
that both approaches to satisfying the constraint are valid
because our results are very similar to those of Lashley.

In L02’s weighted least squares procedure for fitting
the polynomial, he weights the fit to the center point
(point 0 in Figs. 1 and 2) by a factor of 1000 relative to
the surrounding points. We have experimented with this
weighting for the second-, third-, and fourth-order poly-
nomial fits and verified that the weighting is necessary;

FIG. 2. Schematic showing a grid centered about cell 0. The
dark-shaded cells (1–6) are used in the reconstruction of polynomials
less than or equal to order 2. The lighter-shaded cells (7–17) are used
in the reconstruction of polynomials on the order of 3 and 4.
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Summary
Development	  of	  the	  Global	  Cloud	  Resolving	  Model

UZIM (Unified Z-grid Icosahedral Model)	  development:

The	  hybrid	  sigma-‐pressure	  ver9cal	  coordinate	  and	  the	  gvc	  
versions	  of	  the	  quasi-‐hydrosta9c	  UZIM	  have	  been	  completed.	  

SUZI (Superparameterized Unified Z-grid Icosahedral Model)	  has	  
been	  constructed	  and	  tested	  in	  an	  aquaplanet	  simula9on	  by	  Don	  
Dazlich.

We	  face	  a	  wavenumber-‐5	  problem.	  We	  will	  work	  on	  the	  mi9ga9on	  
of	  the	  problem.

We	  are	  working	  on	  a	  new	  Global	  VVM	  which	  predicts	  the	  curl	  of	  
horizontal	  vor9city.	  The	  3D	  ellip9c	  equa9on	  has	  more	  convenient	  
boundary	  condi9ons	  with	  the	  VVM.	  	  
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